
1

Dynamic Neural Networks: A Survey
Yizeng Han∗, Gao Huang∗, Member, IEEE, Shiji Song, Senior Member, IEEE, Le Yang, Honghui Wang,

and Yulin Wang

Abstract—Dynamic neural network is an emerging research topic in deep learning. Compared to static models which have fixed
computational graphs and parameters at the inference stage, dynamic networks can adapt their structures or parameters to different
inputs, leading to notable advantages in terms of accuracy, computational efficiency, adaptiveness, etc. In this survey, we
comprehensively review this rapidly developing area by dividing dynamic networks into three main categories: 1) sample-wise dynamic
models that process each sample with data-dependent architectures or parameters; 2) spatial-wise dynamic networks that conduct
adaptive computation with respect to different spatial locations of image data; and 3) temporal-wise dynamic models that perform
adaptive inference along the temporal dimension for sequential data such as videos and texts. The important research problems of
dynamic networks, e.g., architecture design, decision making scheme, optimization technique and applications, are reviewed
systematically. Finally, we discuss the open problems in this field together with interesting future research directions.

Index Terms—Dynamic networks, Adaptive inference, Efficient inference, Convolutional neural networks.

F

1 INTRODUCTION

D EEP neural networks (DNNs) are playing an important
role in various areas including computer vision (CV)

[1], [2], [3], [4], [5] and natural language processing (NLP)
[6], [7], [8]. Recent years have witnessed many successful
deep models such as AlexNet [1], VGG [2], GoogleNet [3],
ResNet [4], DenseNet [5] and Transformer [6]. These archi-
tectural innovations have enabled the training of deeper,
more accurate and more efficient models. The recent re-
search on neural architecture search (NAS) [9], [10] fur-
ther speeds up the process of designing more powerful
structures. However, most of the prevalent deep learning
models perform inference in a static manner, i.e., both the
computational graph and the network parameters are fixed
once trained, which may limit their representation power,
efficiency and interpretability [11], [12], [13], [14].

Dynamic networks, as opposed to static ones, can adapt
their structures or parameters to the input during inference,
and therefore enjoy favorable properties that are absent
in static models. In general, dynamic computation in the
context of deep learning has the following advantages:

1) Efficiency. One of the most notable advantages of
dynamic networks is that they are able to allocate computa-
tions on demand at test time, by selectively activating model
components (e.g. layers [12], channels [15] or sub-networks
[16]) conditioned on the input. Consequently, less computa-
tion is spent on canonical samples that are relatively easy to
recognize, or on less informative spatial/temporal locations
of an input. In addition to computational efficiency, dynamic
models have also shown promising results for improving
data efficiency in the scenario of few-shot learning [17], [18].

2) Representation power. Due to the data-dependent
network architecture/parameters, dynamic networks have
significantly enlarged parameter space and improved rep-

• Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang and
Yulin Wang are with the Department of Automation, Tsinghua Univer-
sity, Beijing 100084, China. Gao Huang is also with Beijing Academy
of Artificial Intelligence, Beijing, 100084. E-mail: {hanyz18, yan-
gle15, wanghh20, wang-yl19}@mails.tsinghua.edu.cn; {gaohuang, shi-
jis}@tsinghua.edu.cn. Corresponding author: Gao Huang.
∗. Equal contribution.

resentation power. For example, with a minor increase of
computation, model capacity can be boosted by applying
feature-conditioned attention weights on an ensemble of
convolutional kernels [13], [19]. It is worth noting that the
popular soft attention mechanism could also be unified in
the framework of dynamic networks, as different channels
[20], spatial areas [21] or temporal locations [22] of features
are dynamically re-weighted at test time.

3) Adaptiveness. Dynamic models are able to achieve
a desired trade-off between accuracy and efficiency for
dealing with varying computational budgets on the fly.
Therefore, they are more adaptable to different hardware
platforms and changing environments, compared to static
models with a fixed computational cost.

4) Compatibility. Dynamic networks are compatible
with most advanced techniques in deep learning, including
architecture design [4], [5], optimization algorithms [23],
[24] and data preprocessing [25], [26], which ensures that
they can benefit from the most recent advances in the
field to achieve state-of-the-art performance. For example,
dynamic networks can inherit architectural innovations in
lightweight models [27], or be designed via NAS approaches
[9], [10]. Their efficiency could also be further improved by
acceleration methods developed for static models, such as
network pruning [28], weight quantization [29], knowledge
distillation [30] and low-rank approximation [31].

5) Generality. As a substitute for static deep learning
techniques, many dynamic models are general approaches
that can be applied seamlessly to a wide range of applica-
tions, such as image classification [12], [32], object detection
[33] and semantic segmentation [34]. Moreover, the tech-
niques developed in CV tasks are proven to transfer well to
language models in NLP tasks [35], [36], and vice versa.

6) Interpretability. We finally note that the research
on dynamic networks may bridge the gap between the
underlying mechanism of deep models and brains, as it is
believed that the brains process information in a dynamic
way [37], [38]. It is possible to analyze which components
of a dynamic model are activated [32] when processing an
input sample, and to observe which parts of the input are ac-

ar
X

iv
:2

10
2.

04
90

6v
4

 [
cs

.C
V

]
 2

 D
ec

 2
02

1

2

Optimization

Introduction

Inference

Training

Applications Discussion

Video

Key Frame/Clip
Sampling

RNN-based

Jumping

Early Exiting

Frame Glimpse

Sample-wise

Pixel-level

Region-level

Resolution-level

Dynamic
Architecture

Dynamic
Parameter

Dynamic
Transformation

Hard Attention

Adaptive
Scaling

Muli-scale

Spatial-wise

Temporal-wise

Confidence

Policy Networks

Gating Functions

Objectives Straight-through
Estimation

Reparameterization

Reinforcement
Learning

Dynamic Weights

Soft Attention

Recurrent Attention

Others

Dynamic
Parameter

Parameter
Adjustment

Soft Attention on
Weights

Kernel Shape
Adaptation

Weight
Prediction

Feature-based

Task-specific

Dynamic
Features

Channel-wise

Spatial-wise

Dynamic
Architecture

Dynamic
Width

Skipping Neurons

Skipping Branches

Skipping Channels

Dynamic
Routing Tree structures

Others

Dynamic
Depth

Early Exiting

Layer Skipping

Multi-branch

Text

Text Skimming

Early Exiting

Jumping

Dynamic
Activation

Sparse Convolution

Additional
Refinement

Outline of the Survey

Fig. 1. Overview of the survey. We first review the dynamic networks that perform adaptive computation at three different granularities (i.e. sample-
wise, spatial-wise and temporal-wise). Then we summarize the decision making strategy, training technique and applications of dynamic models.
Existing open problems in this field together with some future research directions are finally discussed. Best viewed in color.

TABLE 1
Notations used in this paper.

Notations Descriptions
Rm m-dimensional real number domain
a,a Scalar, vector/matrix/tensor
x,y Input, output feature
x` Feature at layer `
ht Hidden state at time step t

x(p) Feature at spatial location p on x
Θ Learnable parameter

Θ̂|x Dynamic parameter conditioned on x
x ? W Convolution of feature x and weight W
⊗ Channel-wise or element-wise multiplication

F(·,Θ) Functional Operation parameterized by Θ
F ◦ G Composition of function F and G

countable for certain predictions [39]. These properties may
shed light on interpreting the decision process of DNNs.

In fact, adaptive inference, the key idea underlying dy-
namic networks, has been studied before the popularity of
modern DNNs. The most classical approach is building a
model ensemble through a cascaded [40] or parallel [41]
structure, and selectively activating the models conditioned
on the input. Spiking neural networks (SNNs) [42], [43] also
perform data-dependent inference by propagating pulse
signals. However, the training strategy for SNNs is quite dif-
ferent from that of popular convolutional neural networks
(CNNs), and they are less used in vision tasks. Therefore,
we leave out the work related to SNNs in this survey.

In the context of deep learning, dynamic inference with
modern deep architectures, has raised many new research
questions and has attracted great research interests in the

Model1

Input
Model2

Router

Classifier

...

Output
Classifier

Output
(a) Cascading of models. (b) Network with intermediate classifiers.

Router

Block Block

Fig. 2. Two early-exiting schemes. The dashed lines and shaded mod-
ules are not executed, conditioned on the decisions made by the routers.

past three years. Despite the extensive work on design-
ing various types of dynamic networks, a systematic and
comprehensive review on this topic is still lacking. This
motivates us to write this survey, to review the recent
advances in this rapidly developing area, with the purposes
of 1) providing an overview as well as new perspectives for
researchers who are interested in this topic; 2) pointing out
the close relations of different subareas and reducing the
risk of reinventing the wheel; and 3) summarizing the key
challenges and possible future research directions.

This survey is organized as follows (see Fig. 1 for an
overview). In Sec. 2, we introduce the most common sample-
wise dynamic networks which adapt their architectures or
parameters conditioned on each input sample. Dynamic
models working on a finer granularity, i.e., spatially adaptive
and temporally adaptive models, are reviewed in Sec. 3
and Sec.4, respectively1. Then we investigate the decision
making strategies and the training techniques of dynamic

1. These two categories can also be viewed as sample-wise dynamic
networks as they perform adaptive computation within each sample at
a finer granularity, and we adopt such a split for narrative convenience.

3

Sc
al
e

Classifier Classifier

Depth

...

...

...

(a) Multi-scale DenseNet.

c

c

c

c

c

c

Sc
al
e

Classifier Classifier

Depth

...

...

...

(b) Early exiting with routing networks.

Routing
Network

Routing
Network

Router Router

Sub-Network1

Sub-Network2

Sub-Network3

Classifier

Classifier Router

Classifier Router

Output
Classifier

Sc
al
e

Depth

(c) Resolution Adaptive Network.

Regular Conv

Strided Conv

c Concatenation

Identity

Feature Fusion

Controller

...

...

...

...

...

(d) Dynamic Routing inside a SuperNet.

Depth

Sc
al
e

Fig. 3. Multi-scale architectures with dynamic inference graphs. The first three models (a, b, c) perform adaptive early exiting with specific
architecture designs and exiting policies. Dynamic routing is achieved inside a SuperNet (d) to activate data-dependent inference paths.

networks in Sec. 5. The applications of dynamic models
are further summarized in Sec. 6. Finally, we conclude this
survey with a discussion on a number of open problems and
future research directions in Sec. 7. For better readability, we
list the notations that will be used in this survey in Table 1.

2 SAMPLE-WISE DYNAMIC NETWORKS

Aiming at processing different inputs in data-dependent
manners, sample-wise dynamic networks are typically de-
signed from two perspectives: 1) adjusting model architec-
tures to allocate appropriate computation based on each
sample, and therefore reducing redundant computation for
increased efficiency (Sec. 2.1); 2) adapting network parame-
ters to every input sample with fixed computational graphs,
with the goal of boosting the representation power with
minimal increase of computational cost (Sec. 2.2).

2.1 Dynamic Architectures
Considering different inputs may have diverse computa-
tional demands, it is natural to perform inference with
dynamic architectures conditioned on each sample. Specif-
ically, one can adjust the network depth (Sec. 2.1.1), width
(Sec. 2.1.2), or perform dynamic routing within a super net-
work (SuperNet) that includes multiple possible paths (Sec.
2.1.3). Networks with dynamic architectures not only save
redundant computation for canonical (”easy”) samples, but
also preserve their representation power when recognizing
non-canonical (”hard”) samples. Such a property leads to
remarkable advantages in efficiency compared to the accel-
eration techniques for static models [28], [29], [44], which
handle ”easy” and ”hard” inputs with identical computa-
tion, and fail to reduce intrinsic computational redundancy.

2.1.1 Dynamic Depth
As modern DNNs are getting increasingly deep for recog-
nizing more ”hard” samples, a straightforward solution to
reducing redundant computation is performing inference
with dynamic depth, which can be realized by 1) early
exiting, i.e. allowing ”easy” samples to be output at shallow
exits without executing deeper layers [12], [45], [46]; or 2)
layer skipping, i.e. selectively skipping intermediate layers
conditioned on each sample [11], [47], [48].
1) Early exiting. The complexity (or ”difficulty”) of input
samples varies in most real-world scenarios, and shallow
networks are capable of correctly identifying many canoni-
cal inputs. Ideally, these samples should be output at certain
early exits without executing deeper layers.

For an input sample x, the forward propagation of an
L-layer deep network F could be represented by

y = FL ◦ FL−1 ◦ · · · ◦ F1(x), (1)

where F` denotes the operational function at layer `, 1≤ `≤
L. In contrast, early exiting allows to terminate the inference
procedure at an intermediate layer. For the i-th input sample
xi, the forward propagation can be written as

yi = F`i ◦ F`i−1 ◦ · · · ◦ F1(xi), 1≤ `i≤ L. (2)
Note that `i is adaptively determined based on xi. Extensive
architectures have been studied to endow DNNs with such
early exiting behaviors, as discussed in the following.

a) Cascading of DNNs. The most intuitive approach to en-
abling early exiting is cascading multiple models (see Fig. 2
(a)), and adaptively retrieving the prediction of an early net-
work without activating latter ones. For example, Big/little-
Net [49] cascades two CNNs with different depths. After
obtaining the SoftMax output of the first model, early exiting
is conducted when the score margin between the two largest
elements exceeds a threshold. Moreover, a number of classic
CNNs [1], [3], [4] are cascaded in [46] and [50]. After each
model, a decision function is trained to determine whether
the obtained feature should be fed to a linear classifier for
immediate prediction, or be sent to subsequent models.

b) Intermediate classifiers. The models in the aforemen-
tioned cascading structures are mutually independent. Con-
sequently, once a ”difficult” sample is decided to be fed to
a latter network, a whole inference procedure needs to be
executed from scratch without reusing the already learned
features. A more compact design is involving intermediate
classifiers within one backbone network (see Fig. 2 (b)),
so that early features can be propagated to deep layers if
needed. Based on such a multi-exit architecture, adaptive
early exiting is typically achieved according to confidence-
based criteria [45], [51] or learned functions [46], [52], [53].

c) Multi-scale architecture with early exits. Researchers
[12] have observed that in chain-structured networks, the
multiple classifiers may interfere with each other, which
degrades the overall performance. A reasonable interpre-
tation could be that in regular CNNs, the high-resolution
features lack the coarse-level information that is essential for
classification, leading to unsatisfying results for early exits.
Moreover, early classifiers would force the shallow layers
to generate task-specialized features, while a part of general
information is lost, resulting in degraded performance for
deep exits. To tackle this issue, multi-scale dense network
(MSDNet) [12] adopts 1) a multi-scale architecture, which
consists of multiple sub-networks for processing feature
maps with different resolutions (scales), to quickly gener-
ate coarse-level features that are suitable for classification;
2) dense connections, to reuse early features and improve
the performance of deep classifiers (see Fig. 3 (a)). Such
a specially-designed architecture effectively enhances the

4

Input Output
Block

Input Output

(a) Layer skipping based on halting score. (b) Layer skipping based on a gating function.

Gating
Module

... ...

Policy Network

(c) Layer skipping based on a policy network.

Input
Block Block

Fig. 4. Dynamic layer skipping. Feature x4 in (a) are not calculated conditioned on the halting score, and the gating module in (b) decides whether
to execute the block based on the intermediate feature. The policy network in (c) generates the skipping decisions for all layers in the main network.

overall accuracy of all the classifiers in the network.
Based on the multi-scale architecture design, researchers

have also studied the exiting policies [54], [55] (see Fig. 3 (b))
and training schemes [56] of early-exiting dynamic models.
More discussion about the inference and training schemes
for dynamic models will be presented in Sec. 5.

Previous methods typically achieve the adaptation of
network depths. From the perspective of exploiting spa-
tial redundancy in features, resolution adaptive network
(RANet, see Fig. 3 (c)) [32] first processes each sample with
low-resolution features, while high-resolution representa-
tions are conditionally utilized based on early predictions.

Adaptive early exiting is also extended to language
models (e.g. BERT [7]) for improving their efficiency on NLP
tasks [57], [58], [59], [60]. In addition, it can be implemented
in recurrent neural networks (RNNs) for temporally dynamic
inference when processing sequential data such as videos
[61], [62] and texts [63], [64], [65] (see Sec. 4).
2) Layer skipping. The general idea of the aforementioned
early-exiting paradigm is skipping the execution of all the
deep layers after a certain classifier. More flexibly, the net-
work depth can also be adapted on the fly by strategically
skipping the calculation of intermediate layers without plac-
ing extra classifiers. Given the i-th input sample xi, dynamic
layer skipping could be generally written as
yi = (1L ◦ FL) ◦ (1L−1 ◦ FL−1) ◦ · · · ◦ (11 ◦ F1)(xi), (3)

where 1` denotes the indicator function determining the
execution of layer F`, 1≤`≤L. This scheme is typically im-
plemented on structures with skip connections (e.g. ResNet
[4]) to guarantee the continuity of forward propagation, and
here we summarize three common approaches.

a) Halting score is first proposed in [11], where an ac-
cumulated scalar named halting score adaptively decides
whether the hidden state of an RNN will be directly fed
to the next time step. The halting scheme is extended to
vision tasks by viewing residual blocks within a ResNet
stage 2 as linear layers within a step of RNN [33] (see Fig. 4
(a)). Rather than skipping the execution of layers with inde-
pendent parameters, multiple blocks in each ResNet stage
could be replaced by one weight-sharing block, leading to a
significant reduction of parameters [66]. In every stage, the
block is executed for an adaptive number of steps according
to the halting score.

In addition to RNNs and CNNs, the halting scheme is
further implemented on Transformers [6] by [35] and [36] to
achieve dynamic network depth on NLP tasks.

b) Gating function is also a prevalent option for dynamic
layer skipping due to its plug-and-play property. Take
ResNet as an example (see Fig. 4 (b)), let x` denote the
input feature of the `-th residual block, gating function G`

2. Here we refer to a stage as a stack of multiple residual blocks with
the same feature resolution.

generates a binary value to decide the execution of residual
block F`. This procedure could be represented by3

x`+1 = G`(x`)F`(x`) + x`,G`(x`) ∈ {0, 1}. (4)
SkipNet [47] and convolutional network with adaptive

inference graph (Conv-AIG) [48] are two typical approaches
to enabling dynamic layer skipping. Both methods induce
lightweight computational overheads to efficiently produce
the binary decisions on whether skipping the calculation
of a residual block. Specifically, Conv-AIG utilizes two FC
layers in each residual block, while the gating function in
SkipNet is implemented as an RNN for parameter sharing.

Rather than skipping layers in classic ResNets, dynamic
recursive network [67] iteratively executes one block with
shared parameters in each stage. Although the weight-
sharing scheme seems similar to the aforementioned IamNN
[66], the skipping policy of [67] differs significantly: gating
modules are exploited to decide the recursion depth.

Instead of either skipping a layer, or executing it thor-
oughly with a full numerical precision, a line of work [68],
[69] studies adaptive bit-width for different layers condi-
tioned on the resource budget. Furthermore, fractional skip-
ping [70] adaptively selects a bit-width for each residual
block by a gating function based on input features.

c) Policy network can be built to take in an input sample,
and directly produces the skipping decisions for all the
layers in a backbone network [71] (see Fig. 4 (c)).
2.1.2 Dynamic Width
In addition to dynamic network depth (Sec. 2.1.1), a finer-
grained form of conditional computation is performing
inference with dynamic width: although every layer is exe-
cuted, its multiple units (e.g. neurons, channels or branches)
are selectively activated conditioned on the input.
1) Skipping neurons in fully-connected (FC) layers. The
computational cost of an FC layer is determined by its input
and output dimensions. It is commonly believed that differ-
ent neuron units are responsible for representing different
features, and therefore not all of them need to be activated
for every sample. Early studies learn to adaptively control
the neuron activations by auxiliary branches [72], [73], [74]
or other techniques such as low-rank approximation [75].
2) Skipping branches in mixture-of-experts (MoE). In Sec.
2.1.1, adaptive model ensemble is achieved via a cascading
way, and later networks are conditionally executed based
on early predictions. An alternative approach to improving
the model capacity is the MoE [41], [76] structure, which
means that multiple network branches are built as experts
in parallel. These experts could be selectively executed, and
their outputs are fused with data-dependent weights.

Conventional soft MoEs [41], [76], [77] adopt real-valued
weights to dynamically rescale the representations obtained

3. For simplicity and without generality, the subscript for sample
index will be omitted in the following.

5

Input ... Output

Root (Input)

Routing node

Leaf node

Transformation

(a) Soft weights for adaptive fusion. (c) Dynamic routing in a tree structure.

Soft weights

Input ...

Gating
Module

Output

(b) Selective execution of MoE branches.

Weighting
Module

Hard gates
Expert

Expert

Expert

Expert

Expert

Expert

Fig. 5. MoE with soft weighting (a) and hard gating (b) schemes both adopt an auxiliary module to generate the weights or gates. In the tree structure
(c), features (nodes) and transformations (paths) are represented as circles and lines with arrows respectively. Only the full lines are activated.

from different experts (Fig. 5 (a)). In this way, all the
branches still need to be executed, and thus the computation
cannot be reduced at test time. Hard gates with only a
fraction of non-zero elements are developed to increase the
inference efficiency of the MoE structure (see Fig. 5 (b)) [78],
[79], [80]: let G denote a gating module whose output is aN -
dimensional vector α controlling the execution of N experts
F1,F2, · · · ,FN , the final output can be written as

y =
∑N

n=1
[G(x)]nFn(x) =

∑N

n=1
αnFn(x), (5)

and the n-th expert will not be executed if αn=0.
Hard MoE has been implemented in diverse network

structures. For example, HydraNet [78] replaces the convo-
lutional blocks in a CNN by multiple branches, and selec-
tively execute them conditioned on the input. For another
example, dynamic routing network (DRNet) [80] performs
a branch selection in each cell structure which is commonly
used in NAS [10]. On NLP tasks, sparely gated MoE [16] and
switch Transformer [81] embeds hard MoE in a long short-
term memory (LSTM) [82] network and a Transformer [6],
respectively. Instead of making choice with binary gates as in
[80], only the branches corresponding to the top-K elements
of the real-valued gates are activated in [16], [78], [81].
3) Skipping channels in CNNs. Modern CNNs usually
have considerable channel redundancy. Based on the com-
mon belief that the same feature channel can be of disparate
importance for different samples, adaptive width of CNNs
could be realized by dynamically activating convolutional
channels. Compared to the static pruning methods [28],
[44] which remove ”unimportant” filters permanently, such
a data-dependent pruning approach improves the inference
efficiency without degrading the model capacity.

a) Multi-stage architectures along the channel dimension.
Recall that the early-exiting networks [12], [32] discussed
in Sec. 2.1.1 can be viewed as multi-stage models along the
depth dimension, where late stages are conditionally exe-
cuted based on early predictions. One can also build multi-
stage architectures along the width (channel) dimension, and
progressively execute these stages on demand.

Along this direction, an optimal architecture is searched
among multiple structures with different widths, and any
sample can be output at an early stage when a confi-
dent prediction is obtained [83]. Channel gating network
(CGNet) [84] first executes a subset of convolutional filters
in every layer, and the remaining filters are only activated
on strategically selected areas.

b) Dynamic pruning with gating functions. In the afore-
mentioned progressive activation paradigm, the execution
of a later stage is decided based on previous output. As a
result, a complete forward propagation is required for every
stage, which might be suboptimal for reducing the practical

inference latency. Another prevalent solution is to decide
the execution of channels at every layer by gating functions.
For example, runtime neural pruning (RNP) [15] models the
layer-wise pruning as a Markov decision process, and an
RNN is used to select specific channel groups at every layer.
Moreover, pooling operations followed by FC layers are
utilized to generate channel-wise hard attention (i.e. making
discrete decisions on whether to activate each channel)
for each sample [85], [86], [87], [88]. The recent work [89]
uses a gate module to decide the width for a whole stage
of a ResNet. Different reparameterization and optimizing
techniques are required for training these gating functions,
which will be reviewed in Sec. 5.2.

Rather than placing plug-in gating modules inside a
CNN, GaterNet [90] builds an extra network, which takes
in the input sample and directly generates all the channel
selection decisions for the backbone CNN. This implemen-
tation is similar to BlockDrop [71] that exploits an additional
policy network for dynamic layer skipping (Sec. 2.1.1).

c) Dynamic pruning based on feature activations directly has
also been realized without auxiliary branches and computa-
tional overheads [91], where a regularization item is induced
in training to encourage the sparsity of features.

On basis of the existing literature on dynamically skip-
ping either network layers [47], [48] or convolutional filters
[15], [85], [86], [87], recent work [92], [93], [94] has realized
dynamic inference with respect to network depth and width
simultaneously: only if a layer is determined to be executed,
its channels will be selectively activated, leading to a more
flexible adaptation of computational graphs.

2.1.3 Dynamic Routing
The aforementioned methods mostly adjust the depth (Sec.
2.1.1) or width (Sec. 2.1.2) of classic architectures by activating
their computational units (e.g. layers [47], [48] or channels
[15], [87]) conditioned on the input. Another line of work
develops different forms of SuperNets with various possible
inference paths, and performs dynamic routing inside the
SuperNets to adapt the computational graph to each sample.

To achieve dynamic routing, there are typically routing
nodes that are responsible for allocating features to different
paths. For node s at layer `, let α`s→j denote the probability
of assigning the reached feature x`s to node j at layer `+ 1,
the path F`s→j will be activated only when α`s→j > 0. The
resulting feature reaching node j is represented by

x`+1
j =

∑
s∈{s:α`

s→j>0} α
`
s→jF`s→j(x`s). (6)

The probability α`s→j can be obtained in different man-
ners. Note that the dynamic early-exiting networks [12], [32]
are a special form of SuperNets, where the routing decisions
are only made at intermediate classifiers. The CapsuleNets

6

[14], [95] also perform dynamic routing between capsules,
i.e. groups of neurons, to character the relations between
(parts of) objects. Here we mainly focus on specific architec-
ture designs of the SuperNets and their routing policies.
1) Path selection in multi-branch structures. The simplest
dynamic routing can be implemented by selectively execut-
ing one of multiple candidate modules at each layer [96],
[97], which is equivalent to producing a one-hot probability
distribution α`s→· in Eq. 6. The main difference of this
approach to hard MoE (Fig. 5 (b)) is that only one branch
is activated without any fusion operations.
2) Neural trees and tree-structured networks. As decision
trees always perform inference along one forward path that
is dependent on input properties, combining tree structure
with neural networks can naturally enjoy the adaptive in-
ference paradigm and the representation power of DNNs
simultaneously. Note that in a tree structure, the outputs of
different nodes are routed to independent paths rather than
being fused as in MoE structures (compare Fig. 5 (b), (c)).

a) Soft decision tree (SDT) [98], [99], [100] adopts neural
units as routing nodes (blue nodes in Fig. 5 (c)), which
decides the portion that the inputs are assigned to their
left/right sub-tree. Each leaf node generates a probability
distribution over the output space, and the final prediction
is the expectation of the results from all leaf nodes. Although
the probability for a sample reaching each leaf node in
an SDT is data-dependent, all the paths are still executed,
which limits the inference efficiency.

b) Neural trees with deterministic routing policies [101],
[102] are designed to make hard routing decisions during
inference, avoiding computation on those unselected paths.

c) Tree-structured DNNs. Instead of developing decision
trees containing neural units, a line of work builds special
network architectures to endow them with the routing be-
havior of decision trees. For instance, a small CNN is first
executed to classify each sample into coarse categories, and
specific sub-networks are conditionally activated based on
the coarse predictions [103]. A subsequent work [104] not
only partitions samples to different sub-networks, but also
divides and routes the feature channels.

Different to those networks using neural units only in
routing nodes [101], [102], or routing each sample to pre-
designed sub-networks [103], [104], adaptive neural tree
(ANT) [105] adopts CNN modules as feature transformers
in a hard neural tree (see lines with arrows in Fig. 5 (c)),
and learns the tree structure together with the network
parameters simultaneously in the training stage.
3) Others. Performing dynamic routing within more gen-
eral SuperNet architectures is also a recent research trend.
Representatively, an architecture distribution with partly
shared parameters is searched from a SuperNet containing
∼1025 sub-networks [106]. During inference, every sample
is allocated by a controller network to one sub-network
with appropriate computational cost. Instead of training a
standalone controller network, gating modules are plugged
inside the hand-designed SuperNet (see Fig. 3 (d)) to decide
the routing path based on intermediate features [107].

2.2 Dynamic Parameters
Although the networks with dynamic architectures in Sec.
2.1 can adapt their inference graphs to each sample and

achieve an efficient allocation of computation, they usually
have special architecture designs, requiring specific training
strategies or careful hyper-parameters tuning (Sec. 7).

Another line of work adapts network parameters to dif-
ferent inputs while keeping the architectures fixed, which
has been shown effective in improving the representation
power of networks with a minor increase of computational
cost. Given an input sample x, the output of a conventional
network (module) with static parameters can be written
as y = F(x,Θ). In contrast, the output of a model with
dynamic parameters could be represented by

y = F(x, Θ̂|x) = F(x,W(x,Θ)), (7)
whereW(·,Θ) is the operation producing input-dependent
parameters, and its design has been extensively explored.

In general, the parameter adaptation can be achieved
from three aspects (see Fig. 6): 1) adjusting the trained
parameters based on the input (Sec. 2.2.1); 2) directly gen-
erating the network parameters from the input (Sec. 2.2.2);
and 3) rescaling the features with soft attention (Sec. 2.2.3).

2.2.1 Parameter Adjustment
A typical approach to parameter adaptation is adjusting the
weights based on their input during inference as presented
in Fig. 6 (a). This implementation usually evokes little com-
putation to obtain the adjustments, e.g., attention weights
[13], [19], [108], [109] or sampling offsets [110], [111], [112].
1) Attention on weights. To improve the representation
power without noticeably increasing the computation, soft
attention can be performed on multiple convolutional ker-
nels, producing an adaptive ensemble of parameters [13],
[19]. Assuming that there are N kernels Wn, n= 1, 2,· · ·, N ,
such a dynamic convolution can be formulated as

y = x ? W̃ = x ? (
∑N

n=1
αnWn). (8)

This procedure increases the model capacity yet remains
high efficiency, as the result obtained through fusing the
outputs of N convolutional branches (as in MoE structures,
see Fig. 5 (a)) is equivalent to that produced by performing
once convolution with W̃. However, only ∼ 1/N times of
computation is consumed in the latter approach.

Weight adjustment could also be achieved by perform-
ing soft attention over the spatial locations of convolutional
weights [108], [109]. For example, segmentation-aware con-
volutional network [108] applies locally masked convolu-
tion to aggregate information with larger weights from
similar pixels, which are more likely to belong to the same
object. Unlike [108] that requires a sub-network for feature
embedding, pixel-adaptive convolution (PAC) [109] adapts
the convolutional weights based on the attention mask
generated from the input feature at each layer.

Instead of adjusting weights conditioned on every sam-
ple itself, meta-neighborhoods [113] adapt the network pa-
rameters to each input sample based on its similarity to the
neighbors stored in a dictionary.
2) Kernel shape adaptation. Apart from adaptively scaling
the weight values, parameter adjustment can also be realized
to reshape the convolutional kernels and achieve dynamic
reception of fields. Towards this direction, deformable con-
volutions [110], [111] sample feature pixels from adaptive
locations when performing convolution on each pixel. De-
formable kernels [112] samples weights in the kernel space

7

Layer(s) with
dynamic parameters

Parameter
Generation

Side Information

Layer(s) with
dynamic parameters

Parameter
Adjustment

(b) Dynamic weight prediction.(a) Dynamic weight adjustment.

Block

Attention Module
Channel-wise

Attention
Spatial-wise

Attention

Channel-wise Attention

Spatial-wise Attention...

Conv

(c) Soft attention for dynamic features.

Fig. 6. Three implementations of dynamic parameters: adjusting (a) or generating (b) the backbone parameters based on the input, and (c)
dynamically rescaling the features with the attention mechanism.

to adapt the effective reception field (ERF) while leaving the
reception field unchanged. Table 2 summarizes the formu-
lations of the above three methods. Due to their irregu-
lar memory access and computation pattern, these kernel
shape adaptation approaches typically require customized
CUDA kernels for the implementation on GPUs. However,
recent literature has shown that the practical efficiency of
deformable convolution could be effectively improved by
co-designing algorithm and hardware based on embedded
devices such as FPGAs [114].

2.2.2 Weight Prediction
Compared to making modifications on model parameters on
the fly (Sec. 2.2.1), weight prediction [115] is more straight-
forward: it directly generates (a subset of) input-adaptive
parameters with an independent model at test time (see
Fig. 6 (b)). This idea was first suggested in [116], where both
the weight prediction model and the backbone model were
feedforward networks. Recent work has further extended
the paradigm to modern network architectures and tasks.
1) General architectures. Dynamic filter networks (DFN)
[117] and HyperNetworks [118] are two classic approaches
realizing runtime weight prediction for CNNs and RNNs,
respectively. Specifically, a filter generation network is built
in DFN [117] to produce the filters for a convolutional
layer. As for processing sequential data (e.g. a sentence), the
weight matrices of the main RNN are predicted by a smaller
one at each time step conditioned on the input (e.g. a word)
[118]. WeightNet [119] unifies the dynamic schemes of [13]
and [20] by predicting the convolutional weights via simple
grouped FC layers, achieving competitive results in terms of
the accuracy-FLOPs4 and accuracy-parameters trade-offs.

Rather than generating standard convolutional weights,
LambdaNetworks [120] learns to predict the weights of lin-
ear projections based on the contexts of each pixel together
with the relative position embeddings, showing advantages
in terms of computational cost and memory footprint.
2) Task-specific information has also been exploited to
predict model parameters on the fly, enabling dynamic
networks to generate task-aware feature embeddings. For
example, edge attributes are utilized in [121] to generate
filters for graph convolution, and camera perspective is
incorporated in [122] to generate weights for image convo-
lution. Such task-aware weight prediction has been shown
effective in improving the data efficiency on many tasks,
including visual question answering [123], [124] and few-
shot learning [17], [18].

2.2.3 Dynamic Features
The main goal of either adjusting (Sec. 2.2.1) or predicting
(Sec. 2.2.2) model parameters is producing more dynamic

4. Floating point operations, which is widely used as a measure of
inference efficiency of deep networks.

and informative features, and therefore enhancing the repre-
sentation power of deep networks. A more straightforward
solution is rescaling the features with input-dependent soft
attention (see Fig. 6 (c)), which requires minor modifications
on computational graphs. Note that for a linear transforma-
tion F , applying attention α on the output is equivalent to
performing computation with re-weighted parameters, i.e.

F(x,Θ)⊗α = F(x,Θ⊗α). (9)

1) Channel-wise attention is one of the most common soft
attention mechanisms. Existing work typically follows the
form in squeeze-and-excitation network (SENet) [20]:

ỹ=y ⊗α=y ⊗A(y),α ∈ [0, 1]
C
. (10)

In Eq. 10, y=x ?W is the output feature of a convolutional
layer with C channels, and A(·) is a lightweight function
composed of pooling and linear layers for producing α.
Taking the convolution into account, the procedure can also
be written as ỹ=(x?W)⊗α=x?(W⊗α), from which we
can observe that applying attention on features is equivalent
to performing convolution with dynamic weights.

Other implementations for attention modules have also
been developed, including using standard deviation to
provide more statistics [125], or replacing FC layers with
efficient 1D convolutions [126]. The empirical performance
of three computational graphs for soft attention is studied
in [127]: 1) ỹ = y ⊗ A(y), 2) ỹ = y ⊗ A(x) and 3)
ỹ = y ⊗ A(Conv(x)). It is found that the three forms yield
different performance in different backbone networks.
2) Spatial-wise attention. Spatial locations in features could
also be dynamically rescaled with attention to improve the
representation power of deep models [128]. Instead of using
pooling operations to efficiently gather global information
as in channel-wise attention, convolutions are often adopted
in spatial-wise attention to encode local information. More-
over, these two types of attention modules can be integrated
in one framework [21], [129], [130], [131] (see Fig. 6 (c)).
3) Dynamic activation functions. The aforementioned ap-
proaches to generating dynamic features usually apply soft
attention before static activation functions. A recent line of
work has sought to increase the representation power of
models with dynamic activation functions [132], [133]. For
instance, DY-ReLU [132] replaces ReLU (yc = max(xc, 0))
with the max value among N linear transformations yc =
maxn {anc xc + bnc }, where c is the channel index, and anc , b

n
c

are linear coefficients calculated from x. On many vision
tasks, these dynamic activation functions can effectively
improve the performance of different network architectures
with negligible computational overhead.

To summarize, soft attention has been exploited in many
fields due to its simplicity and effectiveness. Moreover, it
can be incorporated with other methods conveniently. E.g.,
by replacing the weighting scalar αn in Eq. 5 with channel-
wise [134] or spatial-wise [135] attention, the output of

8
TABLE 2

Kernel shape adaptation by dynamically sampling feature pixels [110], [111] or convolutional weights [112].

Method Formulation Sampled Target Dynamic Mask
Regular Convolution y(p) =

∑K
k=1 W(pk)x(p + pk) - -

Deformable ConvNet-v1 [110] y(p) =
∑K

k=1 W(pk)x(p + pk + ∆pk) Feature map No
Deformable ConvNet-v2 [111] y(p) =

∑K
k=1 W(pk)x(p + pk + ∆pk)∆mk Feature map Yes

Deformable Kernels [112] y(p) =
∑K

k=1 W(pk + ∆pk)x(p + pk) Conv kernel No

multiple branches with independent kernel sizes [134] or
feature resolutions [135] are adaptively fused.

Note that we leave out the detailed discussion on the self
attention mechanism, which is widely studied in both NLP
[6], [7] and CV fields [136], [137], [138] to re-weight features
based on the similarity between queries and keys at different
locations (temporal or spatial). Readers who are interested
in this topic may refer to review studies [139], [140], [141].
In this survey, we mainly focus on the feature re-weighting
scheme in the framework of dynamic inference.

3 SPATIAL-WISE DYNAMIC NETWORKS
In visual learning, it has been found that not all locations
contribute equally to the final prediction of CNNs [142],
which suggests that spatially dynamic computation has great
potential for reducing computational redundancy. In other
words, making a correct prediction may only require pro-
cessing a fraction of pixels or regions with an adaptive
amount of computation. Moreover, based on the observa-
tions that low-resolution representations are sufficient to
yield decent performance for most inputs [27], the static
CNNs that take in all the input with the same resolution
may also induce considerable redundancy.

To this end, spatial-wise dynamic networks are built to
perform adaptive inference with respect to different spatial
locations of images. According to the granularity of dynamic
computation, we further categorize the relevant approaches
into three levels: pixel level (Sec. 3.1), region level (Sec. 3.2)
and resolution level (Sec. 3.3).

3.1 Pixel-level Dynamic Networks
Commonly seen spatial-wise dynamic networks perform
adaptive computation at the pixel level. Similar to the
categorization in Sec. 2, pixel-level dynamic networks are
grouped into two types: models with pixel-specific dynamic
architectures (Sec. 3.1.1) and dynamic parameters (Sec. 3.1.2).

3.1.1 Pixel-wise Dynamic Architectures
Based on the common belief that foreground pixels are more
informative and computational demanding than those in the
background, some dynamic networks learn to adjust their
architectures for each pixel. Existing literature generally
achieves this by 1) dynamic sparse convolution, which only
performs convolutions on a subset of sampled pixels; 2)
additional refinement, which strategically allocates extra com-
putation (e.g. layers or channels) on certain spatial positions.
1) Dynamic sparse convolution. To reduce the unnecessary
computation on less informative locations, convolution can
be performed only on strategically sampled pixels. Existing
sampling strategies include 1) making use of the intrinsic
sparsity of the input [143]; 2) predicting the positions of zero
elements on the output [144], [145]; and 3) estimating the
saliency of pixels [146], [147], [148]. A typical approach is
using an extra branch to generate a spatial mask, determin-
ing the execution of convolution on each pixel (see Fig. 7).

Exploiting/Learning
sparsity

Dynamic Conv

Mask

Fig. 7. Dynamic convolution on selected spatial locations. The 1 el-
ements (black) in the spatial mask determine the pixels (green) that
require computation in the output feature map.

Pixel-wise dynamic depth could also be achieved based on a
halting scheme [33] (see Sec. 2.1.1). These dynamic convolu-
tions usually neglect the unselected positions, which might
degrade the network performance. Interpolation is utilized
in [148] to efficiently fill those locations, therefore alleviating
the aforementioned disadvantage.
2) Dynamic additional refinement. Instead of only sam-
pling certain pixels to perform convolutions, another line
of work first conducts relatively cheap computation on the
whole feature map, and adaptively activate extra modules
on selected pixels for further refinement. Representatively,
dynamic capacity network [149] generates coarse features
with a shallow model, and salient pixels are sampled based
on the gradient information. For these salient pixels, extra
layers are applied to extract finer features. Similarly, specific
positions are additionally processed by a fraction of convo-
lutional filters in [84]. These methods adapt their network
architectures in terms of depth or width at the pixel level,
achieving a spatially adaptive allocation of computation.

The aforementioned dynamic additional refinement ap-
proaches [84], [149] are mainly developed for image classifi-
cation. On the semantic segmentation task, pixel-wise early
exiting (see also Sec. 2.1.1) is proposed in [34], where the
pixels with high prediction confidence are output without
being processed by deeper layers. PointRend [150] shares
a similar idea, and applies additional FC layers on selected
pixels with low prediction confidence, which are more likely
to be on borders of objects. All these researches demonstrate
that by exploiting the spatial redundancy in image data,
dynamic computation at the pixel level beyond sample level
significantly increases the model efficiency.

3.1.2 Pixel-wise Dynamic Parameters
In contrast to entirely skipping the convolution operation
on a subset of pixels, dynamic networks can also apply
data-dependent parameters on different pixels for improved
representation power or adaptive reception fields.
1) Dynamic weights. Similar to the sample-wise dynamic
parameter methods (Sec. 2.2), pixel-level dynamic weights
are achieved by test-time adjustment [108], [109], prediction
[151], [152], [153], [154] or dynamic features [21], [129], [130],
[135]. Take weight prediction as an example, typical ap-
proaches generate an H×W ×k2 kernel map to produce
spatially dynamic weights (H,W are the spatial size of the

9

Region Selection

Network

Fig. 8. Region-level dynamic inference. The region selection module
generates the transformation/localization parameters, and the subse-
quent network performs inference on the transformed/cropped region.

output feature and k is the kernel size). Considering the
pixels belonging to the same object may share identical
weights, dynamic region-aware convolution (DRConv) [155]
generates a segmentation mask for an input image, dividing
it into m regions, for each of which a weight generation net-
work is responsible for producing a data-dependent kernel.
2) Dynamic reception fields. Traditional convolution opera-
tions usually have a fixed shape and size of kernels (e.g. the
commonly used 3×3 2D convolution). The resulting uniform
reception field across all the layers may have limitations for
recognizing objects with varying shapes and sizes. To tackle
this, a line of work learns to adapt the reception field for
different feature pixels [110], [111], [112], as discussed in Sec.
2.2.1. Instead of adapting the sampling location of features
or kernels, adaptive connected network [156] realizes a
dynamic trade-off among self transformation (e.g. 1×1 con-
volution), local inference (e.g. 3×3 convolution) and global
inference (e.g. FC layer). The three branches of outputs are
fused with data-dependent weighted summation. Besides
images, the local and global information in non-Euclidean
data, such as graphs, could also be adaptively aggregated.

3.2 Region-level Dynamic Networks
Pixel-level dynamic networks mentioned in Sec. 3.1 often
require specific implementations for sparse computation,
and consequently may face challenges in terms of achieving
real acceleration on hardware [148]. An alternative approach
is performing adaptive inference on regions/patches of input
images. There mainly exists two lines of work along this
direction (see Fig. 8): one performs parameterized trans-
formations on a region of feature maps for more accurate
prediction (Sec. 3.2.1), and the other learns patch-level
hard attention, with the goal of improving the effectiveness
and/or efficiency of models (Sec. 3.2.2).

3.2.1 Dynamic Transformations
Dynamic transformations (e.g. affine/projective/thin plate
spline transformation) can be performed on images to undo
certain variations [157] for better generalization ability, or to
exaggerate the salient regions [158] for discriminative fea-
ture representation. For example, spatial transformer [157]
adopts a localization network to generate the transformation
parameters, and then applies the parameterized transforma-
tion to recover the input from the corresponding variations.
Moreover, transformations are learned to adaptively zoom-
in the salient regions on some tasks where the model per-
formance is sensitive to a small portion of regions.

3.2.2 Hard Attention on Selected Patches
Inspired by the fact that informative features may only be
contained in certain regions of an image, dynamic networks
with hard spatial attention are explored to strategically
select patches from the input for improved efficiency.

1) Hard attention with RNNs. The most typical approach
is formulating a classification task as a sequential decision
process, and adopting RNNs to make iterative predictions
based on selected patches [159], [160]. For example, images
are classified within a fixed number of steps, and at each
step, the classifier RNN only sees a cropped patch, deciding
the next attentional location until the last step is reached
[159]. An adaptive step number is further achieved by
including early stopping in the action space [160]. Glance-
and-focus network (GFNet) [39] builds a general framework
of region-level adaptive inference by sequentially focusing
on a series of selected patches, and is compatible with most
existing CNN architectures. The recurrent attention mecha-
nism together with the early exiting paradigm enables both
spatially and temporally adaptive inference [39], [160].
2) Hard attention with other implementations. Rather
than using an RNN to predict the region position that the
model should pay attention to, class activation mapping
(CAM) [142] is leveraged in [161] to iteratively focus on
salient patches. At each iteration, the selection is performed
on the previously cropped input, leading to a progressive
refinement procedure. A multi-scale CNN is built in [162],
where the sub-network in each scale takes in the cropped
patch from the previous scale, and is responsible for si-
multaneously producing 1) the feature representations for
classification and 2) the attention map for the next scale.
Without an iterative manner, the recent differentiable patch
selection [163] adopts a differentiable top-K module to select
a fixed number of patches in one step.

3.3 Resolution-level Dynamic Networks
The researches discussed above typically divide feature
maps into different areas (pixel-level or region-level) for
adaptive inference. On a coarser granularity, some dynamic
networks could treat each image as a whole by processing
feature representations with adaptive resolutions. Although
it has been observed that a low resolution might be suf-
ficient for recognizing most ”easy” samples [27], conven-
tional CNNs mostly process all the inputs with the same
resolution, inducing considerable redundancy. Therefore,
resolution-level dynamic networks exploit spatial redun-
dancy from the perspective of feature resolution rather
than the saliency of different locations. Existing approaches
mainly include 1) scaling the inputs with adaptive ratios
(Sec. 3.3.1); 2) selectively activating the sub-networks with
different resolutions in a multi-scale architecture (Sec. 3.3.2).

3.3.1 Adaptive Scaling Ratios
Dynamic resolution can be achieved by scaling features
with adaptive ratios. For example, a small sub-network is
first executed to predict a scale distribution of faces on the
face detection task, then the input images are adaptively
zoomed, so that all the faces fall in a suitable range for
recognition [164]. A plug-in module is used by [165] to
predict the stride for the first convolution block in each
ResNet stage, producing features with dynamic resolution.

3.3.2 Dynamic Resolution in Multi-scale Architectures
An alternative approach to achieving dynamic resolution
is building multiple sub-networks in a parallel [166] or
cascading [32] way. These sub-networks with different fea-
ture resolutions are selectively activated conditioned on

10

the input during inference. For instance, Elastic [166] real-
izes a soft selection from multiple branches at every layer,
where each branch performs a downsample-convolution-
upsample procedure with an independent scaling ratio. To
practically avoid redundant computation, a hard selection is
realized by [32], which allows each sample to conditionally
activate sub-networks that process feature representations
with resolution from low to high (see Fig. 3 (c) in Sec. 2.1.1).

4 TEMPORAL-WISE DYNAMIC NETWORKS
Apart from the spatial dimension (Sec. 3), adaptive compu-
tation could also be performed along the temporal dimen-
sion of sequential data, such as texts (Sec. 4.1) and videos
(Sec. 4.2). In general, network efficiency can be improved by
dynamically allocating less/no computation to the inputs at
unimportant temporal locations.

4.1 RNN-based Dynamic Text Processing
Traditional RNNs mostly follow a static inference paradigm,
i.e. input tokens are read sequentially to update a hidden
state at each time step, which could be written as

ht = F(xt,ht−1), t = 1, 2, · · · , T. (11)
Such a static inference paradigm induces significant redun-
dant computation, as different tokens usually have different
contributions to the downstream tasks. A type of dynamic
RNN is developed for allocating appropriate computational
cost at each step. Some learn to ”skim” unimportant tokens
by dynamic update of hidden states (Sec. 4.1.1), and others
conduct adaptive reading to avoid processing task-irrelevant
tokens. Specifically, such adaptive reading can be achieved
by early exiting (Sec. 4.1.2) or dynamic jumping (Sec. 4.1.3).

4.1.1 Dynamic Update of Hidden States
Since not all the tokens are essential for capturing the task-
relevant information in a sequence, dynamic RNNs can be
built to adaptively update their hidden states at each time
step. Less informative tokens will be coarsely skimmed, i.e.
the states are updated with cheaper computation.
1) Skipping the update. For unimportant inputs at certain
temporal locations, dynamic models can learn to entirely
skip the update of hidden states (see Fig. 9 (a)), i.e.

ht = αtF(xt,ht−1) + (1− αt)ht−1, αt ∈ {0, 1} . (12)
For instance, Skip-RNN [167] updates a controlling signal in
every step to determine whether to update or copy the hid-
den state from the previous step. An extra agent is adopted
by Structural-Jump-LSTM [168] to make the skipping deci-
sion conditioned on the previous state and the current input.
Without training the RNNs and the controllers jointly as in
[167] and [168], a predictor is trained in [169] to estimate
whether each input will make a ”significant change” on the
hidden state. The update is identified worthy to be executed
only when the predicted change is greater than a threshold.
2) Coarse update. As directly skipping the update may be
too aggressive, dynamic models could also update the hid-
den states with adaptively allocated operations. In specific,
a network can adapt its architecture in every step, i.e.

ht = Ft(xt,ht−1), t = 1, 2, · · · , T, (13)
where Ft is determined based on the input xt. One imple-
mentation is selecting a subset of dimensions of the hidden
state to calculate, and copying the remaining from the

previous step [170], [171], as shown in Fig. 9 (b). To achieve
the partial update, a subset of rows in weight matrices of
the RNN is dynamically activated in [170], while Skim-RNN
[171] makes a choice between two independent RNNs.

When the hidden states are generated by a multi-layer
network, the update could be interrupted at an intermediate
layer based on an accumulated halting score [11].

To summarize, a coarse update can be realized by data-
dependent network depth [11] or width [170], [171].
3) Selective updates in hierarchical RNNs. Considering the
intrinsic hierarchical structure of texts (e.g. sentence-word-
character), researchers have developed hierarchical RNNs to
encode the temporal dependencies with different timescales
using a dynamic update mechanism [172], [173]. During
inference, the RNNs at higher levels will selectively update
their states conditioned on the output of low-level ones (see
Fig. 9 (c)). For example, when a character-level model in
[172] detects that the input satisfies certain conditions, it
will ”flush” (reset) its states and feed them to a word-level
network. Similar operations have also been realized by a
gating module on question answering tasks [173].

4.1.2 Temporally Early Exiting in RNNs
Despite that the dynamic RNNs in Sec. 4.1.1 are able to up-
date their states with data-dependent computational costs
at each step, all the tokens still must be read, leading to
inefficiency in scenarios where the task-relevant results can
be obtained before reading the entire sequence.

Ideally, an efficient model should adaptively stop read-
ing before the last step T in Eq. 11 is reached, once the
captured information is satisfactory to solve the task. For
instance, reasoning network (ReasoNet) [63] terminates its
reading procedure when sufficient evidence has been found
for question answering. Similarly, early stopping is imple-
mented for sentence-level [174] and paragraph-level [65]
text classification, respectively. Note that the approaches dis-
cussed here focus on making early predictions with respect
to the temporal dimension of sequential input, rather than
along the depth dimension of networks as in Sec. 2.1.1.

4.1.3 Jumping in Texts
Although early exiting in Sec. 4.1.2 can largely reduce re-
dundant computation, all the tokens must still be fed to
the model one by one. More aggressively, dynamic RNNs
could further learn to decide ”where to read” by strategically
skipping some tokens without reading them, and directly
jumping to an arbitrary temporal location (see Fig. 9 (d)).

Such dynamic jumping, together with early exiting, is
realized in [175] and [64]. Specifically, LSTM-Jump [175]
implements an auxiliary unit to predict the jumping stride
within a defined range, and the reading process ends when
the unit outputs zero. The model in [64] first decides
whether to stop at each step. If not, it will further choose
to re-read the current input, or to skip a flexible number
of words. Moreover, structural information is exploited by
Structural-Jump-LSTM [168], which utilizes an agent to de-
cide whether to jump to the next punctuation. Apart from
looking ahead, LSTM-Shuttle [176] also allows backward
jumping to supplement the missed history information.

4.2 Temporal-wise Dynamic Video Recognition
For video recognition, where a video could be seen as a se-
quential input of frames, temporal-wise dynamic networks

11

Agent

RNN

Agent

RNN

Copy

Copy

RNN RNN RNN

RNN RNN

(a) Skip update of hidden state. (b) Partial update of hidden state. (c) Hierarchical RNN architecture.
Sequential input

RNN

Agent

RNN

Sequential Input
(d) Temporal dynamic jumping.

Fig. 9. Temporally adaptive inference. The first three approaches dynamically allocate computation in each step by (a) skipping the update, (b)
partially updating the state, or (c) conditional computation in a hierarchical structure. The agent in (d) decides where to read in the next step.

are designed to allocate adaptive computational resources
for different frames. This can generally be achieved by
two approaches: 1) dynamically updating the hidden states
in each time step of recurrent models (Sec. 4.2.1), and 2)
performing adaptive pre-sampling for key frames (Sec. 4.2.2).

4.2.1 Video Recognition with Dynamic RNNs
Video recognition is often conducted via a recurrent pro-
cedure, where the video frames are first encoded by a 2D
CNN, and the obtained frame features are fed to an RNN
sequentially for updating its hidden state. Similar to the ap-
proaches introduced in Sec. 4.1, RNN-based adaptive video
recognition is typically realized by 1) treating unimportant
frames with relatively cheap computation (”glimpse”) [177],
[178]; 2) early exiting [61], [62]; and 3) performing dynamic
jumping to decide ”where to see” [61], [179], [180], [181].
1) Dynamic update of hidden states. To reduce redundant
computation at each time step, LiteEval [177] makes a
choice between two LSTMs with different computational
costs. ActionSpotter [178] decides whether to update the
hidden state according to each input frame. AdaFuse [182]
selectively reuses certain feature channels from the previous
step to efficiently make use of historical information. Recent
work has also proposed to adaptively decide the numerical
precision [183] or modalities [184], [185] when processing
the sequential input frames. Such a glimpse procedure (i.e.
allocating cheap operations to unimportant frames) is simi-
lar to the aforementioned text skimming [167], [168].
2) Temporally early exiting. Humans are able to compre-
hend the contents easily before watching an entire video.
Such early stopping is also implemented in dynamic net-
works to make predictions only based on a portion of
video frames [61], [62], [186]. Together with the temporal
dimension, the model in [62] further achieves early exiting
from the aspect of network depth as discussed in Sec. 2.1.1.
3) Jumping in videos. Considering encoding those unim-
portant frames with a CNN still requires considerable com-
putation, a more efficient solution could be dynamically
skipping some frames without watching them. Existing arts
[179], [180], [187] typically learn to predict the location that
the network should jump to at each time step. Furthermore,
both early stopping and dynamic jumping are allowed in
[61], where the jumping stride is limited in a discrete range.
Adaptive frame (AdaFrame) [181] generates a continuous
scalar within the range of [0, 1] as the relative location.

4.2.2 Dynamic Key Frame Sampling
Rather than processing video frames recurrently as in Sec.
4.2.1, another line of work first performs an adaptive pre-
sampling procedure, and then makes prediction by process-
ing the selected subset of key frames or clips.
1) Temporal attention is a common technique for networks
to focus on salient frames. For face recognition, neural ag-

gregation network [22] uses soft attention to adaptively ag-
gregate frame features. To improve the inference efficiency,
hard attention is realized to remove unimportant frames
iteratively with RL for efficient video face verification [188].
2) Sampling module is also a prevalent option for dy-
namically selecting the key frames/clips in a video. For
example, the frames are first sampled uniformly in [189],
[190], and discrete decisions are made for each selected
frame to go forward or backward step by step. As for
clip-level sampling, SCSample [191] is designed based on
a trained classifier to find the most informative clips for
prediction. Moreover, dynamic sampling network (DSN)
[192] segments each video into multiple sections, and a
sampling module with shared weights across the sections
is exploited to sample one clip from each section.

Adjusting multiple factors of deep models simultane-
ously has attracted researches in both static [193], [194] and
dynamic networks [195], [196], [197], [198]. For example,
together with temporal-wise frame sampling, spatially adap-
tive computation can be achieved by spatial [196]/temporal
[199] resolution adaptation and patch selection [197], [200].
It would be promising to exploit the redundancy in both
input data and network structure for further improving the
efficiency of deep networks.

5 INFERENCE AND TRAINING
In previous sections, we have reviewed three different types
of dynamic networks (sample-wise (Sec. 2), spatial-wise
(Sec. 3) and temporal-wise (Sec. 4)). It can be observed that
making data-dependent decisions at the inference stage is
essential to achieve high efficiency and effectiveness. More-
over, training dynamic models is usually more challenging
than optimizing static networks.

Note that since parameter adaptation (Sec. 2.2) could be
conveniently achieved by differentiable operations, models
with dynamic parameters [13], [20], [119] can be directly
trained by stochastic gradient descent (SGD) without spe-
cific techniques. Therefore, in this section we mainly focus
on discrete decision making (Sec. 5.1) and its training strate-
gies (Sec. 5.2), which are absent in most static models.

5.1 Decision Making of Dynamic Networks
As described above, dynamic networks are capable of mak-
ing data-dependent decisions during inference to trans-
form their architectures, parameters, or to select salient
spatial/temporal locations in the input. Here we summarize
three commonly seen decision making schemes as follows.

5.1.1 Confidence-based Criteria
Many dynamic networks [12], [32], [45] are able to output
”easy” samples at early exits if a certain confidence-based
criterion is satisfied. These methods generally require esti-
mating the confidence of intermediate predictions, which is

12

compared to a predefined threshold for decision making.
In classification tasks, the confidence is usually represented
by the maximum element of the SoftMax output [12], [32].
Alternative criteria include the entropy [45], [58] and the
score margin [49]. On NLP tasks, a model patience is proposed
in [60]: when the predictions for one sample stay unchanged
after a number of classifiers, the inference procedure stops.

In addition, the halting score in [11], [33], [35], [36] could
also be viewed as confidence for whether the current feature
could be output to the next time step or calculation stage.

Empirically, the confidence-based criteria are easy to
implement, and generally require no specific training tech-
niques. A trade-off between accuracy and efficiency is con-
trolled by manipulating the thresholds, which are usually
tuned on a validation dataset. Note that the overconfidence is-
sue in deep models [201], [202] might affect the effectiveness
of such decision paradigm, when the incorrectly classified
samples could obtain a high confidence at early exits.

5.1.2 Policy Networks
It is a common option to build an additional policy network
learning to adapt the network topology based on different
samples. Specifically, each input sample is first processed by
the policy network, whose output directly determines which
parts of the main network should be activated. For example,
BlockDrop [71] and GaterNet [90] use a policy network
to adaptively decide the depth and width of a backbone
network. More generally, dynamic routing in a SuperNet can
also be controlled by a policy network [106].

One possible limitation of this scheme is that the archi-
tectures and the training process of some policy networks
are developed for a specific backbone [71], [90], and may
not be easily adapted to different architectures.

5.1.3 Gating Functions
Gating function is a general and flexible approach to deci-
sion making in dynamic networks. It can be conveniently
adopted as a plug-in module at arbitrary locations in any
backbone network. During inference, each module is re-
sponsible for controlling the local inference graph of a
layer or block. The gating functions take in intermediate
features and efficiently produce binary-valued gate vectors
to decide: 1) which channels need to be activated [15], [85],
[86], [87], [88] width, 2) which layers need to be skipped
[47], [48], [92], [93], 3) which paths should be selected in a
SuperNet [107], or 4) what locations of the input should be
allocated computations [146], [147], [148], [182].

Compared to the aforementioned decision policies, the
gating functions demonstrate notable generality and appli-
cability. However, due to their lack of differentiability, these
gating functions usually need specific training techniques,
which will be introduced in the following Sec. 5.2.

5.2 Training of Dynamic Networks
Besides architecture design, training is also essential for
dynamic networks. Here we summarize the existing train-
ing strategies for dynamic models from the perspectives of
objectives and optimization.

5.2.1 Training Objectives for Efficient Inference
1) Training multi-exit networks. We first notice that early-
exiting dynamic networks [12], [32] are generally trained

by minimizing a weighted cumulative loss of intermediate
classifiers. One challenge for training such models is the
joint optimization of multiple classifiers, which may inter-
fere with each other. MSDNet [12] alleviates the problem
through its special architecture design. Several improved
training techniques [56] are proposed for multi-exit net-
works, including a gradient equilibrium algorithm to sta-
ble the training process, and a bi-directional knowledge
transfer approach to boost the collaboration of classifiers.
For temporal-wise early exiting, the training of the policy
network in FrameExit [186] is supervised by pseudo labels.
2) Encouraging sparsity. Many dynamic networks adapt
their inference procedure by conditionally activating their
computational units [47], [87] or strategically sampling lo-
cations from the input [148]. Training these models without
additional constraints would result in superfluous compu-
tational redundancy, as a network could tend to activate all
the candidate units for minimizing the task-specific loss.

The overall objective function for restraining such re-
dundancy are typically written as L = Ltask + γLsparse,
where γ is the hyper-parameter balancing the two items for
the trade-off between accuracy and efficiency. In real-world
applications, the second item can be designed based on the
gate/mask values of candidate units (e.g. channels [86], [87],
layers [47], [48] or spatial locations [148]). Specifically, one
may set a target activation rate [48], [86] or minimizing the
L1 norm of the gates/masks [148]. It is also practical to
directly optimize a resource-aware loss (e.g. FLOPs) [92],
[107], [147], which can be estimated according to the input
and output feature dimension for every candidate unit.
3) Others. Note that extra loss items are mostly designed for
but not limited to improving efficiency. Take [162] as an ex-
ample, the model progressively focuses on a selected region,
and is trained with an additional inter-scale pairwise ranking
loss for proposing more discriminative regions. Moreover,
knowledge distilling is utilized to boost the co-training of
multiple sub-networks in [84] and [56].

5.2.2 Optimization of Non-differentiable Functions
A variety of dynamic networks contain non-differentiable
functions that make discrete decisions to modify their ar-
chitectures or sampling spatial/temporal locations from the
input. These functions can not be trained directly with back-
propagation. Therefore, specific techniques are studied to
enable the end-to-end training as follows.
1) Gradient estimation is proposed to approximate the
gradients for those non-differentiable functions and enable
back-propagation. In [72], [172], straight-through estimator
(STE) is exploited to heuristically copy the gradient with
respect to the stochastic output directly as an estimator of
the gradient with respect to the Sigmoid argument.
2) Reparameterization is also a popular technique to opti-
mize the discrete decision functions. For instance, the gating
functions controlling the network width [86] or depth [48]
can both be trained with Gumbel SoftMax [259], [260], which
is also used for pixel-level dynamic convolution [147], [148].
An alternative technique is Improved SemHash [261] adopted
in [88] and [90] to train their hard gating modules.

Note that although these reparameterization techniques
enable joint optimizing dynamic models together with gat-
ing modules in an end-to-end fashion, they usually lead to

13

TABLE 3
Applications of Dynamic Networks. For the type column, Sa, Sp and Te stand for sample-wise, spatial-wise and temporal-wise respectively.

Fields Data Type Subfields & references

Image

Sa Object detection (face [40], [203], [204], facial point [205], pedestrian [206], general [33], [207], [208], [209], [210])
Image segmentation [107], [211], [212], Super resolution [213], Style transfer [214], Coarse-to-fine classification [215]

Sa & Sp
Image segmentation [34], [129], [146], [148], [150], [154], [156], [216], [217], [218], [219], [220], Image-to-image
translation [221], Object detection [110], [111], [147], [148], [164], Semantic image synthesis [222], [223], [224],

Computer Image denoising [225], Fine-grained classification [158], [162], [226], [227] Eye tracking [158], Super resolution [151], [153], [228]

Vision Sa & Sp & Te General classification [39], [159], [161], Multi-object classification [229], [230], Fine-grained classification [160]

Video

Sa Multi-task learning (human action recognition and frame prediction) [231]

Sa & Te Classification (action recognition) [61], [177], [181], [189], [190], [191], [192], [196], [232], Semantic segmentation [233]
Video face recognition [22], [188], Action detection [179], [180], Action spotting [178], [187]

Sa & Sp & Te Classification [196], [197], Frame interpolation [234], [235], Super resolution [236], Video deblurring [237], [238], Action prediction [239]

Point Cloud Sa & Sp 3D Shape classification and segmentation, 3D scene segmentation [240], 3D semantic scene completion [241]

Natural Text
Sa Neural language inference, Text classification, Paraphrase similarity matching, and Sentiment analysis [59], [60]

Language Sa & Te Language modeling [11], [16], [118], [170], [172], Machine translation [16], [35], [36], Classification [64], [65], [174],
Processing Sentiment analysis [168], [169], [171], [175], [176], Question answering [35], [63], [168], [171], [173]

Cross-Field Image captioning [130], [242], Video captioning [243], [244], Visual question answering [123], [124], [245], Multi-modal sentiment analysis [246], [247]

Others Time series forecasting [248], [249], [250], Link prediction [251], Recommendation system [77], [252], [253], [254]
Graph classification [121], Document classification [156], [255], [256], [257], Stereo confidence estimation [258]

a longer training process for the decision functions to con-
verge into a stable situation [144]. Moreover, the model per-
formance might be sensitive to some extra hyper-parameters
(e.g. temperature in Gumbel SoftMax), which might also
increase the training cost for these dynamic networks.
3) Reinforcement learning (RL) is widely exploited for
training non-differentiable decision functions. In specific,
the backbones are trained by standard SGD, while the
agents (either policy networks in Sec. 5.1.2 or gating func-
tions in Sec. 5.1.3) are trained with RL to take discrete
actions for dynamic inference graphs [15], [47], [71] or
spatial/temporal sampling strategies [39], [190].

One challenge for RL-based training is the design of
reward functions, which is important to the accuracy-
efficiency tradeoff of dynamic models. Commonly seen re-
ward signals are usually constructed to minimize a penalty
item of the computational cost [15], [47]. Moreover, the train-
ing could be costly due to a multi-stage procedure: a pre-
training process may be required for the backbone networks
before the optimization of decision [71] or sampling [39]
modules, and joint finetuning may be indispensable finally.

6 APPLICATION OF DYNAMIC NETWORKS

In this section, we summarize the applications of dynamic
networks. Representative methods are listed in Table 3
based on the input data modality.

For image recognition, most dynamic CNNs are de-
signed to conduct sample-wise or spatial-wise adaptive infer-
ence on classification tasks, and many inference paradigms
can be generalized to other applications. Note that as men-
tioned in Sec. 3.2, the object recognition could be formulated
as a sequential decision problem [39], [160]. By allowing
early exiting in these approaches, temporally adaptive infer-
ence procedure could also be enabled.

For text data, reducing its intrinsic temporal redundancy
has attracted great research interests, and the inference
paradigm of temporal-wise dynamic RNNs (see Sec. 4.1) is
also general enough to process audios [262]. Based on large
language models such as Transformer [6] and BERT [7],
adaptive depths [57], [58], [59], [60] are extensively studied
to reduce redundant computation in network architectures.

For video-related tasks, the three types of dynamic infer-
ence can be implemented simultaneously [160], [197], [234],

[235]. However, for the networks that do not process videos
recurrently, e.g. 3D CNNs [263], [264], [265], most of them
still follow a static inference scheme. Few researches have
been committed to building dynamic 3D CNNs [195], which
might be an interesting future research direction.

Moreover, dynamic networks (especially the attention
mechanism) have also been applied to dynamically fuse
the features from different modalities in some multi-modal
learning tasks, e.g. RGB-D image segmentation [212] and
image/video captioning [130], [242], [243], [244].

Finally, dynamic networks have also been exploited to
tackle some fundamental problems in deep learning. For ex-
ample, multi-exit models can be used to: 1) alleviate the over-
thinking issue while reducing the overall computation [50],
[266]; 2) perform long-tailed classification [267] by inducing
early exiting in the training stage; and 3) improve the model
robustness [268]. For another example, the idea of dynamic
routing is implemented for: 1) reducing the training cost
under a multi-task setting [269] and 2) finding the optimal
fine-tuning strategy for per example in transfer learning [270].

7 CHALLENGES AND FUTURE DIRECTIONS
Though recent years have witnessed significant progress in
the research of dynamic neural networks, there still exist
many open problems that are worth exploring. In this sec-
tion, we summarize a few challenges together with possible
future directions in this field.

7.1 Theories for Dynamic Networks
Despite the success of dynamic neural networks, relatively
few researches has been committed to analyze them from
the theoretical perspective. In fact, theories for a deep un-
derstanding of current dynamic learning models and further
improving them in principled ways are highly valuable.
Notably, it has been proven that a dynamic network with an
adaptive width can preserve the representation power of an
unsparsified model [79]. However, there are more theoret-
ical problems that are fundamental for dynamic networks.
Here we list several of them as follows.
1) Optimal decision in dynamic networks. An essential
operation in most dynamic networks (especially those de-
signed for improving computational efficiency) is making
data-dependent decisions, e.g., determining whether a mod-
ule should be evaluated or skipped. Existing solutions either

14

use confidence-based criteria, or introduce policy networks
and gating functions. Although being effective in practice
(as mentioned in Sec. 5), they may not be optimal and
lack theoretical justifications. Take early exiting as an ex-
ample, the current heuristic methods [12], [32] might face
the issues of overconfidence, high sensitivity for threshold
setting and poor transferability. As for policy networks or
gating modules, runtime decisions can be made based on
a learned function. However, they often introduce extra
computations, and usually require a long and unstable
training procedure. Therefore, principled approaches with
theoretical guarantees for decision function design in dy-
namic networks is a valuable research topic.
2) Generalization issues. In a dynamic model, a sub-
network might be activated for a set of test samples that
are not uniformly sampled from the data distribution, e.g.,
smaller sub-networks tend to handle “easy” samples, while
larger sub-networks are used for “hard” inputs [12]. This
brings a divergence between the training data distribu-
tion and that of the inference stage, and thus violates the
common i.i.d. assumption in classical machine learning.
Therefore, it would be interesting to develop new theories to
analyze the generalization properties of dynamic networks
under such distribution mismatch. Note that transfer learn-
ing also aims to address the issue of distributional shift at
test time, but the samples of the target domain are assumed
to be accessible in advance. In contrast, for dynamic models,
the test distribution is not available until the training process
is finished, when the network architecture and parameters
are finalized. This poses greater challenges than analyzing
the generalization issues in transfer learning.

7.2 Architecture Design for Dynamic Networks

Architecture design has been proven to be essential for deep
networks. Existing researches on architectural innovations
are mainly proposed for static models [4], [5], [27], while
relatively few are dedicated to developing architectures spe-
cially for dynamic networks. It is expected that architectures
developed specifically for dynamic networks may further
improve their effectiveness and efficiency. For example, the
interference among multiple classifiers in an early-exiting
network could be mitigated by a carefully designed multi-
scale architecture with dense connections [12].

Possible research direction include designing dynamic
network structures either by hand (as in [12], [32], [35],
[67]), or by leveraging the NAS techniques (as in [83], [106]).
Moreover, considering the popularity of Transformers [138],
recent work has proposed dynamic vision Transformers
with adaptive early exiting [271] or token sparsification
[272], [273]. Developing a dynamic version of this family
of models could also be an interesting direction.

Note that the research on dynamic networks differs
from a seemingly close topic, i.e. model compression [28],
[29], [31]. One common goal of them is improving the
network efficiency with minimal accuracy drop. However,
model compression may focus on reducing the size of deep
networks, while dynamic networks pay more attention to
the computation, even at the price of slightly increasing
model size [15], [47]. Moreover, model compression typi-
cally adopts pruning [28] or quantization [29] techniques to

produce compact static models, which treat all the inputs
in the same way. In contrast, dynamic networks perform
data-dependent computation on different inputs, which can
effectively reduce the intrinsic redundancy in static models.

7.3 Applicability for More Diverse Tasks
Many existing dynamic networks (e.g., most of the sample-
wise adaptive networks) are designed specially for classi-
fication tasks, and cannot be applied to other vision tasks
such as object detection and semantic segmentation. The
difficulty arises from the fact that for these tasks there is
no simple criterion to assert whether an input image is
easy or hard, as it usually contains multiple objects and
pixels that have different levels of difficulty. Although many
efforts, e.g., spatially adaptive models [33], [39], [148] and
soft attention based models [13], [20], [21], have been made
to address this issue, it remains a challenging problem to
develop a unified and elegant dynamic network that can
serve as an off-the-shelf backbone for a variety of tasks.

7.4 Gap between Theoretical & Practical Efficiency
The current deep learning hardware and libraries are mostly
optimized for static models, and they may not be friendly
to dynamic networks. Therefore, we usually observe that
the practical runtime of dynamic models lags behind the
theoretical efficiency. For example, some spatially adaptive
networks involve sparse computation, which is known to be
inefficient on modern computing devices due to the memory
access bottleneck [148]. A recent line of work focuses on
the codesign of algorithm and hardware for accelerating
deep models on platforms with more flexibility such as
FPGA [274]. Many input-dependent operations, including
pixel-level dynamic computation [114], [275], [276], adaptive
channel pruning [277], [278] and early exiting [279], have
also been tailored together with hardware for further im-
proving their practical efficiency. It is an interesting research
direction to simultaneously optimize the algorithm, hard-
ware and deep learning libraries to harvest the theoretical
efficiency gains of dynamic networks.

In addition, a data-dependent inference procedure, espe-
cially for the dynamic architectures, usually requires a model
to handle input samples sequentially, which also poses
challenge for parallel computation. Although inference with
batches has been enabled for early-exiting networks [271],
the conflict between adaptive computational graph and
parallel computation still exists for other types of dynamic
architectures. This issue is mitigated in the scenario of
mobile/edge computing, where the input signal by itself
is sequential and the computing hardware is less powerful
than high-end platforms. However, designing dynamic net-
works that are more compatible with existing hardware and
software is still a valuable and challenging topic.

7.5 Robustness Against Adversarial Attack
Dynamic models may provide new perspectives for the
research on adversarial robustness of deep neural networks.
For example, recent work [268] has leveraged the multi-
exit structure to improve the robustness against adversarial
attacks. Moreover, traditional attacks are usually aimed at
causing misclassification. For dynamic networks, it is possible
to launch attacks on efficiency [280], [281]. Specifically, by

15

adjusting the objective function of the adversarial attack,
input-adaptive models could be fooled to activate all their
intermediate layers [280] or yielding confusing predictions
at early exits [281] even for ”easy” samples. It has also been
observed that the commonly used adversarial training is not
effective to defend such attacks. The robustness of dynamic
network is an interesting yet understudied topic.

7.6 Interpretability
Dynamic networks inherit the black-box nature of deep
learning models, and thus also invite research on inter-
preting their working mechanism. What is special here is
that the adaptive inference paradigm, e.g., spatial/temporal
adaptiveness, conforms well with that of the human visual
system, and may provide new possibilities for making the
model more transparent to humans. In a dynamic network,
it is usually convenient to analyze which part of the model
is activated for a given input or to locate which part of the
input the model mostly relies on in making its prediction.
It is expected that the research on dynamic network will
inspire new work on the interpretability of deep learning.

ACKNOWLEDGMENTS

This work is supported in part by the National Science
and Technology Major Project of the Ministry of Science
and Technology of China under Grants 2018AAA0100701,
the National Natural Science Foundation of China under
Grants 61906106 and 62022048, the Institute for Guo Qiang
of Tsinghua University and Beijing Academy of Artificial
Intelligence.

REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Ima-
genet classification with deep convolutional neural networks. In
NeurIPS, 2012.

[2] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. In ICLR, 2015.

[3] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke,
and Andrew Rabinovich. Going deeper with convolutions. In
CVPR, 2015.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, 2016.

[5] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Densely connected convolutional networks. In
CVPR, 2017.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.
Attention is all you need. In NeurIPS, 2017.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding. In ACL, 2019.

[8] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell, et al. Language models
are few-shot learners. In NeurIPS, 2020.

[9] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. In ICLR, 2017.

[10] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Dif-
ferentiable Architecture Search. In ICLR, 2018.

[11] Alex Graves. Adaptive computation time for recurrent neural
networks. arXiv preprint arXiv:1603.08983, 2016.

[12] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der
Maaten, and Kilian Weinberger. Multi-scale dense networks for
resource efficient image classification. In ICLR, 2018.

[13] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan Ngiam.
Condconv: Conditionally parameterized convolutions for effi-
cient inference. In NeurIPS, 2019.

[14] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic
routing between capsules. In NeurIPs, 2017.

[15] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural
pruning. In NeurIPS, 2017.

[16] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy
Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously
large neural networks: The sparsely-gated mixture-of-experts
layer. In ICLR, 2017.

[17] Luca Bertinetto, João F Henriques, Jack Valmadre, Philip HS Torr,
and Andrea Vedaldi. Learning feed-forward one-shot learners. In
NeurIPS, 2016.

[18] Xin Wang, Fisher Yu, Ruth Wang, Trevor Darrell, and Joseph E
Gonzalez. Tafe-net: Task-aware feature embeddings for low shot
learning. In CVPR, 2019.

[19] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen,
Lu Yuan, and Zicheng Liu. Dynamic convolution: Attention over
convolution kernels. In CVPR, 2020.

[20] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks.
In CVPR, 2018.

[21] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and
In So Kweon. Cbam: Convolutional block attention module. In
ECCV, 2018.

[22] Jiaolong Yang, Peiran Ren, Dongqing Zhang, Dong Chen, Fang
Wen, Hongdong Li, and Gang Hua. Neural aggregation network
for video face recognition. In CVPR, 2017.

[23] Diederik P Kingma and Jimmy Ba. Adam: A method for stochas-
tic optimization. In ICLR, 2015.

[24] Sergey Ioffe and Christian Szegedy. Batch normalization: Acceler-
ating deep network training by reducing internal covariate shift.
In ICML, 2015.

[25] Yulin Wang, Xuran Pan, Shiji Song, Hong Zhang, Gao Huang,
and Cheng Wu. Implicit semantic data augmentation for deep
networks. In NeurIPS, 2019.

[26] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan,
and Quoc V Le. Autoaugment: Learning augmentation strategies
from data. In CVPR, 2019.

[27] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[28] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q
Weinberger. Condensenet: An efficient densenet using learned
group convolutions. In CVPR, 2018.

[29] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv,
and Yoshua Bengio. Binarized neural networks. In NeurIPS, 2016.

[30] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. In NeurIPS Workshop, 2014.

[31] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speed-
ing up convolutional neural networks with low rank expansions.
In BMVC, 2014.

[32] Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and Gao
Huang. Resolution Adaptive Networks for Efficient Inference. In
CVPR, 2020.

[33] Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li Zhang,
Jonathan Huang, Dmitry Vetrov, and Ruslan Salakhutdinov. Spa-
tially adaptive computation time for residual networks. In CVPR,
2017.

[34] Xiaoxiao Li, Ziwei Liu, Ping Luo, Chen Change Loy, and Xiaoou
Tang. Not all pixels are equal: Difficulty-aware semantic segmen-
tation via deep layer cascade. In CVPR, 2017.

[35] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszko-
reit, and Lukasz Kaiser. Universal Transformers. In ICLR, 2019.

[36] Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli.
Depth-Adaptive Transformer. In ICLR, 2020.

[37] David H Hubel and Torsten N Wiesel. Receptive fields, binocular
interaction and functional architecture in the cat’s visual cortex.
The Journal of physiology, 1962.

[38] Akira Murata, Vittorio Gallese, Giuseppe Luppino, Masakazu
Kaseda, and Hideo Sakata. Selectivity for the shape, size, and
orientation of objects for grasping in neurons of monkey parietal
area aip. Journal of neurophysiology, 2000.

[39] Yulin Wang, Kangchen Lv, Rui Huang, Shiji Song, Le Yang, and
Gao Huang. Glance and focus: a dynamic approach to reducing
spatial redundancy in image classification. In NeurIPS, 2020.

[40] Paul Viola and Michael J. Jones. Robust real-time face detection.
IJCV, 2004.

16

[41] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Ge-
offrey E Hinton. Adaptive mixtures of local experts. Neural
computation, 1991.

[42] Wolfgang Maass. Networks of spiking neurons: the third gener-
ation of neural network models. Neural networks, 1997.

[43] Eugene M Izhikevich. Simple model of spiking neurons. TNN,
2003.

[44] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng
Yan, and Changshui Zhang. Learning efficient convolutional
networks through network slimming. In ICCV, 2017.

[45] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung
Kung. Branchynet: Fast inference via early exiting from deep
neural networks. In ICPR, 2016.

[46] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh
Saligrama. Adaptive neural networks for efficient inference. In
ICML, 2017.

[47] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E
Gonzalez. Skipnet: Learning dynamic routing in convolutional
networks. In ECCV, 2018.

[48] Andreas Veit and Serge Belongie. Convolutional networks with
adaptive inference graphs. In ECCV, 2018.

[49] Eunhyeok Park, Dongyoung Kim, Soobeom Kim, Yong-Deok
Kim, Gunhee Kim, Sungroh Yoon, and Sungjoo Yoo. Big/little
deep neural network for ultra low power inference. In
CODES+ISSS, 2015.

[50] Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, Fisher
Yu, and Joseph E Gonzalez. Idk cascades: Fast deep learning by
learning not to overthink. In AUAI, 2017.

[51] Sam Leroux, Steven Bohez, Elias De Coninck, Tim Verbelen, Bert
Vankeirsbilck, Pieter Simoens, and Bart Dhoedt. The cascading
neural network: building the internet of smart things. KAIS, 2017.

[52] Jiaqi Guan, Yang Liu, Qiang Liu, and Jian Peng. Energy-efficient
amortized inference with cascaded deep classifiers. In IJCAI,
2018.

[53] Xin Dai, Xiangnan Kong, and Tian Guo. Epnet: Learning to exit
with flexible multi-branch network. In CIKM, 2020.

[54] Mason McGill and Pietro Perona. Deciding how to decide:
Dynamic routing in artificial neural networks. In ICML, 2017.

[55] Zequn Jie, Peng Sun, Xin Li, Jiashi Feng, and Wei Liu. Anytime
recognition with routing convolutional networks. TPAMI, 2019.

[56] Hao Li, Hong Zhang, Xiaojuan Qi, Ruigang Yang, and Gao
Huang. Improved techniques for training adaptive deep net-
works. In ICCV, 2019.

[57] Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao, Haotang Deng,
and QI JU. FastBERT: a Self-distilling BERT with Adaptive
Inference Time. In ACL, 2020.

[58] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin.
DeeBERT: Dynamic Early Exiting for Accelerating BERT Infer-
ence. In ACL, 2020.

[59] Roy Schwartz, Gabriel Stanovsky, Swabha Swayamdipta, Jesse
Dodge, and Noah A. Smith. The Right Tool for the Job: Matching
Model and Instance Complexities. In ACL, 2020.

[60] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu,
and Furu Wei. BERT Loses Patience: Fast and Robust Inference
with Early Exit. In NeurIPS, 2020.

[61] Hehe Fan, Zhongwen Xu, Linchao Zhu, Chenggang Yan, Jianjun
Ge, and Yi Yang. Watching a small portion could be as good
as watching all: Towards efficient video classification. In JICAI,
2018.

[62] Wenhao Wu, Dongliang He, Xiao Tan, Shifeng Chen, Yi Yang,
and Shilei Wen. Dynamic Inference: A New Approach Toward
Efficient Video Action Recognition. In CVPR Workshop, 2020.

[63] Yelong Shen, Po-Sen Huang, Jianfeng Gao, and Weizhu Chen.
Reasonet: Learning to stop reading in machine comprehension.
In KDD, 2017.

[64] Keyi Yu, Yang Liu, Alexander G. Schwing, and Jian Peng. Fast
and accurate text classification: Skimming, rereading and early
stopping. In ICLR Workshop, 2018.

[65] Xianggen Liu, Lili Mou, Haotian Cui, Zhengdong Lu, and Sen
Song. Finding decision jumps in text classification. Neurocomput-
ing, 2020.

[66] Sam Leroux, Pavlo Molchanov, Pieter Simoens, Bart Dhoedt,
Thomas Breuel, and Jan Kautz. IamNN: Iterative and Adaptive
Mobile Neural Network for Efficient Image Classification. In
ICML Workshop, 2018.

[67] Qiushan Guo, Zhipeng Yu, Yichao Wu, Ding Liang, Haoyu Qin,
and Junjie Yan. Dynamic recursive neural network. In CVPR,
2019.

[68] Haichao Yu, Haoxiang Li, Honghui Shi, Thomas S Huang, and
Gang Hua. Any-precision deep neural networks. In AAAI, 2021.

[69] Qing Jin, Linjie Yang, and Zhenyu Liao. Adabits: Neural network
quantization with adaptive bit-widths. In CVPR, 2020.

[70] Jianghao Shen, Yonggan Fu, Yue Wang, Pengfei Xu, Zhangyang
Wang, and Yingyan Lin. Fractional skipping: Towards finer-
grained dynamic cnn inference. In AAAI, 2020.

[71] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie,
Larry S Davis, Kristen Grauman, and Rogerio Feris. Blockdrop:
Dynamic inference paths in residual networks. In CVPR, 2018.

[72] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Esti-
mating or propagating gradients through stochastic neurons for
conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[73] Kyunghyun Cho and Yoshua Bengio. Exponentially increasing
the capacity-to-computation ratio for conditional computation in
deep learning. arXiv preprint arXiv:1406.7362, 2014.

[74] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina
Precup. Conditional computation in neural networks for faster
models. ICLR Workshop, 2016.

[75] Andrew Davis and Itamar Arel. Low-rank approximations for
conditional feedforward computation in deep neural networks.
arXiv preprint arXiv:1312.4461, 2013.

[76] David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning
factored representations in a deep mixture of experts. In ICLR
Workshop, 2013.

[77] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and
Ed H Chi. Modeling task relationships in multi-task learning
with multi-gate mixture-of-experts. In KDD, 2018.

[78] Ravi Teja Mullapudi, William R Mark, Noam Shazeer, and
Kayvon Fatahalian. Hydranets: Specialized dynamic architec-
tures for efficient inference. In CVPR, 2018.

[79] Xin Wang, Fisher Yu, Lisa Dunlap, Yi-An Ma, Ruth Wang, Azalia
Mirhoseini, Trevor Darrell, and Joseph E. Gonzalez. Deep mix-
ture of experts via shallow embedding. In UAI, 2020.

[80] Shaofeng Cai, Yao Shu, and Wei Wang. Dynamic routing net-
works. In WACV, 2021.

[81] William Fedus, Barret Zoph, and Noam Shazeer. Switch trans-
formers: Scaling to trillion parameter models with simple and
efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

[82] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 1997.

[83] Zhihang Yuan, Bingzhe Wu, Zheng Liang, Shiwan Zhao, Weichen
Bi, and Guangyu Sun. S2dnas: Transforming static cnn model for
dynamic inference via neural architecture search. In ECCV, 2020.

[84] Weizhe Hua, Yuan Zhou, Christopher M De Sa, Zhiru Zhang, and
G Edward Suh. Channel gating neural networks. In NeurIPS,
2019.

[85] Xitong Gao, Yiren Zhao, Łukasz Dudziak, Robert Mullins, and
Cheng zhong Xu. Dynamic channel pruning: Feature boosting
and suppression. In ICLR, 2019.

[86] Charles Herrmann, Richard Strong Bowen, and Ramin Zabih.
Channel selection using gumbel softmax. In ECCV, 2020.

[87] Babak Ehteshami Bejnordi, Tijmen Blankevoort, and Max
Welling. Batch-shaping for learning conditional channel gated
networks. In ICLR, 2020.

[88] Jinting Chen, Zhaocheng Zhu, Cheng Li, and Yuming Zhao. Self-
adaptive network pruning. In ICONIP, 2019.

[89] Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang, Zhihui
Li, and Xiaojun Chang. Dynamic slimmable network. In CVPR,
2021.

[90] Zhourong Chen, Yang Li, Samy Bengio, and Si Si. You look twice:
Gaternet for dynamic filter selection in cnns. In CVPR, 2019.

[91] Chuanjian Liu, Yunhe Wang, Kai Han, Chunjing Xu, and Chang
Xu. Learning instance-wise sparsity for accelerating deep mod-
els. In IJCAI, 2019.

[92] Yue Wang, Jianghao Shen, Ting-Kuei Hu, Pengfei Xu, Tan
Nguyen, Richard G. Baraniuk, Zhangyang Wang, and Yingyan
Lin. Dual dynamic inference: Enabling more efficient, adaptive
and controllable deep inference. JSTSP, 2020.

[93] Wenhan Xia, Hongxu Yin, Xiaoliang Dai, and Niraj K Jha. Fully
dynamic inference with deep neural networks. IEEE Transactions
on Emerging Topics in Computing, 2021.

[94] Ali Ehteshami Bejnordi and Ralf Krestel. Dynamic channel and
layer gating in convolutional neural networks. In KI, 2020.

17

[95] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix
capsules with EM routing. In ICLR, 2018.

[96] Augustus Odena, Dieterich Lawson, and Christopher Olah.
Changing model behavior at test-time using reinforcement learn-
ing. In ICLR Workshop, 2017.

[97] Lanlan Liu and Jia Deng. Dynamic deep neural networks:
Optimizing accuracy-efficiency trade-offs by selective execution.
In AAAI, 2018.

[98] Samuel Rota Bulo and Peter Kontschieder. Neural decision
forests for semantic image labelling. In CVPR, 2014.

[99] Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and
Samuel Rota Bulo. Deep neural decision forests. In ICCV, 2015.

[100] Nicholas Frosst and Geoffrey Hinton. Distilling a neural network
into a soft decision tree. arXiv preprint arXiv:1711.09784, 2017.

[101] Thomas M Hehn, Julian FP Kooij, and Fred A Hamprecht. End-
to-end learning of decision trees and forests. IJCV, 2019.

[102] Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan,
and Rahul Mazumder. The tree ensemble layer: Differentiability
meets conditional computation. In ICML, 2020.

[103] Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vignesh Ja-
gadeesh, Dennis DeCoste, Wei Di, and Yizhou Yu. Hd-cnn:
hierarchical deep convolutional neural networks for large scale
visual recognition. In ICCV, 2015.

[104] Yani Ioannou, Duncan Robertson, Darko Zikic, Peter
Kontschieder, Jamie Shotton, Matthew Brown, and Antonio
Criminisi. Decision forests, convolutional networks and the
models in-between. arXiv preprint arXiv:1603.01250, 2016.

[105] Ryutaro Tanno, Kai Arulkumaran, Daniel Alexander, Antonio
Criminisi, and Aditya Nori. Adaptive neural trees. In ICML,
2019.

[106] An-Chieh Cheng, Chieh Hubert Lin, Da-Cheng Juan, Wei Wei,
and Min Sun. Instanas: Instance-aware neural architecture search.
In AAAI, 2020.

[107] Yanwei Li, Lin Song, Yukang Chen, Zeming Li, Xiangyu Zhang,
Xingang Wang, and Jian Sun. Learning Dynamic Routing for
Semantic Segmentation. In CVPR, 2020.

[108] Adam W. Harley, Konstantinos G. Derpanis, and Iasonas Kokki-
nos. Segmentation-aware convolutional networks using local
attention masks. In ICCV, 2017.

[109] Hang Su, Varun Jampani, Deqing Sun, Orazio Gallo, Erik
Learned-Miller, and Jan Kautz. Pixel-adaptive convolutional
neural networks. In CVPR, 2019.

[110] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han
Hu, and Yichen Wei. Deformable convolutional networks. In
ICCV, 2017.

[111] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. Deformable
convnets v2: More deformable, better results. In CVPR, 2019.

[112] Hang Gao, Xizhou Zhu, Stephen Lin, and Jifeng Dai. Deformable
Kernels: Adapting Effective Receptive Fields for Object Deforma-
tion. In ICLR, 2019.

[113] Siyuan Shan, Yang Li, and Junier B Oliva. Meta-neighborhoods.
NeurIPS, 2020.

[114] Qijing Huang, Dequan Wang, Zhen Dong, Yizhao Gao, Yaohui
Cai, Tian Li, Bichen Wu, Kurt Keutzer, and John Wawrzynek.
Codenet: Efficient deployment of input-adaptive object detection
on embedded fpgas. In FPGA, 2021.

[115] Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ran-
zato, and Nando De Freitas. Predicting parameters in deep
learning. In NeurIPS, 2013.

[116] Jürgen Schmidhuber. Learning to control fast-weight memories:
An alternative to dynamic recurrent networks. Neural Computa-
tion, 1992.

[117] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool.
Dynamic filter networks. In NeurIPS, 2016.

[118] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. In
ICLR, 2016.

[119] Ningning Ma, Xiangyu Zhang, Jiawei Huang, and Jian Sun.
WeightNet: Revisiting the Design Space of Weight Networks. In
ECCV, 2020.

[120] Irwan Bello. Lambdanetworks: Modeling long-range interactions
without attention. In ICLR, 2021.

[121] Martin Simonovsky and Nikos Komodakis. Dynamic Edge-
Conditioned Filters in Convolutional Neural Networks on
Graphs. In CVPR, 2017.

[122] Di Kang, Debarun Dhar, and Antoni Chan. Incorporating side
information by adaptive convolution. In NeurIPS, 2017.

[123] Harm de Vries, Florian Strub, Jérémie Mary, Hugo Larochelle,
Olivier Pietquin, and Aaron Courville. Modulating early visual
processing by language. In NeurIPS, 2017.

[124] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin,
and Aaron Courville. Film: Visual reasoning with a general
conditioning layer. In AAAI, 2018.

[125] HyunJae Lee, Hyo-Eun Kim, and Hyeonseob Nam. Srm: A style-
based recalibration module for convolutional neural networks.
In ICCV, 2019.

[126] Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng
Zuo, and Qinghua Hu. ECA-net: Efficient channel attention for
deep convolutional neural networks. In CVPR, 2020.

[127] Jingda Guo, Xu Ma, Andrew Sansom, Mara McGuire, Andrew
Kalaani, Qi Chen, Sihai Tang, Qing Yang, and Song Fu. Spanet:
Spatial Pyramid Attention Network for Enhanced Image Recog-
nition. In ICME, 2020.

[128] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li,
Honggang Zhang, Xiaogang Wang, and Xiaoou Tang. Residual
attention network for image classification. In CVPR, 2017.

[129] Abhijit Guha Roy, Nassir Navab, and Christian Wachinger. Con-
current spatial and channel ‘squeeze & excitation’in fully convo-
lutional networks. In MICCAI, 2018.

[130] Long Chen, Hanwang Zhang, Jun Xiao, Liqiang Nie, Jian Shao,
Wei Liu, and Tat-Seng Chua. Sca-cnn: Spatial and channel-wise
attention in convolutional networks for image captioning. In
CVPR, 2017.

[131] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Andrea Vedaldi.
Gather-excite: Exploiting feature context in convolutional neural
networks. In NeurIPS, 2018.

[132] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen,
Lu Yuan, and Zicheng Liu. Dynamic relu. In ECCV, 2020.

[133] Ningning Ma, Xiangyu Zhang, and Jian Sun. Funnel activation
for visual recognition. In ECCV, 2020.

[134] Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selective
kernel networks. In CVPR, 2019.

[135] Shenlong Wang, Linjie Luo, Ning Zhang, and Li-Jia Li. Au-
toscaler: Scale-attention networks for visual correspondence. In
BMVC, 2017.

[136] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He.
Non-local neural networks. In CVPR, 2018.

[137] Kaiyu Yue, Ming Sun, Yuchen Yuan, Feng Zhou, Errui Ding, and
Fuxin Xu. Compact generalized non-local network. In NeurIPS,
2018.

[138] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa De-
hghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In ICLR, 2021.

[139] Sneha Chaudhari, Gungor Polatkan, Rohan Ramanath, and
Varun Mithal. An attentive survey of attention models. TIST,
2021.

[140] Xizhou Zhu, Dazhi Cheng, Zheng Zhang, Stephen Lin, and Jifeng
Dai. An empirical study of spatial attention mechanisms in deep
networks. In ICCV, 2019.

[141] Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas
Zamir, Fahad Shahbaz Khan, and Mubarak Shah. Transformers
in vision: A survey. arXiv preprint arXiv:2101.01169, 2021.

[142] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and
Antonio Torralba. Learning deep features for discriminative
localization. In CVPR, 2016.

[143] Mengye Ren, Andrei Pokrovsky, Bin Yang, and Raquel Urtasun.
SBNet: Sparse Blocks Network for Fast Inference. CVPR, 2018.

[144] Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan. More
is less: A more complicated network with less inference complex-
ity. In CVPR, 2017.

[145] Shijie Cao, Lingxiao Ma, Wencong Xiao, Chen Zhang, Yunxin Liu,
Lintao Zhang, Lanshun Nie, and Zhi Yang. Seernet: Predicting
convolutional neural network feature-map sparsity through low-
bit quantization. In CVPR, 2019.

[146] Shu Kong and Charless Fowlkes. Pixel-wise attentional gating
for scene parsing. In WACV, 2019.

[147] Thomas Verelst and Tinne Tuytelaars. Dynamic Convolutions:
Exploiting Spatial Sparsity for Faster Inference. In CVPR, 2020.

[148] Zhenda Xie, Zheng Zhang, Xizhou Zhu, Gao Huang, and Stephen
Lin. Spatially Adaptive Inference with Stochastic Feature Sam-
pling and Interpolation. In ECCV, 2020.

18

[149] Amjad Almahairi, Nicolas Ballas, Tim Cooijmans, Yin Zheng,
Hugo Larochelle, and Aaron Courville. Dynamic capacity net-
works. In ICML, 2016.

[150] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Girshick.
Pointrend: Image segmentation as rendering. In CVPR, 2020.

[151] Aritra Bhowmik, Suprosanna Shit, and Chandra Sekhar Seela-
mantula. Training-free, single-image super-resolution using a
dynamic convolutional network. IEEE Signal Processing Letters,
2017.

[152] Jialin Wu, Dai Li, Yu Yang, Chandrajit Bajaj, and Xiangyang Ji.
Dynamic filtering with large sampling field for convnets. In
ECCV, 2018.

[153] Xuecai Hu, Haoyuan Mu, Xiangyu Zhang, Zilei Wang, Tieniu
Tan, and Jian Sun. Meta-SR: A magnification-arbitrary network
for super-resolution. In CVPR, 2019.

[154] Jiaqi Wang, Kai Chen, Rui Xu, Ziwei Liu, Chen Change Loy, and
Dahua Lin. CARAFE: Content-Aware ReAssembly of FEatures.
In ICCV, 2019.

[155] Jin Chen, Xijun Wang, Zichao Guo, Xiangyu Zhang, and Jian Sun.
Dynamic region-aware convolution. In CVPR, 2021.

[156] Guangrun Wang, Keze Wang, and Liang Lin. Adaptively con-
nected neural networks. In CVPR, 2019.

[157] Max Jaderberg, Karen Simonyan, and Andrew Zisserman. Spatial
transformer networks. In NeurIPS, 2015.

[158] Adria Recasens, Petr Kellnhofer, Simon Stent, Wojciech Matusik,
and Antonio Torralba. Learning to zoom: a saliency-based sam-
pling layer for neural networks. In ECCV, 2018.

[159] Volodymyr Mnih, Nicolas Heess, and Alex Graves. Recurrent
models of visual attention. In NeurIPS, 2014.

[160] Zhichao Li, Yi Yang, Xiao Liu, Feng Zhou, Shilei Wen, and Wei
Xu. Dynamic computational time for visual attention. In ICCV
Workshop, 2017.

[161] Amir Rosenfeld and Shimon Ullman. Visual concept recognition
and localization via iterative introspection. In ACCV, 2016.

[162] Jianlong Fu, Heliang Zheng, and Tao Mei. Look closer to see
better: Recurrent attention convolutional neural network for fine-
grained image recognition. In CVPR, 2017.

[163] Jean-Baptiste Cordonnier, Aravindh Mahendran, Alexey Doso-
vitskiy, Dirk Weissenborn, Jakob Uszkoreit, and Thomas Un-
terthiner. Differentiable patch selection for image recognition.
In CVPR, 2021.

[164] Zekun Hao, Yu Liu, Hongwei Qin, Junjie Yan, Xiu Li, and Xiaolin
Hu. Scale-aware face detection. In CVPR, 2017.

[165] Zerui Yang, Yuhui Xu, Wenrui Dai, and Hongkai Xiong.
Dynamic-stride-net: deep convolutional neural network with
dynamic stride. In SPIE Optoelectronic Imaging and Multimedia
Technology, 2019.

[166] Huiyu Wang, Aniruddha Kembhavi, Ali Farhadi, Alan L. Yuille,
and Mohammad Rastegari. Elastic: Improving cnns with dy-
namic scaling policies. In CVPR, 2019.

[167] Vı́ctor Campos, Brendan Jou, Xavier Giró-I-Nieto, Jordi Torres,
and Shih Fu Chang. Skip RNN: Learning to skip state updates in
recurrent neural networks. In ICLR, 2018.

[168] Christian Hansen, Casper Hansen, Stephen Alstrup, Jakob Grue
Simonsen, and Christina Lioma. Neural Speed Reading with
Structural-Jump-LSTM. In ICLR, 2019.

[169] Jin Tao, Urmish Thakker, Ganesh Dasika, and Jesse Beu. Skipping
RNN State Updates without Retraining the Original Model. In
SenSys-ML, 2019.

[170] Yacine Jernite, Edouard Grave, Armand Joulin, and Tomas
Mikolov. Variable computation in recurrent neural networks. In
ICLR, 2017.

[171] Minjoon Seo, Sewon Min, Ali Farhadi, and Hannaneh Hajishirzi.
Neural Speed Reading via Skim-RNN. In ICLR, 2018.

[172] Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical
multiscale recurrent neural networks. In ICLR, 2017.

[173] Nan Rosemary Ke, Konrad Żołna, Alessandro Sordoni, Zhouhan
Lin, Adam Trischler, Yoshua Bengio, Joelle Pineau, Laurent
Charlin, and Christopher Pal. Focused Hierarchical RNNs for
Conditional Sequence Processing. In ICML, 2018.

[174] Zhengjie Huang, Zi Ye, Shuangyin Li, and Rong Pan. Length
adaptive recurrent model for text classification. In CIKM, 2017.

[175] Adams Wei Yu, Hongrae Lee, and Quoc Le. Learning to Skim
Text. In ACL, 2017.

[176] Tsu-Jui Fu and Wei-Yun Ma. Speed Reading: Learning to Read
ForBackward via Shuttle. In EMNLP, 2018.

[177] Zuxuan Wu, Caiming Xiong, Yu-Gang Jiang, and Larry S. Davis.
Liteeval: A coarse-to-fine framework for resource efficient video
recognition. In NeurIPS, 2019.

[178] Guillaume Vaudaux-Ruth, Adrien Chan-Hon-Tong, and Cather-
ine Achard. Actionspotter: Deep reinforcement learning frame-
work for temporal action spotting in videos. In ICPR, 2020.

[179] Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-Fei.
End-to-end learning of action detection from frame glimpses in
videos. In CVPR, 2016.

[180] Yu-Chuan Su and Kristen Grauman. Leaving some stones un-
turned: dynamic feature prioritization for activity detection in
streaming video. In ECCV, 2016.

[181] Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher, and
Larry S. Davis. AdaFrame: Adaptive Frame Selection for Fast
Video Recognition. In CVPR, 2019.

[182] Yue Meng, Rameswar Panda, Chung-Ching Lin, Prasanna Sat-
tigeri, Leonid Karlinsky, Kate Saenko, Aude Oliva, and Rogerio
Feris. Adafuse: Adaptive temporal fusion network for efficient
action recognition. In ICLR, 2021.

[183] Ximeng Sun, Rameswar Panda, Chun-Fu Chen, Aude Oliva,
Rogerio Feris, and Kate Saenko. Dynamic network quantization
for efficient video inference. In ICCV, 2021.

[184] Zejia Weng, Zuxuan Wu, Hengduo Li, and Yu-Gang Jiang. Hms:
Hierarchical modality selectionfor efficient video recognition.
arXiv preprint arXiv:2104.09760, 2021.

[185] Rameswar Panda, Chun-Fu Chen, Quanfu Fan, Ximeng Sun,
Kate Saenko, Aude Oliva, and Rogerio Feris. Adamml: Adap-
tive multi-modal learning for efficient video recognition. arXiv
preprint arXiv:2105.05165, 2021.

[186] Amir Ghodrati, Babak Ehteshami Bejnordi, and Amirhossein
Habibian. Frameexit: Conditional early exiting for efficient video
recognition. In CVPR, 2021.

[187] Humam Alwassel, Fabian Caba Heilbron, and Bernard Ghanem.
Action search: Spotting actions in videos and its application to
temporal action localization. In ECCV, 2018.

[188] Yongming Rao, Jiwen Lu, and Jie Zhou. Attention-aware deep
reinforcement learning for video face recognition. In ICCV, 2017.

[189] Yansong Tang, Yi Tian, Jiwen Lu, Peiyang Li, and Jie Zhou. Deep
Progressive Reinforcement Learning for Skeleton-Based Action
Recognition. In CVPR, 2018.

[190] Wenhao Wu, Dongliang He, Xiao Tan, Shifeng Chen, and Shilei
Wen. Multi-agent reinforcement learning based frame sampling
for effective untrimmed video recognition. In ICCV, 2019.

[191] Bruno Korbar, Du Tran, and Lorenzo Torresani. Scsampler:
Sampling salient clips from video for efficient action recognition.
In ICCV, 2019.

[192] Yin-Dong Zheng, Zhaoyang Liu, Tong Lu, and Limin Wang.
Dynamic Sampling Networks for Efficient Action Recognition in
Videos. TIP, 2020.

[193] Kai Han, Yunhe Wang, Qiulin Zhang, Wei Zhang, Chunjing Xu,
and Tong Zhang. Model rubik’s cube: Twisting resolution, depth
and width for tinynets. NeurIPS, 2020.

[194] Linxi Fan, Shyamal Buch, Guanzhi Wang, Ryan Cao, Yuke Zhu,
Juan Carlos Niebles, and Li Fei-Fei. Rubiksnet: Learnable 3d-shift
for efficient video action recognition. In ECCV, 2020.

[195] Hengduo Li, Zuxuan Wu, Abhinav Shrivastava, and Larry S
Davis. 2d or not 2d? adaptive 3d convolution selection for
efficient video recognition. In CVPR, 2021.

[196] Yue Meng, Chung-Ching Lin, Rameswar Panda, Prasanna Sat-
tigeri, Leonid Karlinsky, Aude Oliva, Kate Saenko, and Rogerio
Feris. Ar-net: Adaptive frame resolution for efficient action
recognition. In ECCV, 2020.

[197] Yulin Wang, Zhaoxi Chen, Haojun Jiang, Shiji Song, Yizeng Han,
and Gao Huang. Adaptive focus for efficient video recognition.
ICCV, 2021.

[198] Bowen Pan, Rameswar Panda, Camilo Fosco, Chung-Ching Lin,
Alex Andonian, Yue Meng, Kate Saenko, Aude Oliva, and Roge-
rio Feris. Va-red ˆ 2: Video adaptive redundancy reduction. In
ICLR, 2021.

[199] Mohsen Fayyaz, Emad Bahrami, Ali Diba, Mehdi Noroozi, Ehsan
Adeli, Luc Van Gool, and Jurgen Gall. 3d cnns with adaptive
temporal feature resolutions. In CVPR, 2021.

[200] Thomas Verelst and Tinne Tuytelaars. Blockcopy: High-
resolution video processing with block-sparse feature propaga-
tion and online policies. In ICCV, 2021.

[201] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On
calibration of modern neural networks. In ICML, 2017.

19

[202] Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf.
Why relu networks yield high-confidence predictions far away
from the training data and how to mitigate the problem. In CVPR,
2019.

[203] Henry A Rowley, Shumeet Baluja, and Takeo Kanade. Neural
network-based face detection. TPAMI, 1998.

[204] Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt, and Gang
Hua. A convolutional neural network cascade for face detection.
In CVPR, 2015.

[205] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep convolutional
network cascade for facial point detection. In CVPR, 2013.

[206] Anelia Angelova, Alex Krizhevsky, Vincent Vanhoucke, Abhijit
Ogale, and Dave Ferguson. Real-Time Pedestrian Detection with
Deep Network Cascades. In BMVC, 2015.

[207] Fan Yang, Wongun Choi, and Yuanqing Lin. Exploit all the
layers: Fast and accurate cnn object detector with scale dependent
pooling and cascaded rejection classifiers. In CVPR, 2016.

[208] Hong-Yu Zhou, Bin-Bin Gao, and Jianxin Wu. Adaptive feeding:
Achieving fast and accurate detections by adaptively combining
object detectors. In ICCV, 2017.

[209] Tong Yang, Xiangyu Zhang, Zeming Li, Wenqiang Zhang, and
Jian Sun. Metaanchor: Learning to detect objects with customized
anchors. In NeurIPS, 2018.

[210] Chunlin Chen and Qiang Ling. Adaptive Convolution for Object
Detection. IEEE Transactions on Multimedia, 2019.

[211] Hiroki Tokunaga, Yuki Teramoto, Akihiko Yoshizawa, and Ry-
oma Bise. Adaptive weighting multi-field-of-view cnn for se-
mantic segmentation in pathology. In CVPR, 2019.

[212] Yikai Wang, Wenbing Huang, Fuchun Sun, Tingyang Xu,
Yu Rong, and Junzhou Huang. Deep multimodal fusion by
channel exchanging. In NeurIPS, 2020.

[213] Gernot Riegler, Samuel Schulter, Matthias Ruther, and Horst
Bischof. Conditioned regression models for non-blind single
image super-resolution. In ICCV, 2015.

[214] Falong Shen, Shuicheng Yan, and Gang Zeng. Neural style
transfer via meta networks. In CVPR, 2018.

[215] Yu-Gang Jiang, Changmao Cheng, Hangyu Lin, and Yanwei Fu.
Learning layer-skippable inference network. TIP, 2020.

[216] Junjun He, Zhongying Deng, and Yu Qiao. Dynamic multi-scale
filters for semantic segmentation. In ICCV, 2019.

[217] Dmitrii Marin, Zijian He, Peter Vajda, Priyam Chatterjee, Sam
Tsai, Fei Yang, and Yuri Boykov. Efficient segmentation: Learning
downsampling near semantic boundaries. In ICCV, 2019.

[218] Jun Li, Yongjun Chen, Lei Cai, Ian Davidson, and Shuiwang Ji.
Dense transformer networks for brain electron microscopy image
segmentation. In IJCAI, 2019.

[219] Fei Wu, Feng Chen, Xiao-Yuan Jing, Chang-Hui Hu, Qi Ge, and
Yimu Ji. Dynamic attention network for semantic segmentation.
Neurocomputing, 2020.

[220] Zilong Zhong, Zhong Qiu Lin, Rene Bidart, Xiaodan Hu,
Ibrahim Ben Daya, Zhifeng Li, Wei-Shi Zheng, Jonathan Li, and
Alexander Wong. Squeeze-and-Attention Networks for Semantic
Segmentation. In CVPR, 2020.

[221] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multi-
modal unsupervised image-to-image translation. In ECCV, 2018.

[222] Xihui Liu, Guojun Yin, Jing Shao, Xiaogang Wang, and hong-
sheng Li. Learning to Predict Layout-to-image Conditional Con-
volutions for Semantic Image Synthesis. In NeurIPS, 2019.

[223] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu.
Semantic image synthesis with spatially-adaptive normalization.
In CVPR, 2019.

[224] Peihao Zhu, Rameen Abdal, Yipeng Qin, and Peter Wonka.
SEAN: Image Synthesis with Semantic Region-Adaptive Normal-
ization. In CVPR, 2020.

[225] Meng Chang, Qi Li, Huajun Feng, and Zhihai Xu. Spatial-
adaptive network for single image denoising. In ECCV, 2020.

[226] Tianjun Xiao, Yichong Xu, Kuiyuan Yang, Jiaxing Zhang, Yuxin
Peng, and Zheng Zhang. The application of two-level attention
models in deep convolutional neural network for fine-grained
image classification. In CVPR, 2015.

[227] Heliang Zheng, Jianlong Fu, Tao Mei, and Jiebo Luo. Learning
multi-attention convolutional neural network for fine-grained
image recognition. In ICCV, 2017.

[228] Wanjie Sun and Zhenzhong Chen. Learned image downscaling
for upscaling using content adaptive resampler. TIP, 2020.

[229] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple
object recognition with visual attention. In ICLR, 2015.

[230] SM Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa,
David Szepesvari, and Geoffrey E. Hinton. Attend, infer, repeat:
Fast scene understanding with generative models. In NeurIPS,
2016.

[231] Ali Diba, Vivek Sharma, Luc Van Gool, and Rainer Stiefelhagen.
Dynamonet: Dynamic action and motion network. In ICCV, 2019.

[232] Ruohan Gao, Tae-Hyun Oh, Kristen Grauman, and Lorenzo Tor-
resani. Listen to look: Action recognition by previewing audio.
In CVPR, 2020.

[233] Yu-Syuan Xu, Tsu-Jui Fu, Hsuan-Kung Yang, and Chun-Yi Lee.
Dynamic video segmentation network. In CVPR, 2018.

[234] Simon Niklaus, Long Mai, and Feng Liu. Video frame interpola-
tion via adaptive separable convolution. In ICCV, 2017.

[235] Simon Niklaus, Long Mai, and Feng Liu. Video frame interpola-
tion via adaptive convolution. In CVPR, 2017.

[236] Younghyun Jo, Seoung Wug Oh, Jaeyeon Kang, and Seon
Joo Kim. Deep video super-resolution network using dynamic
upsampling filters without explicit motion compensation. In
CVPR, 2018.

[237] Tae Hyun Kim, Kyoung Mu Lee, Bernhard Scholkopf, and
Michael Hirsch. Online video deblurring via dynamic temporal
blending network. In CVPR, 2017.

[238] Shangchen Zhou, Jiawei Zhang, Jinshan Pan, Haozhe Xie, Wang-
meng Zuo, and Jimmy Ren. Spatio-temporal filter adaptive
network for video deblurring. In ICCV, 2019.

[239] Lei Chen, Jiwen Lu, Zhanjie Song, and Jie Zhou. Part-activated
deep reinforcement learning for action prediction. In ECCV, 2018.

[240] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud, Beat-
riz Marcotegui, François Goulette, and Leonidas J. Guibas. Kp-
conv: Flexible and deformable convolution for point clouds. In
ICCV, 2019.

[241] Jie Li, Kai Han, Peng Wang, Yu Liu, and Xia Yuan. Anisotropic
convolutional networks for 3d semantic scene completion. In
CVPR, 2020.

[242] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron
Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio.
Show, attend and tell: Neural image caption generation with
visual attention. In ICML, 2015.

[243] Chiori Hori, Takaaki Hori, Teng-Yok Lee, Ziming Zhang, Bret
Harsham, John R Hershey, Tim K Marks, and Kazuhiko Sumi.
Attention-based multimodal fusion for video description. In
ICCV, 2017.

[244] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and
Cordelia Schmid. Videobert: A joint model for video and lan-
guage representation learning. In ICCV, 2019.

[245] Peng Gao, Hongsheng Li, Shuang Li, Pan Lu, Yikang Li,
Steven CH Hoi, and Xiaogang Wang. Question-guided hybrid
convolution for visual question answering. In ECCV, 2018.

[246] AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria, Erik Cam-
bria, and Louis-Philippe Morency. Multimodal language analysis
in the wild: Cmu-mosei dataset and interpretable dynamic fusion
graph. In ACL, 2018.

[247] Wasifur Rahman, Md Kamrul Hasan, Sangwu Lee, Amir Zadeh,
Chengfeng Mao, Louis-Philippe Morency, and Ehsan Hoque.
Integrating multimodal information in large pretrained trans-
formers. In ACL, 2020.

[248] Yagmur Gizem Cinar, Hamid Mirisaee, Parantapa Goswami,
Eric Gaussier, Ali Aı̈t-Bachir, and Vadim Strijov. Position-based
content attention for time series forecasting with sequence-to-
sequence rnns. In ICONIP, 2017.

[249] Chenyou Fan, Yuze Zhang, Yi Pan, Xiaoyue Li, Chi Zhang, Rong
Yuan, Di Wu, Wensheng Wang, Jian Pei, and Heng Huang. Multi-
horizon time series forecasting with temporal attention learning.
In KDD, 2019.

[250] Xiaoyong Jin, Yu-Xiang Wang, and Xifeng Yan. Inter-series
attention model for covid-19 forecasting. In SDM, 2021.

[251] Xiaotian Jiang, Quan Wang, and Bin Wang. Adaptive convolution
for multi-relational learning. In NAACL, 2019.

[252] Weiping Song, Zhiping Xiao, Yifan Wang, Laurent Charlin, Ming
Zhang, and Jian Tang. Session-based social recommendation via
dynamic graph attention networks. In WSDM, 2019.

[253] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen
Xu, Ming Zhang, and Jian Tang. Autoint: Automatic feature
interaction learning via self-attentive neural networks. In CIKM,
2019.

20

[254] Zhenhua Huang, Xin Xu, Honghao Zhu, and MengChu Zhou.
An efficient group recommendation model with multiattention-
based neural networks. IEEE TNNLS, 2020.

[255] Giannis Nikolentzos, Antoine Tixier, and Michalis Vazirgiannis.
Message passing attention networks for document understand-
ing. In AAAI, 2020.

[256] Gihyeon Choi, Shinhyeok Oh, and Harksoo Kim. Improving
document-level sentiment classification using importance of sen-
tences. Entropy, 2020.

[257] Haopeng Zhang and Jiawei Zhang. Text graph transformer for
document classification. In EMNLP, 2020.

[258] Sunok Kim, Seungryong Kim, Dongbo Min, and Kwanghoon
Sohn. Laf-net: Locally adaptive fusion networks for stereo
confidence estimation. In CVPR, 2019.

[259] Emil Julius Gumbel. Statistical theory of extreme values and
some practical applications. NBS Applied Mathematics Series, 1954.

[260] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameter-
ization with gumbel-softmax. In ICLR, 2017.

[261] Łukasz Kaiser and Samy Bengio. Discrete autoencoders for
sequence models. arXiv preprint arXiv:1801.09797, 2018.

[262] Raffaele Tavarone and Leonardo Badino. Conditional-
Computation-Based Recurrent Neural Networks for Computa-
tionally Efficient Acoustic Modelling. In Interspeech, 2018.

[263] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and
Manohar Paluri. Learning spatiotemporal features with 3d con-
volutional networks. In ICCV, 2015.

[264] Joao Carreira and Andrew Zisserman. Quo vadis, action recog-
nition? a new model and the kinetics dataset. In CVPR, 2017.

[265] Dongliang He, Zhichao Zhou, Chuang Gan, Fu Li, Xiao Liu,
Yandong Li, Limin Wang, and Shilei Wen. Stnet: Local and global
spatial-temporal modeling for action recognition. In AAAI, 2019.

[266] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-
deep networks: Understanding and mitigating network over-
thinking. In ICML, 2019.

[267] Rahul Duggal, Scott Freitas, Sunny Dhamnani, Duen Horng,
Jimeng Sun, et al. Elf: An early-exiting framework for long-tailed
classification. arXiv preprint arXiv:2006.11979, 2020.

[268] Ting-Kuei Hu, Tianlong Chen, Haotao Wang, and Zhangyang
Wang. Triple Wins: Boosting Accuracy, Robustness and Efficiency
Together by Enabling Input-Adaptive Inference. In ICLR, 2020.

[269] Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing
networks: Adaptive selection of non-linear functions for multi-
task learning. In ICLR, 2018.

[270] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman,
Tajana Rosing, and Rogerio Feris. Spottune: Transfer learning
through adaptive fine-tuning. In CVPR, 2019.

[271] Yulin Wang, Rui Huang, Shiji Song, Zeyi Huang, and Gao Huang.
Not all images are worth 16x16 words: Dynamic vision trans-
formers with adaptive sequence length, 2021.

[272] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie
Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient vision trans-
formers with dynamic token sparsification. arXiv preprint
arXiv:2106.02034, 2021.

[273] Bowen Pan, Yifan Jiang, Rameswar Panda, Zhangyang Wang,
Rogerio Feris, and Aude Oliva. Ia-red ˆ 2: Interpretability-aware
redundancy reduction for vision transformers. arXiv preprint
arXiv:2106.12620, 2021.

[274] Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang
Ma, Giulio Gambardella, Michaela Blott, Luciano Lavagno, Kees
Vissers, John Wawrzynek, et al. Synetgy: Algorithm-hardware
co-design for convnet accelerators on embedded fpgas. In FPGA,
2019.

[275] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt,
Natalie Enright Jerger, and Andreas Moshovos. Cnvlutin:
Ineffectual-Neuron-Free Deep Neural Network Computing. In
ISCA, 2016.

[276] Yingyan Lin, Charbel Sakr, Yongjune Kim, and Naresh Shanbhag.
Predictivenet: An energy-efficient convolutional neural network
via zero prediction. In ISCAS, 2017.

[277] Vahideh Akhlaghi, Amir Yazdanbakhsh, Kambiz Samadi, Ra-
jesh K Gupta, and Hadi Esmaeilzadeh. Snapea: Predictive early
activation for reducing computation in deep convolutional neural
networks. In ISCA, 2018.

[278] Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and
G Edward Suh. Boosting the performance of cnn accelerators
with dynamic fine-grained channel gating. In MICRO, 2019.

[279] Debdeep Paul, Jawar Singh, and Jimson Mathew. Hardware-
software co-design approach for deep learning inference. In
ICSCC, 2019.

[280] Mirazul Haque, Anki Chauhan, Cong Liu, and Wei Yang. Ilfo:
Adversarial attack on adaptive neural networks. In CVPR, 2020.

[281] Sanghyun Hong, Yiğitcan Kaya, Ionuţ-Vlad Modoranu, and Tu-
dor Dumitraş. A panda? no, it’s a sloth: Slowdown attacks on
adaptive multi-exit neural network inference. In ICLR, 2021.

	1 Introduction
	2 Sample-wise Dynamic Networks
	2.1 Dynamic Architectures
	2.1.1 Dynamic Depth
	2.1.2 Dynamic Width
	2.1.3 Dynamic Routing

	2.2 Dynamic Parameters
	2.2.1 Parameter Adjustment
	2.2.2 Weight Prediction
	2.2.3 Dynamic Features

	3 Spatial-wise Dynamic Networks
	3.1 Pixel-level Dynamic Networks
	3.1.1 Pixel-wise Dynamic Architectures
	3.1.2 Pixel-wise Dynamic Parameters

	3.2 Region-level Dynamic Networks
	3.2.1 Dynamic Transformations
	3.2.2 Hard Attention on Selected Patches

	3.3 Resolution-level Dynamic Networks
	3.3.1 Adaptive Scaling Ratios
	3.3.2 Dynamic Resolution in Multi-scale Architectures

	4 Temporal-wise Dynamic Networks
	4.1 RNN-based Dynamic Text Processing
	4.1.1 Dynamic Update of Hidden States
	4.1.2 Temporally Early Exiting in RNNs
	4.1.3 Jumping in Texts

	4.2 Temporal-wise Dynamic Video Recognition
	4.2.1 Video Recognition with Dynamic RNNs
	4.2.2 Dynamic Key Frame Sampling

	5 Inference and Training
	5.1 Decision Making of Dynamic Networks
	5.1.1 Confidence-based Criteria
	5.1.2 Policy Networks
	5.1.3 Gating Functions

	5.2 Training of Dynamic Networks
	5.2.1 Training Objectives for Efficient Inference
	5.2.2 Optimization of Non-differentiable Functions

	6 Application of Dynamic Networks
	7 Challenges and Future Directions
	7.1 Theories for Dynamic Networks
	7.2 Architecture Design for Dynamic Networks
	7.3 Applicability for More Diverse Tasks
	7.4 Gap between Theoretical & Practical Efficiency
	7.5 Robustness Against Adversarial Attack
	7.6 Interpretability

	References

