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Abstract—Over the last years, with the advent of Generative Adversarial Networks (GANs), many face analysis tasks have accom-
plished astounding performance, with applications including, but not limited to, face generation and 3D face reconstruction from a single
“in-the-wild” image. Nevertheless, to the best of our knowledge, there is no method which can produce render-ready high-resolution
3D faces from “in-the-wild” images and this can be attributed to the: (a) scarcity of available data for training, and (b) lack of robust
methodologies that can successfully be applied on very high-resolution data. In this paper, we introduce the first method that is able to
reconstruct photorealistic render-ready 3D facial geometry and BRDF from a single “in-the-wild” image. To achieve this, we capture a
large dataset of facial shape and reflectance, which we have made public. Moreover, we define a fast and photorealistic differentiable
rendering methodology with accurate facial skin diffuse and specular reflection, self-occlusion and subsurface scattering approximation.
With this, we train a network that disentangles the facial diffuse and specular reflectance components from a mesh and texture with
baked illumination, scanned or reconstructed with a 3DMM fitting method. As we demonstrate in a series of qualitative and quantitative
experiments, our method outperforms the existing arts by a significant margin and reconstructs authentic, 4K by 6K-resolution 3D faces
from a single low-resolution image, that are ready to be rendered in various applications and bridge the uncanny valley.

Index Terms—3D Reconstruction, Reflectance, Differentiable Rendering, Face, GAN, 3DMM, Computer Vision, Graphics
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1 INTRODUCTION

3D Face reconstruction from a single image is one of
the most popular and well-studied problems in

the intersection of computer vision, graphics and machine
learning. Apart from its countless applications, it demon-
strates the power of recent developments in scanning, learn-
ing, and synthesizing 3D objects [2], [3]. Recently, mainly
due to the advent of deep learning, tremendous progress has
been made in 3D face reconstruction from images captured
even in arbitrary recording conditions (also referred to as
“in-the-wild”) [4], [5], [6], [7]. Nevertheless, even though
the geometry can be inferred somewhat accurately, in order
to render a reconstructed face in arbitrary virtual environ-
ments, much more information than a 3D smooth geometry
is required, i.e., skin reflectance as well as high-frequency
surface normals. In this paper, we propose a meticulously
designed pipeline for the reconstruction of high-resolution
render-ready faces from “in-the-wild” images captured in
arbitrary poses, lighting conditions, and occlusions. A result
from our pipeline is showcased in Fig. 1.

The seminal work in the field is the 3D Morphable Model
(3DMM) fitting algorithm [2]. The facial texture and shape
that is reconstructed by the 3DMM algorithm always lies in
a space that is spanned by a linear basis, which is learned
by Principal Component Analysis (PCA). The linear basis,
even though remarkable in representing the basic character-
istics of the reconstructed face, fails in reconstructing high-
frequency details in texture and geometry. Furthermore, the
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PCA model fails in representing the complex structure of fa-
cial texture captured in “in-the-wild” conditions. Therefore,
3DMM fitting usually fails in “in-the-wild” images. In the
years that followed, 3DMM fitting was extended so that it
could use a PCA model on robust features, i.e., Histogram
of Oriented Gradients (HOGs) [8], for representing facial
texture [9], with improved results in “in-the-wild” images.
The recently proposed, Morphable Face Albedo model [10]
additionally reconstructs diffuse and specular albedo with
PCA. Nevertheless, these methods cannot reconstruct high-
resolution facial textures. Finally, the non-linear facial and
head albedo and normals models [11], [12], generate high-
resolution facial textures but have not been shown in “in-
the-wild” fitting.

With the advent of deep learning, many regression meth-
ods using an encoder-decoder structure have been proposed
to infer 3D geometry, reflectance and illumination [3], [4],
[5], [6], [7], [13], [14]. Some of the methods demonstrate that
it is possible to reconstruct shape and texture, even in real-
time on a CPU [3]. However, the methods [3], [5], [6], [7],
[14] fail to reconstruct highly-detailed texture and shape,
due to various factors such as the use of basic reflectance
models (e.g., the Lambertian reflectance model), the use of
synthetic data, or mesh-convolutions on colored meshes.
Their results are not render-ready, and cannot be used di-
rectly in industrial rendering applications for photorealistic
results. Furthermore, in many of the above methods, the
reconstructed texture and shape lose many of the identity
characteristics of the original image.

Arguably, the first generic method which demonstrated
that it is possible to reconstruct high-quality texture and
shape from single “in-the-wild” images is the recently pro-
posed GANFIT method [4]. GANFIT can be described as an
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Fig. 1: From left to right: Input image from LFW [1]; AvatarMe++ predicted reflectance (diffuse albedo, diffuse normals, specular albedo and
specular normals); Rendered predictions with our photorealistic differentiable rendering; Rendered reconstruction in different environments.

extension of the original 3DMM fitting strategy but with the
following differences: (a) instead of a PCA texture model, it
uses a GAN [15] trained on high-resolution UV-maps, and
(b) in order to preserve the identity in the reconstructed
texture and shape, it uses features from a state-of-the-art
face recognition network [16]. However, the reconstructed
texture and shape is not render-ready due to (a) the texture
containing baked illumination, and (b) not being able to
reconstruct high-frequency normals or specular reflectance.

Inverse rendering of an “in-the-wild” image or 3DMM-
reconstructed texture to acquire its shape and its Bidirec-
tional Reflectance Distribution Function (BRDF) parameters
is an ill-posed problem and hence statistical priors are
needed. Numerous works have proposed the use differen-
tiable rendering loss while reconstructing 3DMMs [4], [14],
[17], [18], [19]. However none of them photorealistically
render the reconstructed face and acquire its relfectance
properties, but project the reconstructed shape and use a
simplistic shading model. This is mostly because of the
low availability in facial reflectance data, and the inherent
challenges in differentiable rendering. Recent works in dif-
ferentiable rendering [19], [20] enables us to capitalize on
our large reflectance dataset to implement a fast photoreal-
istic facial differentiable rendering framework and use it in
reconstructing high-resolution facial shapes and BRDF.

Early attempts to infer photorealistic render-ready infor-
mation from single “in-the-wild” images have been made
in some works [13], [21], [22], [23]. Arguably, some of
the results showcased in the above papers are of decent
quality. Nevertheless, the methods do not generalize since
they directly manipulate and augment the low-quality and
potentially occluded input facial texture. As a result, the
quality of the final reconstruction always depends on the
input image. Even more, the employed 3D model may not
be very representative, and a very small number of subjects
(e.g., 25 [23], 122 [13]) were available for training for the
high-frequency details of the face. While closest to our work,
these approaches focus on easily creating a digital avatar
rather than high-quality render-ready face reconstruction
from “in-the-wild” images, which is the goal of our work.

We present an elaborate methodology for high-quality
3D facial geometry and reflectance reconstruction from a
single “in-the-wild” image. In particularly, we collect a
big dataset of facial reflectance, and use an end-to-end
reflectance inference network with a photorealistic differ-

entiable rendering loss. Our method builds upon recent
reconstruction methods (e.g., GANFIT [4]) and applies
super-resolution and domain-adaption algorithms to GAN-
generated generated high-quality facial textures. We show
that this methodology is superior to the previous state-
of-the-art (e.g. [13], [23]), who apply algorithms for high-
frequency estimation of the original input, which could be
of low quality and are affected by environment illumination.
We demonstrate that it is possible to produce render-ready
faces from arbitrary faces (pose, occlusion, etc.) including
paintings, which can be realistically re-rendered in any
environment. Specifically, our contributions are:

• A dataset of facial reflectance and geometry collected
using state-of-the-art methods from over 200 sub-
jects, which is now available to the community.

• A differentiable rendering framework that fully uti-
lizes both diffuse and specular reflectance data, and
enables the fast approximation of subsurface scatter-
ing and occlusion shadows.

• An image-translation network that transforms a fa-
cial geometry with baked-in illumination to diffuse
and specular albedo and normals using the above
differentiable rendering framework.

• An end-to-end algorithm for reconstructing high-
resolution 3D faces including their shape and BRDF,
from a single “in-the-wild” image.

This work is an extension of AvatarMe [24]. Compared
to the conference paper, AvatarMe++ adds: a) a photoreal-
istic differentiable rendering method; b) online data aug-
mentation of the training data in randomized illumination
environments; c) a single image-translation network for
BRDF inference, that utilizes a stochastic rendering loss,
geometrical and global information; d) an extensive ablation
study and experiments for the aforementioned additions.

2 RELATED WORK

2.1 Facial Geometry and Reflectance Capture
Debevec et al. [25] first proposed to employ a specialized
light stage setup to acquire a reflectance field of a human
face for photorealistic image-based relighting. Weyrich et
al. [26] used an LED sphere and 16 cameras to densely
record facial reflectance and computed view-independent
estimates of facial reflectance from the acquired data, includ-
ing per-pixel diffuse and specular albedos, and per-region
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specular roughness parameters. These initial works required
cumbersome and impractical dense capturing.

Ma et al. [27] introduced polarized spherical gradient
illumination (using an LED sphere) for efficient acquisition
of separated diffuse and specular albedos and photomet-
ric normals of a face using just eight photographs. They
demonstrated high quality facial geometry, including skin
mesostructure as well as realistic rendering with the ac-
quired data. However, the method was restricted to frontal
viewpoint acquisition, as the polarization pattern used on
the LED sphere was view-dependent. Subsequently, Ghosh
et al. [28] extended polarized spherical gradient illumination
for multi-view facial acquisition by employing two orthog-
onal spherical polarization patterns. This allows capturing
separated diffuse and specular reflectance and photometric
normals from any viewpoint around the equator of the LED
sphere. Until today, it can be considered the state-of-the art
in terms of high quality facial capture. In the recent years,
significant progress has also been made in passive facial
capture, from high quality facial geometry capture [29] to
even detailed facial appearance estimation [30]. However,
the quality of the acquired data with such methods is lower
compared to active illumination techniques.

Recently, Kampouris et al. [31] demonstrated how to uti-
lize unpolarized binary spherical gradient illumination for
estimating separated diffuse and specular albedo and pho-
tometric normals using color-space analysis. The method
does not require polarization and hence needs half the num-
ber of photographs compared to polarized spherical gra-
dients. Moreover, it enables completely view-independent
reflectance separation, making it faster and more robust
for high quality facial capture [32]. For our work, we use
the unpolarised active illumination-based multi-view facial
capture method [31], [32] for acquiring high quality facial
reflectance data in order to build our training data.

2.2 Facial Geometry and Texture Estimation
Over the years, numerous methods have been introduced
in the literature that tackle the problem of 3D facial re-
construction from a single input image [2], [9], [33], [34],
[35], [36], [37], [38]. Early methods required a statistical
3DMM both for shape and appearance, usually encoded in
a low dimensional space constructed by PCA [2], [9], [33].
A 3DMM is typically fitted on a 2D image using an energy
based cost optimization with respect to the model’s identity
and expression parameters as well as the parameters of
the camera and scene illumination, as thoroughly explained
in the 3DMM review of [34]. Moreover, many approaches
have tried to leverage the power of Convolutional Neural
Networks (CNNs) to either regress the latent parameters of
a PCA model [35], [36] or utilize a 3DMM to synthesize im-
ages and formulate an image-to-image translation problem
using CNNs [37], [38]. Similar works have also modeled
complete head topologies [39], [40], [41], [42]. Finally, the re-
cent Morphable Face Albedo Model [10] separately models
diffuse and specular albedo with a PCA model.

2.3 Image-to-Image Translation
Image-to-image translation refers to the task of translating
an input image to a designated target domain (e.g., turning

sketches into images, or day into night scenes). With the
introduction of GANs [43], image-to-image translation im-
proved dramatically [44], [45]. Recently, with the increasing
capabilities in the hardware, image-to-image translation has
also been successfully attempted in high-resolution data
[46]. In this work, we improve on pix2pixHD [46], by
building an image-translation network that incorporates the
photorealistic differentiable rendering of its results, so that
a rendering loss can be introduced. Our model successfully
learns to disentangle relfectance components from textures
with rendered illumination and occlusion shadows.

2.4 Differentiable Rendering
Multiple works in the past have attempted to differen-
tiate rendering models to solve inverse rendering prob-
lems with limited success [47]. OpenDR [48] was the first
complete framework in Python for differentiable rendering,
built using an auto-differentiation framework. Neural 3D
Mesh Renderer [49] introduced a rasterization approxima-
tion which enables differentiation for non-occluded gra-
dients. TF Mesh Renderer [19] introduced a differentiable
rasterizer which interpolates per-vertex attributes in view-
space, using positive and negative barycentric coordinates
to overcome discontinuities. SoftRasterizer [50] introduced
a fully differentiable rendering framework, by using a prob-
abilistic rasterization function with an aggregation function
for z-buffering. It significantly improves the gradient flow
over [48], [49] and can be used with differentiable local-
illumination models. Similarly, [51] separate the fore- and
background rasterization and use barycentric coordinates to
propagate the gradient only for the foreground pixels. For
global illumination models, Li et al. [52] introduced a dif-
ferentiable ray tracer, which uses an edge-sampling-based
method to provide a continuous rendering function and im-
portance sampling to improve on performance. Moreover,
Loubet et al. [53] introduced spherical rotations that remove
the discontinuities, with respect to visibility, cameras, lights,
and geometry.

Several complete frameworks exist that combine deep
learning with differentiable rendering. TF Mesh Renderer
[19] is integrated with Tensorflow, which also includes a
library for graphics and differentiable rendering. Kaolin [54]
is a library of Pytorch implementations including [14], [50].
Finally, Pytorch3D [20] is a complete modular differentiable
rendering framework, based on SoftRasterizer, with addi-
tional modules for shading, performance, and compatibility
improvements. To the best of our knowledge, our method
is the first to show fast photorealistic differentiable ren-
dering for human skin. We extend Pytorch3D framework
[20] for accurate facial skin diffuse and specular reflection,
self-occlusion and subsurface scattering approximation, and
integrate it with a high-resolution image-translation GAN.

2.5 Facial BRDF Estimation
Many approaches have been successful in acquiring the
reflectance of materials from a single image, using deep
networks with an encoder-decoder architecture [55], [56],
[57], [58]. However, they only explore planar surfaces in a
constrained environment, typically assuming a single point-
light source. Similar principles have also been successfully
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applied to “in-the-wild” outdoor images [59]. Early appli-
cations on human faces [14], [60] used image translation
networks to infer facial reflection from an “in-the-wild”
image, producing low-resolution results. Recent approaches
attempt to incorporate additional facial normal and dis-
placement mappings resulting in representations with high
frequency details [13]. Although this method demonstrates
impressive results in geometry inference, it tends to fail in
conditions with challenging illumination and extreme head
poses, and does not produce re-lightable results. Saito et
al. [22] proposed a deep learning approach for data-driven
inference of high resolution facial texture map of an entire
face for realistic rendering, using an input of a single low-
resolution face image with partial facial coverage. This has
been extended to inference of facial mesostructure, given
a diffuse albedo [21], and even complete facial reflectance
and displacement maps besides albedo texture, given a
partial facial image as input [23]. The above methods are
the most related to our work and achieve the creation of
digital avatars from “in-the-wild” images. In this work, we
show high quality facial reflectance reconstruction, from
such images and existing models and datasets.

Various alternative paradigms that produce renderable
human faces have been recently proposed. [61] introduce
a coarse-to-fine optimization utilizing differentiable ray-
tracing for facial geometry and albedo reconstruction. [62]
reconstruct neural face reflectance fields that enable ren-
dering with complex physical effects. Finally, [63] generate
dynamic head textures and shapes with an encoder-decoder,
that are relightable and animatable from VR-headset views.

The state-of-the-art facial 3DMM fitting method GANFIT
[4] uses a GAN-generated texture with an iterative opti-
mization method of the 3DMM’s weights. Each iteration
utilizes lambertian differentiable rendering and a deep face
recognition network, achieving high quality texture with
fine identity characteristics. In this work, we use an image-
translation network that learns to disentangle the reflectance
components reconstructed from a 3DMM fitting method,
guided by our high-resolution photorealistic differentiable
rendering loss. Our facial geometry and spatially-varying
BRDF textures are high-resolution and ready to be rendered
with high-quality photorealistic results.

3 DATA ACQUISITION

3.1 Training Data Capturing Setup
We use our facial capturing system [64], comprising of an
LED sphere with 168 lights (partitioned into two polariza-
tion banks) and 9 DSLR cameras. Half of the LEDs on the
sphere are vertically polarized (for parallel polarization),
and the other half are horizontally polarized (for cross-
polarization) in an interleaved pattern. On this setup, we
can employ the state-of-the-art method of [28] for capturing
high resolution pore-level reflectance maps of faces. On
the same apparatus, we remove the polarizers and use
the color-space analysis for diffuse-specular separation and
multi-view facial capture [31], [32], to acquire reflectance
of similar quality (Fig. 2). This is our preferred method,
since it requires less than half of the data captured (hence
reduced capture time) and provides a simpler setup without
polarizers, enabling the acquisition of larger datasets.

Following the capture and diffuse-specular separation
with [31], we develop a pipeline to prepare the training data
as follows: A base geometry is reconstructed from the full-
on images using structure-from-motion [65] and multi-view
stereo [66]. The geometry is fitted with landmarks [67] using
its rendering and registered to a template mesh [68]. Finally,
the camera-space reflectance is projected to a uniform UV
map, manually constructed for minimal distortion, at a
resolution of Ĥ, Ŵ = 6144, 4096 pixels, as shown in Fig. 2.

3.2 Data Collection
In this work, we capture faces of over 200 individuals of
different ages and characteristics under 7 different expres-
sions. We curate a dataset called RealFaceDB, by sampling
square 512 × 512 pixels patches, of (a) diffuse albedo AD,
(b) specular albedo AS, (c) diffuse normals ND, (d) specular
normals NS and (e) shape S in UV space. The patches
are anonymized, shuffled, and only the correspondence
between same patches of different type is kept. We have
made RealFaceDB public for the research community 1. The
captured subjects are 63.2% male and 36.8% female; 61.1%
White, 26.3% Asian, 5.5% Black and 7.1% other; 55.8% 0-25
years old, 37.3% 25-40 years old, 6.9% over 40 years old.

Diff.Alb. AD Spec.Alb. AS Diff.Nor. ND Spec.Nor. NS Shape S

Fig. 2: Example of a captured subject data using [31], [32], registered
and projected to a standard UV topology.

3.3 Data Augmentation
In our initial method AvatarMe [24], we only rendered
our dataset in the environment of the target 3DMM. In
AvatarMe++ (Sec. 4.7.2), we can augment the training data by
rendering them in random environments, centered around
the target environment. This does not only improve the
model’s accuracy on the target environment, but enables it
to successfully generalize to other domains (Figs. 11,13,14).
Moreover, our captured dataset is imbalanced on race, due
to the demographic limitations in our area and the immo-
bility of our capturing device. In an attempt to balance the
dataset, we use the albedo measurements of [69] to augment
our acquired albedos. Specifically, we use a patch from the
forehead of the captured diffuse albedo, match it to the
closest albedo from [69] and then apply a transformation
to another albedo from their chart. Since all our albedos are
in the same UV space, a manually constructed “skin” mask
ensures that common non-skin areas remain unchanged.

4 METHOD

4.1 Overview
We aim to reconstruct the shape and reflectance properties
of a subject from a single “in-the-wild” image, that can be
used for photorealistic rendering. These are the shape S,

1. Dataset available at https://github.com/lattas/avatarme .
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Fig. 3: Summary of the AvatarMe++ method: Given an “in-the-wild” image I, we first fit a 3D Morphable Model (3DMM) to acquire the shape
SO, texture T and shape normals NO in UV space. Then, we upscale the texture T using a state-of-the-art super resolution network ζ, trained
on synthetic data rendered in the texture’s T domain. A deep network G is then used to transform the upscaled texture T̂ and normals NO) to
reflectance maps, namely the diffuse albedo AD, specular albedo AS, diffuse normals ND and specular normals NS. The deep image-translation
network is trained on high-resolution captured facial BRDF, which we have made public as RealFaceDB. To train AvatarMe++, we define a
photorealistic differentiable rendering module R, with subsurface-scattering and self-occlusion approximation. During training, R is used to
create synthetic data pairs, by rendering the captured data in the target’s environment L and random ones. The loss L used during training, is
comprised of an adversarial loss LGAN , a feature-matching loss LFM and our photorealistic differentiable loss LR. The complete high resolution
(up to 6k×4k) BRDF maps can be used for photorealistic rendering, while the specular normals NS can be used to enhance the 3DMM’s geometry.

diffuse albedo AD, specular albedo AS, diffuse normals ND

and specular normals NS, facial reflectance components that
can be used for photorealistic rendering (i.e. [27], [28]).

As shown in Fig. 3, we fit a 3DMM to an “in-the-
wild” image (Sec. 4.2), obtaining a 3D facial geometry S
with a texture T, which is typically of low-resolution and
contains baked-in illumination and shadows. We upsample
T using a deep super-resolution network trained on textures
of the same domain as the ones from the 3DMM (Sec. 4.4).
Then, the AvatarMe models (Sec. 4.5) or the AvatarMe++

model (Sec. 4.7) transform the upsampled texture T̂ into
the reflectance components AD,AS,ND,NS. AvatarMe
utilizes four image-translation networks for the above trans-
formation. AvatarMe++, an extension to AvatarMe, uses a
combined image-translation network and incorporates a
photorealistic differentiable renderer (Sec. 4.6), achieving
improved results, generalization and computational speed.

4.2 Initial Geometry and Texture Estimation
The first step of our method is the acquisition of a facial
shape S and texture T from a single image. In our approach,
we adopt the 3DMM-based fitting method GANFIT [4].
Apart from the usage of deep identity features, GANFIT
synthesizes consistent realistic UV texture maps, using a
GAN as a statistical representation of the facial texture.
Alternatively, our method and training can easily be mod-
ified to use other methods (i.e. [51], [70]) as long as they
produce a consistent shape and texture (results in Fig. 11).
We reconstruct the initial base shape S ∈ Rn×3 of n vertices
and texture T ∈ RW×H×3 from the input image I as follows:

T,S = F(I) (1)

where F : Rk×m×3 7→ RW×H×3,Rn×3 denotes the GANFIT
reconstruction method for an I ∈ Rk×m×3 arbitrary sized
image, and n number of vertices on a fixed topology.

The acquired shape is of adequate quality for rendering,
however the texture T is of limited resolution and most
importantly, contains significant baked-in illumination and
self-shadows. We proceed by upsampling T in the next
section, and then discuss the ways to learn the disentangle-
ment of the baked-in illumination in T, into high-resolution
spatially-varying reflectance parameter UV maps.

4.3 3DMM Capturing Environment Estimation
A drawback of the texture modeled by typical 3DMMs is
that they reproduce the environment conditions of their
training data (i.e. reflection and shadows), which inhibits
rendering. In our case, the textures generated by [4] contain
sharp highlights and shadows, made by point-light sources,
as well as environment illumination. In order to alleviate
this problem, we model the illumination conditions of the
dataset used in [4] and synthesize UV maps with the same
illumination, in order to train a transformation between
texture with baked-illumination T and reflectance maps R.

Initially, we acquire random texture and mesh outputs
from GANFIT, by fitting random facial images. Using a
cornea model [71], we estimate the average view direction
vd, the direction for the apparent 3 point light sources ld
and their intensity cd used in the 3DMM texture data,
including an environment color defined as ed. Then, we
render our acquired subjects (Section 3.2), as if they were
samples from the dataset used in the training of the 3DMM
used, in our case [4]. In this way, we also have accurate
ground truth of their reflectance. We compute a rendering ρ
for each subject with reflectance R = {AD,AS,ND,NS},
directly in a UV map Td, using the predicted environ-
ment parameters. We denote this rendering process by
ρ : R, cd, ld,vd, ed 7→ Td ∈ RŴ×Ŵ×3 which renders the
captured reflectance to the domain of the 3DMM textures
with baked illumination.
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The above estimation of the target 3DMM environment
can be further improved, after an initial training of the
AvatarMe++ network G. We acquire a number of random
3DMM-generated textures in the target environment and
use G to acquire their reflectance. Then, we initialize our dif-
ferentiable renderer (Sec. 4.6) with the calculated parameters
(vd, ld, cd). In an iterative process, we render the acquired
reflectance maps in the current best environment param-
eters and compare the rendering with the initial 3DMM-
generated textures, using an L1 rendering loss. Since the
renderer is differentiable, we use gradient descent to further
optimize the estimated parameters vd, ld, cd. Then, we can
re-train G in the optimized environment estimation.

4.4 Super Resolution

Although the texture T ∈ RW×H×3 from GANFIT [4] has
reasonably good quality and resolution (H,W = 768, 512) it
is below par compared to artist-made render-ready 3D faces.
On the contrary, the facial reflectance textures we capture in
(Sec. 3.1) are in a resolution of Ŵ , Ĥ = 6144, 4096. There-
fore, we train a state-of-the-art super resolution network,
RCAN [72], that increases the resolution of T ∈ RW×H×3 to
T ∈ RŴ×Ĥ×3, using ×4 upsampling twice. We define the
super-resolution network (ζ : RHp×Hp×3 7→ RĤp×Ĥp×3),
which is trained on square patches ofHp = 64 7→ Ĥp = 512,
given the large size of the results and the low number of
available training data. At testing time, the whole texture
from GANFIT T is up-scaled by the following:

T̂ = ζ(T) (2)

To train the super-resolution ζ to upsample the textures
generated from Eq. 1, we use our estimation of GANFIT’s
illumination environment (Sec.4.3) to render our captured
data with the same environment.

4.5 Reflectance Inference with AvatarMe

The significant issue of the texture T produced by typical
3DMMs is that they are trained on data with ambient illu-
mination (i.e. reflection, shadows), which they reproduce.
GANFIT-produced textures contain sharp highlights and
shadows, made by strong point-light sources, as well as
baked environment illumination, which prohibits photore-
alistic rendering. In order to alleviate this problem, we first
model the illumination conditions of the dataset used in [4]
and then synthesize UV maps with the same illumination
Td (Sec. 4.3). We can then use the pairs of Td with the
ground truth reflectance data (AD,AS,ND,NS) to train
image-translation networks in a supervised manner. Finally,
following [46], we formulate the networks’ objective as:

min
G

(
max
D
LGAN (G,Dk) + λFMLFM (G,Dk)

)
(3)

where LGAN (G,Dk) is the sum of adversarial loss and
LFM (G,Dk) is the feature matching loss, for all 3 discrim-
inators of pix2pixHD [46]. The feature matching term is
controlled by λFM .

We find that we can improve learning by giving the
network an insight into the geometry of the reconstructed
shape. In this manner, for each training data pair, we

extract the shape SO and its normals NO in the same
UV parameterization as the textures, and complete the 2D
RGB texture, by using bilinear interpolation in the 2D UV
space. Below we describe the baseline pipeline, AvatarMe, in
which 4 image-translation networks are used, to first acquire
the diffuse albedo AD from the upsampled reconstructed
texture T̂ and then the specular albedo AS, diffuse normals
ND and specular normals NS from the diffuse albedo AD.
The better performing pipeline AvatarMe++, with a single
rendering-aware network is described in Sec. 4.7.

4.5.1 Diffuse Albedo Extraction
We formulate de-lighting as a domain adaptation problem
and train an image-to-image translation network. To do this,
we follow two strategies different from the standard image
translation approaches. Firstly, the shading and occlusion
on the skin surface is geometry dependent and thus use
both the texture and geometry of the 3DMM as input to the
network. We find that this improves not only the network’s
accuracy, but also the consistency between patches. Instead
of using the 3-channel shape texture SO, we define the 1-
channel texture DO, that contains only the Z axis of SO.
To do so, we concatenate the texture Td with the UV map
of the depth of the mesh in object space DO. We feed
the network with a 4D tensor of [TdR

,TdG
,TdB

,DO] and
predict the resulting 3-channel albedo AD. Instead of DO,
the shape normals (NO) can also be used. Secondly, we split
the original high-resolution data into overlapping patches
of Ĥp × Ĥp pixels, in order to augment the number of data
samples and fit the data into the available GPU memory.

Therefore, in order to de-light T̂, and acquire the diffuse
albedo AD, we train an image-to-image translation network
GAD

: Td,DO 7→ AD ∈ RĤp×Ĥp×3 and then extract the
diffuse albedo AD by the following:

AD = GAD
(T̂,DO) (4)

4.5.2 Specular Albedo Extraction
Predicting the entire specular BRDF and the per-pixel specu-
lar roughness from the illuminated texture T̂ or the inferred
diffuse albedo AD, poses an unnecessary challenge. As
shown in [28], [31] a subject can be realistically rendered
using only the intensity of the specular reflection (specu-
lar albedo) AS, which is consistent on a face due to the
skin’s refractive index. The spatial variation is correlated
to facial skin structures such as skin pores, wrinkles, or
hair, which are apparent in both the baked texture T and
the diffuse albedo AD. Both can be used as input to the
network, and we empirically found that our predicted high
quality diffuse albedo AD produces more accurate and
consistent results. Therefore, having inferred AD with GAD ,
we infer the specular albedo AS by a similar patch-based
image-to-image translation network from the diffuse albedo
(GAS

: AD 7→ AS ∈ RĤp×Ĥp×1):

AS = GAS
(AD) (5)

4.5.3 Specular and Diffuse Normals Extraction
The specular normals exhibit sharp surface details, such
as fine wrinkles and skin pores, and are challenging to
estimate, as the appearance of some high-frequency details
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is dependent on the lighting conditions and viewpoint of the
texture. Therefore, much detail may not be apparent in the
input image or reconstructed texture. Previous works fail to
predict high-frequency details [13], or rely on separating the
mid- and high-frequency information in two separate maps,
as a generator network may discard the high-frequency as
noise [23]. Instead, we show that it is possible to employ an
image-to-image translation network with feature matching
loss [46] on a large high-resolution training dataset, which
produces more detailed and accurate results.

Similarly to the specular albedo inference with GAS
, we

feed the network with the predicted diffuse albedo AD.
Using AD instead of the 3DMM texture T produces more
consistent results. Even though T contains some specu-
lar highlights, these are always concentrated on a small
subset of the image, since they’re reconstructed using [4].
We can also luma-transform (in sRGB) the diffuse albedo
to grayscale A

(gray)
D , in order to reduce the number of

channels. Moreover, the consistency of the results is greatly
improved when also feeding the network with the 3DMM
geometry, in this case, the shape normals. Finally, we also
transform the shape normals NO in tangent space NT,
where the basis is a vector pointing to [0, 0, 1]. We find that
in this multiple-network approach, the inferred specular
normals details are better accentuated, when using both
the input shape normals NT and the predicted specular
normals NS in the tangent space.

Therefore, we train another image-translation network
GNS

: Agray
D ,NT 7→ NS, ∈ RĤp×Ĥp×3 to transform the

concatenation of the grayscale diffuse albedo Agray
D and the

shape normals in tangent space NT to the specular normals
NS. The specular normals are extracted by the following:

NS = GNS
(Agray

D ,NT) (6)

The diffuse normals ND are highly correlated with the
3DMM-reconstructed shape normals NO, as the evenly
scattered light blurs most skin details. Similarly fpr GNS ,
we train a network GND

: Agray
D ,NO 7→ ND ∈ RĤp×Ĥp×3

to map the concatenation of the grayscale diffuse albedo
Agray

D and the shape normals in object space NO to the
diffuse normals ND. The diffuse normals are extracted as:

ND = GND
(Agray

D ,NO) (7)

Finally, the inferred specular normals can enhance the
mesoscopic structure of the reconstructed geometry S, by
refining its features and adding plausible details. Based on
[73], we integrate the specular normals in the tangent space
NS to produce a height UV map, which describes high-
resolution per-pixel surface elevation. The height map can
be then be embossed on a subdivided 3DMM-reconstructed
geometry S, to produce a higher-resolution shape.

4.6 Photorealistic Differentiable Facial Rendering
Here, we formulate a photorealistic differentiable render-
ing methodology, that can be incorporated in our image-
translation networks during training and render the training
data and results in different illumination environments.

Shading can be modeled as local illumination, which only
models the surface reflection of light sources on objects
and global illumination, which models light propagation in

a scene, including indirect illumination, and produces more
realistic results at a higher computational cost. We choose to
rely on local illumination shading, since most such models
are differentiable and much faster to compute than global
illumination. Despite producing more realistic results, ren-
dering high-resolution human skin with global illumination
takes several minutes, and would be impractical to use
while training a deep neural network like ours. There exist
various local illumination models appropriate for rendering
human skin, on which we capitalize on to compose the
following methodology for photorealistic facial rendering.
We achieve fast and differentiable photorealistic rendering,
by using a local illumination model and approximations for
self-occlusion and subsurface scattering. Additionally, am-
bient occlusion is inherently baked in the captured diffuse
albedo and is thus reproduced during rendering.

4.6.1 Shading Model
We use Lambertian shading for the diffuse component UD

and Blinn-Phong [74] shading for the specular component
US, given their photorealistic results for human skin and
their cheap computation. For the specular exponent s, we
use a common spatially varying UV map. For a reflectance
and shape set (AD,AS,ND,NS,S), a camera with view
direction v and a set of nl light sources with lj direction
and cj intensity and an ambient illumination intensity ca,
we evaluate the shading for each pixel i as follows:

UDi
= caADi

nl∑

j=1

(NDi
· lj)cj (8)

USi
= ASi

nl∑

j=1

(χ+(NSi
· hj))

scj, hj =
lj + vj

||lj + vj||
(9)

where χ+(x) a piece-wise function that returns max {0, x},
since negative angles between the normals and light source
direction do not contribute to specular reflection.

4.6.2 Rendering Directly in UV Space
Rasterization, the process of transforming the geometrical
shape and texture to pixels visible by a camera, is tradition-
ally non-differentiable, and also computationally expensive.
The various methods that have been proposed for differ-
entiable rasterization are based on sub-optimal approxima-
tions [49], [50], [51] or are very expensive [52], [53]. This
motivated our pipeline to completely avoid rasterization,
by rendering directly on the UV space.

The geometry shape vertices S are projected and interpo-
lated in the same UV space as the reflectance textures SO,
creating texels with a one-to-one correspondence between
normals, shape and reflectance pixels. Hence, each texel’s
SOu,v

are used to evaluate the view direction v used in
Eq. 9. This way (a) is faster than using rasterization, (b)
is differentiable, (c) can be used with small patches of a
larger texture and shape and (d) creates a pixel-to-pixel
correspondence between reflectance and rendering.

4.6.3 Fast Differentiable Facial Subsurface Scattering
Subsurface scattering (SSS) describes the light that exits
a translucent medium at a different point from where it
had entered. Human skin, a dielectric material, exhibits
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such properties and the travel distance can be further than
that covered by the lambertian model (Eq.8). Subsurface
scattering in the skin has a smoothing effect, with predomi-
nantly red color bleed and is required for the photorealistic
rendering of skin [75]. These effects also vary across the skin
and are stronger in more translucent areas such as the nose.
Accurate SSS requires the expensive measurements of light
transport, however we find that the following modifications
to our renderer produce a photorealistic approximation that
improves the results of our method.

A local illumination BRDF as described in Eq. 8 cannot
model light scattered over large areas. However, the scatter-
ing occurring in human skin travels only a few millimeters
and can be modeled by separately modeling the normals for
diffuse reflection ND [27]. We separately capture (Sec. 3.1)
and infer both ND and NS, which are then separately
used to evaluate the diffuse (Eq. 8) and specular (Eq. 9)
components. Both normals are wavelength dependent [31]
and we acquire ND from the red channel and NS from
the blue channel of our captures. This method accurately
models the SSS angular blur (Fig. 4) and does not impose a
computational overhead during rendering or training.

Nevertheless, the above does not reproduce the
spectrally-dependent spatial blur produced by SSS, which
results in red-dominated color bleed and shadow smooth-
ing. These can be accurately approximated by texture-space
SSS [75], which blurs the diffuse component UD under
multiple kernels, based on the wavelength associated with
the R,G,B channels. [75] uses the weighted combinations
per channel for 6 different kernels, which is too expensive
for our training requirements. In line with [76], we find that
a single kernel is adequate and much faster. Empirically,
for a gaussian filter g(), we calculate the mean kernel at
k = 1.4mm or 21 pixels in our standard topology and define
a weighted combination of wD = diag(0.5, 0.85, 0.95) for
the diffuse component and wSSS = diag(0.5, 0.15, 0.05)
for the subsurface scattering. We use a manually created
standard translucency map C, which describes the amount
of light absorbed and scattered on different facial areas.
Finally, since we are using ND , we localize this effect only
on the darker areas, by multiplying the translucency map
with an inverse brightness mask. Therefore, the diffuse
component UD with subsurface scattering S is defined as:

S(UDi
) = (1−C′i) ◦wDUDi

+C′i ◦wSSS g(UDi
) (10)

C′ = C ◦
(
1−

∑nL

j=1
(ND · lj)cj

)

where ◦ is the Hadamard product. As shown in Fig. 4, the
usage of both SSS methods provides realistic results, with
the minimum computational overhead.

4.6.4 Differentiable Shadows Simulation

The rendering framework so far does not include self-
occlusion shadows, whose computation entails several chal-
lenges. Pytorch3D [20] does not support self-occlusion trac-
ing, and efficient local illumination models, such as Blinn-
Phong, inherently do not model it. On the other hand,
differentiable global illumination algorithms [52], [53], that
compensate for self-occlusion, are too expensive while train-
ing. Finally, the patches being rendered are often unaware

of the geometry that causes self-occlusion, as it may appear
on other patches (i.e. patches of nose and cheek).

(a) Pytorch3D,
using S,AD,N

(b) Blinn-Phong,
using S,AD,

AS,NS

(c) b) with
Subsurface
Scattering

(d) c) with
self-occlusion AE
(in & left of nose)

Fig. 4: The impact of our rendering modifications, to the Pytorch3D
Mesh Renderer [20]. Top row: rasterized mesh with rendered texture,
bottom: detail. Our improvements in realisticity, also improve the
network’s ability to recover the albedo and specular highlights.

As an efficient and simple solution, we propose a sim-
ple autoencoder network, that generates self-occlusion UV
maps based on light source direction and intensity. We
train the autoencoder on UV maps baked only with self-
occlusion. We also train a linear regressor that maps light
sources features L to the autoencoder’s learned latent fea-
tures HO . For each training example, we create a set of nl
random light sources, with direction lj and luminosity clj ,
which we stack in a matrix L = [lj . . . lNl

clj . . . clnl
]>. We

acquire self-occlusion UV-maps using a global illumination
method, at the same topology of our main dataset, for the
mean geometry of our dataset. We then pre-train the autoen-
coder and regressor on these data. On each rendering step
of the main network training, the rendering environment’s
light source features L are regressed to the latent space of
the autoencoder, using the learned weights WO from which
the decoderO(LWO) generates the self-occlusion map. The
result is multiplied with the rendered diffuse and specular
components, to produce the final rendering:

R(R,L) = O(LWO) ◦ (S(UD) +US) (11)

(a) Generated (b) Truth (c) Generated (d) Truth

Fig. 5: Prediction and ground truth for our self-occlusion autoencoder
O (Sec. 4.6.4) for randomly sampled sets of 3 light sources, as input.

Self-occlusion on human faces (i.e. Fig. 5) does not
exhibit sharp edges and is similar between different facial
geometries. Therefore, we make the following simplifica-
tions: a) We use self-occlusion UV maps rendered from our
dataset’s mean shape, which enables the decoder O to cor-
rectly learn a meaningful latent representation, b) We train
the autoencoder on low-resolution inputs and upsample the
needed cropped patch. Thus, we have fast and differentiable
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Fig. 6: AvatarMe++ training methodology: For each iteration we render reflectance patches R∗ = [AD,AS,ND,NS] from the captured data (Re-
alFaceDB), using our differentiable renderer R (Sec. 4.6) and occlusion autoencoder (Sec. 4.6.4). The rendering parameters L̃i ∼ N (Ld, σ), i =
1 . . . nL are sampled from a distribution with mean the target 3DMM environment Ld. We pass one rendered patch T̂ = R(R, L̃i) to our main
network G (Sec. 4.7) and produce the reflectance patches R. The training R∗ and generated R reflectance patches are used for the adversarial
loss LGAN and feature-matching loss LFM . Moreover, the consistency of the predicted patches is improved by including the down-scaled input
texture T(w) in G’s input, and the down-scaled diffuse albedo A

(w)
D in the G’s target. Additionally, we render the training and predicted data,

with each L̃i and define the rendering loss LR, as the average loss for each random environment.

self-occlusion generation during training, with a minimal
footprint, so that our main network can learn to remove it.

4.7 Reflectance Inference with AvatarMe++

Here, we introduce a single rendering-aware image-
translation network which jointly generates all re-
flectance components (AD,AS,ND,NS) from the upsam-
pled 3DMM texture T̂. The motivation behind a single net-
work is three-fold: jointly generating the above reflectance
components: a) enables the introduction of a stochastic
photorealistic rendering loss, which we show that improves
the accuracy and generalization of the network, b) enables
the network to share learned parameters between com-
ponents, decreasing the size and memory requirement of
the network, c) reduces the required inference time, since
only a single forward pass is required. Fig. 6 shows an
overview of this approach. In this manner, we introduce
AvatarMe++ with a novel fast photorealistic differentiable
rendering methodology (Sec. 4.6), an updated model archi-
tecture (Sec. 4.7.1) and a stochastic rendering loss (Sec. 4.7.2)
which greatly improves the the results of AvatarMe.

4.7.1 Combined Image-to-Image Translation Model
We formulate the reflectance acquisition problem, as a
domain adaptation problem and train a single image-
translation network, The network G learns an inverse ren-
dering function, on a UV texture T̂ with baked illumination.

An important challenge of this patch-based inference is
producing consistent patches (especially of diffuse albedo
AD) that can be seamlessly stitched together. We find that
we can alleviate this issue by including the whole texture
T(w) = T↓Ĥp×Ĥp

to G’s input and the diffuse albedo A
(w)
D =

AD↓Ĥp×Ĥp
to G’s output, both downsampled (↓) to the same

size as the training patches. By including T(w),A
(w)
D in the

adversarial loss, we show that the network can learn the
albedo color from the T(w) and apply it when generating
the high-resolution albedo patches.

The input to the generator G is formulated as the 9D
tensor T̂+ = [T̂,NO, T̂

(w)] ∈ RŴ×Ĥ×9. The output is a
13D tensor R+ = [AD,AS,ND,NS,A

(w)
D ] ∈ RŴ×Ĥ×13.

Due to the resolution of our textures, we train the network
on randomized Ĥp × Ĥp patches of T̂+ and R. A(w)

D is
only used for the adversarial loss and ignored at testing.
Therefore, the reflectance R is extracted by the following:

R = [AD,AS,ND,NS] = G([T̂,N, T̂(w)]) (12)

4.7.2 Stochastic Rendering Loss

So far, we have described a single-network G that generates
the facial reflectance R = [AD,AS,ND,NS] (Sec. 4.7.1)
and a fast photorealistic differentiable rendering method
(Sec. 4.6). Therefore, we can now introduce a rendering loss
in the training of G, where the input texture Td is compared
with the predicted reflectance, rendered in the domain Ld

of the input texture. The photorealistic rendering loss is
defined as LR = ‖Td − R(R,Ld)‖2, using Eq. 11. Please
note that R also uses the shape SO which remains static
during training and we omit it to avoid cluttering. A similar
approach has been proposed for planar surfaces under flash
illumination in [55], [57]. To the best of our knowledge, this
is the first attempt on facial BRDF and the first included
in a GAN-based image-translation network. Other facial
acquisition methods (i.e. [4], [14], [19], [60], [77]) that use a
differentiable rendering loss, merely re-project the inferred
texture or use the unrealistic Lambertian model.

The introduction of the above rendering loss leaves the
network unaware of specular features across the whole face,
while it motivates the network to include shading elements
in the diffuse albedo, which could be accurately reproduced
in the rendering. This is mainly because all the training data
are rendered in the same domain of the 3DMM textures used
(Sec. 4.3) and the network can always expect shadows and
highlights at the same places and intensities. Therefore we
take 2 steps to introduce stochasticity to our training data,
similar to [55], which improves our network’s accuracy and
generalization outside the target 3DMM domain.

Firstly, we sample random variations of the estimated
target environment parameters L̃ ∼ N (Ld, σ) in each
training iteration. We use it to render both the input to
the network T̃ = R(R∗, L̃) and the predicted reflectance
R(R, L̃) for the rendering loss. Secondly, for each training
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iteration, we sample additional nL environment parame-
ters, L̃i ∼ N (Ld, σ), i = 1 . . . nL which are not fed to
the network, but are only used to compute an average
rendering loss for these environments. In this manner, we
stochastically approximate all light source directions within
the allowed variation, while also penalizing the network for
over-fitting the target 3DMM environment. Then, for the
ground truth R∗ and the inferred reflectance R, for each
training iteration, the rendering loss LR is defined as:

LR =
1

nL

nL∑

i=0

∥∥∥R(R∗, L̃i)−R(R, L̃i)
∥∥∥
2
, L̃i ∼ N (Ld, σ)

(13)
Overall, the objective of our image-translation network,

which is based on pix2pixHD [46] is defined as:

min
G

(
max
D
LGAN (G,Dk) + λFMLFM (G,Dk) + λRLR

)

(14)
where LGAN (G,Dk) is the sum of adversarial loss and
LFM (G,Dk) is the feature matching loss, for all 3 dis-
criminators of pix2pixHD [46]. The feature matching and
rendering loss terms are controlled by λFM and λR.

5 EXPERIMENTS

5.1 Implementation Details

The task of disentagling the diffuse and specular compo-
nents, from a given input image with baked illumination can
be formulated as an image-to-image translation problem.
Nevertheless, as discussed previously: (a) our captured data
are of very high-resolution (more than 4K) and thus cannot
be used for training “as-is’, due to hardware limitations
(note not even on a 32GB GPU we can fit such high-
resolution data in their original format), (b) pix2pixHD [46]
takes into account only the texture and optionally labels,
and thus geometric details, in the form of the shape and
shape normals cannot be exploited to improve the quality
of the generated diffuse and specular components.

5.1.1 Patch-Based Image-to-Image Translation

To alleviate the aforementioned shortcomings, we split the
original high-resolution data into smaller patches of Ĥp×Ĥp

size. More specifically, using a stride of size 256, we derive
the partially overlapping patches by passing through each
original UV horizontally as well as vertically. For each trans-
lation task we utilize the shape or shape normals, projected
and interpolated in the same UV parameterisation as the
textures. This increases the accuracy and level of detail
in the derived outputs as the geometry act as a “guide”
to the network. Finally, we downsample the whole input
texture to the patch size and include it as well, as we find
it greatly improves the consistency of the predicted patches.
For the AvatarMe++ pipeline, we concatenate them channel-
wise with the texture input and thus feed to the network a
9D tensor comprising of T̂,NO, T̂

(w) and generate a 13D
tensor comprising of AD,AS,ND,NS (Eq. 12) and T̂(w),
which is discarded. During inference, that patch size can be
larger (e.g. 1k×1k), since the network is fully-convolutional.

5.1.2 Training Setup

To train RCAN [72], we use the default hyper-parameters.
For the rest of the translation of models, we use a custom
translation network as described earlier, which is based on
pix2pixHD [46]. More specifically, we use 9 and 3 residual
blocks in the global and local generators, respectively. The
learning rate we used is 0.0002, whereas the Adam betas are
0.5 for β1 and 0.999 for β2. In our best model, we use a fea-
ture matching loss controller of λFM = 10.0 and rendering
loss controller of λR = 0.3, for which perform an ablation
study in the following section. Finally, we use a variable
number of input and outputs as N−dimensional tensors,
based on the implementation (Sec. 4.5.1, 4.5.2, or 4.7). As
mentioned earlier, this substantially improves the results by
accentuating the details and enforcing patch consistency.

5.1.3 Rendering Setup

To implement the facial photorealistic differentiable render-
ing (Sec. 4.6), we extend the recently published PyTorch3D
[20] (version 0.3.0), for its speed, easily modifiable modular
design and its compatibility with our image-translation
network. Specifically, we fully integrate it with the gener-
ator and discriminator networks of our image-translation
network, implement objects for multiple reflectance textures
and implement a texture-space shader, that uses our frame-
work from Sec. 4.6. For the shader’s parameters, i.e. shini-
ness exponent and translucency masks, we use a single
manually created UV map with spatially varying values.

For the self-occlusion prediction, we train an autoen-
coder and a linear regressor that maps light source features
to the autoencoder’s latent values. The encoder and decoder
consist of 5 convolutional blocks, each block having 2 con-
volutional layers with ELU [78], batch normalization [79]
and a down- or up-sampling layer. The hidden layer has
64 features and connects to the encoder and decoder with a
fully connected layer of 256 features.

5.2 Evaluation

To evaluate our reconstruction pipeline, we compare re-
constructed relfectance maps and renderings acquired with
AvatarMe++, with ground truth data captured in a similar
manner as our dataset RealFaceDB, the digital Emily Project
[80] and current state-of-the-art. We use the Mean Squared
Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) [81].
In Table 1, we conduct quantitative comparisons against
the state-of-the-art [23], [51]. As can be seen, our method
outperforms [13] and [23] by a significant margin. All
meshes were manually registered to the same topology
and UV parameterization. Moreover using a state-of-the-
art face recognition algorithm [16], we also find the highest
match of facial identity compared to the input images when
using our method. The input images were compared against
renderings of the faces with reconstructed geometry and
reflectance, including eyes added manually to [23]. We also
present qualitative comparisons in Fig. 7 and Fig. 8.

For the qualitative comparisons, we perform 3D recon-
structions of arbitrary images. As shown in Figs. 7 and 8, our
method does not produce any artifacts in the final render-
ings and successfully handles extreme poses and occlusions
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Input Albedo. [13] Normals [13] Diff. Alb. [23] Spec. Alb. [23] Diffuse Albedo Ours Specular Albedo Ours Spec. Normals Ours

Fig. 7: Reflectance maps produced by our method AvatarMe++, against state-of-the-art methods. Reconstructions of [23] are provided by the
authors and [13] are acquired using their open-sourced models.

Input Chen et al. [13] Yamaguchi et
al. [23]

Ours,
AvatarMe++

Fig. 8: Qualitative comparison of rendered reconstructions from a
frontal and challenging side image. [23] results are provided by the
authors and [13] results are acquired from their open-sourced models.

TABLE 1: Quantitative comparisons with state-of-the-art, between 6 re-
constructions of the same subject, from different “in-the-wild“ images,
and ground truth using [32]. We transform [13], [23] results to our UV
topology and compute only for a 2K × 2K centered crop, as they only
produce the frontal part of the face and manually add eyes to [23].

Algorithm [23] [13] AvatarMe AvatarMe++

PSNR (Albedo) 11.225 14.374 24.05 26.18
PSNR (Normals) 21.889 17.321 26.97 27.12
MSE (Albedo) 0.0225 0.0140 0.0049 0.0038
MSE (Normals) 0.0047 0.0049 0.0031 0.0025
Rendered ID Score [16] 0.629 0.632 0.873 0.881

such as sunglasses. We infer the texture maps in a patch-
based manner from high-resolution input, which produces
higher-quality details than [13] and [23], who train on high-
quality scans but infer the maps for the whole face, in lower
resolution. This is also apparent in Fig. 9 and Fig. 16, which
shows our reconstruction after each step of our process.
Moreover, we can successfully acquire each component from
black-and-white images (Fig. 7) and even paintings (Fig. 12).

Furthermore, we experiment with different environment
conditions, in the input images and while rendering. As pre-

Input
Diff.Alb. Spec.Alb. Diff.Nor. Spec.Nor.

Fig. 9: Comparison of AvatarMe++ predicted reflectance with ground
truth. Left: Patch of rendered test subject in target domain, Top row:
predicted reflectance with our method, Bottom row: ground truth.

sented in Fig. 10, the extracted normals, diffuse and specular
albedos are consistent, regardless of the illumination on the
original input images. Moreover, Fig. 12 shows different
subjects rendered under different environments. We can
realistically illuminate each subject in each scene and ac-
curately reconstruct the environment reflectance, including
detailed specular reflections and subsurface scattering.

Input Diff.Alb. Sp.Alb. Sp.Norm Render

Fig. 10: Consistency of AvatarMe++ on varying conditions, from the
Digital Emily Project [80]. We calculate on average 30.94 PSNR and
0.0007 MSE between our results. Compared to the ground truth from
[80], we achieve on average 0.0083 MSE and 20.13 PSNR on albedo
and and 0.011 MSE and 24.02 PSNR on normals.
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Input Diffuse Albedo Specular Albedo Spec. Normals

Fig. 11: Generalization of AvatarMe++: Training AvatarMe++ with
stochastically varied rendering scene parameters and our rendering
loss (Sec. 4.7.2), makes the network domain-agnostic to an extend. Here
we show results of a single AvatarMe++ network, on reconstructions
and captured data, registered to our topology. From top to bottom: a)
Reconstructed subject, with Facial Details Synthesis proxy and texture
[13], b) Reconstructed subject with OSTeC fitting and texture comple-
tion [70], c) Captured subject from FaceScape [82], d) Captured subject
from Superface [83], e) Captured subject with 3dMDface (3dmd.com).

TABLE 2: Method components ablation. Training time is given per
training iteration, testing time is given for the inference of whole
Ŵ×Ĥ textures. AvatarMe time includes the training time for all 4 of its
networks. We measure the mean squared error (MSE) between ground
truth and inferred reflectance maps, for the test set T (Sec 5.3.1).

Method Train time Test time MSE

AvatarMe (Sec. 4.5) 22.8 15.98 0.0079
Single Network (Sec. 4.7.1) 8.0 6.35 0.0080
+ Rendering loss (Sec. 4.7.1) 14.4 6.48 0.0075
+ Whole low-res texture (Sec. 4.7.1) 14.8 9.31 0.0066
+ Random environment (Sec. 4.7.2) 14.8 9.35 0.0055
+ Multiple random env. (Sec. 4.7.2) 24.0 9.35 0.0048
+ Occl. AE (Sec. 4.6.4) (AvatarMe++) 28.8 9.35 0.0043

5.3 Ablation

5.3.1 Method Components and Variants
We investigate the importance of the various components of
our method, when added on the base network. We create
a test set T = {R(Ri,Lj)}, by rendering 5 test subjects
from our captured dataset, RealFaceDB, with reflectance
Rj , in 10 total illumination environments Lj including: a)
the 3DMM-target environment (Sec. 4.3), b) −/+ 30% light
source variation in position, c)−/+30% in intensity from a),
and d) directional front and side illumination. We compare
the mean squared error, between the ground truth and the
model’s predicted reflectance and the rendering of the pre-
diction in the source testing environment, as well as in the
target environment. Testing in various illumination environ-
ments evaluates the generalization abilities of our networks,

(a) Input (b) Cathedral (c) Night Street (d) Sunset

Fig. 12: AvatarMe++ results rendered in different environments.

outside the target environment. We plot both inference and
re-rendering error in Fig. 13 and show the reconstructed
diffuse albedo AD in Fig. 14. Moreover, although using
a single network reduces the training and inference time
by about 75%, the additional rendering adds a significant
overhead in training time, but does not significantly increase
testing time. We show this trade-off between reconstruction
quality and training and testing time Table 2.

The introduction of the stochastic rendering loss
(Sec. 4.7.2) enables AvatarMe++ to generalize to facial
textures with different environments, while AvatarMe is
trained only on the target 3DMM environment. Fig. 13
shows the quantitative improvement of AvatarMe++ on the
test set T with 10 different environments, two of which are
shown in Fig. 14. Finally, Fig. 11 shows the network’s ability
to generalize to textures obtained from different datasets
(i.e. [82], [83]) and acquisitions methods (i.e. [46], [70]).

5.3.2 Network and Rendering Hyper-parameters
Training the network on 4 Tesla V100 GPUs takes about
one day for a base single network (Sec. 4 or Sec. 4.7.1) and
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(a) AvatarMe
(Sec. 5.3)

(b) Single Network
(Sec. 5.4.1)

(c) + 
Rendering loss

(Sec. 5.4.1)

(d) + Whole
low-res texture

(Sec. 5.4.1)

(e) + Random
evnironment
(Sec. 5.4.2)

(f) + Multiple
random env.
(Sec. 5.4.2)

(g) + Occlusion
AE (Sec. 4.4)

(AvatarMe+ + )

0.000

0.002

0.004

0.006

0.008
M

SE
Diffuse Albedo
Specular Albedo

Specular Normals
Re-render average

Re-render (target)
Re-render (extreme)

Fig. 13: Quantitative ablation results for the different variations of our method. From left to right, we start with the base AvatarMe and introduce
each component of AvatarMe++. Each variation is applied on test set T (Sec. 5.3.1). We measure the mean squared error (MSE) between ground
truth and prediction’s relfectance, and re-rendering in the target environment and an extreme side illumination environment used in T .

(a) Input (b) AvatarMe
(Sec. 4.5)

(c) Single
Network

(Sec. 4.7.1)

(d) + Rendering
loss

(Sec. 4.7.2)

(e) + Whole
low-res texture

(Sec. 4.7.1)

(f) + Random
environment
(Sec. 4.7.2)

(g) + Multiple
random env.
(Sec. 4.7.2)

(h) + Occlusion
AE (Sec. 4.6.4)
(AvatarMe++)

(i) Ground Truth

Fig. 14: From left to right, rendered test image, predicted diffuse albedo AD from each of the main method variations and the ground truth
diffuse albedo A∗

D. Top row input is rendered in our target environment, bottom row in an extreme side illumination environment from T .

Input AvatarMe ND AvatarMe AS AvatarMe NS

Input AvatarMe++ ND AvatarMe++ AS AvatarMe++ NS

Fig. 15: Predicted diffuse normals ND, specular albedo AD, and spec-
ular normals details NS in tangent space, between AvatarMe (Sec.4.5)
and AvatarMe++. Diffuse albedo AD comparison included in Fig. 14.

(a) Input (b) 3DMM
Recon [4]

(c) Ours,
3DMM Super

Res.

(d) Ours,
AvatarMe

(e) Ours,
AvatarMe++

Fig. 16: Comparison of our shape reconstruction (left) and rendering
(right) between the 3DMM fitting with GANFIT [4], upsampled texture
(Sec. 4.4), AvatarMe (Sec. 4.5) and AvatarMe++ (Sec. 4.7).

up to three days for the complete method, with multiple
rendering loss computations and self-occlusion in rendering
(Sec. 4.7.2). Given these restrictions, we perform a study
on the effect of the important hyper parameters. We train
the complete method with different seeds and record an
average 3.14% standard deviation in the error of reflectance
reconstruction and 5.37% standard deviation in the error of
re-rendered textures. All the other results are reported using
the same seed for all stochastic operations. The impact of the
rendering loss controller λR (Eq. 14) is shown in Fig. 17. We

0.2 0.4 0.6 0.8 1.0
Rendering loss R

0.003

0.004

0.005

0.006

0.007
M

SE

Average R reconstruction MSE
Average re-rendering MSE

Fig. 17: The effect of different values of the rendering loss controller
λR (Eq. 14) in the average reflectance R reconstruction for 5 subjects
rendered in 10 different environments and the average re-rendering
mean squared truth with the ground-truth.

find λR = 0.3 to yield the best results.
Table 3 shows the effect of the scene variation hyper-

parameters when training with randomized light source l,
camera direction v and light source intensity cl. We find the
best results at up to 50% variation in light source position,
and up to 25% in camera position and light source intensity.
Finally, Table 3 shows the effect of the number of random
scenes nL used to evaluate the rendering loss (Eq. 13). We
find a significant improvement in using 2 scenes instead
of 1, and a smaller improvement when adding additional
scenes. However each additional rendering loss evaluation
introduces a trade-off with computational time.

5.4 Limitations

While our dataset contains a relatively large number of
subjects, it does not contain sufficient examples of subjects
from certain ethnicities (Sec. 3.2). Despite our effective train-
ing data augmentation, we find that the predicted diffuse
albedo for subjects of the lightest or darkest skin types,
produces patches of inconsistent intensity and the specular
normals of older subjects are reconstructed sub-optimally.
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TABLE 3: Ablation study for rendering loss hyper-parameters. Com-
parison of reflectance prediction and re-rendering error for variation
in scene parameters (light source position l, camera view direction v
light source intensity cl) around the target environment (top table), and
number of random scenes evaluated nL in the rendering loss (bottom
table) (Sec. 4.7.2). Average error reported for test set T (Sec. 5.3.1).

Scene Variation Results

l v cl Recon. MSE Render MSE

0% 0% 0% 0.0055 0.0059
50% 25% 25% 0.0043 0.0030
75% 50% 50% 0.0051 0.0036

Evaluations nL Train Time Recon. MSE Render MSE

1 15.6 0.0054 0.0037
2 22.4 0.0045 0.0032
3 28.8 0.0043 0.0030

Moreover, the accuracy of facial reconstruction is not com-
pletely independent of the quality of the input photograph,
and well-lit, higher resolution photographs produce more
accurate results, depending on the 3DMM method used.
Additionally, we show that our method can generalize to
various reconstruction and capturing methods, however, the
model expects their light sources to be in front of the subject.
Finally, our renderer models self-occlusion but not occlusion
from foreign objects. This could be modeled by augmenting
our dataset with randomized occlusions.

6 CONCLUSION

In this paper, we propose the first methodology that
produces high-quality rendering-ready face reconstructions
from arbitrary “in-the-wild” images. We build upon recently
proposed 3D face reconstruction techniques and train an im-
age translation network that can perform estimation of high
quality (a) diffuse and specular albedo, and (b) diffuse and
specular normals. This is made possible with a large training
dataset of 200 faces acquired with high quality facial capture
techniques and a fast photorealistic differentiable rendering
framework. We demonstrate that it is possible to produce
rendering-ready faces from arbitrary face images varying in
pose, occlusions, etc., including black-and-white and drawn
portraits. Our results exhibit unprecedented level of detail
and realism in the reconstructions, while preserving the
identity of subjects in the input photographs.
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L. Chevallier, “Practical face reconstruction via differentiable ray
tracing,” in Computer Graphics Forum, vol. 40, no. 2. Wiley Online
Library, 2021, pp. 153–164.

[62] M. B. R, A. Tewari, T.-H. Oh, T. Weyrich, B. Bickel, H.-P. Seidel,
H. Pfister, W. Matusik, M. Elgharib, and C. Theobalt, “Monocular
reconstruction of neural face reflectance fields,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2021, pp. 4791–4800.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

[63] S. Bi, S. Lombardi, S. Saito, T. Simon, S.-E. Wei, K. Mcphail,
R. Ramamoorthi, Y. Sheikh, and J. Saragih, “Deep relightable
appearance models for animatable faces,” ACM Transactions on
Graphics (TOG), vol. 40, no. 4, pp. 1–15, 2021.

[64] C. Kampouris and A. Ghosh, “ICL multispectral light stage:
building a versatile LED sphere with off-the-shelf components,” in
Proceedings of the Eurographics 2018 Workshop on Material Appearance
Modeling, ser. EG MAM ’18. Eurographics Association, Jul. 2018.

[65] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion re-
visited,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[66] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm,
“Pixelwise view selection for unstructured multi-view stereo,” in
European Conference on Computer Vision (ECCV), 2016.

[67] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic, “A
Semi-automatic Methodology for Facial Landmark Annotation,”
in 2013 IEEE Conference on Computer Vision and Pattern Recognition
Workshops. IEEE, Jun. 2013, pp. 896–903.

[68] B. Amberg, S. Romdhani, and T. Vetter, “Optimal Step Nonrigid
ICP Algorithms for Surface Registration,” in 2007 IEEE Conference
on Computer Vision and Pattern Recognition, Jun. 2007, pp. 1–8.

[69] C. Donner and H. W. Jensen, “A spectral bssrdf for shading human
skin.” Rendering techniques, vol. 2006, pp. 409–418, 2006.

[70] B. Gecer, J. Deng, and S. Zafeiriou, “Ostec: One-shot texture
completion,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 7628–7638.

[71] K. Nishino and S. K. Nayar, “Eyes for relighting,” ACM Transac-
tions on Graphics, vol. 23, no. 3, pp. 704–711, Aug. 2004.

[72] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image
Super-Resolution Using Very Deep Residual Channel Attention
Networks,” 2018, pp. 286–301.

[73] D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi, “Effi-
ciently combining positions and normals for precise 3D geometry,”
ACM Transactions on Graphics, vol. 24, no. 3, pp. 536–543, Jul. 2005.

[74] J. F. Blinn and M. E. Newell, “Texture and reflection in computer
generated images,” Communications of the ACM, vol. 19, no. 10, pp.
542–547, Oct. 1976.

[75] G. Borshukov and J. P. Lewis, “Realistic human face rendering
for “the matrix reloaded”,” in ACM SIGGRAPH 2005 Courses.
Association for Computing Machinery, July 2005.

[76] J. Hable, “Uncharted 2:, character lighting and shading,” in SIG-
GRAPH Advances in Real-Time Rendering in Games course, July 2010.

[77] A. Tewari, M. Zollhofer, H. Kim, P. Garrido, F. Bernard, P. Perez,
and C. Theobalt, “MoFA: Model-Based Deep Convolutional Face
Autoencoder for Unsupervised Monocular Reconstruction,” 2017.

[78] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” in 4th
International Conference on Learning Representations, ICLR, 2016.

[79] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Interna-
tional conference on machine learning. PMLR, 2015, pp. 448–456.

[80] O. Alexander, M. Rogers, W. Lambeth, J.-Y. Chiang, W.-C. Ma, C.-
C. Wang, and P. Debevec, “The Digital Emily Project: Achieving a
Photorealistic Digital Actor,” IEEE Computer Graphics and Applica-
tions, vol. 30, no. 4, pp. 20–31, Jul. 2010.

[81] A. Hore and D. Ziou, “Image quality metrics: PSNR vs. SSIM,” in
2010 20th international conference on pattern recognition. IEEE, 2010.

[82] H. Yang, H. Zhu, Y. Wang, M. Huang, Q. Shen, R. Yang, and
X. Cao, “FaceScape: A Large-Scale High Quality 3D Face Dataset
and Detailed Riggable 3D Face Prediction,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR, 2020, pp. 601–610.

[83] S. Berretti, A. D. Bimbo, and P. Pala, “Superfaces: A super-
resolution model for 3d faces,” in ECCV Workshops (1), 2012.

Alexandros Lattas is a PhD candidate in the
Department of Computing, Imperial College Lon-
don, under the supervision of Prof Stefanos
Zafeiriou and Dr Abhijeet Ghosh. He received
his BSc in Management & Technology (Software
Engineering) from the Athens University of Eco-
nomics and Business (AUEB), Greece, in 2017.
He joined the department of computing at Impe-
rial College London, in October 2017, where he
pursued an MSc in Advanced Computing. His in-
terests lie in the field of photorealistic 3D human

modeling with Deep Learning, 3D Computer Vision and Graphics.

Stylianos Moschoglou received his
Diploma/MEng in Electrical and Computer
Engineering from Aristotle University of
Thessaloniki, Greece, in 2014. In 2015-16, he
pursued an MSc in Computing (specialization
Artificial Intelligence) at Imperial College
London, U.K., where he completed his project
under the supervision of Dr. Stefanos Zafeiriou.
He is currently a PhD student at the Department
of Computing, Imperial College London, under
the supervision of Dr. Stefanos Zafeiriou. His

interests lie within the area of Machine Learning and in particular in
Generative Adversarial Networks and Component Analysis.

Stylianos Ploumpis received the Diploma and
MEng in Production Engineering & Management
from Democritus University of Thrace, Greece
(D.U.T.H.), in 2013. He joined the department of
computing at Imperial College London, in Octo-
ber 2015, where he pursued an MSc in Comput-
ing specializing in Machine Learning. Currently,
he is a PhD candidate/Researcher at the Depart-
ment of Computing at Imperial College, under
the supervision of Dr. Stefanos Zafeiriou. His
research interests lie in the field of 3D Computer

Vision, Pattern Recognition and Machine Learning.

Baris Gecer is a PhD. student in the Depart-
ment of Computing, Imperial College London,
under the supervision of Dr. Stefanos Zafeiriou.
His main research interests are photorealistic
3D Face modeling and synthesis by Generative
Adversarial Nets and Deep Learning. He ob-
tained his M.S. degree from Bilkent University
Computer Engineering department under the su-
pervision of Prof. Selim Aksoy in 2016 and ob-
tained his undergraduate degree in Computer
Engineering from Hacettepe University in 2014.

Abhijeet Ghosh is a Reader (Sr. Associate Pro-
fessor) in Graphics & Imaging within the De-
partment of Computing at Imperial College Lon-
don, and an Adjunct Professor of Computer Sci-
ence at NTNU, Norway. He leads the Realistic
Graphics and Imaging group and his current re-
search interests include appearance modeling,
and computational illumination and photography
for graphics and vision. His research has been
supported with a Royal Society Wolfson Re-
search Merit Award, a Google Faculty Research

Award, and an EPSRC Early Career Fellowship.

Stefanos Zafeiriou is a Professor in Machine
Learning and Computer Vision with the Dept. of
Computing, Imperial College London, London,
U.K, and an EPSRC Early Career Research Fel-
low. Between 2016-2020 he was also a Distin-
guishing Research Fellow with the University of
Oulu under Finish Distinguishing Professor Pro-
gramme. He was a recipient of the Prestigious
Junior Research Fellowships from Imperial Col-
lege London in 2011. He was the recipient of the
President’s Medal for Excellence in Research

Supervision for 2016. He served Associate and Guest Editor in various
journals including IEEE Trans. Pattern Analysis and Machine Intelli-
gence, International Journal of Computer Vision, IEEE Transactions on
Affective Computing, Computer Vision and Image Understanding, IEEE
Transactions on Cybernetics the Image and Vision Computing Journal.



1

Supplemental Materials for
AvatarMe++: Facial Shape and BRDF Inference

with Photorealistic Rendering-Aware GANs
Alexandros Lattas, Stylianos Moschoglou, Stylianos Ploumpis,

Baris Gecer, Abhijeet Ghosh, Stefanos Zafeiriou

F

1 AVATARME++ GENERALIZATION RESULTS

Training AvatarMe++ with stochastically varied rendering scene parameters, makes the network domain-agnostic to an
extend, depending on the degree of variation. In this manner, the generalization of AvatarMe++ is significantly increased,
when compared to AvatarMe [1]. Below, we show the results of Fig. 11 of the main manuscript, in high resolution, and
compare them with the results of AvatarMe.

Specifically, we acquire various textures with baked illumination from different 3DMM fitting methods [2], [3], datasets
[4], [5] and the 3DMD capturing system. We register them to the same template and transform the textures to our topology,
before feeding them to the final AvatarMe and AvatarMe++ networks, used for the results in the main manuscript. Please
note that only a single network is trained for AvatarMe++ and used for all examples on this document, having a single
target environment and the stochastic rendering loss, as explained in our method section. Fig. 1 shows the comparison of
generated diffuse albedo, Fig. 2 shows the comparison of generated specular albedo and Fig. 3 shows the comparison of
generated specular normals.
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Input Diffuse Albedo (AvatarMe) Diffuse Albedo (AvatarMe++)

Fig. 1: Generalization of AvatarMe [1], compared to AvatarMe++: Diffuse Albedo from top to bottom: a) Reconstructed subject, with Facial Details
Synthesis [3] proxy and texture, b) Reconstructed subject with OSTeC [2] fitting and texture completion, c) Captured subject from FaceScape [5]
dataset, d) Captured subject from Superface [4] dataset, e) Captured subject with a 3dMDface system (https://3dmd.com).
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Input Spec. Alb. AvatarMe Spec. Alb. AvatarMe++

Fig. 2: Generalization of AvatarMe [1], compared to AvatarMe++: Specular Albedo from top to bottom: a) Reconstructed subject, with Facial Details
Synthesis [3] proxy and texture, b) Reconstructed subject with OSTeC [2] fitting and texture completion, c) Captured subject from FaceScape [5]
dataset, d) Captured subject from Superface [4] dataset, e) Captured subject with a 3dMDface system (https://3dmd.com).
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Input Specular Normals (AvatarMe) Specular Normals (AvatarMe++)

Fig. 3: Generalization of AvatarMe [1], compared to AvatarMe++: Specular Normals (in tangent space) from top to bottom: a) Reconstructed subject,
with Facial Details Synthesis [3] proxy and texture, b) Reconstructed subject with OSTeC [2] fitting and texture completion, c) Captured subject
from FaceScape [5] dataset, d) Captured subject from Superface [4] dataset, e) Captured subject with a 3dMDface system (https://3dmd.com).


