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Abstract—While supervised object detection and segmentation methods achieve impressive accuracy, they generalize poorly to

images whose appearance significantly differs from the data they have been trained on. To address this when annotating data is

prohibitively expensive, we introduce a self-supervised detection and segmentation approach that can work with single images

captured by a potentially moving camera. At the heart of our approach lies the observation that object segmentation and background

reconstruction are linked tasks, and that, for structured scenes, background regions can be re-synthesized from their surroundings,

whereas regions depicting the moving object cannot. We encode this intuition into a self-supervised loss function that we exploit to train

a proposal-based segmentation network. To account for the discrete nature of the proposals, we develop a Monte Carlo-based training

strategy that allows the algorithm to explore the large space of object proposals. We apply our method to human detection and

segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.

Index Terms—Self-supervised training, importance sampling, proposal-based detection and segmentation, image inpainting

Ç

1 INTRODUCTION

ROBUST detection and segmentation of moving objects can
now be achieved reliably in scenarios for which large

amounts of annotated data are available [1]. However, for
less common activities, such as skiing, it remains challeng-
ing, because the required training databases do not exist, as
shown in Fig. 1. Self-supervised approaches [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13] promise to address this
problem. However, some can only operate on video streams
as opposed to single images [3], [8], [10], [13] while most
others depend on strong constraints being satisfied, such as
the target objects being seen against a static background.

To develop a more generic approach, we start from the
observation that in most images the background forms a
consistent, natural scene. Therefore, the appearance of any
background patch can be predicted from its surroundings.
By contrast, a moving person’s appearance is unpredictable
from the neighboring scene content and can be expected to
be very different from what an inpainting algorithm would
produce. We incorporate this insight into a proposal-

generating deep network whose architecture is inspired by
those of YOLO [14] and MaskRCNN [1] but does not require
explicit supervision.

Specifically, for each proposal, we synthesize a back-
ground image by masking out the corresponding region
and inpainting it from the rest of the image. The loss func-
tion we minimize favors the largest possible distance
between this reconstructed background and the input
image. This encourages the network to select regions that
cannot be explained from their surrounding and are there-
fore salient. To handle the discrete nature of the proposals,
we develop a Monte Carlo-based strategy to train our net-
work. It operates on a discrete distribution, is unbiased,
exhibits low variance, and is end-to-end trainable.

Our approach overcomes limitations in existing self-super-
vised human pose estimation methods requiring static cam-
eras [9] or monochromatic background [6], [7]. We propose a
self-supervised method that operates on single images and
demonstrate its effectiveness on several human motion data-
sets captured with cameras that are static, pan-tilt-zoom, or
hand-held. We can handle large camera motions and do not
require anymanual annotation. We focus on images acquired
in realistic conditions such as Ski-PTZ dataset of [15], daily
human motion Handheld190k in outdoor scene and figure
skating FS-Singles as well as those of the standard H36M
benchmark [16]. Fig. 1 depicts such a scenario in which our
approach outperforms a state-of-the-art detection and
instance segmentation method [1] trained on large annotated
dataset [17]. It also outperforms existing self-supervised seg-
mentation techniques [3], [5], [8], [10], [18]. Following stan-
dard practice in the self-supervision literature [3], [9], [10], we
start from pre-trained network weights, which we fine-tune
without any additional supervision in our target domain.
However, we can also train from scratch with only a small
performance loss. Finally, even though we focus on people,
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we show that our approach also applies to other kinds of tar-
get objects. Wewill make our code and three new datasets we
used for our experiments available upon acceptance of the
paper.

2 RELATED WORK

Most salient object detection and segmentation algorithms are
fully-supervised [1], [14], [19], [20], [21], [22], [23], [24], [25],
[26] and require large annotated datasets with paired images
and labels. Our goal is to train a purely self-supervised
method without either segmentation or object bounding box
annotations. Note that this differs from the so-called unsuper-
vised object segmentationmethods [27], [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37], that require domain-specific annota-
tions during training but not at test time, or the label of the
first frame at inference time [38]. We focus our discussion on
self- and weakly-supervised methods with regard to the type
of training data used and refer to [3] for a complete discussion
ofmethods using hand-crafted optimization.

Weakly-Supervised Methods. An early weakly-supervised
method is the Hough Matching algorithm [39]. It uses an
object classification dataset and identifies foreground as the
image regions that have re-occurring Hough features within
images of the same class. Similar principles have been fol-
lowed to train deep networks for object detection [29], [40],
optical flow estimation [41], [42], and object saliency [30].
These methods make the implicit assumption that the back-
ground varies across the examples and can therefore be
excluded as noise. This assumption is violated when train-
ing on domain-specific images, where foreground and back-
ground are similar across the examples.

Motion-Based Methods. Conventional methods [3], [10],
[18], [43], [44], [45], [46], [47], [48] explore the motion infor-
mation mainly by resorting to hand-crafted features. [47]
proposes a spatial-temporal energy function applied to opti-
cal flow field to obtain spatiotemporally consistent saliency
maps that are further improved by using global appearance
and location models. Similarly, [44] computes the optical
flow to detect motion boundaries and refines them through
ray-casting strategy. An alternative temporal solution [3]
relies on the recurrence property of the primary object in a
video. It finds the recurring candidate regions in the entire
sequence by extracting color and motion cues through ultra-
metric contour maps. Identifying the matching segment
tracks in different frames is done byminimizing a chi-square
distance temporally in the feature space. Given video
sequences, the temporal information can be exploited by
assuming that the background changes slowly [49] or line-
arly [18]. However, even a static scene induces non-

homogeneous deformations under camera translation, and it
can be difficult to handle all types of camera motion within a
single video, and to distinguish articulated human motion
from background motion [50]. Some of the resulting errors
can be corrected by iteratively refining the crude background
subtraction results of [18] with an ensemble of student and
teacher networks [8]. This, however, induces a strong depen-
dence on the teacher used for bootstrapping. Recently, [13]
showed that leveraging the temporal information at different
granularities through forward-backward patch tracking and
cross-frame semantic matching can be used to learn video
object patterns from unlabeled videos. Note that these meth-
ods can only operate on video streams and exploit a strong
temporal dependency, which ourmodel does not require.

Our approach is conceptually related to VideoPCA [18],
which models the background as the part of the scene that
can be explained by a low-dimensional linear basis. This
implicitly assumes that the foreground is harder to model
than the background and can therefore be separated as the
non-linear residual. Here, instead of using motion cues, we
propose to rely on the predictability of image patches from
their spatial neighborhood using deep neural networks.
This gives us an advantage over VideoPCA, which only
works with videos and comparably little background
motion and complexity. Another closely related work [10]
employs a similar inpainting network to ours on flow fields.
It relies on an adversarial model that tries to hallucinate the
optical flow from its surrounding while generating the
mask of a supposedly moving object in the region where the
inpainting network yields poor reconstruction. [10] is based
on the PWC network [51] that is trained with supervision
on a large object database to predict flow with clear object
boundaries. In that sense, as the methods based on deep
optical flow, it is not strictly self-supervised and can suffer
from degenerate cases when applied to still images with no
or little movement. We will nonetheless show that our
approach can also benefit from such optical flow prediction
if available, outperforming the other methods that use this
information.

Self-Supervised Methods. Most similar to our approach are
the self-supervised ones to object detection [2], [4], [7], [9]
that complement auto-encoder networks by an attention
mechanism. They first detect one or several bounding
boxes, whose content is extracted using a spatial trans-
former [52]. This content is then passed through an auto-
encoder and re-composited with a background. In [9], the
background is assumed to be static and in [2], [7] even sin-
gle colored, a severe restriction in practice. [7] uses a pro-
posal-based network similar to ours, but resorts to
approximating the proposal distribution with a continuous
one to make the model differentiable. Here, we demonstrate
that much simpler importance sampling is sufficient. In [53]
a noisy segmentation masks is predicted by an unsuper-
vised version [45] used as a pseudo label to train a ConvNet
to segment moving objects from single images. [4] uses a
generative model relying on the assumption that the image
region strictly covering the salient object can be subject to
random shifts without affecting the realism of the scene.
Similarly, the method of [5] relies on an adversarial network
whose generator extracts the object mask and redraws the
object by assigning different color or texture features to that

Fig. 1. Domain specific detection and segmentation. Our self-supervised
method detects the skier well, while YOLO trained on a general dataset
does not generalize to this challenging domain. Similarly, MaskRCNN
trained on a general dataset sometimes misses body parts such as the
upper body of the skier in (c).
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region. This is very different from our approach that aims to
reconstruct the scene from its background. Along similar
lines, the algorithm of [54] searches for the foreground
object by compositing it into another image so that the dis-
criminator fails to classify the resulting image as fake. These
methods can be easily deceived by other background objects
whose random displacement or texture change can still
yield realistic images. In contrast to these GAN-based tech-
niques, our approach works with images acquired using a
moving camera and with an arbitrary background.

In addition to object detection, the algorithm of [9] also
returns instance segmentation masks by reasoning about
the extent and depth ordering of multiple people in a multi-
camera scene. However, this requires multiple static cam-
eras and a static background at training time, as does the
approach of [55] that performs instance segmentation in
crowded scenes.

3 METHOD

Our goal is to learn a salient person detector and segmentor
from unlabeled videos acquired in as practical a setup as
possible. We therefore only use raw videos or images as
input and do not constrain the frame-to-frame camera
motion.

3.1 Outline

Our basic intuition is that when people move with respect to
the background, the area they occupy often looks quite dif-
ferent from the background. More specifically, we operate
under the following two assumptions.

� A1: The foreground and background are distinguish-
able by color or texture as explained in detail by [56].
As discussed in Section 3.5, this can be relaxed by
using optical flow.

� A2: Every part of the background must be uncovered
more often than covered. This assumption is almost
always valid in long videos depicting moving people,
unlike the assumptionsmade in related approaches [3],

[10], [28], [41], [42] that require people tomove in every
frame.

Hence, we cast the foreground segmentation task as one
of finding an area that, when inpainted using information
from the background, yields an image that is as different as
possible from the true one. This makes sense under assump-
tion A1 that people look different from the background.
Assumption A2 is required to be able to train the inpainting
network in a self-supervised manner. In the remainder of
this section, we first present the architecture of the network
we use for this purpose and then explain how we train it.

3.2 Network Architecture

Weuse themodelF depicted by Fig. 2. It takes a single image
I 2 RW�H�3 as input. It then resynthesizes it by sampling a
candidate bounding box, cropping the corresponding image
patch, and, in parallel, predicting a foreground image Î 2
R128�128�3 and a segmentation mask S 2 R128�128 from the
crop, while inpainting the cropped region to generate a back-
ground image �I 2 RW�H�3. Finally, the foreground crop and
the background image are re-composed according to the seg-
mentationmask. Formally, this can bewritten as

FðIÞ ¼ T �1ðÎ � SÞ þ �I � ð1� T �1ðSÞÞ; (1)

where T is the spatial transformer corresponding to the
selected bounding box, and � is the element-wise
multiplication.

To generate the segmentation mask S, F relies on a
detection networkD inspired by the YOLO architecture [14].
It divides the image into a grid and computes for each cell c
a probability pc of a detection expressed in terms of a
bounding box bc 2 R4 that defines a center and offset from
the grid center. Hence, it outputs a set of C candidate
bounding boxes fbcgCc¼1 and corresponding probabilities
fpcgCc¼1 out of which one bounding box bc is sampled
according to its probability pc. A segmentation network S
then encodes and decodes the content of bc into a segmenta-
tion mask S and the corresponding foreground image Î.

Fig. 2. Architecture.Our model F passes the input image I to a detectorD that proposes potential bounding boxes. One of them is passed to a spatial
transformer T that crops I and the result is fed to a segmentation network S that outputs a segmentation mask S and the corresponding foreground
image Î. In a separate branch, an inpainting network I fills the content of the bounding box to generate a background image �I. Finally, the inverse
transformer T �1 is used to combine Î, masked by S, and �I into an image that should be similar to the original one.

9576 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 12, DECEMBER 2022

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on November 10,2022 at 16:34:59 UTC from IEEE Xplore.  Restrictions apply. 



In a separate branch, an inpainting network I generates
the background image �I. Since off-the-shelf inpainting net-
works [57], [58] trained on large and generic datasets tend
to hallucinate objects, we rely instead on a U-Net architec-
ture [59] to implement I , which we pre-train without using
any labels and for each dataset, as discussed below. When
the background B is known a priori, for example because we
use a static-camera, we can simplify our architecture by
removing the inpainting branch and replacing �I by B. This
specific case has been addressed in [7], [9] but we will show
that our approach yields better results.

Algorithm 1. Our Training and Test Procedures

input : I 2 RW�H�3

output: I
0 2 RW�H�3 // Resynthesized image

for In in fIngN1 do
fðbcÞ; ðpcÞgCc¼1 DðInÞ // Bounding box prediction

if training then
m sample 2D cellðpcÞ;

else
m argmaxcpc ;

end
if exists(B) then
�In B

else
Ibgn In
Ibgn ½bm� 0
�In IðIbgn Þ // Background inpainting

end
Icropn  T ðIn;bmÞ
În;Sn SðIcropn Þ
I
0
n T �1ðÎn � SnÞ þ �In � ð1� T �1ðSnÞÞ // Resynthesis

end

At inference time, we simply run the trained model on
the test image and pick the 2D grid cell with the highest
occupancy probability c� ¼ argmaxcpc. Its bounding box
parameter estimates are fed into the spatial transformer T
to crop the region of interest, which is then segmented by
the segmentation network S, as described above. The corre-
sponding pseudo-code is given in Algorithm 1. Re-compos-
ing the image and background inpainting are only essential
to train our model. They can be omitted at inference time
for bounding box and segmentation mask prediction.

3.3 Training Losses

Given a set of unlabeled training images fI1; . . . ; INg, we
first train I and then F , and therefore D and S, in a self-
supervised manner.

To train I , we randomly remove image regions from the
training images and inpaint them from their immediate sur-
rounding. We compare the result to the original image
using an L2 pixel-wise loss augmented by a perceptual loss,
which we minimize. This works well as long as assumption
A2 introduced in Section 3.1 holds.

3.3.1 Foreground versus Background

To learn the weights of F , we minimize a weighted sum of a
foreground loss Lfg and a background loss Lbg. Given the
probabilistic nature of the detections generated by the

detector network D, we take them to be expected values.
We write

LfgðIÞ ¼
XC
c¼1

pcL2 F cðIÞ; Ið Þ ; (2)

LbgðIÞ ¼ �
XC
c¼1

pc
L2ð�Ic; IÞ
areaðbcÞ

; (3)

where L2 is the pixel-wise mean square loss and pc is the
probability associated to bounding box bc by the detector
network. F cðIÞ indicates the resynthesized image and �Ic is
the background image generated by inpainting based on
the sampled cell c, as discussed in Section 3.2. Minimizing
Lfg encourages F cðIÞ to be as similar as possible to I, for all
training images, but does not preclude the generation of
bounding boxes on background objects. That is the role of
Lbg. Because of the minus sign in front of the summation,
minimizing it favors bounding boxes for which the inpaint-
ing generates an image that is different from the original
one, which denotes an image location that cannot be reliably
reconstructed from surrounding pixels by inpainting. Note
that we normalize by dividing by areaðbcÞ, which is the
maximum number of pixels that may be different in �Ic and
I. This makes Lbg insensitive to the size of the bounding
box. Without this division, Lbg would favor large regions,
whether they contain an object or not. Nevertheless, mini-
mizing Lbg by itself can favor bounding boxes with high-
error density, whether or not they cover the whole person,
as we will demonstrate in the ablation study of the results
section.

3.3.2 Disentangled Training Strategy

In short, minimizing Lbg does not guarantee bounding
boxes that fit to the person completely or precisely. By con-
trast, minimizing Lfg favors a tight fit of the segmentation
mask S when the bounding box bc is correctly located
because the rest of FðIÞ is resynthesized using only back-
ground information, which is not relevant to the person’s
appearance. However, it can also yield meaningless solu-
tions in which bc is located in the background. To get the
best of both world, we must therefore minimize Lfg and Lbg

jointly.
Unfortunately, finding a balance between these two com-

peting objectives by relative weighting alone has proved
difficult, if not impossible. Instead, we designed a disen-
tangled training strategy in which we isolate their conflicting
influence on the individual network components to stabilize
the training when their contributions are weighted.

Specifically, the probabilities pc are only optimized accord-
ing to Lbg so that Lfg cannot bias them towards the back-
ground regions, where it has a trivial solution. Conversely, bc

is optimized only according to Lfg to favor a tight fit without
the opposite bias from Lbg towards high error density bc with
only partial coverage of the person. Similarly, S is optimized
solely according to Lfg to yield the best possible reconstruc-
tion, instead of the largest distance to the background as
induced by Lbg. This can all be computed in a single forward-
backward pass by treating the excluded variables as constants
in the respective objectives, that is, by cutting their gradient
flow.
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3.3.3 Full Training Loss

To speed up the convergence and to make the segmentation
crisper, we introduce a perceptual loss and regularization
terms in addition to Lfg and Lbg.

Perceptual Loss.We take it to be

Lf ¼
XC
c¼1

pcL2 fðF cðIÞÞ;fðIð ÞÞ ; (4)

where fð:Þ denotes the low level features obtained by pass-
ing its input to a pre-trained ResNet18 network.

Probability Regularizer.We take it to be the L1 loss

Lp ¼
XC
c¼1
jpcj; (5)

that promotes sparsity of the non-zero probabilities.
Segmentation Mask Regularizer.We take it to be a v-shaped

prior that operates on S and stabilizes the early training iter-
ations by encouraging the average value of the segmenta-
tion mask to be larger than a threshold value � yet sparse
and less noisy when exceeding this threshold. We write

Lv ¼
1

WH

XW
x

XH
y

T �1ðSÞxy

 !
� �

�����
�����þ � ; (6)

where W and H are the image width and height, respec-
tively, and � is set to 0.005. Note that this threshold does not
control the size of the segmentation. The small value is
exceeded quickly and makes Lv an L1 prior for subsequent
training iterations.

Joint Loss. In practice, we use a weighted combination of
these losses, given by

Ljoint ¼ aLbg þ bLfg þ gLf þ hLv þ zLp; (7)

applied to N unlabeled images within a batch, where a ¼
0:1;b ¼ 1; g ¼ 2; h ¼ 0:25 and z ¼ 0:1.

3.4 Monte Carlo and Importance Sampling

Computing the losses of Eqs. (2), (3), and (4) involves sum-
ming over the C bounding boxes proposed by the detection
network D and their corresponding probabilities. In prac-
tice, we use C ¼ 64 and back-propagating through all 64
possibilities at each training iteration makes the computa-
tion expensive. Hence, for practical purposes, it has proved
necessary to reduce this cost.

Since all three losses are of the form L ¼
PC

c¼1 pcfðI;bcÞ,
where f is a differentiable function, the simplest way to
speed up the computation would be to randomly sample a
small subset of the C bounding boxes and write

L � Ec fðI;bcÞ½ � with c 	 p ; (8)

where Ec denotes the expectation over c drawn from the
categorical proposal distribution p ¼ fp1; . . . ; pCg output
by the network D. Unfortunately, the resulting loss esti-
mate would then not be differentiable with respect to
the network weights, thus precluding end-to-end gradi-
ent-based optimization.

Instead, we use Monte Carlo sampling to evaluate all
three losses and introduce an auxiliary distribution q to
rewrite Eq. (8) as

L � Ec
pc
qc
fðI;bcÞ

� �
with c 	 q : (9)

This approximation holds for any two probability distribu-
tions and drawing the samples according to q instead of p
does not depend on the network weights, thus provides dif-
ferentiability [60]. However, this Monte Carlo sampling
comes at the cost of a potentially high approximation error
when using only a few samples. For instance, by choosing q
to be the uniform sampling distribution U , most of the uni-
formly drawn samples will have a low probability p and,
therefore, negligible influence. To reduce this error, we rely
on importance sampling [61], [62] to provide a low-variance
unbiased estimator by taking the sampling distribution q to
be similar to p. Then pc=qc � 1 and the fraction does not
influence the result much. However, the derivatives can still
be computed because qc is a constant and the gradient of
Eq. (9) is the same as in the likelihood ratio method [63]
used in the REINFORCE algorithm [64].

In practice, to prevent division by very small values that
could lead to numerical instability, we take the q probabili-
ties to be

qc ¼ pcð1� C�Þ þ � : (10)

As a side effect, � controls the probability that an unlikely
case is chosen, which induces a form of exploration that is
helpful in the early training stages of the network.

When approximating the expectation with a single sam-
ple, we can rewrite the losses introduced in Sections 3.3.1
and 3.3.3 as

LbgðIÞ ¼ �
pc
qc

L2ð�Ic; IÞ
areaðbcÞ

; (11)

LfgðIÞ ¼
pc
qc
L2 F cðIÞ; Ið Þ ; (12)

LfðIÞ ¼
pc
qc
L2 fðF cðIÞÞ;fðIð ÞÞ ; (13)

with c 	 q and inject these new definitions into that of the
joint loss Ljoint of Eq. (7).

3.5 Exploiting Optical Flow for Training Purposes

When video sequences are available at training time, we can
exploit optical flow to help detect the foreground subject. To
this end, we use optical flow images obtained by running
FlowNet 2.0 [65] on pairs of consecutive frames stabilized
by computing a homography using SIFT keypoints to warp
one onto the other. We use the resulting optical flow image
If as an intermediate supervision to our model. To this end,
we train a second inpainting network IfðIf ;bcÞ to recon-
struct flow images instead of regular ones. We then intro-
duce an additional flow background objective LbgðIfÞ, with
the same weight as LbgðIÞ, into Ljoint of Eq. (7) that favors
the bcs with higher inpainting loss on the flow images. This
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objective regulates bounding box detection by assigning
higher confidence to foreground regions where the motion
is clearly different from that of the background. As shown
in Fig. 3, this lets us ignore the background motion due to a
moving camera. Because we only use flow images for inter-
mediate supervision, our model still operates at test time
with single images. FlowNet is pretrained on the synthetic
MPI Sintel Flow Dataset [66] and, when included, makes
our approach superior to other approaches using this level
of supervision.

3.6 Implementation Details

Overall Training. All training stages are performed on a
single NVIDIA V100 32GB GPU using Adam with a learn-
ing rate of 1e-3 and batch size 16. First, the inpainting net-
work is optimized for 200k iterations and subsequently
the complete network for an additional 100k iterations.
The decoding part of the synthesis network S uses a
reduced learning rate of 1e-4, to prevent occasional
diverging behavior. We use an input image resolution of
640px�360px for the Ski-PTZ, Handheld190k and FS-Sin-
gles datasets, and 500px�500px for H36M.

We typically use ImageNet-trained weights to initialize
our encoder components but can also train them from
scratch. We rely on the Focal Spatial Transformers (FST)
of [9] to speed up convergence, and expand the erased
region in I in both dimensions by 15% of the size of that
predicted by D to increase the chances of covering the
object. Moreover, we discard location offsets outside the
image and limit the offset to 1.5 times the bounding box
width, as larger ones are already fully covered by the
neighboring bounding boxes. We performed a grid search
on the relative weights of the loss terms, the offset limits,
and �.

Detection Network.We predict one candidate bounding
box relative to each grid cell in a regular grid using a fully-
convolutional architecture similar to that of YOLO [14]. We
use a ResNet-18 backbone [67], which reduces the input
dimensionality by a factor 16, from 128� 128 to 8� 8. The

feature size is set to five, two for the bounding box location
offset, two for scale, and one for the probability. Each fea-
ture output represents the bounding box parameters pre-
dicted by one grid cell and the offset is relative to the cell
center, as shown in Fig. 2. The estimated probabilities pc are
forced to be positive and to sum to one by using a soft-max
activation unit. To prevent this network from constantly
predicting bounding boxes at the borders of the image,
where the inpainting error would be high, we zero out the
outer cell probabilities.

Synthesis Network. S is a bottleneck auto-encoder based
on the publicly available implementation of [68]. The encod-
ing part is a 50-layer residual network, and the weights are
initialized with ones trained on ImageNet classification. The
hidden layer is 856 dimensional, split into a 600 dimensional
space and a 256 dimensional space that is replicated spa-
tially to a 512� 8� 8 feature map to encode spatially invari-
ant features. The decoding is done with the second half of a
U-Net [59] architecture with 64, 128, 256, 512 feature chan-
nels in each stage, respectively. The final network layer out-
puts four feature maps, three to predict the color image Î
and one for the segmentation mask S.

Inpainting Network. In principle, any off-the-shelf inpaint-
ing network trained on large and generic background data-
sets could be used. For instance, those of [57], [58] can
produce very plausible results. However, in domain-spe-
cific images, they tend to hallucinate objects, as shown in
Fig. 4, and are therefore ill-suited for our purpose. Instead,
we train I from scratch, by reconstructing randomly
removed rectangular image regions. Note that it is accept-
able for I not to generalize well to new scenes as it is not
needed at test time. We implement it using a 6 layer U-Net
model [59] with 8, 16, 32, 64, 128, 256 feature channels in
each stage. It takes as input an image from which a selected
bounding box region is removed and outputs the entire
image with the initially removed patch re-synthesized. It is
trained independently from the rest of the pipeline and sep-
arately for each dataset by feeding images with randomly
occluded regions of varying sizes. In our full pipeline, the
weights of the inpainting network are frozen and to remove
the image evidence corresponding to the foreground per-
son, the hidden patch in the input image to the inpainting
network is selected to be the predicted bounding box
expanded by 15% in both dimensions.

Importance Sampling. For the importance sampling func-
tion q, we use � ¼ 0:001, which makes the method numeri-
cally stable while the probability of choosing a random
bounding box stays low, i.e., 6:4% for 64 cells.

Following common practice in the self-supervised seg-
mentation literature [10], [30], [31], the final segmenta-
tion masks are generated by a CRF [69] post-processing
step that uses both unary and pairwise bilateral potential

Fig. 3. Optical flow image generation on Ski-PTZ and Handheld190k.
We use a homography based on SIFT keypoints to compute rectified
images that are provided as input to FlowNet 2.0. (a) Source image
warped to the target scene; (b) Target image; (c) Optical flow image
highlighting the moving foreground region between the source image
and the target image after the background motion is eliminated. In
Ski-PTZ, the optical flow images provide strong cues about the fore-
ground object as the scene was captured by rotating cameras, mak-
ing homography estimation effective. In Handheld190k, because the
camera undergoes translations, the homography and optical flow
estimates are less accurate, but can nonetheless improve our seg-
mentation performance.

Fig. 4. Off-the-shelf inpainting results on Ski-PTZ. (a) Input image with
the middle part hidden. We show the inpainting results of (b) [57],
(c) [58] trained on ImageNet and (d) [58] on Places2.
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terms. This CRF post-processing does not involve any
training; the unary potentials are taken to be the thresh-
olded segmentation masks predicted by our method, and
we use the default values of [69] for the pairwise
potentials.

4 EXPERIMENTS

In this section, we first demonstrate the effectiveness of our
approach at dealing with unusual motions acquired with
PTZ cameras using the Ski-PTZ dataset of [15]. We then
introduce a novel Handheld190k dataset depicting people
performing 14 everyday activities and a figure skating FS-
Singles dataset with different step, spin and jump combina-
tions to demonstrate that our method can handle general
moving cameras. For evaluation purposes, we provide
ground-truth segmentations for both. Finally, we present the
experiments with different loss functions and hyper-param-
eter study on the Ski-PTZ dataset and analyze the influence
of different aspects of our approach on the well-known
H36M dataset [16]. Altogether our results show that our
approach outperforms the existing self-supervised segmen-
tation techniques, including the ones that exploit temporal
cues at inference time [3], [10], approaches the accuracy of
supervised methods on objects they have been trained for
but seen in different conditions, and outperforms them on
previously-unseen objects.

4.1 Unusual Activity Filmed Using PTZ-Cameras

Let us first consider the Ski-PTZ dataset of [15] featuring six
skiers on a slalom course. We split the videos of six skiers as
four/one/one to form training, validation, and test sets,
with, respectively, 7800, 1818 and 1908 frames. The intrinsic
and extrinsic parameters of the pan-tilt-zoom cameras are
constantly adjusted to follow the skier. As a result, nothing is
static in the images, the background changes quickly, and
there are additional people standing as part of the back-
ground. We use the full image as input, evaluate detection
accuracy using the available 2D pose annotations and seg-
mentation accuracy bymanually segmenting 16 frames from
each of the six cameras, which add up to 192 frames in two
test sequences. To determine the hyperparameter values, we
use 3 manually segmented frames from each of the six cam-
eras, for a total 36 frames in two validation sequences.

In Table 1(left), we compare our approach to several
state-of-the-art self-supervised segmentation baselines in
terms of the J- and F-measures of [70]. The former is defined
as the intersection-over-union between the ground truth
segmentation mask and the prediction, while the latter is
the harmonic average between the precision and the recall
at the mask boundaries. To be fair, we compensate for dif-
ferent segmentation masks quantification levels by a grid
search (at 0.05 intervals) to select the best J-measure thresh-
old for each method. Our approach with optical flow out-
performs all the baselines in terms of both J- and F-measure.
When not using optical flow for training purposes, our
approach remains on par with other self-supervised meth-
ods despite their use of explicit temporal dependencies. In
particular, the comparison to [10] without CRF post-proc-
essing shows that our method can achieve the same perfor-
mance against an optical flow based method without
needing a flow-based intermediate supervision. Note that
all the baselines are trained on our datasets from scratch
using same amount of data, except for [8] that additionally
uses a segmentation mask discriminator trained on the com-
bination of the ImageNet VID and YouTube Objects data-
sets. In other words, while this method is trained in a self-
supervised fashion, it relies on a significantly larger amount
of data than ours.

In Fig. 5, we compare our method qualitatively to a
recent self-supervised method [4]. Note that their generative

TABLE 1
Segmentation Results on the Ski-PTZ, Handheld190k and

FS-Singles Datasets

Our method with optical flow consistently outperforms the other self-supervised methods, and ours without flow exceeds or is on par with the other baselines on all
three datasets. The best results in each column are shown in bold.

Fig. 5. Soft segmentation masks generated by our method and Pertur-
bedGAN (P-GAN) [4] on training examples. Top row: P-GAN mask gen-
erated on the Ski-PTZ dataset, the poles and snow patches are
segmented as foreground. Bottom row: P-GAN mask generated on the
Handheld190k dataset contains the foreground subject together with the
ground they are standing on.
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model fails to segment the foreground object alone and
instead segments background objects and sometimes even
the ground. Therefore, we couldn’t obtain any reasonable
quantitative results for [4]. This method relies on the prop-
erty that foreground regions can undergo random perturba-
tions without altering the realism of the scene. However, in
the Ski-PTZ dataset, some background objects, such as
poles, also satisfy this property, and the generator can
choose to keep these regions. We also trained [54], another
recent self-supervised method that discovers object masks
by copying the selected region of the image onto another
image with the goal of obtaining a realistic scene, on the
Ski-PTZ dataset and obtained implausible masks for the
same reason. Since these methods performed poorly on the
training samples, we do not provide their quantitative
results on the test data.

We provide qualitative results in Fig. 6. The probability
distribution, visualized as blue dots whose magnitude
reflect the predicted likelihood, shows clear peaks on the
persons. The limitations include occasional false positives,
such as the gates on the slope in close proximity to the skier,
reducing precision.

4.2 Activities Captured Using Moving Cameras

To demonstrate the effectiveness of our approach in the
presence of general moving cameras, we introduce a new
Handheld190k dataset captured by hand-held cameras. It

features three training, one validation and one test sequen-
ces, comprising 120 855, 23 076 and 46 326 images, respec-
tively, with a single actor performing actions mimicking
those in H36M. We manually annotated 112 frames in the
validation and 240 frames in the test sequence to provide
ground truth segmentation masks, which we believe will be
useful for evaluating other self- and weakly-supervised
methods. The camera operators moved laterally, to test
robustness to camera translation and hand-held rotation.
We provide examples of our detection and segmentation
results in Fig. 7. Our method is robust to the undirected
camera motion and to dynamic background motion, such as
branches swinging in the wind and clouds moving, and to
salient textures in the background, such as that of the house
facade.

To perform a quantitative comparison, we use the 240
manually-segmented test images taken from different
motion classes with the subject in many different poses. In
Table 1(middle), we compare the results of our approach
with those of the same methods as for the ski dataset. Our
approach, both with and without optical flow, outperforms
all the self-supervised baselines. This is even true for [8]
despite its use of a much larger dataset to train a discrimina-
tor in an unsupervised fashion and also for [3] that exploits
strong temporal dependencies.

We also evaluate our method on a new FS-Singles dataset
composed of single men’s figure skating videos collected
from YouTube. The videos are captured by general moving

Fig. 6. Qualitative results on the Ski-PTZ. Example results on the test images. (a) The detection results show the predicted bounding box with red
dashed lines, the relative confidence of the grid cells with blue dots and the bounding box center offset with green lines (better viewed on screen). (b)
Segmentation mask prediction of [8]. (c)Segmentation mask prediction of [10]. (d) Segmentation mask prediction of [3]. (e) Our segmentation mask
prediction. (f) Ground truth segmentation mask. Note that in the third row even though the skier is mostly occluded by snow, our method can detect
and segment the visible part of the body. Our method is more accurate than [8] in terms of background removal and outperforms [10] in terms of cor-
rectness of the object boundary. Note that in contrast to our method, [3] uses explicit temporal cues at inference time.
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cameras and these cameras are usually adjusted fast enough
to follow the movements of the skater to keep the subject in
the footage. The FS-Singles dataset contains 18 training, 2
validation and 3 test sequences with 10 613, 684 and 1656
frames and 6, 2 and 1 skaters, respectively.

The quantitative experiments on this dataset are con-
ducted using 50 manually-segmented test images including
diverse and extreme figure skating motions such as axel
jump, sit spin and camel spin. In Table 1(right), we compare
our approach to the self-supervised baselines. Our approach
with optical flow outperforms all of them. The overall lower
scores of the self-supervised methods on this dataset are
due to the motion blur caused by the fast movements of the
skaters, the low contrast between the ice and certain body

parts and the audience in the background. In Fig. 8, we com-
pare the segmentation results of our method to those of the
second, third and fourth best-performing methods. Note
that our method can accurately detect the skater, even when
the scene is cluttered with the audience in the background.
The failure cases of our method are mainly due to the low
contrast between the ice and the hands and feet of the
skater, particularly in extreme spinning poses. Furthermore,
the appearance of the skater occasionally matches that of
the background people, making it difficult to detect the fore-
ground subject precisely.

Overall, our method that relies on a single image at test
time consistently yields the highest scores on all three data-
sets against other self-supervised methods that operate on

Fig. 7. Qualitative results on the Handheld190k. (a) Our detection result. The blue dots coincide with the grid cell centers and their size indicates the
confidence of the bounding box proposals. The selected bounding box is illustrated with a red dashed line and the center of the grid cell yielding this
proposal is connected to the center of the red box through the green line. (b) Segmentation mask prediction of [8]. (c)Segmentation mask prediction
of [10]. (d)Segmentation mask prediction of [3]. (e) Our segmentation mask prediction. (f) Ground truth segmentation mask. Our method can seg-
ment the full body of the actor more accurately than [3], [8], [10] despite the other moving objects in the scene such as the clouds and occasionally
appearing cars and pedestrians. In some frames, the shadow is also segmented since it moves with the primary object.

Fig. 8. Qualitative results on the FS-Singles. (a) Our detection result. (b) Segmentation mask prediction of [3]. (c) Segmentation mask prediction
of [5]. (d) Segmentation mask prediction of [10]. (e) Our segmentation result. (f) Ground truth segmentation mask. Our method is more accurate
than [3] and [10] in terms of removing the background regions.
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single images [4], [5], [8], [54] as well as the ones that require
video and use temporal cues at inference time [3], [10], [18].

4.3 Comparison to Supervised Models

In this section we compare our method to MaskRCNN
applied in an off-the-shelf manner. Table 2 reports the
results of MaskRCNN trained on the MS-COCO data-
set [17], which contains the person class in various
sports and daily life scenarios, including skiing and skat-
ing. On the Ski-PTZ dataset, our method outperforms
MaskRCNN. This demonstrates the benefits of self-
supervised learning to handle unusual scenarios, where
the data differs significantly from that in the publicly-
available datasets. On the Handheld190k and FS-Singles
datasets, MaskRCNN yields the highest scores, which is
not surprising as the test sequences look similar to those
in the MS-COCO training set. However, many other
object categories are not present in the MS-COCO data-
set. In those cases, simply exploiting MaskRCNN
becomes non-trivial, because it provides class-specific
segmentations, and thus cannot directly handle unknown
objects.

To nonetheless evaluate the performance of Mask-
RCNN in this challenging scenario, we captured an
indoor scene featuring many static objects and a moving
robot that we aim to segment with a hand-held camera.
Fig. 9 compares the detections and segmentation masks
output by MaskRCNN for all MS-COCO classes with

those obtained with our method. Because the custom
robot cannot be associated with any existing MS-COCO
category, MaskRCNN tends to split it into multiple
objects. Obtaining a consistent mask of the robot would
then require parsing these multiple detections. By con-
trast, our self-supervised approach naturally generalizes
to such a previously-unseen object.

4.4 Ablation Study

In Table 3, we investigate the effectiveness of different mask
priors introduced in Section 3.3.3 and ImageNet pre-train-
ing on the validation part of the Ski-PTZ dataset. Although
L1 yields better segmentation masks than L2, it tends to sup-
press the mask values too strictly, which causes conver-
gence problems. This is mitigated by our Lv prior, which
achieves the highest scores in all measures, with consis-
tently reliable results. This demonstrates that imposing reg-
ularization on the segmentation masks allows us to obtain
sharper masks, removing the noise around the foreground
object. We repeated the Ski-PTZ experiment without optical
flow extension four times with the best-performing configu-
ration and computed the mean and std on the validation
sequences; the J- and F-measure are consistent, respectively,
0:67
 0:004; 0:73
 0:006.

Table 3 also shows the comparison of using ImageNet or
self-supervised weights for network initialization, with only
a small performance drop for the latter.

Furthermore, Table 4 compares the performance of our
method for different values of hyper-parameters, where the
subscript of b corresponds to the minimum and maximum
size of the bounding box and � used in our Lv prior is the
percentage of the pixels that should be activated in the seg-
mentation mask.

Fig. 10 depicts the influence of the segmentation mask
regularizer of Eq. (6). It shows the percentage of segmenta-
tion masks that have lower and higher mean values than �
at different training stages. At convergence, the mean seg-
mentation mask value is always higher than �. Without this
regularizer, the mean value of the segmentation mask
would grow even larger, causing the mask to incorporate
noise and fuzzy regions around the person. Since � doesn’t
have to match the exact size of the object, setting it to a small

TABLE 2
MaskRCNN Segmentation Results on the Ski-PTZ, Hand-

held190k and FS-Singles Datasets

The direct application of off-the-shelf MaskRCNN on Handheld190k and FS-
Singles datasets outperforms the self-supervised methods in Table 1 whereas
on Ski-PTZ dataset with unusual motions, our method reaches the maximum
F score and is on par with MaskRCNN in J score. This outcome is expected
since MaskRCNN is trained on MS-COCO dataset that includes person class
as one of the training categories.

Fig. 9. Qualitative results of MaskRCNN on a moving robot sequence captured with a handheld camera. MaskRCNN generally fails to detect the
moving robot as a single object and does not yield a segmentation mask with high confidence.
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value suffices to trigger the generation of masks early on.
We use the same value � ¼ 0:005 in all our experiments.

People in a Controlled Environment. We evaluate different
aspects of our approach using the H36M dataset [16] that
comprises 3.6 million frames and 15 motion classes. It fea-
tures 5 subjects for training and 2 for validation, seen from
different viewpoints against a static background and with
good illumination.

On this dataset, we first study the importance of our model
choices for training and probabilistic inference. As shown in
Fig. 11a, using uniform sampling instead of importance sam-
pling does not converge. Fig. 11b illustrates that joint training
ofDwith Lfg and Lbg, instead of our disentangled one, produ-
ces bounding boxes that are too large. Fig. 11c shows that using
only the background objective leads to small detections that
miss the subject and (d) that direct regressionwithoutmultiple
candidates diverges. These failure cases are representative of
the behavior on the whole dataset. To explore an alternative

strategy to Monte Carlo-based sampling, we replaced the
importance sampling in our method with the categorical rep-
arameterization used in [7]. Since both strategies approximate
the same objective, they had similar outcomes with a differ-
ence in the convergence speed and detection performance. To
this end,we triedGumbel-Softmax distribution [72].We found
out that setting the temperature to 0.1 yielded the best results.
Increasing this value has a similar effect as increasing the � in
Eq. (10) and approaches uniform sampling. Our experiments
show that Gumbel-Softmax based categorical reparameteriza-
tion did not lead to faster convergence and in fact degraded
the detection performance as shown in Fig. 11e. Our method
delivers a mAP0:5 score of 0.58 which is significantly higher
than the mAP0:5 score of 0.30 obtained by using Gumbel-Soft-
max as our sampling strategy. Furthermore, our importance
sampling approach is simpler than [7] and is an unbiased esti-
mator. It does not need custom layers that behave differently
in the forward and backwards passes during optimization,
which is the case for the Gumbel-Softmax categorical repara-
meterization. Please note that direct comparison to [7] is not
possible since it requires monochromatic backgrounds. There-
fore, it does not apply to the Ski-PTZ, Handheld190k and FS-
Singles datasets and was demonstrated only on simple syn-
thetic cases, such as MNIST and Atari games, with multiple
objects that go beyond the scope of our approach. Finally,
Fig. 11f demonstrates that our full model using the disen-
tangled training strategy and importance sampling can accu-
rately detect the person and estimate tighter bounding boxes.

In Table 5, we evaluate detection accuracy on H36M and
Ski-PTZ. Note that our method delivers an mAP0:5 score that
is significantly better than that of the general YOLO [14]
detector trained on MS-COCO dataset. On the left side of
Table 5, we compare our detection accuracy to that of a very
recent self-supervised deep learningmethod [9]. Our slightly
lower accuracy stems from not explicitly assuming a static
background, which [9] does. While valid in a lab, this
assumption results in total failure in outdoor scenes with
moving backgrounds.Notably, ourmethod is robust to undi-
rected camera motion and to dynamic background motion,
and works equally well for the very different domains of ski-
ing and every-day activities.

4.5 Discussion

Optical Flow. As noted in [10], the motion-based segmenta-
tion methods that require computing the optical flow

TABLE 3
Analysis of the Mask Prior Effect and ImageNet Pre-Training on

the Ski-PTZ Validation Sequences

Ski-PTZ

Setting J Measure F Measure

Ours w/o optical flow w/o prior 0.51 0.53
Ours w/o optical flow w/ L2 prior 0.61 0.69
Ours w/o optical flow w/ L1 prior 0.62 0.69
Ours w/o optical flow w/ Lv prior 0.67 0.73
No ImageNet pre-training, Lv prior 0.60 0.63
Unsupervised pre-training [71], Lv prior 0.62 0.68

We demonstrate the influence of using mask priors to supress the noise sur-
rounding the foreground object and have clear-cut masks. At the bottom part
of the table we show the results of using random weights and features from
[71] instead of using weights from ImageNet pre-training.

TABLE 4
Hyper-Parameter Study on the Ski-PTZ Validation Sequences

Ski-PTZ

Setting J Measure F Measure

b½0:1;0:5�, Lv;�¼0:0005 0.55 0.55
b½0:1;0:5�, Lv;�¼0:001 0.57 0.62
b½0:1;0:5�, Lv;�¼0:005 0.54 0.56
b½0:20;0:5�, Lv;�¼0:0005 0.61 0.70
b½0:20;0:5�, Lv;�¼0:001 0.60 0.65
b½0:20;0:5�, Lv;�¼0:005 0.61 0.67
b½0:30;0:5�, Lv;�¼0:0005 0.57 0.64
b½0:30;0:5�, Lv;�¼0:001 0.57 0.64
b½0:30;0:5�, Lv;�¼0:005 0.57 0.63
b½0:20;0:60�, Lv;�¼0:0005 0.61 0.69
b½0:20;0:60�, Lv;�¼0:001 0.61 0.68
b½0:20;0:60�, Lv;�¼0:005 0.62 0.68
b½0:20;0:70�, Lv;�¼0:0005 0.62 0.67
b½0:20;0:70�, Lv;�¼0:001 0.59 0.66
b½0:20;0:70�, Lv;�¼0:005 0.62 0.65
b½0:20;0:80�, Lv;�¼0:0005 0.61 0.68
b½0:20;0:80�, Lv;�¼0:001 0.67 0.73
b½0:20;0:80�, Lv;�¼0:005 0.61 0.66

In this table we analyze the effectiveness of our hyper-parameter choice for the
minimum and maximum bounding box sizes (given in square brackets as
b½scalemin;scalemax �) as well as the threshold � for the Lv loss. We conduct these
experiments using our approach without optical flow.

Fig. 10. Impact of the segmentation mask regularizer of Eq. (6). Early in
the training, a high percentage of masks have a mean value lower than
�. When the model converges, all masks have a mean value above this
threshold.
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between consecutive images can be error-prone due to the
irregular or insufficient movement of the object. This gives
us leverage against approaches that rely only on optical
flow since our method can reliably detect the foreground
object from single RGB images and uses optical flow only as
an extension during training time. In Fig. 12, we present
possible failure cases that can occur when the optical flow
partially covers the object due to its static parts. Since the
inpainting module in [10] tries to reconstruct the masked
optical flow, it is prone to errors whenever the optical flow
image is unreliable. It can be seen that our method can accu-
rately segment the object in this case. Hence, based on our
experimental evidence in Table 1, optical flow should
always be used if available and in combination with the
RGB image.

Multiple People. Although our focus is on handling single
objects or persons, our probabilistic framework can handle
several at test time by sampling more than once. Fig. 13
shows the predicted cell probability as blue dots whose size
is proportional to the probability. The fully-convolutional
architecture operates locally and thereby predicts a high
person probability close to both subjects. As a result, both
the detection and segmentation results remain accurate as
long as the individuals are sufficiently separated. Note that
the model used for this experiment was still trained on sin-
gle subjects. In future work, we will attempt self-supervised
training of multiple interacting people, which has so far
only been established in controlled environments.

Other Object Categories. In this section, we investigate the
applicability of our method to standard benchmarks with
other object categories. The existing object detection data-
sets SegTrackV2 and FBMS59 comprise multiple objects,
which we do not support. Therefore, we demonstrate the
qualitative performance of our method on the standard
DAVIS2016 [70] benchmark that consists of various object
categories such as car, cow and goat. DAVIS contains 30
training and 20 testing sequences, which are very short
compared to other benchmarks suitable for deep-learning
based methods. We follow the standard procedure and use
the validation sequences for evaluation. Since our method
does not require any annotations, we train and test on the

validation sequences with an average of 70 frames per
video. So far, we have evaluated our method on datasets
with human subjects. Therefore we pick non-human object
categories in the DAVIS2016 validation dataset to show that
our method is not specific to a particular object type. As
shown in Fig. 14, our performance on DAVIS2016 varies,
depending on the length and footage of the sequence. How-
ever, we do not expect our method to compete with
approaches tuned for short video snippets. Many of these
short sequences include objects that move slowly, remain-
ing mostly in the same image region. This makes them easy
to inpaint, thus violating our assumptions A1 and A2 (Sec-
tion 3.1). Fig. 14(top) shows a successful segmentation result
on a longer sequence with a moving object. Fig. 14(middle)
illustrates a partially successful case that occurs when the
location of the object changes with the background elements
and the content of the scene in a short video clip provides
significant clue about the reconstruction of the foreground
object. In Fig. 14(bottom), we present a failure case that
occurs when our method is applied to very short videos
with negligible object displacement. In this case, our
inpainting network can reconstruct the foreground object
together with the background region, which causes holes in

Fig. 11. Ablation study on H36M. (a) Uniform sampling does not converge. (b) Joint training of Lfg and Lbg (c) only Lbg (d) direct regression of a single
bounding box using Lfg and Lbg (e) Gumbel-Softmax (f) Ours.

TABLE 5
Detection Results on the H36M and Ski-PTZ Datasets Fig. 12. Optical flow failure.When the optical flow image cannot be used

to find the complete outline of the subject, for example because some
part of their body is static, our method can still segment the moving object
from a single RGB image, whereas [10] tends to yield poor results. To
highlight the effect of using optical flow, we present the raw segmentation
predictions of [10] and ours, before the post-processing step.
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the regions of the segmentation mask that are already recon-
structed by the inpainting network.

In short, DAVIS2016 features only few videos per category,
with each video being short, making them ill-suited to deep-
learning based self-supervised approaches that exploit large
unlabeled video collections. By contrast, we contribute new
benchmarks with manual annotations for quantitative evalua-
tion and three very different settings with significantly more
and longer training videos that can be used to evaluate future
self-supervised deep learning-based segmentationmethods.

5 CONCLUSION

We have proposed a self-supervised method for object
detection and segmentation that lends itself for application
in domains where general purpose detectors fail. Our core
contributions are the Monte Carlo-based optimization of
proposal-based detection, new foreground and background
objectives, and their joint training on unlabeled videos cap-
tured by static, rotating and handheld cameras. Our experi-
ments demonstrate that, even if trained only on single
persons, our approach generalizes to multi-person detec-
tion, as long as the persons are sufficiently separated. In
contrast to many existing solutions [3], [18], [49], [50], our
approach does not exploit temporal cues at test time. In the
future, we will integrate temporal dependencies explicitly,
which will facilitate addressing the scenario where multiple

people interact closely, by incorporating physics-inspired
constraints enforcing plausible motion.
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