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Higher-Order Explanations of Graph Neural
Networks via Relevant Walks

Thomas Schnake, Oliver Eberle, Jonas Lederer™, Shinichi Nakajima, Kristof T. Schutt™,
Klaus-Robert Miller™, Member, IEEE, and Grégoire Montavon

Abstract—Graph Neural Networks (GNNs) are a popular approach for predicting graph structured data. As GNNs tightly entangle the
input graph into the neural network structure, common explainable Al approaches are not applicable. To a large extent, GNNs have
remained black-boxes for the user so far. In this paper, we show that GNNs can in fact be naturally explained using higher-order
expansions, i.e., by identifying groups of edges that jointly contribute to the prediction. Practically, we find that such explanations can be
extracted using a nested attribution scheme, where existing techniques such as layer-wise relevance propagation (LRP) can be applied
at each step. The output is a collection of walks into the input graph that are relevant for the prediction. Our novel explanation method,
which we denote by GNN-LRP  is applicable to a broad range of graph neural networks and lets us extract practically relevant insights
on sentiment analysis of text data, structure-property relationships in quantum chemistry, and image classification.

Index Terms—Graph neural networks, higher-order explanations, layer-wise relevance propagation, explainable machine learning

1 INTRODUCTION

MANY interesting structures found in scientific and
industrial applications can be expressed as graphs.
Examples are lattices in fluid modeling, molecular geometry,
biological interaction networks, or social/historical net-
works. Graph neural networks (GNNs) [1], [2] have been
proposed as a method to learn from observations in general
graph structures and have found use in an ever growing
number of applications [3], [4], [5], [6], [7], [8]. While GNNs
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make useful predictions, they typically act as black-boxes,
and it has neither been directly possible (1) to extract novel
insight from the learned model nor (2) to verify that the
model has made the intended use of the graph structure,
e.g., that it has avoided Clever Hans phenomena [9].

Explainable AI (XAI) is an emerging research area that
aims to extract interpretable insights from trained ML mod-
els [10], [11]. So far, research has focused, for example, on
full black-box models [12], [13], self-explainable models
[14], [15], or deep neural networks [16], where in all cases,
the prediction can be attributed to the input features. For a
GNN, however, the graph being received as input is deeply
entangled with the model itself, hence requiring a more
sophisticated approach.

In this paper, we propose a theoretically founded XAI
method for explaining GNN predictions. The conceptual
starting point of our method is the observation that the func-
tion implemented by the GNN is locally polynomial with the
input graph. This function can therefore be analyzed using a
higher-order Taylor expansion to arrive at an attribution of
the GNN prediction on collections of edges, e.g., walks into
the input graph. —Such an attribution scheme goes beyond
existing XAI techniques for GNNs that are limited to identi-
fying individual nodes or edges.

Furthermore, we find that the higher-order expansion can
be expressed as a nesting of multiple first-order expansions,
starting at the top layer of the GNN and moving towards the
input layer. This theoretical insight enables a principled
adaptation of the Layer-wise Relevance Propagation (LRP)
[16] explanation technique to GNN models, where the prop-
agation procedure is guided along individual walks in the
input graph. The resulting procedure that we propose and
that we denote by GNN-LRP is shown in Fig. 1.

GNN-LRP applies directly to a broad range of GNN
architectures, without need to learn a surrogate function,
nor to run any optimization procedure. We demonstrate

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. High-level illustration of GNN-LRP. The explanation procedure
starts at the GNN output, and proceeds backwards to progressively
uncover the walks that are relevant for the prediction.

GNN-LRP on a variety of GNN models from diverse appli-
cation fields: (1) a sentiment prediction model receiving
sentence parse trees as input, (2) a state-of-the-art GNN for
quantum mechanically accurate prediction of electronic prop-
erties from molecular graphs, and (3) a widely adopted image
classifier that we view as a GNN operating on pixel lattices.—
For each GNN model, our explanation method produces
detailed and reliable explanations of the decision strategy
from which novel application insights can be obtained.

The code for this paper can be found at https://git.
tu-berlin.de/thomas_schnake/paper_gnn_lrp.

1.1 Related Work

We focus here on the related work that most directly con-
nects to our novel GNN explanation approach, in particular,
(1) explanation techniques based on higher-order analysis,
and (2) explanation techniques that are specialized for
GNNSs. For a more comprehensive set of related works, we
refer the reader to the review papers [17], [18] for XAI and
[2], [19] for GNNs.

1.1.1  Higher-Order Explanations

Second-order methods (e.g., based on the model’s Hessian)
have been proposed to attribute predictions to pairs of input
features [20], [21], [22]. Another work [14] incorporates an
explicit sum-of-interactions structure into the model, in
order to obtain second-order or higher-order explanations.
Another approach [23] detects higher-order feature interac-
tion with an iterative algorithm which inspects neural net-
work weights at the different layers.

Our work proposes instead to use the framework of Tay-
lor expansions to arrive in a principled manner to the
higher-order explanations, and it identifies GNNs as an
important use case for such explanations.

1.1.2 Explaining Graph Neural Networks

The work [24] extends explanation techniques such as Grad-
CAM or Excitation Backprop to the GNN model, and arrives at
an attribution on nodes of the graph. In an NLP context, graph
convolutional networks (GCNs) have been explained in terms
of nodes and edges in the input graph using the LRP explana-
tion method [25]. GNNExplainer [26] and PGExplainer [27]
explain the model by extracting the subgraph that maximizes
the mutual information to the prediction for the original
graph. XGNN [28] is a model-level explanation method,
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which produces typical graphs for a target class. PGMEx-
plainer [29] learns a probabilistic graphical model from the net-
work, which is then able to measure the probability for
different higher order feature interactions in the model.
GraphMask [30] learns binary masks for edges in each layer to
retain only the connections which are most important for the
prediction. Gem [31] is a trained generative model that gener-
ates causal explanations of GNNs. The method SubgraphX
[32] proposes a Monte-Carlo tree search to find relevant sub-
graphs in the input graph and uses Shapley values as an attri-
bution function for subgraphs. Other recently proposed
methods that map the GNN prediction to graph substructures
include Trap2 [33] and GraphLime [34]. In [35] the authors pres-
ent a survey of different interpretation methods for GNNs.

Regarding the quality of the relevance features, most of the
proposed methods attribute the GNN prediction to nodes or
edges of the input graph [24], [26], [27], whereas GNN-LRP
gives scores for higher-order features, such as sequences of
edges. The quality of the attributions for GraphMask and
PGMExplainer are comparable with our approach. Yet, both
methods learn to understand the prediction strategy of a
GNN by a given optimization criterion, where the reliability
of such explanations strongly depends on the well-posedness
of the optimization criteria (e.g., convexity). Instead our
method is independent of any additional optimization crite-
rion. The method SubgraphX [32] attributes the prediction to
subgraphs of the input graph and is closely related to our sub-
graph selection technique presented in Section 4.1. Sub-
graphX uses a Monte-Carlo optimization algorithm to find
the most relevant subgraph, whereas we use either a local best
guess or a random sampling approach (cf. Appendix D of
the Supplement, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2021.3115452). SubgraphX uses Shapley val-
ues for the subgraph scoring, whereas we use a backward
propagation pass.

2 ToWwARDS EXPLAINING GNNs

In this section, we briefly introduce graph neural networks
and then develop a Taylor-based explanation framework for
explaining these models. Throughout the paper, we make
use of graph-specific notation that we summarize in Table 1.

2.1 Graph Neural Networks
Graph neural networks (GNNs) [1], [2] are special types of
neural networks that receive a graph as input. In practice,
graphs can take a variety of forms, e.g., directed, undirected,
labeled, unlabeled, spatial, time-evolving, etc. To handle the
high heterogeneity of graph structures, many variants of
GNNs have been developed (e.g., [36], [37], [38]). One com-
monality of most GNNs, however, is that the input graph is
not located at the first layer, but occurs instead at multiple
layers, by defining the connectivity of the network itself.
Graph neural networks are typically constructed by
stacking several interaction blocks. Each block ¢t = 1...T com-
putes a graph representation H; € R"™*% where n is the
number of nodes in the input graph and d; is the number of
dimensions used to represent each node. Within a block, the
representation is produced by applying (i) an aggregate step
where each node receives information from the neighboring
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TABLE 1
Notation Used Throughout the Paper

H X (uppercase and bold) Matrix or tensor.

h,x (lowercase) Vector or scalar.

®and © Element-wise multiplication and division
respectively.

(-, Euclidean scalar product.

g A graph defined by sets of nodes and
edges.

N, Eand B || Node, edge and bag-of-edges in a graph
respectively.

w A walk as an ordered sequence of nodes.

X Any graph feature, either an edge, node or
bag-of-edges.

Xeg Set of graph features in a graph, where X
can also be interchanged by \, & or B.

WeB Set of all walks composed by the bag-of-
edges B.

JK,... Node indices in a GNN. Adjacent letters in
the alphabet indicate adjacent blocks in the
GNN.

a,b,... Neuron indices within the node. Adjacent
letters in the alphabet indicate adjacent
layers in the network.

A, Xe, Ak || A is the connectivity matrix of a GNN. For
each edge £ and node pair (J, K), A¢ and
Ask define its corresponding connectivity
weigtht respectively.

H, The hidden representation of a GNN at
block t.

H; The representation of node I at block ¢.

The table is separated between general mathematical notation (top), graph theo-
retic notation (middle) and notation that is used in the context of GNNs (bottom).

nodes, and (ii) a combine step that extracts new features for
each node. These two steps (cf. [39]) connect the representa-
tions H;_; and H; of consecutive blocks as

aggregate: Z; = AH, (1

combine: H; = (Ct(ZtiK))Kv 2

where A is the input graph given as a matrix of size n x n,
e.g., the adjacency matrix to which we add self-connections.
We denote by Z, i the row of Z; associated to node K, and
C; is a ‘combine’ function, typically a one-layer or multi-
layer neural network, that produces the new representation
for each node in the graph.

The whole input-output relation implemented by the
GNN can then be expressed as a function

f([\7 H(]) = g(HT(A, HT_I(A, .. .Hl(A, }I()))))7 (3)

which is a recursive application of Egs. (1) and (2) starting
from some initial state H, € R™*%, followed by a readout
function g. The initial state typically incorporates information
that is intrinsic to the nodes, or it can be set to constant values
if no such information is present. The readout function is typ-
ically a classifier (or regressor) of the whole graph, but it can
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also be chosen to apply to subsets of nodes, for example, for
node classification or link prediction tasks [19], [40].

2.2 First-Order Explanation

Consider first a ‘classical’” approach to explanation where
we attribute the output of the neural network to variables in
the first layer. In the case of the GNN, the first layer is given
by the initial state H.

Let us now view the GNN as a function of the initial
state, i.e., f(Hy). We will also denote by H ; the row of H|
associated to node /. A Taylor expansion of the function f
at some reference point H gives

_ af
F(Ho) = Z[j < 9y

where “... represents the zero-, second- and higher-order
terms that have not been expanded, and where the sum rep-
resents the first-order terms. Because the sum runs over all
nodes [ in the input graph, the addends in Eq. (4) readily
provide an attribution of the GNN output to each node.

It is arguable, however, whether this attribution can truly
be interpreted as identifying node contributions. Indeed,
the attribution may only reflect the importance of a node in
the first layer, and not in the higher layers. Furthermore, an
attribution of the prediction on nodes may not be sufficient
for the application needs. For example, it does not tell us
whether a node is important by itself, or if it is important
because of its connections to other nodes or some more com-
plex structure in the graph.

These limitations can be attributed to the fact that we
have performed the decomposition w.r.t. the initial state Hy
instead of the ‘true” input A.

~7(H0.I_I~IO,I)>+~-, 4)
H,

2.3 Higher-Order Explanation

Consider now the true input A of the GNN. Since it occurs in
every interaction block and applies in a multiplicative man-
ner (cf. Eq. (1)), a first-order analysis of the GNN function
f(A) would not be suitable to identify the multiplicative
interactions. These interactions can however be identified by
applying a higher-order Taylor expansion.

In the following, we will use the additional notation A¢ to
denote the element of the matrix A associated to a particular
edge £ of the graph. Assuming that f(A) is smooth on the
relevant input domain, we can compute at some reference
point A, a T-order Taylor expansion

1 oy f
A 9T AL A
f( ) ; aB! 8)\5]. . .3)\51, ’1‘\' &1 Er

Rp

(5)

+...,

with Ag := (A\¢ — Xg) and where we define ap! := [ ap¢!
with o ¢ denoting the number of occurrences of edge £ in the
bag B. The sum runs over all bags B of 1" edges. Hence, the
terms of the sum capture the joint effect of multiple edges on
the GNN output. The last line ‘+... represents the non-
expanded terms of order lower or higher than 7". Anecdotally,
for certain classes of functions, in particular, piecewise multi-
linear positively homogeneous functions (an example is
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Fig. 2. lllustration of a bag-of-edges 15 and the corresponding walks W for a

simple input graph of three nodes. The two walks associated to the given
bag-of-edges are shown with a solid and a dashed line, respectively.

GNNs with ReLU nonlinearity and zero biases), choosing
the reference point A = sA makes the non-expanded terms
vanish in the limit of s — 0, thereby leading to the conserva-
tion property > Rg = f(A) (cf. Appendix A of the Supple-

ment, available online).

2.4 Nested Computation and Relevant Walks

The higher-order Taylor expansion presented above is
conceptually simple and mathematically founded. How-
ever, systematically extracting higher-order derivatives of
a neural network is difficult and does not scale to complex
models.

To address this first limitation, we introduce the concept
of a walk W, which we define to be an ordered sequence of
nodes that are connected in consecutive blocks of the GNN.
The relation between bag-of-edges and walks is illustrated
for a simple graph in Fig. 2.

Because each walk maps to a particular bag-of-edges, a
walk-based explanation inherits all information contained
in the bag-of-edges explanation. In particular, it is always
possible to recover the bag-of-edges explanation from a
walk-based explanation by applying the pooling operation
Rg =35 Rw. However, using walks brings two further
advantages:

1) A walk-based explanation gives more information,
how multiple blocks of the GNN have been used to
arrive at the prediction. For example, as illustrated
in Fig. 2, it can reveal whether message passing
between two nodes has occurred in the first or in the
last blocks of the GNN.

2)  The fact that the walks connect to the structure of the
GNN more directly, makes the explanation easier to
compute.

To show this, we introduce the new variable A" —
(A,...,A) which distinguishes between edges occurring in
different blocks of the GNN, and express the GNN output
as a function of this expanded input, i.e., f(A"). We also
adopt a node-based notation, where walks are given by
the sequence of nodes they traverse from the first interac-
tion block to the last one, e.g., W= (...,J,K,L,...). The
letters J, K,L denote nodes between the consecutive
blocks, and “..." acts as a placeholder for the leading and
trailing nodes of the walk. We further denote by A, the
element of A" representing the connection between node .J
and node K.
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Proposition 1. For the considered function f(A") the higher-
order terms Rp in Eq. (5) can be equivalently computed as a
sequential application of a first order Taylor decomposition

along a walk W = (..., J,K, L,...) at the root point A" with

0=<A <A

ad ad d... .
Ry=— (> A
RN (axm(axm x JK)

~ AKL)
A
——————

Rirp...

ey

A

Rjkr..

(6)

with Ay == (N — Ap), and then applying the pooling operation

Rp = ZWEB Ryy.

(A proof is given in Appendix B of the Supplement,
available online.) In other words, the attribution can be pro-
duced by analyzing each block iteratively from the top of
the network to the input features. Here again, when the
function is a nesting of piecewise linear positively homoge-
neous functions, choosing the reference point AN = sA
gives an explanation that is conservative in the limit of s —
0, and each step of the nested computation can be computed
as Rykr. = [VRir (A)]; - Ak ie., ‘Gradient x Input (GI)'.
This simple explanation procedure which we call GNN-GI
will serve as a baseline in our experiments.

3 THE GNN-LRP METHOD

The approach of Section 2.4 gives us a practical way of
extracting higher-order explanations by analyzing interac-
tion blocks individually. However, the analysis of each inter-
action block can itself be challenging. For example, the
interaction block of a GIN can be composed of multiple
layers. The high nonlinearity caused by these multiple layers
can make it difficult if not impossible to choose a root point
A" at which a Taylor expansion accurately models the quan-
tity to explain.

In the following, we consider an extension of the Taylor
expansion method, called deep Taylor decomposition
(DTD) [41]. It consists of replacing the Taylor expansion of
the multilayer model by several Taylor expansions per-
formed at each layer. When applied to standard neural net-
works, DTD yields an explanation technique called Layer-
wise Relevance Propagation (LRP) [16], [42] that was shown
to be more robust than simple gradient-based methods.
Application of LRP to the multiple interaction blocks of a
GNN vyields a novel procedure for explaining GNNs that
we call ‘GNN-LRP".

To simplify the exposition of our method, we will con-
sider the special case of the graph convolutional network
(GCN) [36]. In a GCN, each interaction block is composed
of a linear aggregate function with positive adjacencies, fol-
lowed by a linear/ReLU combine function. We restate these
blocks by introducing the notation we use in this section

2 = 2y Mk
combine: hl}\, = max (0, > z‘kwab)‘

aggregate:

Here, h denotes the activation of some neuron with index a
inside the node J. The notation ), represents a sum over all
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aggregate combine
1. forward pass T 1o 1

2. relevance propagation

a
RJKLW

A\
@),

Fig. 3. Diagram of GNN-LRP annotated with variables that are used.
(1) Sketch of an interaction block featuring an aggregation layer followed
by a combine layer. The sketch shows nodes J and K, each of them rep-
resented by neurons. Two neurons of consecutive layers of the combine
function are denoted by a and b. (2) GNN-LRP propagation flow, where
we observe that only relevance scores that propagate along a particular
walk in the input graph are retained.

neurons a composing a node plus a hardcoded neuron ‘0
with activation 2% = 1 and with wy, representing the bias. To
further simplify the notation, we also omit the star symbol
on the variable \;x. The aggregate and combine steps of a
GCN are illustrated in Fig. 3 (top).

3.1 Deep Taylor Decomposition

Like in Section 2.4 we consider the problem of attributing
Rkr... to the adjacencies Ajx. Unlike Eq. (6), deep Taylor
decomposition (DTD) adds further granularity to the attri-
bution process, by considering relevance scores not at the
node level, but at the neuron level (i.e., R}, ). Also, instead
of decomposing this quantity directly to the adjacencies Ay,
DTD considers as a first step a redistribution on the interme-
diate representation zg.

For this, DTD defines a ‘relevance model’, which is cho-
sen here to be Ri; (zx) = hl(zx) ), , a product of the
neuron activation (which is a function of the intermediate
representation), and a term that is constant and set in a way
that the relevance model matches the true relevance RY,
locally. (A justification for this relevance model is given in
Section 3.2.) Using this relevance model, we can now attri-
bute the relevance score to neurons of the intermediate
representation by means of a first-order Taylor expansion at
some root point zx

AR
= AL (2 - 7). (7
0 Iy

Rw—b _

(Note that the root point zx will typically be different for each
output neuron b.) An aggregate relevance score is then
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obtained by summing contributions from neurons in the layer
above, ie., R, =Y, R%;" . The next step is to attribute the
newly computed relevance scores to the adjacencies A in
the aggregate step. For this, we proceed similarly to above, by
first defining a relevance model R}, = 2% (Ax)c), and
then computing the first-order terms of a Taylor expansion

dR%,

KL = gy i (A = Auk)- ®)

The overall layered attribution procedure is illustrated in
Fig. 3 (bottom).

3.2 Deriving GNN-LRP Propagation Rules

The equations above define a general framework for layer-
wise propagation of the relevance to the adjacencies A 5. To
arrive at concrete propagation rules, it remains to set the
root points in Egs. (7) and (8). For the first Taylor expansion,
we choose zx at the intersection of the line

{zx — 52 © (1 + yly,-0) | s € R},

and the ReLU hinge. The parameter y tilts the search for a root
point towards neurons with positive contributions. A high
value of y leads to root points zx that are closer to the activa-
tion zx and that better contextualize the explanation. Injecting
this root point in Eq. (7) glves the relevance messages R%;" =
25 wap 8 (1 + ¥1y,,> 0) ¢y . Resolving the parameter s and
pooling relevance messages coming from the multiple output
neurons, we obtain the propagation rule

=2

2 (Wap + ywy)
@ Ry, . )
Zu ZK(wab + ywab) feb

For propagation in the aggregate layer, applying a similar
root search strategy as above yields the root point A; = 0.
Injecting this root point in Eq. (8) gives the propagation rule

A hG
“ =—="—RY . 10
JKL... E] )\IKh(} KL... ( )

We are now in position to verify the validity of the relevance
model we have used in Section 3.1 to perform the Taylor
expansions. An inspection of Eqgs. (9) and (10) shows that
the relevance score, resulting from applying these rules, can
always be written as a product of the corresponding activa-
tion and a term that depends on this activation only through
two nested sums. This provides a justification for our rele-
vance model which approximates the latter term as con-
stant. (The same argument can be found in [41] for standard
deep neural networks).

Interestingly, the rules in Egs. (9) and (10) can be merged
into a single propagation rule that we show in Eq. (11) of
Table 2. The propagation rule can be seen as a generaliza-
tion of the LRP-y rule [42] to the GCN. It inherits some of its
theoretical properties such as the connection between LRP
and Gradient x Input (GI). In particular, in the limit of y —
0, the explanations produced by GNN-LRP become equiva-
lent to those of the GNN-GI baseline. Our experiments will
however demonstrate that higher values of y produce better
explanations.
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TABLE 2
Practical GNN-LRP Propagation Rules for Different Types of GNNs
Model Aggregate Combine GNN-LRP Rule
Re - )\JthL,wLb b 11
GCN [36] Z, = AH, H, = p(Z,W)) KL = Db 5 i k. )
. B A u
GIN [44] Z,=AH,, H = (MLPO(Zog)), B = Sos~ 3 Ge LRP(Ryg, . #) (12)
o . /\'5 ,h,fl ’wZT
Spectral [43], [45] (case A > 0) Zo,=NANH,; | H,=p(>,Z,:Wy;) Rigp.. = Zb—z, Z/AA,,‘];hl;wslT Rir. (13)

The function p(-) is the rectification function max(0, -). We denote by wg, the element of the matrix W, that links neuron a to neuron b, and we use the notation
w! = w+ yw*. In the last row, A represents one component of the graph convolutional filter approximation presented in [43].

3.3 Application of GNN-LRP Beyond the GCN Model
The derivation above has focused on the simple case of the
GCN model. However, the procedure can be extended to a
broad range of other models. For example, the GIN [44] can
be seen as an extension of the GCN where the combine func-
tion consists of multiple layers. Here, we simply need to
apply LRP rules in each layer of the combine function fol-
lowed by the aggregation layer (Eq. (12)). The procedure
can again be justified as a deep Taylor decomposition. Spec-
tral filtering methods [46] such as the Spectral Network [43]
or ChebNet [45] can be viewed as variants of the GCN with
multiple adjacency matrices, and GNN-LRP propagation
rules can also be derived for these models (Eq. (13)).

GNN-LRP can be applied to further GNN models such as
the original GNN model [1], GraphSAGE with mean aggrega-
tion [47], or Neural FP [48]. GNN-LRP is also applicable to
other recent GNN architectures such as the SchNet [37] used
for predicting molecular properties, and where the graphis a
representation of the distance between atoms. GNN-LRP is
also applicable to convolutional neural networks for com-
puter vision such as VGG-16 [49], which can be seen as a par-
ticular GNN receiving as input a pixel lattice. GNN-LRP can
be extended to more advanced architectures such as joint
CNN-GNN models for spatio-temporal graphs [38]. Further-
more, GNN-LRP allows in principle to use different edges
and nodes at different layers, which can be useful to handle
graph pooling structures, such as those described in [50].

More generally, GNN-LRP procedures can be designed
for any architecture that is expressible as an alternation of
aggregate and combine steps as given in Egs. (1) and (2).
The combine step is then treated as a common neural net-
work, built on some lower layer of activations. Here, exist-
ing LRP rules, that have been developed for a variety of
neural network models (e.g., [16], [42], [51]) can be applied.
In the aggregation step we either have a linear pooling over
nodes such as mean or sum aggregation, or a nonlinear
pooling, such as max-pooling in GraphSAGE [47]. In the lin-
ear case, the same propagation rule as for the GCN in
Eq. (10) can be applied. In the nonlinear case, one needs to
build specific propagation rules, e.g., using the deep Taylor
decomposition approach of Section 3.1.

3.4 Implementing GNN-LRP

As an extension of LRP, GNN-LRP inherits several tricks
that strongly facilitate the implementation of the method
compared to a direct transcription of Egs. (11), (12), and (13)

into code. One such trick is the use of forward/backward
hooks to alter the gradient computation in a way that it
matches the LRP signal.

For example, GNN-LRP for a GCN can be easily imple-
mented by rewriting the combine function of each interac-
tion block as

P, — szthT
Qt — Pt ®© [,O(ZtWt)®Pt](:stA
Ht — Qt © MK' + [Qt]cst. © (1 - MK)’

where [-] .4t detaches the quantity to which it applies from the
gradient and M g is a mask that retains node K. More details
are given in Appendix C in the Supplement, available online.
Along with automatic differentiation capabilities of neural
network software and the availability of predefined layers
such as convolution or pooling, this implementation trick
allows to implement GNN-LRP for complex GNN architec-
tures without much code overhead. This implementation trick
is also used in a GNN-LRP demo code that we provide at
https:/ / git.tu-berlin.de/thomas_schnake/demo_gnn Irp.

3.5 Limitations

When implementing the masking approach from above, a
limitation of GNN-LRP is the need to compute in the gen-
eral case as many forward-backward passes as there are
walks in the input graph. This typically limits the applica-
bility of the method to GNNs of a limited depth (e.g., three
or four layers). Ability of GNN-LRP to scale to bigger
graphs and deeper models is tied to the application require-
ments, e.g., whether coarse-graining of certain nodes is per-
mitted so that multiple relevant walks can be merged into a
single computation, or whether only the most relevant
walks are of interest, in which case pruning techniques can
be applied.

Some explanation techniques such as GNNExplainer
[26], PGExplainer [27] and SubgraphX [32] are based solely
on evaluating the function or its gradient multiple times.
This enables an application of the method without further
knowledge of the model implementation. This is not the
case for GNN-LRP (and other explanation methods such as
GraphMask [30]), which require usage of the neural net-
work internals. Our GNN-LRP method, in particular,
requires access to the representation at each layer in order
to implement appropriate propagation rules at each layer.


https://git.tu-berlin.de/thomas_schnake/demo_gnn_lrp
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Class 1 Class 2 Explanation for an example of class 1

Fig. 4. Left: Examples from the two classes of the BA-growth dataset.
Right: GNN-LRP explanation for the GIN prediction of a graph of class 1.
Relevant (positively contributing) walks are shown in red and negatively
contributing walks are in blue. Circles represent walks (or part of the
walks) that are stationary.

This incurs an implementation overhead, which remains
however manageable if making use of the implementation
trick mentioned in the section above.

4 EVALUATION OF GNN-LRP

To test the proposed GNN-LRP method, we train various
types of GNNSs on several graph prediction tasks. We start
with a two-class synthetic problem that we call BA-growth
where the first class consists of Barabasi-Albert graphs [52]
of growth parameter 1 (class 1), and where the second class
has a slightly higher growth model and new nodes are
attached preferably to low-degree nodes (class 2). Examples
of graphs from the two classes are given in Fig. 4 (left).
Details on this synthetic dataset are given in Appendix E in
the Supplement, available online.

We consider a graph isomorphism network (GIN) that
we train on this task. Our GIN has two interaction blocks. In
each interaction block, the ‘combine’ function consists of a
two-layer network with 32 neurons per node at each layer.
The initial state H, is an all-ones matrix of size n x 1, i.e.,
nodes do not have intrinsic information. The GIN receives
as input the connectivity matrix A = A/2 where A is the
adjacency matrix augmented with self-connections. The
GIN is trained on this task until convergence, where it
reaches an accuracy above 95 %. More details on the model
and its training are given in Appendix F.1 of the Supple-
ment, available online. After training, we take an exemplary
input graph from class 1, predict it with our GIN, and apply
GNN-LRP on the prediction. We use the LRP parameter y =
2 and y = 1 in each layer of the first and second interaction
blocks respectively. The resulting explanation is shown in
Fig. 4 (right).

The explanation produced by GNN-LRP reveals that
walks that traverse or stay in the high-degree node are the
principal contributors to the GIN prediction. On the other
hand leaf nodes or sequences of low-degree nodes are
found to be either irrelevant or to be in slight contradiction
with the prediction.
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Pope et al. [24]
(LRP)

GNNExplainer

GNN-GI [26]

GNN-LRP

Fig. 5. Comparison of different explanation techniques on the same graph
as in Fig. 4. GNN-LRP produces more detailed explanations compared to
[24] and [26], and brings more robustness compared to GNN-GI.

In the following, we compare GNN-LRP to a selection of
other GNN explanation methods:

(@)  Pope et al. [24]: The method views the GNN as a func-
tion of the initial state Hy, and performs an attribu-
tion of the GNN output on nodes as represented in
Hy. In principle, the proposed framework lets the
user choose the technique to perform attribution on
Hj. In our benchmark, we use the techniques Gra-
dient x Input (GI) and LRP.

(b) GNN-GI: This simple baseline replaces in the GNN-
LRP procedure the LRP steps by Gradient x Input
steps. It can also be seen as a special case of GNN-
LRP with parameter y = 0.

(¢)  GNNExplainer [26]: The method runs an optimization
problem that finds a selection of edges that maximizes
the model output. The procedure can be viewed as
finding a mask M = o(R) where o denotes the logistic
sigmoid function, that maximizes the prediction
f(M ® A). The explanation is then given by R.

Explanations produced by each method are shown in Fig. 5.
The method by Pope et al. [24] highlights nodes that are rele-
vant for the prediction. However, it is difficult to determine
from the explanation whether the highlighted nodes are rele-
vant by themselves or if they are relevant in relation to their
neighbors. The GNN-GI baseline we have contributed, and
our more advanced method GNN-LRP, provide a much
higher level of granularity, distinguishing between the contri-
bution of the node and its interaction with other nodes. In com-
parison to GNN-LRP, however, the GNN-GI baseline tends to
be less selective, with spurious positive or negative relevance,
and generally more noisy (something we will also observe
later in Section 5.3). The GNNEXxplainer [26] produces explana-
tions that are in agreement with GNN-LRP but less detailed.

Overall, from our first qualitative inspection, GNN-LRP
is the only method in our benchmark that produces explan-
ations that have both the desired robustness and a high level
of detail.

4.1 From Attribution to Subgraph Selection

We would like to compare the methods above quantitatively.
A first difficulty is that most quantitative benchmarks are
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not making direct use of attribution scores, nor do they
operate at a specific granularity such as edges or walks.
Instead, two common evaluation methods that we will con-
sider in Sections 4.2 and 4.3 require to output a maximally
relevant subgraph or sequence of subgraphs.

We introduce a technique to extract most relevant sub-
graphs from relevance scores obtained by an attribution
method. Our approach is applicable equally to node-based,
edge-based, and walks-based explanations and it makes
efficient use of the higher-order information contained in
the latter explanations to extract more precise subgraphs.

Let X denote our unit of attribution. For a node-based attri-
bution (e.g., [24]), an edge-based attribution (e.g.,, GNNEXx-
plainer [26]), or walks-based attribution, we replace X by a
node NV, edge £ or bag-of-edges BB respectively. We define the
relevance of a subgraph S C G to be the relevance of subfea-
tures the subgraph is composed of. This means that a given
subgraph S is assigned the score

Rs = ZRX.

XeS

(14)

The best subgraph is then ideally chosen via the optimiza-
tion problem

S = argmax Ry, (15)

Ses

where S is the set of admissible subgraphs, e.g., all graphs
composed of a given number of nodes. In the worst case, we
have exponential complexity to obtain S°, which is espe-
cially costly for bag-of-edges attributions. Approximation
schemes that we use (random sampling, local best guess) for
these optimization problems are given in Appendix D in the
Supplement, available online.

4.2 Model Activation Task

Our first evaluation experiment is called ‘model activation’
and is inspired by pixel-flipping' [53]. We start with an
empty subgraph S and grow it by adding nodes one-by-
one. Nodes are selected at each step to incur a maximum
growth of the relevance score Rs. While nodes are being
added to the graph, we keep track of the true GNN output
f(S). The higher the GNN output, the more faithful the
explanation technique, as the latter was therefore able to
identify the correct substructure. Pseudo-code for our acti-
vation task is given in Algorithm 1.

The algorithm returns an area under the activation curve
(AUAQ) score. The higher the AUAC score the better the
explanation technique. The procedure is repeated for a suffi-
ciently large number of data points, leading to an averaged
AUAC score.

We now use the AUAC metric to evaluate the different
explanation methods on a broad set of architectures and
datasets. On the BA-growth dataset, we train a GCN, a
GIN, and a spectral network, each of them with two inter-
action blocks, and with respectively 128, 32 and 32 neurons

1. Pixel-flipping [53] starts with an original data point and ‘flips’
(i.e., destroys) input features from most to least relevant according to
the explanation, and how quickly the output of the model drops
throughout the flipping process. The faster the output drops, the more
faithful the explanation.
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TABLE 3
AUAC Scores of Each Explanation Method
on Various Datasets and Models

m
T 2| g
~ 3 e I
= ~ S o —
S 215 5| &5 £
T T |z z |z %
a a1z zZ | Z 5
~ ~ 0 Q Q =
BA-growth, GCN 254 3.02 | 293 352 | 332 105
BA-growth, GIN 275 349 | 304 384 | 371 118
BA-growth, spectral | 029 191 | 023 1.85 1.65  0.09
SST, GCN | 26.07 2635 | 26.40 26.65 | 27.07 2047
SchNet-E [37] 10.39 10.47 10.41  8.00
SchNet-y [37] 0.87 1.09 1.01 038
VGG-16 [49] | 946 1318 | 1203 14.04 | — 7.90

All values are averages over 200 data points. The higher the score the better the
explanation. Best performers are shown in bold. The results on SchNet-E are
scaled by a factor of 1073.

per node at each layer. For the spectral network, we give
in each layer the power expansion A = [A’ 1A' 1A% as
input. All models perform almost perfectly on the classifi-
cation task. More details on the models and their training
can be found in Appendix F.1 of the Supplement, available
online.

Algorithm 1. Computation of the AUAC Metric
19

Input: Ordered sequence of nodes NU NI for
which ZEI R e is maximized.
ac Il
S—g
for:=1.../G| do
S—SU{N"}
AC.append(f(S))
end for
AUAC < mean (AC)
return AUAC

‘___1/\/'(77)}

>> Add node to graph

In addition, we also consider networks trained on real
data: A first one is designed and trained by ourselves on the
Stanford Sentiment Treebank (SST) [54] dataset, where the
graph represents a syntactic tree with nodes carrying infor-
mation about each word. Another one is the SchNet [37]
model used for molecular prediction where nodes and edges
represent atom types and distances respectively. Finally, we
use a pre-trained VGG-16 [49] network for image recognition
that we interpret as a graph neural network operating on a
lattice of size 14 x 14 and starting at convolutional block 3. In
this last network, each node represents the collection of acti-
vations at a specific spatial location. Details for each network
are given in Appendix F in the Supplement, available online.
Results for the activation task for each network and explana-
tion method are summarized in Table 3.

On the BA-growth dataset, we observe that GNN-LRP
outperforms other methods on average. Nearest competi-
tors are Pope et al. [24] (in combination with LRP), and the
GNNExplainer [26]. This result corroborates our qualitative
analysis at the beginning of Section 4. We would also like to
verify to which extent GNN-LRP is sensitive to its
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Fig. 6. The effect of the parameter y of GNN-LRP on the AUAC score on
the BA-growth dataset. Higher values of y give better performance.

hyperparameters [55]. The sensitivity of GNN-LRP towards
its hyperparameter y is shown in Fig. 6. We observe that
any choice of parameter y > 1 delivers roughly the same
high benchmark performance. The lowest performance is at
y = 0 which is equal to attributing with GNN-GI.

On the SST task, GNNExplainer and GNN-LRP [26] come
first and second, followed by GNN-GI and both node attribu-
tion methods. In natural language, the sentiment associated to
a sentence relies on word combinations, e.g., negation. This
can explain why methods which attribute on interactions of
words such as GNN-LRP and GNNEXxplainer perform better.

For the experiments on the SchNet model, our method per-
forms again above competitors. Note that in this experiment,
we find that using the LRP parameter y = 0, which is equiva-
lent to Gradient x Input (cf. [56], [57]), already gives good
explanations.2 Hence, GNN-GI and GNN-LRP have the
same performance in this case. The difference to other com-
petitors (Pope et al. [24] and GNNExplainer [26]) is small on
the prediction of the energy E but larger for the dipole-
moment 1, possibly because of a more complex structure of
the prediction task involving longer interactions.

Finally, on the VGG-16 image recognition model, GNN-
LRP again produces the highest AUAC score. Here, the
superiority of LRP over GI can be explained both by a better
handling of neuron biases and by a higher robustness to
shattered gradients, a key difficulty to account for when
explaining very deep models [58], [59].

In a similar experiment to the activation task we search
for the features that least effect the model output when
removing them from the input graph. We refer to this vali-
dation method as the 'pruning task’ in which we compute
the area under the pruning curve (AUPC). We found that
GNN-LRP outperforms most of the other baseline methods
in each of the experimental setups as well. For more details
on the pruning task and its results, we refer to Appendix G
in the Supplement, available online.

We also found that the activation and pruning tasks are
very similar to the fidelity and sparsity tasks presented in [24]
and [35]. We saw that a good performance for the AUAC and
AUPC aligns with a good performance in the fidelity metric.
In addition we point out that the activation and pruning
tasks also reflect if the explanation method differentiate
properly between important and redundant graph features,
which is similar to what the sparsity measure does. We con-
clude that the activation and pruning tasks already reflect a

2. This can be explained by the presence in SchNet of residual con-
nections that reduce gradient noise, and also by the fact that some of
the nonlinearity of SchNet occurs in the mapping of distance between
atoms onto basis functions, which our explanation technique views as
constant and does not propagate through.
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variety of existing validation methods. For more details on
the comparability of the evaluation metrics with additional
quantitative experiments, we refer to Appendix H in the
Supplement, available online.

Overall, we find that GNN-LRP is systematically the best
method in our benchmark. With the fine-grained yet robust
explanations it provides, GNN-LRP is capable of precisely
and contextually identifying elements of the graph that con-
tribute the most or the least to the prediction.

4.3 BA-2motifs Benchmark

As a second quantitative evaluation, we consider the BA-
2motifs [27] benchmark that comes with ‘ground-truth’ explan-
ations. In this dataset, the class of each data point can be traced
to a particular motif in the input graph. We stress that, in con-
trast to the model activation task from Section 4.2, this bench-
mark, to detect the motifs in each data point, is only
meaningful if the model solves the problem well. Indeed, only
if the model exhibits a good performance without fraudulent
Clever Hans strategies, we can expect that the benchmark
measures the true quality of the attribution method.

For the benchmark evaluation we use the GIN architec-
ture similar to the GIN introduced at the beginning of Sec-
tion 4, which predicts the BA-2motifs dataset almost
perfectly, with an accuracy of 99.9%. For the exact model
architecture and its training we refer to Appendix F.1.2 of the
Supplement, available online. We also note that when using
GNN-LRP in this section we select the hyperparameter y =
3,y = 1.5 and y = 0 in the first, second and third interaction
block respectively. The BA-2motifs benchmark assumes that
explanations are given as an ordered sequence of nodes (or
edges) from most to least relevant. It then computes the area
under the receiver operating characteristic (AUROC) of this
ordered sequence against the ground-truth subgraph. To
produce a good sequence of nodes/edges, we use the
approach described in Section 4.1, starting with an empty
graph and adding the nodes/edges in a way that that the
resulting sequence of subgraphs has its relevance scores
summing to the largest possible value. When the optimal
subgraph sequence is too expensive to compute, we use an
approximation scheme, namely the we use a random sampling
approach, which we discuss in more detail in Appendix D of
the Supplement, available online. In the random sampling
approach we choose the hyperparameter k, which represents
the number of feature orderings generated randomly, to be
100 and 150 when considering a sequence of ordered nodes
and ordered edges respectively. For the special case where
we need to produce a sequence of edges from a node-based
attribution (as in [24]), we generate the edge scores by sum-
ming the relevance scores of the containing nodes.

In Table 4 we see the AUROC for different attribution
methods divided into the cases where the explanation is
given as a sequence of nodes or edges (these scenarios are
referred to as ‘node classification” and ‘edge classification’).
We see that for the node case, explanation methods Pope et al.
(LRP), GNN-LRP, PGExplainer and GNNEXxplainer, all have
an AUROC score above 0.9, which shows that all these expla-
nation methods have been able to extract from the model the
class-specific motif in the input graphs. The GI methods
(namely P [24] (GD) and GNN-GI) perform poorly for the
node and edge classification, and are comparable to random
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TABLE 4
AUROC of Selected Explanation Methods on BA-2motifs
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AUROC, nodes | 047 097 | 05 1.0 | 0.94 X
AUROC, edges | 045 095 | 047 098 | 0.81 0.9340.02

The AUROC computation is differentiated between node and edge classifica-
tion. All values are averages over 200 data points. The values for PGExplainer
are extracted from [27].

feature ordering. The method with the best performance for
both feature qualities, is GNN-LRP with a perfect perfor-
mance in the case of nodes and an almost perfect score by
0.02 in the case of edges. This is an improvement of 0.05 to the
previous baseline performance in [27]. We stress, that we
only used approximation schemes for finding the subgraph
ordering, hence we can potentially expect further perfor-
mance gains if using more advanced algorithms for optimiz-
ing subgraph sequences.

Overall, we have shown that among all methods we have
tested, GNN-LRP performs best in finding motifs in the
input graph that give rise to the graph’s correct classification.

4.4 Sanity Checks and Other Evaluations

As an additional evaluation, we perform the sanity checks
proposed in [60], which test if the explanation methods are
sensitive towards model randomization. We randomized
the parameter of a GCN model composed of two interaction
blocks, and trained on the BA-growth dataset, as described
in the beginning of Section 4. We found that the randomiza-
tion of any layer has a profound effect on the heatmaps of
GNN-LRP and GNN-GL In addition, for all interpretation
methods the relevance scores of the original and random-
ized models deviate drastically. We therefore conclude that
all interpretation methods pass the sanity test. For more
details on the randomization tests we refer to Appendix I of
the Supplement, available online.

Another work [61] introduces further metrics for evaluat-
ing graph neural networks, called accuracy, consistency, faith-
fulness, and stability. Faithfulness and accuracy can be
related to our sanity checks and the analysis in Section 4.3
respectively. Consistency makes the assumption that each
high-performing model has a similar strategy, which does
not account for potential Clever Hans cases (we show
Clever-Hans-type strategies in the application sections).
Finally, attribution stability verifies that the explanation
remains the same under a small perturbation of the input.
Here, we note that our proposed GNN-LRP method inherits
some properties of LRP, in particular, it is not subject to
potential discontinuities of the model’s gradient [17]. It
therefore has better built-in stability properties compared to
gradient-based methods such as GI or GNN-GI.

As an additional remark, we would like to point out that
GNN-LRP—like for any explanation method in our bench-
mark—is not developed with built-in robustness to adver-
sarial attacks [62]. Hence, we recommend to restrict its
usage to non-adversarial scenarios.
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GNN

but is

BoW

First | Gl K8 the NG ,

but it is certainly one of the
movies | have ever seen.

Fig. 7. Sentence predicted by the GNN and the BoW model, and
explained by GNN-LRP (applied on the difference between the positive
and negative sentiment logit, and with the LRP parameter y = 3). Contri-
butions to positive sentiment are in red, and contributions to negative
sentiment are in blue.

5 NEw INSIGHTS WITH GNN-LRP

Having validated the proposed GNN-LRP method on a
diverse set of GNNs including state-of-the-art models, and
having shown the multiple advantages of our method com-
pared to previous approaches, we will now inspect the explan-
ations produced by GNN-LRP on some of these practically
relevant GNN models to demonstrate how useful insights can
be extracted about the GNN model and the task it predicts.

5.1 Sentiment Analysis

In natural language processing (NLP) text data can be proc-
essed either as a sequence, or with its corresponding grammat-
ical structure represented by a parse tree [63], [64]. The latter
serves as an additional structural input for the learning algo-
rithm, to incorporate dependencies between words. NLP tasks
are therefore particularly amenable to GNNs since these mod-
els can naturally incorporate the graph structure.

In the following experiments, we will demonstrate how
GNN-LRP can be used to intuitively and systematically
assess the quality of a GNN model, including its overall pre-
diction strength and also its few weaknesses. For this, we
will consider a GCN composed of two interaction layers, to
classify sentiments in natural language text [65]. We train
our model on the Stanford Sentiment Treebank (SST) [54].3
(Note that this example serves as a mere demonstration for
the versatility of our explanation approach and is by no
means intended to reflect or compete with state-of-the-art
NLP systems.) For details on the experimental setup we
refer the reader to Appendix F.2 in the Supplement, avail-
able online.

In Fig. 7 (top) we show an example of a GNN-LRP explana-
tion for some exemplary input sentence containing a mixture
of positive and negative sentiment. We observe that distinct
combinations of words give rise to the emphasis of these senti-
ments. The model correctly detects word combinations such
as “the best movies” to carry a positive sentiment, and “boring
pictures” to contribute negatively.

3. https:/ /nlp.stanford.edu/sentiment/index.html
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A. Incorrect prediction:

“You'll be more entertained
getting hit by a bus.”
— positive

B. Entity bias:

“Hugh Grant and Sandra
Bullock are two such
likeable actors.”— positive

Fig. 8. Two selected examples of dependency trees from the SST data-
set, predicted by the GNN model to be positive, and for which GNN-LRP
highlights a flaw in the prediction strategy.

GNN-LRP can also be used to assess the GNN prediction
strategy relative to other (simpler) models, such as Bag-of-
Words (BoW). The BoW model can be seen as a GNN model
with zero interaction layers, hence our explanation tech-
nique applies to that model as well. Fig. 7 (bottom) shows
the explanation of the BoW prediction for the same sentence
as for the GNN. Interestingly, several words are now attrib-
uted a sentiment different from the one obtained with the
GNN. For example, “like” becomes positive, which however
appears in contradiction with the preceding words “didn’t”.
Hence, GNN-LRP has highlighted from a single sentence
that the GNN model is able to properly capture and disam-
biguate the sentiment of consecutive words, whereas the
BoW model is not.

In the next experiment, we consider two additional sen-
tences from the SST corpus, where GNN-LRP contributes to
uncovering or better understanding flaws of a trained GNN
model. Fig. 8 A shows a data sample that contains sarcasm
and that is falsely classified by the GNN to be positive. Our
explanation method highlights that relevant walks are too
localized to capture the interaction between words that
jointly explain sarcasm. Instead, local positive interactions
such as “more entertained” dominate the prediction, which
leads to the incorrect prediction. In Fig. 8 B, we see a case of
entity bias where the GNN model is biased towards particu-
lar entities, namely “Hugh Grant” and “Sandra Bullock”. In
this example, GNN-LRP finds that the GNN model uses
with no objective reason “Hugh Grant” and “Sandra Bullock”
as evidence for positive and negative sentiment, respec-
tively. In NLP model biases are well studied areas and
some approaches to tackle that problem have already been
developed [66], [67].

To identify words or combinations of words that system-
atically contribute to a positive or negative sentiment—and
potentially discover further cases of entity bias,—we apply
GNN-LRP on the whole dataset. This lets us find the
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solidly documentary brilliant s [is] astonishing .
witty brilliant ! brilliant !’
lewis solidly seaworthy resourceful and ingenious
horrible sbrry charlie bears bad is
boring no more sorry , charlie
ridiculous ridiculous . no more .

Fig. 9. Walks that contribute the most to positive and negative sentiment
according to the GNN, split by the number of unique words they contain.

combination of words (given by a walk V) that are on aver-
age the most positive/negative (according to their score
Ry). Fig. 9 shows top-3 walks of both types (positive and
negative) and containing one to three unique words.

We see that the walks which are most relevant for the
task contain positive adjectives and adverbs, such as
“solidly”, “brilliant”, “witty” or “astonishing” . The walks with
a very negative relevance score contain negative words
such as “ridiculous”, “boring” or “horrible”, but also subse-
quences like “sorry, charlie” or “no more.” which clearly
transport a negative emotion. Here again, GNN-LRP detects
an entity bias by the word “lewis”, which the GNN model
considers to be positively contributing although this word
is objectively neutral. Note that this time, this entity bias
was discovered directly, without having to visualize a large
number of explanations.

Overall, applying the proposed GNN-LRP explanation
method to the GNN model for sentiment classification has
highlighted that GNN predictions are based on detecting
meaningful sentence sub-structures, rather than single
words as in the BoW model. Furthermore, GNN-LRP was
able to find the reasons for incorrect predictions, or to shed
light on potential model biases. The latter could be identi-
fied manually by visual inspection of many explanations, or
systematically by averaging the GNN-LRP results on a
whole corpus.

5.2 Quantum Chemistry
In the field of machine learning for quantum chemistry [68],
[69], [70], [71], [72], GNNs have been exhibiting state of the art
performance for predicting molecular properties [3], [37],
[39], [73]. Such networks incorporate a graph structure of mol-
ecules either by the covalent bonds or the proximity of atoms.

In this section we will test the ability of GNN-LRP to
extract meaningful domain knowledge from these state-of-
the-art GNNs. We will consider for this the SchNet,* a GNN
for the prediction of molecular properties [3], [37], [74], and
we set the number of interaction blocks in this GNN to
three. We train the model on the atomization energies and
the dipole moments for 110,000 randomly selected mole-
cules in the QM9 dataset [75].° For more details on the
model parameters and the network architecture, we refer to
Appendix F.3 in the Supplement, available online. On a test
set of 13,885 molecules, the atomization energy and dipole
moment are predicted well with a mean absolute error
(MAE) of 0.015 eV and 0.039 Debye, respectively.

Our first objective is to get an insight into what structures in
the molecule contribute positively or negatively to the

4. https:/ /github.com/atomistic-machine-learning/schnetpack
5. https://doi.org/10.6084 /m9.figshare.c.978904.v5
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energy contribution
o [l N w

Fig. 10. Left: Paracetamol molecule, and the GNN-LRP explanation of its
predicted energy. Red and blue indicate positive and negative contribu-
tions. Opacity indicates the magnitude of these contributions. Right: Aver-
age energy contribution per bond, depicted for each bond type separately,
in arbitrary units.

molecule’s energy. While it is common to look at the atomiza-
tion energy (describing the energy difference to dissociated
atoms), we consider here for the purpose of explanation the
centered negative atomization energy, and we define this
quantity to be the actual ‘energy’. With this definition, mole-
cules have high energy when they are hard to break and typi-
cally formed of strong bonds, and conversely, molecules have
low energy when they are easy to break and unstable.

We consider for illustration the case of the paracetamol
(acetaminophen) molecule, and feed this molecule to
SchNet. Once the SchNet model has predicted its energy,
we apply the GNN-LRP analysis in order to produce an
explanation of the prediction. The resulting explanation is
shown in Fig. 10 (left). We observe that the explanation is
dominated by self-walks (i.e., staying in a single atom) or
one-edge walks (traversing a single edge of the graph, in
most cases, a bond). Bonds associated to the aromatic ring
and bonds of higher order contribute strongly to the pre-
dicted energy, whereas regions involving single bonds con-
tribute negatively. To verify whether this observation
generalizes to other molecules, we perform the GNN-LRP
analysis on a set of 1,000 molecules randomly drawn from
the QM9 dataset and show in Fig. 10 (right) the average
bond contribution for each bond type. We observe an
increasing energy contribution with ascending bond order.
This coincides with chemical intuition that bonds of higher
order are more stable and, thus, require more energy to
break.—Note that the SchNet does not take bond types as
an input, but as highlighted by GNN-LRP, it has clearly
inferred these chemical features from the data.

We now turn to another quantum chemical property, the
dipole moment, and its prediction by SchNet (cf. [76]). The quan-
tity produced at the output of the model has the form || (A)]|.
The nonlinearity of the norm introduces higher-order terms in
the GNN function and this prevents a direct application of
GNN-LRP. Instead, we consider for explanation the dot prod-
uct (u(A), [w(A)/]|m(A)|]]«. ), where the left hand side func-
tionally depends on the GNN input A, and where the right
hand side is the normalized direction of the predicted dipole
moment, detached from the gradient computation. With this
modification, while the output of the model remains the same
locally, the top layer becomes linear, therefore GNN-LRP can
proceed as for the energy prediction case.

Fig. 11 (top) shows the GNN-LRP explanation of the pre-
dicted dipole moment for the same molecule as in the previ-
ous experiment. Here, we observe that the contributions to
the dipole moment found by GNN-LRP form a gradient from
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normalized absolute relevance

-1/2

-1/4 0 1/4 1/2
molecule span along dipole direction

Fig. 11. Top: Paracetamol molecule with the predicted dipole direction
shown as a dotted arrow, and the GNN-LRP explanation. Bottom: Distri-
bution of contributions (in absolute terms) along the direction of the pre-
dicted dipole moment, averaged over the dataset.

one side to the other of the molecule. The orientation corre-
sponds to the positive and negative pole of the molecule. To
verify whether this insight generalizes to other molecules, we
consider a set of 1,000 molecules and we normalize each mole-
cule to a span of 1 along its dipole direction. Subsequently, we
project all walks onto their respective dipole to obtain a one-
dimensional distribution of absolute relevance values for all
molecules. Note that the atom density of molecules, in gen-
eral, is not homogeneous, and thus, in some regions more
walks may occur while other regions do not exhibit as many
walks. Hence, for each molecule the distribution of absolute
relevance is normalized w.r.t. its atom density. The result of
this aggregated analysis is shown in Fig. 11 (bottom).

This quantitative result confirms the alignment of GNN-
LRP contributions with the positive and negative poles of the
molecule, as it was found qualitatively on the paracetamol
molecule. This result is in accordance with chemical intuition
regarding the dependence of the dipole on the span of the
molecule.

0-edge ®
walks o H

Fig. 12. Expanded GNN-LRP explanation for the dipole moment predic-
tion of the paracetamol molecule. To increase visibility of two-edge walks
and three-edge walks, we show the scaled relevance scores R’ = R"7.
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Fig. 13. Left: Relevant walks in the pixel lattice explaining the prediction by the VGG-16 network of two input images as ‘teapot’ and ‘dumbbell’
respectively. In each vector field, arrows connect block input nodes to the relevance-weighted average position of the block output nodes. Right: Com-

parison of GNN-LRP with different explanation techniques on Block 4.

Because the walk-based explanations produced by GNN-
LRP are very detailed, some of the more intricate details of
the explanation cannot always be visualized on a single
molecule. Hence, we perform a further experiment where
the GNN-LRP explanation is spread over multiple visuals,
each of them showing relevant walks covering a specific
number of edges. With this expanded visualization, we seek
in particular to better distinguish between local atom-wise
contribution and more global effects. Fig. 12 shows this
expanded analysis of the dipole moment prediction for the
paracetamol molecule.

From this visualization, we gain further insights into the
strategy used by the SchNet model when predicting the
dipole moment. In our expanded explanation, one-edge walks
clearly indicate the electrostatic poles of the molecule, while
giving a hint on local dipoles. Self-walks (i.e., 0-edge walks)
incorporate elements that are inherent to the atom types, in
particular, their electronegativity. Two-edge walks provide
rather complex and spatially less resolved contributions.
Finally, three-edge walks, that are also the most global
descriptors, again provide interesting spatial contributions,
and appear to dampen the one-edge walks contributions
based on the more complex structures they are able to capture.

Overall, GNN-LRP has provided insights into the struc-
ture-property relationship of molecules that reach beyond
the original prediction task. The resulting relevant walks
agree with chemical characteristics of the molecule, thus,
indicating that the neural network has indeed learned
chemically plausible regularities.

5.3 Revisiting Image Classification

A convolutional neural network (CNN) can be seen as a par-
ticular graph neural network (GNN) operating on lattices of
pixels. CNN predictions have so far mainly been explained
using heatmaps highlighting pixels that are the most rele-
vant for a given prediction [13], [16], [77]. Heatmaps are a
useful representation summary of the decision structure,
but they do not reveal the more complex strategies of a
network that have been used to progressively build the pre-
diction layer after layer. We will show by viewing CNNs as
graph neural networks and extracting relevant walks in the

resulting pixel lattice, that our GNN-LRP method is capable
of shedding light into these strategies.

For this, we consider the well-established VGG-16 [49] net-
work. It consists of a collection of blocks interleaved by pooling
layers, where each block is composed of a sequence of convolu-
tion and ReLU layers. We use the pretrained version of the
VGG-16 network [49] without batch-normalization, which can
be retrieved using the TorchVision module of PyTorch.®

Because the VGG-16 neural network is deep and the
number of possible walks grows exponentially with neural
network depth, we marginalize explanations to only con-
sider the position of the walk at the input and at the output
of a block. This is easily achieved by using a mask-based
implementation (cf. Appendix C of the Supplement, avail-
able online) and removing all masks except those at the
input and output of the block. We then compute one expla-
nation for block 3, 4, and 5. Also, to cope with the large spa-
tial lattices in each block, we make use of the multi-mask
strategy also outlined in Appendix C, available online. Spe-
cifically, observing that each block of the VGG-16 network
has receptive fields of size 7, we can process multiple walks
at the same time by choosing the mask to be a grid with
stride 7. This allows us to collect all relevant walks at the
given block in the order of 49 backward passes.

We consider two exemplary images’ that the VGG-16
network respectively predicts as ‘teapot’ and ‘dumbbell’.
We set the LRP parameter to y = 0.5 in block 3, halving the
parameter value in each subsequent block, and choosing
y = 0 in the top-level classifier. Fig. 13 (left) shows the result
of the analysis for these two images at various blocks of the
VGG-16 network.

For the first image, Block 3 detects local edges in the tea-
pot, then, in Block 4, the walks converge to center points of
specific parts of the teapot (e.g., the handle, the spout and
the knob), and finally the walks converge in Block 5 to the
center of the teapot, which can be interpreted as composing

6. https:/ /pytorch.org/vision/stable/models.html

7.Images are from https://www.piqsels.com/en/public-domain-
photo-fjjsr and https://www.pigsels.com/en/public-domain-photo-
fiffy, rescaled and cropped to the relevant region to produce images of
size 224 x 224 which are the standard input size for VGG-16.
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the different parts of the teapot. For this exemplary image,
we further observe in Fig. 13 (right) the advantageous prop-
erties of GNN-LRP compared to more basic explanation
methods. The GNN-GI baseline also produces a vector field,
however, the latter is significantly more noisy than the one
produced by GNN-LRP. The method by Pope et al. [24]
robustly highlights relevant nodes at the input of the given
block, however, it does not reveal where these features are
being transported for use in the subsequent block.

For the second image, we investigate a known ‘Clever
Hans’ strategy where the network classifies images as
‘dumbbell’ by detecting both the dumbbell and the arm that
holds it [78]. Using GNN-LRP we observe that Blocks 3 and 4
detect the arm and the dumbbell separately, and then, Block 5
composes them into a single ‘dumbbell-arm’ concept, as
shown by the walks for both objects converging to some center
point near the wrist. Clearly these insights could not have been
obtained from a standard pixel-wise heatmap explanation.

Overall, our GNN-LRP method can be used to compre-
hensively inspect the prediction of an image classifier
beyond what would be possible with a standard pixel-wise
heatmap explanation. This deeper explanation capability
allows us to better understand the detailed structure of
image classifications, and also to shed more light into anec-
dotal ‘Clever Hans’ effects observed in the context of state-
of-the-art image classifiers.

6 CONCLUSION

Graph neural networks are a highly promising approach for
predicting graphs, with a strong demand from the practical
side. For these models to be broadly adopted, it is however
important that their predictions are made explainable to the
user.—Because the input of a GNN is tightly entangled with
the model itself, the explanation problem is particularly dif-
ficult, and methods for explaining GNNs have so far been
limited.

In this paper we have proposed a novel theoretically
principled approach to produce these explanations, based
on higher-order Taylor expansions. From this conceptual
starting point, we have then contributed two practical algo-
rithms: GNN-GI which we propose as a simple baseline,
and GNN-LRP which is more robust and scales to highly
non-linear models. GNN-LRP produces detailed explana-
tions that subsume the complex nested interaction between
the GNN model and the input graph. It also significantly
outperforms other explanation methods in our quantitative
benchmark.—In addition to the high quality of the explana-
tions it produces, GNN-LRP is also broadly applicable (cov-
ering the GCN, the GIN, spectral filtering approaches and
others), and it can handle virtually any type of input graph,
whether it is a parse tree, a spatial graph, a pixel lattice, etc.

This broad applicability is demonstrated in our extensive
application showcase, including sentiment analysis, quan-
tum chemistry and image classification. In each scenario,
GNN-LRP could highlight the diverse strategies employed
by the GNN models, and unmask some undesired ‘Clever
Hans’ strategies. In our quantum-chemical application
showcase, we could additionally extract interesting prob-
lem-relevant insights. Future work will apply the proposed
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methodology to analyze properties of materials for practi-
cally highly relevant tasks, e.g., in catalysis.
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