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Dense Relational Image Captioning
via Multi-task Triple-Stream Networks

Dong-Jin Kim, Tae-Hyun Oh, Jinsoo Choi, and In So Kweon, Members, IEEE,

Abstract—We introduce dense relational captioning, a novel image captioning task which aims to generate multiple captions with
respect to relational information between objects in a visual scene. Relational captioning provides explicit descriptions for each
relationship between object combinations. This framework is advantageous in both diversity and amount of information, leading to a
comprehensive image understanding based on relationships, e.g., relational proposal generation. For relational understanding
between objects, the part-of-speech (POS; i.e., subject-object-predicate categories) can be a valuable prior information to guide the
causal sequence of words in a caption. We enforce our framework to learn not only to generate captions but also to understand the
POS of each word. To this end, we propose the multi-task triple-stream network (MTTSNet) which consists of three recurrent units
responsible for each POS which is trained by jointly predicting the correct captions and POS for each word. In addition, we found that
the performance of MTTSNet can be improved by modulating the object embeddings with an explicit relational module. We
demonstrate that our proposed model can generate more diverse and richer captions, via extensive experimental analysis on large
scale datasets and several metrics. Then, we present applications of our framework to holistic image captioning, scene graph
generation, and retrieval tasks.

Index Terms—Dense captioning, image captioning, visual relationship, relational analysis, scene graph.
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1 INTRODUCTION

The human visual system has the capability to effectively and
instantly collect the holistic understanding of contextual associa-
tions among objects in a scene [36], [49] by densely and adaptively
skimming the visual scene through the eyes, i.e., the saccadic
eye movement. Such rich information instantly extracted from
the scene allows humans to understand even subtle relationships
among objects. Motivated by such human ability, in this work,
we present a new concept of scene understanding, called dense
relational captioning that provides dense and relational captions.

Rich representation of an image often leads to performance
improvements of computer vision algorithms; e.g., contexts sur-
rounding objects of a scene [47], [49]. To achieve richer object-
centric understanding, Johnson et al. [25] proposed the DenseCap
framework that generates captions for each of densely sampled
local image regions. These regional descriptions facilitate both
rich and dense semantic understanding of a scene in the form of
interpretable language. In contrast, the information that we want
to acquire includes not only that of the objects itself but also the
interaction among other surrounding objects or the environment.

As an alternative way of representing an image, we focus
on dense relationships between objects. In the context of human
cognition, there has been a general consensus that objects and
particular environments near the target object affect search and
recognition efficiency. Understanding the relationships between
objects clearly reveal object interactions and object-attribute com-
binations [24], [29], [45].
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Small dog sitting on a motorcycle.

The man riding a red motorcycle.

The dog sitting behind the person.

Old man in the front of brown dog.
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Fig. 1. Difference of our proposed relational captioning from existing
image understanding frameworks. Compared to traditional frameworks,
our work is advantageous in both interaction understanding and high-
level expressive interpretation.

In another view, interestingly, we observe that the human an-
notations on various computer vision datasets predominantly have
relational forms. In the Visual Genome [35] and MS COCO [42]
caption datasets, most of the labels take the format of subject-
predicate-object more so than subject-predicate. Moreover, the
UCF101 [60] action recognition dataset contains 85 actions out
of 101 (84.2%) that are described in terms of human interactions
with other objects or surroundings. These aspects tell us that un-
derstanding interaction and relationships between objects facilitate
a major component in object-centric visual event understanding.

In this regard, we introduce a novel captioning framework
relational captioning that can provide diverse and dense rep-
resentations from a visual scene. In this task, we first exploit
the relational context between two objects as a representation
unit. This allows generating a combinatorial number of localized
regional information. Secondly, we make use of captioning and its
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ability to express significantly richer concepts beyond the limited
label space of object classes used in object detection tasks. Due to
these aspects, our relational captioning expands the regime further
along the label space both in terms of density and complexity, and
provides richer representation for an image.

Our main contributions are summarized as follows. (1) We in-
troduce relational captioning, a new captioning task that generates
captions with respect to relational information between objects in
an image. (2) In order to efficiently train the relational caption
information, we propose the multi-task triple-stream network
(MTTSNet) that consists of three recurrent units trained via multi-
task learning with the part-of-speech prediction. (3) We show
that our proposed method is able to generate denser and more
diverse captions by evaluating on our relational captioning dataset
augmented from the Visual Genome (VG) [35] dataset as well as
other relevant tasks and datasets. (4) We demonstrate several use
cases of our framework, including “caption graphs” which contain
richer information than conventional scene graphs.

This work is the extension of our previous conference ver-
sion [27]. We extend it in several aspects: We extend our architec-
ture by adding a relational embedding module (REM) motivated
by the non-local networks [68] to explicitly augment semantic
meanings of surrounding objects. Also, we show that the REM
further enhances MTTSNet in all the application scenarios we
demonstrate. In addition, we expand our experimental results
and analyses to show multiple aspects of our proposed method’s
algorithmic behavior.

2 RELATED WORK

Our work mainly relates to two topics: image captioning and
relationship detection. In this section, we review related work on
these categorized topics.
Image captioning. By virtue of deep learning and the use of
recurrent neural network (e.g., LSTM [19]) based decoders, image
captioning [50] techniques have been extensively explored [1],
[12], [23], [26], [46], [55], [65], [71], [76], [78]. One of the
research issues in captioning is the generation of diverse and
informative captions. Thus, learning to generate diverse captions
has been extensively studied recently [5], [8], [9], [28], [34],
[58], [64], [66]. As one of the solutions, the dense captioning
(DenseCap) task [25] was proposed which uses diverse region
proposals to generate localized descriptions, extending the con-
ventional holistic image captioning to diverse captioning that can
describe local contexts. Since DenseCap generates each caption
per bounding box by only relying on an internal region of the
bounding box, Yang et al. [73] improves the DenseCap model by
incorporating a global image feature as a context cue as well as
a region feature of the desired objects with late fusion. Motivated
by this, in order to learn dependencies of subject, object and union
representations, we incorporate a triple-stream LSTM for our
captioning module and further enhance the relational embedding
by a non-local layer [68]. Our triple-stream LSTM has analogies
with the neural module networks which have been used in various
language-related tasks such as visual question answering [2], [21],
[22], visual dialog [33], visual grounding [43], captioning [62],
[63], [75], and symbolic reasoning [17]. Our triple-stream LSTM
can be seen as a simplified version of a neural module network
with subject, predicate, and object modules specifically designed
for our relational captioning task. Moreover, our relational cap-
tioning is able to generate even more diverse caption proposals
than dense captioning by considering relations between objects.

Visual relationship detection and scene graph generation.
Understanding visual relationships between objects have been an
important concept in various tasks. Conventional visual relation-
ship detection (VRD) typically deals with predicting the subject-
predicate-object (in short, subj-pred-obj). A pioneering work
by Lu et al. [45] formalized the VRD task and provides a dataset,
while addressing the subject (or object) and predicate classification
models separately. Their VRD dataset has also led to extensive
studies on visual relationship understanding [10], [37], [52], [74],
[77], [79], [81], [83], [84]. On the other hand, similar to the VRD
task, scene graph generation has started to be explored [16], [38],
[39], [53], [67], [69], [70], [72], [80], where the task is to generate
a structured graph that expresses the context relationships of a
scene and provides a compact and interpretable representation of
scenes. Moreover, human-object interaction detection task has also
started to be explored recently [4], [13], [15], [30], [31], [40].

Although the VRD dataset is larger (100 object classes and 70
predicates) than Visual Phrases [57] dataset, it is still inadequate
to handle real world scale. The Visual Genome (VG) dataset [35]
for relationship detection consists of 31, 000 predicate types and
64, 000 object types, which provides the combinatorial relation-
ship triplets that are too diverse for the VRD models to comply
with. This is because, in the VRD task, each object label should be
assigned to each of the various adjective and noun combinations,
e.g., respective different labels for “little boy” and “small boy.”
As a result, only the simplified version of VG relationship dataset
has been studied [10], [37]. In contrast, our method is able to
represent extensive natural language of relations by tokenizing the
whole relational expressions into words and learning from them
directly.

While the recent state-of-the-art VRD [37], [45], [52], [77],
[79] or scene graph generation [16], [39], [69], [70], [80] methods
attempted to use language priors to detect relationships, we di-
rectly learn the relationship in a descriptive language form. In
addition, the expressions of the scene graph generation or the
VRD tasks are restricted to subj-pred-obj triplets, whereas
our proposed relational captioning task can provide additional
information such as attributes or noun modifiers by adopting
free-form natural language expressions. Thereby, we present an
extended scene graph representation, called caption graph.

In summary, dense captioning facilitates a natural language
interpretation of regions in an image, while VRD can predict
relational information between objects within a restricted set. Our
work combines both axes, resulting in much denser and more
diverse captions than DenseCap. That is, given B number of
region proposals in an image, we can obtain B(B−1) number of
relational captions, whereas DenseCap returns only B number of
captions. This property can be favorable for subsequent algorithms
in other downstream tasks.

3 MULTI-TASK TRIPLE-STREAM NETWORKS

Our relational captioning generates captions as follows. Given an
input image, a bounding box detector generates various object
proposals, followed by a captioning module that predicts combi-
natorial captions describing each pair of objects along with POS
labels. This pipeline is illustrated in Fig. 2, which is composed
of a localization module based on the region proposal network
(RPN) [54], and a triple-stream RNN (LSTM [19]) module for
captioning. In addition, we introduce the relational embeddding
module (REM) as an extension, to encourage explicit encoding of
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Fig. 2. Overall architecture of the proposed multi-task triple-stream networks (MTTSNet). Three region features (Union, Subject, Object) come
from the same shared branch (Region Proposal Network), and for subject and object features, the first intermediate FC layer share the weights.
Relational Embedding Module (REM) is introduced as an extension, which takes into account early dependency between subject and object.

relational information. Our network supports end-to-end training
within a single optimization step that allows joint localization,
combination, and description with natural language.

Specifically, given an image, the RPN generates object pro-
posals. Then, the combination layer takes a pair of proposals
and assigns them to the subject and object regions at a time.
Also, to take the surrounding context information into account,
we utilize the union region of the subject and object regions as
side information. These triplet features from the subject, object,
and union regions are fed to the triple-stream LSTMs, where each
stream takes its own purpose, i.e., subject, object, and union. Given
these triplet features, the triple-stream LSTMs collaboratively
generate a caption and POS classes of each word. We describe
details of these processes in the following sub-sections.

3.1 Region Proposal Networks

Our network uses fully convolutional layers of VGG-16 [59]1 up
to the final pooling layer (i.e. pool5) for extracting the spatial
features via the bilinear region-of-interest (ROI) pooling [25]. The
object proposals are generated by RPN [54]. It takes the feature
tensor from the pool5 layer, and proposes B number of regions
of interest after non-maximum suppression (NMS). Each proposed
region comes with its confidence score, region feature of shape
512×7×7, and coordinates b=(x, y, w, h) of the bounding box
with center (x, y), width w and height h.

Relational proposals are generated by building pairwise com-
binations of B number of region proposals, where in turn we get
B(B−1) possible region pair combinations. We call this layer
as combination layer. A distinctive point of our model with the
previous dense captioning methods [25], [73] is that, while the
methods regard each region proposal as an independent target
to describe and produce B number of captions, we consider
their pairwise B(B−1) number of combinations, which are much
denser and explicitly expressible in terms of relationships. Also,
we can asymmetrically use each entry of a pair by assigning the
roles of the regions, i.e., (subject, object) or vice versa.

We vectorize the region features, and then apply two fully-
connected (FC) layers to map them into D-dimensional features,
where the intermediate dimensions are Du=512 for the union

1. One can improve the performance of our relational method by replacing
the backbone network with a deeper one, e.g., ResNet [18], which we show
later in the experiment section.

region and Do=4096 for subject and object regions. Only the
first intermediate FC layer for subject and object features shares
their weights. We use the rectified linear (ReLU) units [48] and
Dropout [61] for the FC layers. The subject and object region
features are optionally fed to the Relational Embedding Module
(REM) which outputs refined features with the same size D=512.
The details of the REM is described in Sec. 3.2. In short, the afore-
mentioned process encodes region features into D-dimensional
features, which is called region codes.

Furthermore, we leverage an additional region, the union re-
gion bu of (subject, object) motivated by Yang et al. [73]. Yang et
al. demonstrate that the global context of an image as a side-
information can improve the captioning performance. Compared
to the global context of Yang et al., our union region has more
localized information incorporating both subject and object. In
addition, to provide relative spatial information, we append geo-
metric features for the subject and object box pair, i.e., (bs, bo), to
the union feature. Given two bounding boxes bs=(xs, ys, ws, hs)
and bo=(xo, yo, wo, ho), we use the following geometric feature
r similar to that of Peyre et al. [51] as

r =

[
xo−xs√
wshs

, yo−ys√
wshs

,
√

woho

wshs
, ws

hs
, wo

ho
, bs

⋂
bo

bs
⋃

bo

]
∈ R6, (1)

where bs
⋂
bo and bs

⋃
bo denotes the intersection and union areas

of the two boxes respectively. The geometric feature r is encoded
into a 64-dimensional geometric vector by passing through an
additional FC layer. By concatenating the 64-dimensional geo-
metric vector with the union feature, the shape of this feature is
D + 64. Then, the dimension of the union region code is reduced
by the following FC layer. This stream of the aforementioned
operations is illustrated in Fig. 2. The three features extracted
from the subject, object, and union regions are fed to each LSTM
described in the following sections.

3.2 Relational Captioning Networks

Our network consists of multiple LSTM modules to generate
captions that describe relational information. To this end, we
design a new network that explicitly exploits relational cues.

In the proposed relational region proposal, a distinctive facet is
its capability to provide a triplet of region codes corresponding to
the subject, object, and union regions, which can be also viewed
as the POS of a sentence (subj-pred-obj). The existence of
these correspondences between each region in a triplet and POS
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Fig. 3. An illustration of the unrolled triple-stream LSTM. Our model consists of two major parts: triple-stream LSTM and a multi-task module. The
multi-task module jointly predicts a caption word and its POS class (subj-pred-obj, illustrated as three cells colored according to the POS class),
as well as the input vector for the next time step.

information can lead to the following advantages: 1) input region
codes can be adaptively merged depending on their POS roles and
be fed to the final word prediction module, and 2) when predicting
a word, the POS prior can effectively affect the quality of caption
generation by reducing potentially spurious words. To leverage
these benefits, we propose the multi-task triple-stream network
(MTTSNet). For the first advantage, to derive the POS aware
inference, we propose the triple-stream network which consists of
three separate LSTMs respectively corresponding to subj-pred-
obj. The outputs of the LSTMs are combined via concatenation.
For the second advantage, during word prediction, we jointly infer
POS classes of each word. This POS prediction task allows the
network to learn the POS prior knowledge for the word prediction.

Triple-Stream LSTMs. Intuitively, the region codes of the
subject and object would be closely related to the respective
subject and object related words in a caption, while the union
and geometric features may contribute to the predicate. In our
relational captioning framework, the LSTM modules need to
adaptively take into account input features to generate a caption
according to the POS decoding stage.

As shown in Fig. 2, the proposed triple-stream LSTM module
consists of three separate LSTMs, each of which is in charge of the
subject, object and union region codes, respectively. From RPN,
a triplet of region codes are fed as input to LSTMs, so that a
sequence of words (caption) is generated. At each step (word), the
triple-stream LSTMs generate three embeddings separately, and
a single word is predicted by consolidating the three processed
embeddings by the multi-task module (described in the next sub-
section). The embedding of the predicted word is distributed into
all three LSTMs as inputs of the next step and is used to run the
next step in a recursive manner. Thus in each step, each entry of
the triplet input is used differently, which allows more flexibility
than that of a single LSTM as used in traditional captioning
models [25], [65]. In other words, the importance of the input
features changes at every recursive step according to which POS
the word being generated belongs to.

Multi-task with POS Classification. At each part of the triple-
stream LSTMs, we obtain three intermediate output features from
each LSTM. To predict a word, we aggregate the features from the
subject, predicate and object information, via a single FC layer.
Also, we add an additional side task, POS prediction, from the
same concatenated feature. We call this fusion layer as the multi-
task module as shown in the right enlarged view of Fig. 3.

The multi-task module can be viewed as a late fusion ap-
proach. An alternative would be early fusion, which consolidates

the information in an even earlier step, i.e., the fusion of the
three region codes (e.g., concatenation of three codes) followed
by a single LSTM model instead of the triple-stream LSTMs.
However, we observe that this early fusion approach has lower
performance than our late fusion one, which is also consistent
with the observation reported by Yang et al. [73]. Thus, we take
the late fusion approach and compare the performance in Sec. 4.

The POS classification task is leveraged to more effectively
train the relational captioning. We impose the POS classification
loss during training, so that the networks learn which LSTM they
should emphasize more at a word prediction. Thereby, relational
captioning is encouraged to generate a sequence of words in
subj-pred-obj order, i.e., the order of POS. The POS tag
can be easily obtained by a modern natural language processing
toolkit, NLTK POS tagger [44], which had been established
for a long time; thus, it provides a reliable prediction. In our
case, we obtain POS (pseudo) ground truth from automatic label
augmentation from relationship triplet labels.

We empirically find that this multi-task learning with POS not
only helps the shared representation to be richer, but also guides
the word predictions; thus, it helps to improve the captioning
performance overall. Since each POS class prediction relies on
respective representations from each LSTM, (e.g., predicate class
prediction from the pred-LSTM), the gradients from the POS clas-
sification are mainly back-propagated through the feature elements
representing a class ambiguously within the concatenated feature.
Even for the same word output, the gradients from the multi-
task module may differ by this fact, so that representations across
LSTMs can be learned to be further distinctive. Also, the POS
prior may make the network suppress spurious word candidates.

Another potential way to leverage the POS priors would be to
add an additional soft attention module to select among the three
features instead of concatenating them. We compare this attention
approach with our simple concatenation [6], where the results
show that the performance of the attention approach (44.94 Recall)
is lower than our concatenation (45.96 Recall) while using more
number of parameters. Thus, we use the simple concatenation.

Relational Embedding Module. Since our triple-stream net-
work only utilizes the triplet features (subject, object, and union),
it alone may lack global understanding of the constituent objects in
an entire image, i.e., global context. In this extension, to strengthen
the capability of holistic relational understanding across all the
objects, we employ the non-local layer [20], [31], [68], we called
the relational embedding module (REM), where we apply the non-
local layer to each object candidate. This is different from Wang et
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al. [68], where they apply it to the feature map densely while we
apply it to ROI pooled features. The REM enhances the relational
information across all objects via the attention mechanism.

Specifically, let X ∈ RB×Do denote a stack of B number
of vectorized region features extracted from the first FC layer
after the bilinear ROI pooling. Then, we compute the relational
association matrix by:

R = softmax(σ(XWa)σ(XWb)
>) ∈ RB×B , (2)

where σ(·) denotes ReLU and Wa,Wb ∈ RDo×512 are learnable
weights that map the region features X to each of its own role,
(e.g., subject and object) and the softmax operation is applied in
row. Then, the relational feature matrix is computed by:

A = Rσ(XWx)W
>
z ∈ RB×Do , (3)

where Wx ∈ RDo×512 and Wz ∈ RDo×512 are again learnable
weights. The matrix A encodes aggregated features across all
the objects according to the degree of relational association by
R, which is similar to the message passing that exchanges the
information according to relationships. This relational feature
matrix is combined with the original feature X by Z = X + A,
so that the holistic relational information is enhanced on top of
X . This can be viewed as augmenting richer semantic meanings,
e.g., a shirt (X) is augmented to a shirt that someone is in or
a shirt on something depending on the surroundings. Also, it is
akin to the residual connection, allowing efficient training via the
residual learning mechanism [18]. Different from the non-local
approaches [68], [69], we introduce non-linear activations, ReLU,
in Eqs. (2) and (3), motivated by a low-rank bilinear pooling
method [32]. We empirically found this modification leads to
noticeable performance improvement.

Furthermore, similar to Hu et al. [20], we may leverage the
box geometric features r in the REM to re-scale the attention.
However, in our empirical experiment, this does not help and
even lowers the performance than our method that concatenates
geometric features to the union feature. Thus, we use the final
REM module illustrated in Fig. 4.
Loss functions. The proposed model is trained to minimize the
following loss function:

L = Lcap + αLPOS + βLdet + γLbox, (4)

Model Output of RPN Input of LSTM LSTM POS prediction

Direct Union Union region U Single ×
Union Object U Single ×
Union+Coord. Object U + C Single ×
Subj+Obj Object S + O Single ×
Subj+Obj+Coord. Object S + O + C Single ×
Subj+Obj+Union Object S + O + U Single ×
Union (w/MTL) Object U Single ©
Subj+Obj+Coord.(w/MTL) Object S + O + C Single ©
Subj+Obj+Union (w/MTL) Object S + O + U Single ©
Union+Union+Union (w/MTL) Object U + U + U Triple ©
TSNet Object S | O | U + C Triple ×
MTTSNet Object S | O | U + C Triple ©

TABLE 1
Comparison of model configurations. ‘|’ and ‘+’ indicate separation and

concatenation of input respectively.

where Lcap, LPOS , Ldet, and Lbox denote captioning loss, POS
classification loss, detection loss, and bounding box regression
loss, respectively. α, β, and γ are the balance parameters (we
set them to 0.1 for all experiments). The first two terms are for
captioning and the next two terms are for the region proposal.
Lcap and LPOS are cross-entropy losses applied to each word
and POS prediction at every time step, respectively. For each
time step, LPOS measures a 3-class cross entropy loss. Ldet

is a binary logistic loss for foreground/background regions to
distinguish positive and negative object regions [14], [25], while
Lbox is a smoothed L1 loss [54].

4 EXPERIMENTS

In this section, we provide the experimental setups, competing
methods and performance evaluation of relational captioning with
both quantitative and qualitative results, so that we empirically
show the benefit and potential of the proposed relational caption-
ing task and the proposed method.

4.1 Experimental Setups
Implementation details. We use Torch7 [7] to implement our
model. For the backbone visual feature extraction, we use VGG-
16 [59] and initialize with the weights pre-trained on Ima-
geNet [56]. We pre-train the RPN on the Visual Genome (VG)
dense captioning data [35]. For sequence modeling, we set the
dimension of all the LSTM hidden layers to be 512. A training
batch contains an image that is resized to have a longer side of
720 pixels. We use Adam optimizer [3] for training (learning rate
lr=10−6, b1=0.9, b2=0.999). For the RPN, we use 12 anchor
boxes for generating the anchor positions in each cell of the feature
map, and 128 boxes are sampled in each forward pass of training.
We use Titan X GPU, and it takes about four days for a model to
convergence when training on our relational captioning dataset.

We use the setting for the region proposals similar to that of
[25] for fairness. For training, a region is positive if it has at least
0.7 IoU ratio with a corresponding ground truth region, and a
region is negative if its IoUs are less than 0.3 with all ground
truth regions. For evaluation, after non-maximum suppression
(NMS) based on the predicted proposal confidences, 50 confident
bounding boxes are selected. We can additionally reduce box pair
predictions by discarding the pairs that produce captions with low
confidence scores. Caption confidence scores can be computed by
sequentially multiplying all of the generated word probabilities.
Relational captioning dataset. Since there is no existing
dataset for the relational captioning task, we construct a dataset
by utilizing VG relationship dataset version 1.2 [35] which
consists of 85,200 images with 75,456/4,871/4,873 splits for
train/validation/test sets respectively. We tokenize the relational
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mAP (%) Img-Lv. Recall METEOR

Direct Union – 17.32 11.02

Union 0.57 25.61 12.28
Union+Coord. 0.56 27.14 13.71
Subj+Obj 0.51 28.53 13.32
Subj+Obj+Coord. 0.57 30.53 14.85
Subj+Obj+Union 0.59 30.48 15.21
TSNet (Ours) 0.61 32.36 16.09

Union (w/MTL) 0.61 26.97 12.75
Subj+Obj+Coord (w/MTL) 0.63 31.15 15.31
Subj+Obj+Union (w/MTL) 0.64 31.63 16.63
Union+Union+Union (w/MTL) 0.58 34.11 14.69
MTTSNet (Ours) 0.88 34.27 18.73
MTTSNet (Ours) + REM [68] 1.12 45.96 18.44

MTTSNet (Ours) + REM (R) 1.48 48.56 19.48

Neural Motifs [80] 0.25 29.90 15.34

TABLE 2
Ablation study for the relational dense captioning task on the relational
captioning dataset. The second and third row sections (2-7 and 8-12th
rows) show the comparison of the baselines with and without the POS
classification (w/MTL). In the last row, we show the performance of the

state-of-the-art scene graph generator, Neural Motifs [80].
Union+Union+Union denotes the results of using three LSTMs with

only union features as LSTM inputs, (R) indicates ResNet-50 [18] as a
backbone network instead of VGG-16.

expressions into word level tokens, and we assign the POS class
from the triplet association for each word.

However, the VG relationship dataset has a limited diversity of
the words used. Therefore, naı̈vely converting such VRD dataset to
a captioning dataset is not desirable, in that the captions generated
from a trained model on the dataset tends to be too simple (e.g.,
“building-has-window”). This limited data restricts the expressive-
ness of the model. To examine the diverse expressions of our
relational captioner, we construct our relational captioning dataset
to have more natural sentences with richer expressions.

Through observation, we noticed that labels in the VG rela-
tionship dataset lack attributes describing the subject and object,
which are perhaps what enriches the expressiveness of sentences
the most. We enrich the dataset by leveraging the VG attribute
dataset [35]. The specific procedure of this attribute enrichment is
described in Appendix. After this enrichment, we obtain 15,595
different vocabularies for our relational captioning dataset, which
was 11,447 different vocabularies before this process.

We train our model with this dataset, and report its result in
this section. In the following subsections, we evaluate in multiple
views including a holistic image captioning performance and
various analysis such as comparison with scene graph generation.

4.2 Relational Dense Captioning: Ablation Study

Baselines. Since no direct related work for relational captioning
exists, we implement several baselines by modifying the most
relevant methods, which facilitate our ablation study. All the con-
figurations are summarized in Table 1 and described as follows.

• Direct Union has the same architecture with
DenseCap [25], but of which RPN is trained to directly
predict union regions. A union region is converted to a
512-dimensional region code, followed by a single LSTM to
generate a relational caption.

• Union also resembles DenseCap [25] and Direct union,
but its RPN predicts individual object regions. The object
regions are paired as (subject, object), and then only a union

Recall METEOR #Caption Caption/Box

Image Cap. (Show&Tell) [65] 23.55 8.66 1 N/A
Image Cap. (Show&Tell) [65]† 23.81 9.46 10 N/A
Image Cap. (SCST) [55] 24.04 14.00 1 N/A
Image Cap. (SCST) [55]† 24.17 13.87 10 N/A
Image Cap. (RFNet) [23] 24.91 17.78 1 N/A
Image Cap. (RFNet) [23]† 25.26 17.83 10 N/A

Dense Cap. (DenseCap) [25] 42.63 19.57 9.16 1
Dense Cap. (TLSTM) [73] 43.15 20.48 9.24 1

Relational Cap. (Union) 38.88 18.22 85.84 9.18
Relational Cap. (MTTSNet) 46.78 21.87 89.32 9.36
Relational Cap. (MTTSNet+REM) 56.52 22.03 80.95 9.24

Relational Cap. (MTTSNet+REM (R)) 59.71 23.27 85.37 9.26

Relational Cap. (Union)(GT ) 41.64 18.90
83.44 9.30Relational Cap. (MTTSNet)(GT ) 48.50 21.63

Relational Cap. (MTTSNet+REM)(GT ) 56.62 22.50

TABLE 3
Comparisons of the holistic level image captioning. We compare the

results of the relational captioners with those of three image
captioners [23], [55], [65] and two dense captioners [25], [73]. To

compare with stronger baselines, we modify the image captioners by
deploying a stochastic sampling. We annotate the modified versions

with stochastic sampling with †. We annotate (GT ) for the methods that
replace RPN with ground truth bounding boxes; thus, those represent
proxy upper bounds of performance. (R) indicates ResNet-50 [18] as a

backbone network instead of VGG-16.

region from each pair is fed to a single LSTM for cap-
tioning. Also, we implement two additional variants: Union
(w/MTL) additionally predicts the POS classification task,
and Union+Coord. appends the geometric feature to the
region code of the union. Lastly, to match the number of
parameters with our MTTSNet, we additionally introduce the
Union+Union+Union baseline with the triple-stream archi-
tecture, which only takes the union region as input.

• Subj+Obj and Subj+Obj+Union models use the con-
catenated region code of (subject, object) and (subject, ob-
ject, union) respectively and pass them through a single
LSTM (an early fusion approach). Also, Subj+Obj+Coord.
uses the geometric feature instead of the region code
of the union. Moreover, we evaluate the baselines,
Subj+Obj+{Union,Coord} again by adding the POS clas-
sification (i.e., MTL loss).

• TSNet denotes the proposed triple-stream LSTM model with-
out a branch for the POS classifier. Each stream takes the region
codes of (subject, object, union+coord.) separately. MTTSNet
(i.e., TSNet+POS) denotes the multi-task triple-stream network
with the POS classifier, and MTTSNet+REM denotes the model
combined with the REM.

Evaluation metrics. Motivated by the evaluation metric sug-
gested for the dense captioning task by Johnson et al. [25], we
suggest a modified evaluation metric for the relational dense
captioning. Firstly, to assess the caption quality, we measure
the average METEOR score [11] for predicted captions (noted as
METEOR). Also, we use a mean Average Precision (mAP) similar
to Johnson et al. which measures both localization and language
accuracy. For language accuracy, we measure METEOR score
with thresholds {0, 0.05, 0.10.15, 0.2, 0.25}, and we use IOU
thresholds {0.2, 0.3, 0.4, 0.5, 0.6} for localization accuracy. The
AP values, obtained by all the pairwise combinations of language
and localization thresholds, are averaged to get the final mAP
score. The major difference of our metric from that of Johnson et
al. is that, for the localization AP, we measure for both the
subject and object bounding boxes with respective ground truths.
In particular, we only consider the samples with IOUs of both the
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Image Captioner: 
■ A man riding a motorcycle.

Dense Captioner: 
■ Person wearing red and black jacket.
■ A cloud in blue sky.
■ The helmet is black.
■ Front wheel of motorcycle.

Relational Captioner (Ours):
■→■ The man on a black motorcycle.
■→■ The man in blue sky.
■→■ Red motorcycle has a black wheel.
■→■ The man wearing black helmet.
■→■ Black wheel on a motorcycle.
■→■ The head of man.
■→■ Blue sky has white clouds.

⋮

Image Captioner: 
■ A person is playing frisbee in the snow.

Dense Captioner: 
■ A blue sky with clouds.
■ A dog. 
■Man in the air.
■ A sandy beach.

Relational Captioner (Ours):
■→■ The man on white beach.
■→■ Green tree has leaves. 
■→■ Black dog on sandy beach. 
■→■ The tree in background. 
■→■ The man on a ground. 
■→■ Green grass on ground. 
■→■ The tree in a large field.

⋮

Image Captioner: 
■ A group of people riding bikes.

Dense Captioner: 
■ A man riding a bike.
■ Man wearing blue jeans. 
■ A train on the tracks.
■ A building in the background.

Relational Captioner (Ours):
■→■ The bicycle on street.
■→■ Black wheel on bicycle.
■→■ The bicycle has a black wheel.
■→■ Red bus has a black wheel.
■→■ The car on street.
■→■ The man on black motorcycle.
■→■ Red bus on street.

⋮

Image Captioner: 
■ A baseball player throwing a ball.

Dense Captioner: 
■ Boy in playing baseball.
■ A baseball player wearing a helmet. 
■ Green grass on the field
■ Grass on the ground

Relational Captioner (Ours):
■→■ The boy wearing hat.
■→■ Green grass on a ground. 
■→■ Standing man on a ground. 
■→■ The Head of a man. 
■→■ The man wearing gray shirt. 
■→■ The boy on a large field. 
■→■ The grass on ground.

⋮

Image Captioner: 
■ A man flying through the air.

Dense Captioner: 
■ Snowboarder in the air.
■ Red jacket on man. 
■ A snowboard is white.
■ Red and white snow board.

Relational Captioner (Ours):
■→■ Green trees in background.
■→■ The snow on ground.
■→■White clouds in blue sky.
■→■ The man on white snow.
■→■ The man wearing black pants.
■→■White snow on top of pole.
■→■ The man on white surfboard.

⋮

Image Captioner: 
■ A baseball player swinging a bat.

Dense Captioner: 
■ Baseball player swinging a bat.
■ A black shirt on a man. 
■ A red and white baseball field.
■ A black and white tennis racket.

Relational Captioner (Ours):
■→■ The man in green grass.
■→■ The head on man.
■→■ Standing man on ground.
■→■ The bat of a baseball player.
■→■ The man wearing black hat.
■→■ Large shadow on ground.
■→■ The people on a baseball court.

⋮

Image Captioner: 
■ A clock on the side of a road.

Dense Captioner: 
■ Clock on the wall.
■ A brick building with a clock. 
■ White lines on the road
■ Woman wearing a red shirt.

Relational Captioner (Ours):
■→■ Brick building has a window.
■→■ The woman in front of building.
■→■ The shadow on ground. 
■→■ The woman on road. 
■→■White clock on building.
■→■ The woman on black sidewalk. 
■→■ The window on red building. 

⋮

Image Captioner: 
■ A man riding a skateboard.

Dense Captioner: 
■ A man doing a trick on a skateboard.
■ A man on a skateboard. 
■ Skateboard in the air.
■ Doorway in front of building.

Relational Captioner (Ours):
■→■ The man wearing black shirt.
■→■ The people on sidewalk.
■→■ The people on a black skateboard.
■→■White building has a window.
■→■ The man holding black skateboard.
■→■ Black window on building.
■→■ The man on sidewalk.

⋮

Fig. 5. Example captions and region generated by the proposed model on Visual Genome test images. The region detection and caption results are
obtained by the proposed model from Visual Genome test images. We compare our result with the image captioner [65] and the dense captioner [25]
in order to contrast the amount of information and diversity.

subject and object bounding boxes greater than the localization
threshold, which yields a more challenging metric. For all cases,
we use percentage as the unit of metric.

In addition, we suggest another metric, called “image-level
(Img-Lv.) recall.” This measures the caption quality at the holistic
image level by considering the bag of all captions generated
from an image as a single prediction. This metric evaluates the
diversity of the produced representations by the model for a given
image. Specifically, with the aforementioned language thresholds
of METEOR, we measure the recall of the predicted captions over
about 20 ground truth captions.
Results. Table 2 compares the performance of various methods
for the relational dense captioning task on the relational captioning
dataset. To compare with a different representation of relationship,

we additionally compare with the state-of-the-art scene graph
generator, Neural Motifs [80]. Due to the different output
structure, we compare with Neural Motifs trained with the
supervision for relationship detection. Similar to the setup in [25],
we fix the number of region proposals after NMS to 50 for all
methods for a fair comparison.

Within the second row section (2-7th rows) of Table 2, our
TSNet shows the best result suggesting that the triple-stream
component alone is a sufficiently strong baseline over the others.
On top of TSNet, applying the MTL loss (i.e., MTTSNet)
improves overall performance, and especially improves mAP,
where the detection accuracy is dominantly improved compared
to the other metrics. This shows that triple-stream LSTM is the
key module that most leverages the MTL loss across other early
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Relational Captioning
1-2. The roof on yellow train.
5-2. Black wheel on a yellow train.
7-2. The window on a train.
9-2. Off light on yellow train.
2-4. Yellow train on old track.

Scene Graph
1-2. building-on-train
5-2. wheel-on-train
7-2. window-on-train
9-2. light-on-train
2-4. train-on-track

(a)

Relational Captioning
5-6. Old man wearing blue hat.
7-3. Red pants on young man.
3-4. Standing boy wearing red hat.
1-2. The man wearing purple hat.

Scene Graph
5-6. man-wearing-hat
7-3. pant-on-man
3-4. man-wearing-hat
1-2. man-wearing-hat

(b)

Relational Captioning
3-4 Green leaf on a tree.
1-2 White cap on standing man.
2-6 The man wearing blue pants.
2-8 Standing man wearing black shirt.
2-10 The man wearing white hat.

Scene Graph
3-4 tree-on-tree
1-2 hat-on-man
2-6 man-wearing-short
2-8 man- wearing-shirt
2-10 man-has-helmet

(c)

Relational Captioning
7-8. The man wearing black helmet.
5-6. Sitting woman behind the stand.
1-2. Baseball player wearing helmet
1-4. The man wearing white pants.

Scene Graph
7-8. man-wearing-helmet
5-6. man-behind-stand
1-2. man-wearing-helmet
1-4. man-wearing-pant

(d)

Fig. 6. Results of generating “caption graph” from our relational captioniner. In order to compare the diversity of the outputs, we also show the
result of the scene graph generator, Neural Motifs [80].

fusion approaches (see the third row section of the table). Also,
compared to Union+Union+Union (w/MTL), our MTTSNet
shows much higher performance, which validates that the per-
formance improvement by our method is not simply due to the
increased number of the model parameters. Moreover, by adding
REM to our late fusion method, MTTSNet, we have achieved
further improvements in both mAP and Img-Lv. Recall scores
(more strongly on Img-Lv. Recall). As another factor, we can see
from Table 2 that the relative spatial information (Coord.) and
union feature information (Union) improves the results. This is
because the union feature itself preserves the spatial information
to some extent from the 7×7 grid form of its activation. Also, the
relational captioner baselines including our TSNet and MTTSNet
perform favorably against Neural Motifs in all metrics. Note
that handling free-form language generation which we aim to
achieve is more challenging than the simple triplet prediction of
scene graph generation.

4.3 Comparison with Holistic Image Captioning

We also compare our approach with other image captioning
frameworks, Image Captioner (Show&Tell [65], SCST [55],
and RFNet [23]), and Dense Captioner (DenseCap [25] and
TLSTM [73]) in a holistic image description perspective. To
measure the performance of holistic image-level captioning for
dense captioning methods, we use Img-Lv. Recall metric defined
in the previous section. We compare them with two relational
dense captioning methods, Union and MTTSNet (as well as

■→■ Standing man wearing blue shirt. 
■→■ The man holding black racket. 

(a)

■→■ Young man on green court. 
■→■ The fence in background. 

(b)

■→■ The elephant has a brown head. 
■→■ Gray elephant in background. 

(c)

Fig. 7. Examples of different captions predicted from relational caption-
ing by (a) changing objects, (b) changing subjects, and (c) switching the
subject and object. Our model shows different predictions from different
subject and object pairs.

+REM), denoted as Relational Captioner. For a fair comparison,
for Dense and Relational Captioner, we adjust the number of
region proposals after NMS to be similar, which is different
from the setting in the previous section which fixes the number
of proposals before NMS. For fair comparison with the Image
Captioner, in addition to the typical selection of words according
to maximum probabilities in caption generation, we introduce
another baselines using a stochastic sampling (probabilistically
selecting a word proportional to the probabilities of words from a
model) to allow diverse caption generation from the LSTM. We
generate 10 captions from the stochastic variant image captioners
in order to match the number of captions between Image Captioner
and Dense Captioner. Finally, in order to isolate the performance
of the caption generation and the box localization modules, we
measure the captioning performance by setting the bounding boxes
as the ground truth boxes. We annotate such variant of relational
captioners with (GT ).

Table 3 compares the image-level recall, METEOR, and
additional quantities. #Caption denotes the average number of
captions generated from an input image and Caption/Box denotes
the average ratio of the number of captions generated and the
number of boxes remaining after NMS. Therefore, Caption/Box
demonstrates how many captions can be generated given the same
number of boxes generated after NMS. By virtue of multiple

R@1 R@5 R@10 Med

Image Cap. (Full Image RNN) [26] 0.09 0.27 0.36 14
Dense Cap. (Region RNN) [14] 0.19 0.47 0.64 6
Dense Cap. (DenseCap) [25] 0.25 0.48 0.61 6
Dense Cap. (TLSTM) [73] 0.27 0.52 0.67 5

Relational Cap. (MTTSNet) 0.29 0.60 0.73 4
Relational Cap. (MTTSNet+REM) 0.32 0.64 0.79 3

Random chance 0.001 0.005 0.01 -

TABLE 4
Sentence based image retrieval performance comparison across

different representations. We evaluate ranking using recall at k (R@K,
higher is better) and the median rank of the target image (Med, lower is
better). The random chance performance is provided for reference. We
compare with TLSTM in addition to the baselines (Full Image RNN,

Region RNN, DenseCap) suggested in Johnson et al . [25].
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Query Sentence
+ Reference Image Retrieved Images & Region-pair

White cars parked on side of road.

White plane has a red wing.

Green trees across blue water.

White sign near paved road. 

Fig. 8. Sentence based image and region-pair retrieval results on Visual Genome test images. The retrieved results are shown in the ranked order.

captions per image from multiple boxes, the Dense Captioner is
able to achieve higher performance than all the Image Captioners.
While the stochastic sampling methods slightly improve image
captioning performance in terms of recall, the performance is still
far lower than Dense Captioners or Relational Captioners by a
large margin, as the diversity of an image captioner’s output is
still very limited by its inherent design. Compared with the Dense
Captioners, MTTSNet as a Relational Captioner can generate
an even larger number of captions, given the same number of
boxes. Hence, as a result of learning to generate diverse captions,
the MTTSNet achieves higher recall and METEOR. TLSTM [73]
improves the performance of DenseCap [25] due to a better
representational power, but the performance is still lower than that
of MTTSNet. Comparing to Union, we can see that it is difficult
to obtain better captions than Dense Captioner by only learning
to use the union of subject and object boxes, despite having a
larger number of captions. Adding REM to our MTTSNet, further
improves the performance in both the Recall and the METEOR
score. In addition, even when setting the bounding boxes as the
ground truth bounding boxes, by virtue of the more powerful
language module, MTTSNet (especially MTTSNet+REM) shows
favorable performance compared to Union.

We show prediction examples of our relational captioning
model in Fig. 5 along with the comparisons against the traditional
frameworks, image captioner [65] and dense captioner [25]. Our
model is able to generate rich and diverse captions for an image,
compared to other paradigms. While the dense captioner is able to

generate diverse descriptions than an image captioner by virtue of
localized regions, our model can generate an even more number
of captions from the combination of the bounding boxes.

Fig. 7 shows caption prediction examples for multiple box
pair combinations. Based on the output of the POS predictor, we
color the words of the caption as (red, green, blue) for (subj-
pred-obj) respectively. We note that, while the traditional dense
captioning simply takes a single region as input and predicts one
dominant description, in our framework, different captions can
be obtained from different subject and object pairs. In addition,
one can see that the predicted POS is correctly aligned with the
words in the generated captions. Although the POS classification
is not our target task, for completeness, we measure the accuracy
of the MTTSNet POS estimation by comparing it with the ground
truth POS, which is 89.7%. The detailed accuracies for subject,
predicate, and object are 91.6%, 86.5%, and 90.9%, respectively.

4.4 Comparison with Scene Graph
Motivated by scene graph, which is derived from the VRD
task, we extend to a new type of a scene graph, which we
call “caption graph.” Fig. 6 shows the caption graphs generated
from our MTTSNet as well as the scene graphs from Neural
Motifs [80]. For caption graph, we follow the same procedure
with Neural Motifs, but replace the relationship detection
network with our MTTSNet. In both methods, we use ground
truth bounding boxes for fair comparison.

By virtue of being free form, our caption graph can have
richer expression and information including attributes, whereas
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Relationship Detector

Relational Captioner

<person>-<ride>-<bike>

Smiling woman riding white bike.

<laptop>-<on>-<table>

Grey laptop on brown desk.

<wheel>-<on>-<motorcycle>

Black wheel on blue motorcycle.

<person>-<hold>-<phone>

Sitting man holding small phone.

Fig. 9. Qualitative comparison with visual relationship detection model [45]. The proposed relational captioning model is able to provide more
detailed information than the traditional relationship detection model.

mAP (%) Img-Lv. Recall METEOR

Direct Union – 54.51 25.53

Union 1.66 54.30 24.82
Union+Coord. 1.90 64.11 30.81
Subj+Obj 1.90 55.06 25.09
Subj+Obj+Coord. 1.68 68.33 33.45
Subj+Obj+Union 1.94 68.32 33.77
TSNet (Ours) 1.99 68.44 34.49

Union (w/MTL) 1.70 66.39 31.62
Subj+Obj+Coord (w/MTL) 1.93 68.80 33.49
Subj+Obj+Union (w/MTL) 2.17 65.04 32.25
MTTSNet (Ours) 2.18 71.44 35.47
MTTSNet (Ours)+REM 2.21 73.36 35.65

MTTSNet (Ours)+REM (R) 2.33 77.44 37.63

Language Prior [45] 2.13 46.60 28.12
Shuffle-Then-Assemble [74] 2.20 69.98 29.50

TABLE 5
Ablation study on the relational dense captioning task with the VRD

dataset. Our TSNet and MTTSNet (both with and without +REM) show
top performance among the relational captioning models. (R) indicates
ResNet-50 [18] as a backbone network instead of VGG-16. In addition,
MTTSNet (both with and without +REM) shows favorable performance

against the VRD models [45], [74] with a noticeable margin.

the traditional scene graph is limited to a closed set of the
subj-pred-obj triplet. For example, in Fig. 6-(b,d), given
the same object “person,” our model is able to distinguish the
fine-grained category (i.e., man vs boy and man vs woman). In
addition, our model can provide more status information about the
object (e.g., standing, black), by virtue of the attribute contained in
our relational captioning data. Most importantly, the scene graph
can contain unnatural relationships (e.g., tree-on-tree in Fig. 6-(c)),
because the back-end relationship detection methods, e.g., [80],
predict object classes independently. In contrast, by predicting the
full sentence for every object pair, the relational captioner can
assign a more appropriate word with attributes for an object by
considering the relations, e.g., “Green leaf on a tree.”

Lastly, our model is able to assign different words for the same
object by considering the context (the man vs baseball player in
Fig. 6-(d)), whereas the scene graph generator can only assign one
most likely class (man). Thus, our relational captioning framework
enables more diverse interpretation of the objects compared to the
traditional scene graph generation models, which would be more
favorable representation to scene context understanding.

4.5 Sentence-based Image and Region-pair Retrieval
Since our relational captioning framework produces richer image
representations than other frameworks, it may have benefits on
image and region-pair retrieval by sentence. Our method can di-
rectly deal with free-form natural language queries, whereas scene

Phrase detection Relationship detection
mAP R@100 R@50 mAP R@100 R@50

Language Prior [45] 2.07 17.03 16.17 1.52 14.70 13.86
VTransE [81] - 22.42 19.42 - 15.20 14.07
VRL [41] - 22.60 21.37 - 20.79 18.19
ViP-CNN [37] - 27.91 22.78 - 20.01 17.32
DR-Net [10] - 23.45 19.93 - 20.88 17.73
CAI [84] - 19.24 17.60 - 17.39 15.63
PPR-FCN [82] - 23.15 19.62 - 15.72 14.41
Yu et al. [79] - 24.03 23.14 - 21.34 19.17

MTTSNet (Ours) 2.88 20.98 20.64 1.59 20.05 17.49
MTTSNet (Ours)+REM 2.91 21.54 21.39 1.64 20.70 17.74
MTTSNet (Ours)+REM (R) 3.09 28.40 24.18 1.73 21.87 19.36

TABLE 6
Comparison of our MTTSNet with VRD models on the VRD metrics on
the VRD dataset. (R) indicates ResNet-50 [18] as a backbone network
instead of VGG-16. Despite the disadvantages for predicting complex

captions compared to simple triplets, our MTTSNet and MTTSNet+REM
show favorable or comparable performance against the VRD models.

Also, note that most of the VRD models have the benefit of strong
backbones such as ResNet, but our MTTSNet+REM (R) with

ResNet-50 surpasses all the other competing methods even with the
VRD metrics unfavorable to ours.

graph or VRD models require additional processing to handle the
free-form queries. In this section, we evaluate our method on
the retrieval task. Following the same procedure from [25] but
with our relational captioning dataset, we randomly choose 1,000
images from the test set, and from these chosen images, we collect
100 query sentences by sampling four random captions from 25
randomly chosen images. The task is to retrieve the correct image
for each query by matching it with the generated captions.

Our relational captioning based retrieval is done as follows.
For every test image, we generate 100 region proposals from the
RPN followed by NMS. To measure the degree of association, i.e.,
matching score, between a query and a region pair in the image,
we compute the probability that the query text may occur from the
region pair by multiplying the probability of words over recursive
steps. Among all the scores of the region pairs from the image, we
take the maximum matching score value as a representative score
of matching between the query text and the image. The retrieved
images are sorted according to these computed matching scores.

We compare the retrieval performance with several baselines in
Table 4. We measure recall at top K, R@K, which is the success ra-
tio across all the queries that, by each given query, its ground-truth
image is retrieved within top K ranks. We report K ∈ {1, 5, 10}
cases. We also report the median rank of the correctly retrieved
images across all 1000 test images. We follow the same procedure
by Johnson et al. of running through random test sets 3 times to
report the average results. We add an additional retrieval result
with a more competitive dense captioning model, TLSTM [73].
From the result, our proposed relational captioners show favorable
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Fig. 10. Visualization of POS importance transition. Y-axis represents respective representative hidden values of Subject-Predicate-Object
LSTMs, and X-axis represents words of each caption in order. subj-pred-obj are color-coded by red, green, and blue colors according to the
output of the POS predictor, respectively. Each word in the captions comes from the corresponding LSTM.

performance against the baselines. This is meaningful because
a region pair based method deals with a more difficult input
form than that of the single region based approaches. Moreover,
MTTSNet+REM consistently shows better retrieval performance
compared to MTTSNet.

Fig. 8 shows the qualitative results on the sentence based
image and region-pair retrieval. Given a sentence query, we show
the retrieved images and their region pairs with the maximum
matching score. Image retrieval based on our approach has a
distinct advantage in that it retrieves images containing simi-
lar contextual relationships despite significant visual differences.
More specifically, in the 3rd row of Fig. 8, our method can retrieve
images with an abstract contextual relationship of “White sign
near paved road.” The retrieved images are visually diverse but
share the same contextual information. Also, the natural language
based retrieval from our framework is distinctive compared to
traditional relationship detection methods (classification) which
cannot handle natural language queries with variable length due to
their fixed form input (i.e. subj-pred-obj). For example, in
the 1st row, given a query that specifies the color “red,” our model
is able to retrieve images of a plane with red wings which VRD
models are not capable of.

4.6 Comparison with VRD Model
In order to demonstrate the flexibility of our model’s output, i.e.,
natural language based sentences, we qualitatively compare our
model with one of the benchmark models of visual relationship
detection (VRD) task. We test the VRD benchmark model [45]
and our MTTSNet (and with +REM). The comparison is shown
in Fig. 9. While the output of the VRD model is limited to the
subj-pred-obj triplet with a smaller number of classes in
a closed set, the output of our model has more flexibility and

words/img words/box

Image Cap. [65] 4.16 -
Scene Graph [80] 7.66 3.29
Dense Cap. [25] 18.41 4.59
Relational Cap. (MTTSNet) 20.45 15.31
Relational Cap. (MTTSNet+REM) 25.57 18.02

TABLE 7
Diversity comparison between image captioning, scene graph

generation, dense captioning, and relational captioning frameworks.
We measure the number of different words per image (words/img) and

the number of words per bounding box (words/box).

can contain more contextual information by virtue of being free
form. For example, given the same object “person,” our model
is able to distinguish the fine-grained category, i.e., man and
woman. In addition, our model can provide rich information about
the object (e.g., smiling, gray) by virtue of leveraging attribute
information of our relational captioning data. Thus, our relational
captioning framework enables higher level interpretation of the
objects compared to the relationship detection framework.

Since the output of the VRD task has a relatively simple form
(i.e., subj-pred-obj triplet) compared to that of our caption-
ing framework (caption with free-form and variable length), a
VRD model is easier to train given the same relationship detection
dataset. Thus, a direct comparison with a VRD model on the
VRD dataset [45] is unfair for our method. Despite this, we
perform quantitative comparisons with VRD models by restricting
the output vocabulary of our model such that the words appeared
in the VRD dataset without attributes are only used. We use the
VRD dataset that contains in total 5000 images with 4000/1000
splits for train/test sets respectively. Similar to the construction
process of our relational captioning dataset, we tokenize the form
of triplet expression, i.e., subj-pred-obj, to form natural
language expressions, and for each word, we assign the POS
class from the triplet association. By tokenizing, we obtain 160
vocabularies for the VRD dataset.

We evaluate on this regime in Tables 5 and 6 with the relational
captioning metrics and VRD metrics, respectively. Firstly, Table 5

The man has a white Frisbee. The bus has a black wheel. The man wearing blue shirt.

The man holding white racket. The man wearing black helmet. The light on blue water.

Fig. 11. Failure cases of our model. The reasons for failure cases
are often due to visual ambiguity and illumination. subj-pred-obj are
color-coded by red, green, and blue colors according to the output of the
POS predictor, respectively.
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shows the comparisons with VRD models [45], [74] on the VRD
dataset along with the ablation study. Overall, the ablation study
shows similar trends to that of using our relational captioning
dataset (c.f ., Table 2). Our TSNet and MTTSNet (both with
and without +REM) show top performance among the relational
captioning models, of which difference is with and without POS
prediction (w/MTL), respectively. This suggests that, even on the
VRD dataset, the triplet-stream component is still a strong baseline
over others. Moreover, interestingly, while the POS classification
appears to be an easy and basic task, adding the POS classification
in the form of multi-task learning consistently helps the caption
generation performance by a noticeable margin in our context, as
shown in Tables 2 and 5.

In the last row, we show the performance of the VRD models
by Lu et al. [45] and Yang et al. [74] with the relational captioning
metrics. Note that these VRD models are designed specifically for
triplet classification on the VRD dataset. Thus, in terms of mAP,
it has an advantage compared to the results of the other relational
captioning baselines. Nonetheless, compared to the VRD model,
our relational captioners (especially our MTTSNet+REM) show
favorable performance on Img-Lv Recall and METEOR with
a notable margin. This suggests that the proposed relational
captioning framework is advantageous in generating diverse and
semantically natural expressions. On the other hand, VRD models
are disadvantageous in these aspects because they use a closed
vocabulary set and predict object classes individually without
considering the context.

Table 6 shows the comparison between our MTTSNet (both
with and without +REM) and other VRD models measured on the
VRD metrics. Due to the difference of our output type to that of
VRD, we use METEOR score thresholds proposed by [25] as the
matching criteria between model outputs and ground truth labels.
Among the three VRD tasks (predicate classification, phrase
detection and relationship detection) defined in [45], we do not
measure predicate classification because a simple classification is
out of scope for our model, but context understanding. As shown in
the table, our model shows favorable or comparable performance
to the VRD models despite the fact that they are specifically
designed for the VRD task. Also, note that most of the VRD
methods take an advantage of strong backbone networks such as
ResNet over our MTTSNet+REM that uses VGG-16. According
to the table, our method with the ResNet-50 backbone performs
better than all the other competing VRD methods. This is worth
noting in that, as opposed to VRD, our output label space is more
complex than that of VRD due to variable caption length and a
much larger number of vocabulary.

4.7 Additional Analysis

Vocabulary statistics. In addition, we measure the vocabulary
statistics and compare those of the frameworks in Table 7. The
types of statistics measured are: 1) an average number of unique
words that have been used to describe an image, and 2) an average
number of words to describe each box. Specifically, we count
the number of unique words in all the predicted sentences and
present the average number per image or box. Thus, the metric
is proportional to the amount of information we can obtain given
an image or a fixed number of boxes. These statistics increase
in the order of Image Cap., Scene Graph, Dense Cap., and
Relational Cap (both with and without +REM). In conclusion,
the proposed relational captioning is favorable in diversity and

amount of information (especially when the REM module is
added), compared to both of the traditional object-centric scene
understanding frameworks, i.e., Dense Cap. and Scene Graph.
Importance transition along the triple-LSTMs. Since we have
the three state LSTMs to predict a single word, it might be
questionable whether each LSTM learns their own semantic roles
properly. To see the behavior of each LSTMs, we visualize
the weight transition from each LSTM for each time step. For
this, given a set of features fed to the triple-stream LSTMs,
we compute the L2 norm of the LSTM hidden state vector for
each time step as a measure of importance value. These values
from the three LSTMs are normalized across time through mean
value subtraction. These values can be regarded as information
or importance quantities. Fig. 10 shows the transitions of the
representative values across time. As the POS phase changes
through subject-predicate-object, the weight of the subject LSTM
consistently decreases while that of the object LSTM increases.
The predicate LSTM has a relatively consistent intensity between
subject and object LSTMs as the POS changes. Thus, LSTMs
plausibly disentangle their own roles according to POS. In other
words, each word in the captions comes from the corresponding
LSTM, e.g., a subject word is generated from the subj-LSTM.
Discussion of the failure cases. Fig. 11 shows failure cases of our
relational captioning. The captions generated from our method can
be inaccurate for several reasons. One of the important factors is
visual ambiguity. Ambiguity may come from visually similar but
different objects (first column) or by geometric ambiguity (second
column). Lastly, due to illumination, the model may describe
the object with a different color (e.g., “blue”) (third column).
Each of cases requires challenging capabilities, such as geometric
reasoning, high resolution spatial representation learning, illumi-
nation invariance, etc., which are all fundamental computer vision
challenges. we postulate that these problems may be resolved by
improving visual feature representation; we leave these failure
cases as a future direction. Note that the predicted POS is still
correctly aligned with the words in the generated captions.

5 CONCLUSION

We introduce relational captioning, a new notion which requires
a model to localize regions of an image and describe each of
the relational region pairs with natural language. To this end,
we propose the MTTSNet, which facilitates POS aware relational
captioning. In several sibling-tasks, we empirically demonstrate
the effectiveness of our framework over scene graph generation
and the traditional captioning frameworks.

Furthermore, our relational captioning can provide dense,
diverse, abundant, high-level and interpretable representations in
a caption form, which is a new way to represent imagery. This
allows us to take several advantage over the existing tasks of VRD
and {image, dense} captionings. Compared to VRD, our relational
captioning deals with “openset” (or a much larger set) expression.
The VRD task is restricted to subj-pred-obj combinations,
of which term represents a fixed number of classes.2 However, the
natural language representation we use has free-form with varying
lengths, which can represent uncountably many possibilities. In
addition, as an object can be referred to with expressive and
distinctive attributes, which cannot be done in the VRD task, e.g.,

2. Suppose the number of classes of each term, subj, pred, and obj, is
all same as C in the VRD task. Then, the number of all possible combination
of VRD is limited to C3.
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■ Object: crosswalk
■ Attribute: [white, painted]

■ Object : jacket
■ Attribute : [red]

■ Object : dog
■ Attribute : [white]

■ Object : jacket
■ Attribute : [brown]

■ Object : truck
■ Attribute : [delivery, white]

■ Object : cab
■ Attribute : [taxi, yellow]

■ Object : cab
■ Attribute : [yellow, taxi]

■ Object : traffic light 
■ Attribute : [red]

Fig. 12. A sample of the VG attributes dataset. Each bounding box
is labeled with an object name and attributes (Attribute labels for a
bounding box can be multiple).

a man vs. a boy wearing red hat, our output representation is more
general. Finally, as we have shown in our results, our captioning
has much higher recall than the other tasks, which can transfer
sufficient information to subsequent algorithms and applications.
In this regard, our work may open new interesting applications.

APPENDIX – ATTRIBUTE ENRICHMENT

As described in Sec. 4.1, we construct the relational captioning
dataset based on the VG relationship dataset, but the dataset lacks
attribute information in the captions. To compensate the lack of
attributes, we leverage VG attribute dataset [35].

The configuration of the VG attribute dataset is depicted in
Fig. 12. In the dataset, each object bounding box in an image is
associated with “object name” and “attributes” of the object. Note
that each object can have multiple attributes at the same time.
Since the VG relationship dataset and the attribute dataset share
the same image set, while the ground-truth bounding boxes are not
shared, to associate the attribute with our captions, we conduct the
process to find corresponding bounding boxes between datasets.

We simply find the attribute that matches the subject/object of
the relationship label and assign it to the subject/object caption
label. In particular, if an attribute label describes the same sub-
ject/object for a relationship label while an associated bounding
box overlaps enough, the label is considered to be matched to the
subject/object in the relationship label.

The specific procedure to decide association are as follows:
1) The category words of the subject / object in the relationship

label and the object names of the attribute label must match, and
the boxes should sufficiently overlap (higher IOU than 0.7),

2) Among the several boxes satisfying this condition, the box with
the highest IOU is selected.

3) If a single box is associated with multiple attribute labels, we
check the part-of-speech (POS) of candidate attribute labels
using the NLTK POS tagger [44]. The words classified as (NN,
VBN, VBG, VBD, JJ) are regarded as appropriate candi-
dates for natural attributes. We filter out the other categories.

4) Among the attribute candidates, the words in the original
relationship triplet (i.e. subj-pred-obj) are excluded from
the candidates to prevent redundancy.

5) If there are still more than one candidate attributes satisfying all
these conditions, we randomly select one among the candidates.

6) If a subject does not have any matched attribute, “the” is added.
Note that the VG relationship dataset and the VG attribute

dataset share the same image set; thus, there exists object-level
correspondences. Since we leverage the correspondences, thus, our

dataset is likely to follow real distribution of image-description
contents in the datasets.
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