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Query-Efficient Black-box Adversarial Attacks
Guided by a Transfer-based Prior

Yinpeng Dong†, Shuyu Cheng†, Tianyu Pang, Hang Su, and Jun Zhu‡, Senior Member, IEEE

Abstract—Adversarial attacks have been extensively studied in recent years since they can identify the vulnerability of deep learning
models before deployed. In this paper, we consider the black-box adversarial setting, where the adversary needs to craft adversarial
examples without access to the gradients of a target model. Previous methods attempted to approximate the true gradient either by
using the transfer gradient of a surrogate white-box model or based on the feedback of model queries. However, the existing methods
inevitably suffer from low attack success rates or poor query efficiency since it is difficult to estimate the gradient in a high-dimensional
input space with limited information. To address these problems and improve black-box attacks, we propose two prior-guided random
gradient-free (PRGF) algorithms based on biased sampling and gradient averaging, respectively. Our methods can take the advantage
of a transfer-based prior given by the gradient of a surrogate model and the query information simultaneously. Through theoretical
analyses, the transfer-based prior is appropriately integrated with model queries by an optimal coefficient in each method. Extensive
experiments demonstrate that, in comparison with the alternative state-of-the-arts, both of our methods require much fewer queries to
attack black-box models with higher success rates.

Index Terms—Adversarial examples, black-box attacks, zeroth-order optimization, query efficiency, transferability.
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1 INTRODUCTION

D ESPITE the significant success of deep learning models
on various tasks [1], the security and reliability of these

models have been challenged in the presence of adversarial
examples [2], [3], [4], [5]. The maliciously crafted adversarial
examples aim at causing misclassification of a target model
by applying human imperceptible perturbations to natural
examples. It has garnered increasing attention to study the
generation of adversarial examples (i.e., adversarial attack),
which is indispensable to discover the weaknesses of deep
learning algorithms [3], [6], [7]. Adversarial attacks therefore
serve as a surrogate to evaluate robustness [8], [9], [10], and
consequently contribute to the design of more robust deep
learning models [4], [9], [11].

Adversarial attacks are predominantly categorized into
white-box attacks and black-box attacks according to different
accessibility to the target model. Getting access to the model
architecture, parameters and especially gradients, an adver-
sary can adopt various gradient-based methods [4], [5], [8],
[9] to generate adversarial examples under the white-box
setting, such as the fast gradient sign method (FGSM) [4],
projected gradient descent method (PGD) [9], etc. By con-
trast, under the more challenging black-box adversarial set-
ting, the adversary has no or limited knowledge about the
target model, and therefore needs to generate adversarial
examples without any gradient information. In various real-
world applications, the black-box setting is more practical
than the white-box counterpart [12], [13].
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Tremendous efforts have been made to develop black-
box adversarial attacks [12], [13], [14], [15], [16], [17], [18],
[19], [20]. A common idea of these techniques is to utilize
an approximate gradient instead of the true but unknown
gradient for generating adversarial examples. The approx-
imate gradient can either stem from the gradient of a sur-
rogate white-box model (termed as transfer-based attacks) or
be numerically estimated by the zeroth-order optimization
algorithms (termed as query-based attacks).

In transfer-based attacks, adversarial examples produced
for a surrogate model are probable to remain adversarial for
the target model due to the transferability [21], [22]. Recent
methods have been introduced to improve the transferabil-
ity by adopting a momentum optimizer [16] or performing
input augmentations [7], [23]. However, the success rate of
transfer-based attacks is still far from satisfactory. This is
because that there lacks an adjustment procedure when the
gradient of the surrogate model points to a non-adversarial
region of the target model. In query-based attacks, the true
gradient can be estimated by various methods, such as finite
difference [15], [17], random gradient estimation [18] and
natural evolution strategies [12]. Although these methods
usually result in a higher attack success rate compared with
the transfer-based attack methods [15], [17], they inevitably
require a tremendous number of queries to perform a suc-
cessful attack. The query inefficiency primarily comes from
the under-utilization of priors, since the current methods are
nearly optimal to estimate the gradient [19].

To overcome the aforementioned problems and improve
black-box adversarial attacks, we propose two prior-guided
random gradient-free (PRGF) algorithms based on biased
sampling (BS) and gradient averaging (GA), respectively,
which can utilize a transfer-based prior for query-efficient
black-box attacks. The transfer-based prior originated from
the gradient of a surrogate white-box model contains abun-
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dant prior knowledge of the true gradient. Despite the same
goal, the two proposed methods utilize the transfer gradient
in different ways. Specifically, our first method, abbreviated
as PRGF-BS, provides a gradient estimate by querying the
target model with random samples that are biased towards
the transfer gradient and acquiring the corresponding loss
values. Our second method, denoted as PRGF-GA, performs
a weighted average of the transfer gradient and the gradient
estimate provided by the ordinary random gradient-free
(RGF) method [24], [25], [26]. Under the gradient estimation
framework, we provide theoretical analyses on deriving the
optimal coefficients of controlling the strength of the transfer
gradient in both algorithms.

Furthermore, our methods are flexible to integrate other
prior information. As a concrete example, we incorporate
the commonly used data-dependent prior [19] into our algo-
rithms along with the transfer-based prior. We also provide
theoretical analyses on how to embrace both priors appro-
priately. Besides, we extend our methods to the scenario that
multiple surrogate models are available, as studied in [16],
[22], in which we can further boost the attack performance
with a more effective transfer-based prior. Extensive exper-
iments demonstrate that both of our methods significantly
outperform the previous state-of-the-art methods in terms of
black-box attack success rate and query efficiency, verifying
the superiority of our algorithms for black-box attacks.

This paper substantially extends and improves the con-
ference version [27]. We additionally propose a new PRGF
algorithm based on gradient averaging and integrate it with
the data-dependent prior. We also consider the scenario that
multiple surrogate models are available and provide a sub-
space projection method to extract a more effective transfer-
based prior. Besides, we conduct additional experiments by
comparing more methods, using different surrogate models,
and considering another dataset, to show the superiority of
our methods. Overall, we make the following contributions:

1) We propose to improve black-box adversarial attacks
by incorporating a transfer-based prior given by the
gradient of a surrogate model. The transfer-based
prior provides abundant prior information of the
true gradient due to the adversarial transferability.

2) We develop two prior-guided random gradient-free
(PRGF) algorithms to utilize the transfer-based prior,
based on biased sampling and gradient averaging,
respectively. Theoretical analyses derive the optimal
coefficients of integrating the transfer-based prior.

3) We demonstrate the flexibility of our algorithms by
incorporating the widely used data-dependent prior
and considering multiple surrogate models.

4) We validate that the proposed methods can improve
the success rate of black-box adversarial attacks and
reduce the requisite numbers of queries significantly
compared with the state-of-the-art methods.

The rest of the paper is organized as follows. Section 2
reviews the background and related work on black-box
adversarial attacks. Section 3 introduces the gradient es-
timation framework. Section 4 and Section 5 present the
proposed PRGF algorithms, and their extensions with data-
dependent priors and multiple surrogate models. Section 6
presents empirical studies. Finally, Section 7 concludes.

2 BACKGROUND

2.1 Adversarial Setup
Given a classifier C(x) and an input-label pair (x, y) where
x ∈ RD , the goal of attacks is to generate an adversarial
example xadv that is misclassified by C while the distance
between the adversarial example xadv and the natural one
x measured by the `p norm is smaller than a threshold ε as

C(xadv) 6= y, s.t. ‖xadv − x‖p ≤ ε. (1)

Note that formulation (1) corresponds to an untargeted
attack. We present our framework and algorithms based on
untargeted attacks for clarity, while the extension to targeted
ones is straightforward.

An adversarial example can be generated by solving the
constrained optimization problem as

xadv = arg max
x′:‖x′−x‖p≤ε

f(x′, y), (2)

where f is a loss function on top of the classifier C(x), e.g.,
the cross-entropy loss. Several gradient-based methods [4],
[5], [8], [9], [16] have been proposed to solve this optimiza-
tion problem. The typical projected gradient descent method
(PGD) [9] iteratively generates adversarial examples as

xadvt+1 = ΠBp(x,ε)(x
adv
t + η · gt), (3)

where Bp(x, ε) = {x′ : ‖x′ − x‖p ≤ ε} denotes the `p ball
centered at x with radius ε, Π is the projection operation,
η is the step size, and gt is the normalized gradient under
the `p norm, e.g., gt =

∇xf(xadvt ,y)

‖∇xf(xadvt ,y)‖2
under the `2 norm,

and gt = sign(∇xf(xadvt , y)) under the `∞ norm. Those
methods such as PGD require full access to the gradients
of the target model, which are known as white-box attacks.

2.2 Black-box Attacks
In contrast to white-box attacks, black-box attacks have no
or limited knowledge about the target model, which can be
challenging yet practical in various real-world applications.
We can still adopt the PGD method to generate adversarial
examples, except that the true gradient ∇xf(x, y) is usually
replaced by an approximate gradient. Black-box attacks can
be roughly divided into transfer-based attacks and query-
based attacks. Transfer-based attacks depend on the gradi-
ent of a surrogate white-box model to generate adversarial
examples, which are probable to fool the black-box model
due to the transferability [21], [22]. Some query-based at-
tacks estimate the gradient by the zeroth-order optimization
methods, when the loss values could be accessed through
queries. Chen et al. [15] propose to estimate the gradient at
each coordinate by the symmetric difference quotient [28] as

ĝi =
f(x+ σei, y)− f(x− σei, y)

2σ
≈ ∂f(x, y)

∂xi
, (4)

where σ is a small constant and ei is the i-th unit basis
vector. Although query-efficient mechanisms have been de-
veloped [15], [17], the coordinate-wise gradient estimation
inherently leads to the query complexity being proportional
to the input dimension D, which is prohibitively large with
a high-dimensional input space, e.g., D ≈ 270,000 for Im-
ageNet [29]. To improve query efficiency, the approximated
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gradient ĝ can be obtained by the random gradient-free
(RGF) method [24], [25], [26] as

ĝ =
1

q

q∑

i=1

ĝi, with ĝi =
f(x+ σui, y)− f(x, y)

σ
· ui, (5)

where {ui}qi=1 are the random vectors sampled indepen-
dently from a pre-defined distribution P on RD and σ is the
parameter to control the sampling variance. It can be noted
that ĝi → u>i ∇xf(x, y) · ui when σ → 0, which is nearly an
unbiased estimator of the gradient when E[uiu

>
i ] = I [26].

In practice, the final gradient estimator ĝ is averaged over
q random directions to reduce the variance. [12] relies on
the natural evolution strategies (NES) [30] to estimate the
gradient, which is another variant of Eq. (5). The difference
is that [12] conducts the antithetic sampling over a Gaussian
distribution. Ilyas et al. [19] prove that these methods are
nearly optimal to estimate the gradient, but the query effi-
ciency could be improved by incorporating informative pri-
ors. They identify the time- and data-dependent priors for
black-box attacks. Different from those alternative methods,
our adopted transfer-based prior is more effective as shown
in the experiments. Moreover, the transfer-based prior can
also be used simultaneously with other priors. We demon-
strate the flexibility of our algorithms by incorporating the
commonly used data-dependent prior as an example.

2.3 Attacks based on both Transferability and Queries
There are also several works that utilize both the transfer-
ability of adversarial examples and the model queries for
black-box attacks. A local substitute model can be trained
to mimic the black-box model with a synthetic dataset, in
which the labels are given by the black-box model through
queries [14], [21]. Then the black-box model can be evaded
by the adversarial examples crafted for the substitute model
based on the transferability. A meta-model [31] can reverse-
engineer the black-box model and predict its attributes (e.g.,
architecture, optimization procedure, and training samples)
through a sequence of model queries. Given the predicted
attributes of the black-box model, the attacker can find sim-
ilar surrogate models, which exhibit better transferability of
the generated adversarial examples against the black-box
model. All of these methods use queries to obtain knowl-
edge of the black-box model, and train/find surrogate mod-
els to generate adversarial examples, with the purpose of
improving the transferability. However, we do not optimize
the surrogate model, but focus on utilizing the gradient(s)
of a (multiple) fixed surrogate model(s) to obtain a more
accurate gradient estimate.

Although a recent work [32] also uses the gradient of a
surrogate model to improve the query efficiency of black-
box attacks, it focuses on a different attack scenario, where
the adversary can only acquire the hard-label outputs, but
we consider the adversarial setting that the loss values can
be accessed. Moreover, this method controls the strength of
the transfer gradient by a preset hyperparameter, but we ob-
tain its optimal value through theoretical analyses based on
the gradient estimation framework. It is worth mentioning
that a similar but independent work [33] also uses surrogate
gradients to improve zeroth-order optimization, but they do
not apply their method to black-box adversarial attacks.

3 GRADIENT ESTIMATION FRAMEWORK

Before we delve into the details of the proposed methods,
we first introduce the gradient estimation framework in this
section, which builds up the foundation of our theoretical
analyses.

The key problem in black-box adversarial attacks is to
estimate the gradient of a target model, which can then be
used to carry out gradient-based attacks. The goal of this
work is to estimate the gradient ∇xf(x, y) of the black-
box model f more accurately to improve black-box attacks.
We denote the gradient ∇xf(x, y) by ∇f(x) in the sequel
for notation clarity. We assume that ∇f(x) 6= 0 in this
paper. The objective of gradient estimation is to find the
best estimator that approximates the true gradient ∇f(x)
by reaching the minimum value of the loss function as

ĝ∗ = arg min
ĝ∈G

L(ĝ), (6)

where ĝ is a gradient estimator given by any estimation
algorithm, G is the set of all possible gradient estimators,
and L(ĝ) is a loss function to evaluate the performance of
the estimator ĝ. Specifically, we let the loss function of the
gradient estimator ĝ be

L(ĝ) = min
b≥0

E‖∇f(x)− bĝ‖22, (7)

where the expectation is taken over the randomness of the
estimation algorithm to obtain ĝ. We define the loss L(ĝ)
to be the minimum expected squared `2 distance between
the true gradient ∇f(x) and the scaled estimator bĝ. The
previous work [18] considers the expected squared `2 dis-
tance E‖∇f(x) − ĝ‖22 as the loss function, which is similar
to ours. However, the value of their adopted loss function
will change with different magnitudes of the estimator ĝ
(i.e., scaling ĝ can cause varying loss values). In the process
of generating adversarial examples, the gradient is usually
normalized [4], [5], [9], indicating that the direction of the
gradient estimator, instead of the magnitude, will affect
the performance of attacks. Thus, we incorporate a scaling
factor b in Eq. (7) and minimize the error w.r.t. b, which
can neglect the impact of the magnitude on the loss of the
estimator ĝ.

4 METHODS

In this section, we present the two proposed prior-guided
random gradient-free (PRGF) methods, which are variants
of the ordinary random gradient-free (RGF) method. Recall
that in RGF, the gradient is estimated through a set of
random vectors {ui}qi=1 as in Eq. (5) with q being the total
number. Directly using RGF without prior information (i.e.,
sampling ui from an uninformative distribution such as a
uniform distribution) will result in poor query efficiency as
demonstrated in our experiments. Therefore, we propose to
improve the RGF estimator by utilizing the transfer-based
prior, through either biased sampling or gradient averaging.

We denote the normalized transfer gradient of a surro-
gate model as v such that ‖v‖2 = 1, and the cosine similarity
between the transfer gradient and the true gradient as

α = v>∇f(x), with ∇f(x) =
∇f(x)

‖∇f(x)‖2
, (8)
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where ∇f(x) is the `2 normalization of the true gradient
∇f(x).1 We assume that α ≥ 0 without loss of generality,
since we can reassign v ← −v when α < 0.

We will introduce the two PRGF methods in Section 4.1
and Section 4.2, respectively. As the true value of the cosine
similarity α is unknown, we develop a method to estimate
it efficiently, which will be introduced in Section 4.3.

4.1 PRGF with Biased Sampling
Rather than sampling the random vectors {ui}qi=1 from an
uninformative distribution as the ordinary RGF method, our
first proposed method samples the random vectors that are
biased towards the transfer gradient v, to fully exploit the
prior information. For the gradient estimator ĝ in Eq. (5), we
further assume that the sampling distribution P is defined
on the unit hypersphere in the D-dimensional input space,
such that the random vectors {ui}qi=1 drawn from P satisfy
‖ui‖2 = 1. Then, we can calculate the loss of the gradient
estimator ĝ in Eq. (5) by the following theorem.

Theorem 1. (Proof in Appendix A.1) If f is differentiable at x,
the loss of the gradient estimator ĝ defined in Eq. (5) is

lim
σ→0

L(ĝ) = ‖∇f(x)‖22

−
(
∇f(x)>C∇f(x)

)2

(1− 1
q )∇f(x)>C2∇f(x) + 1

q∇f(x)>C∇f(x)
,

(9)

where σ is the sampling variance, C = E[uiu
>
i ] with ui being

the random vector, ‖ui‖2 = 1, and q is the number of random
vectors as in Eq. (5).

It can be noted from Theorem 1 that we can minimize
L(ĝ) by optimizing C, i.e., we can obtain an optimal gradi-
ent estimator by appropriately sampling the random vectors
ui, yielding an query-efficient adversarial attack. Given the
definition of C, it needs to satisfy two constraints: (1) it
should be positive semi-definite; (2) its trace should be 1
since Tr(C) = E[Tr(uiu

>
i )] = E[u>i ui] = 1.

Specifically, C can be decomposed as
∑D
j=1 λjvjv

>
j , in

which {λj}Dj=1 and {vj}Dj=1 are the non-negative eigen-
values and the orthonormal eigenvectors of C, satisfying∑D
j=1 λj = 1. In our method, we propose to sample ui

that are biased towards the transfer gradient v to exploit
its prior information. So we specify an eigenvector of C to
be v, and let the corresponding eigenvalue be a tunable
coefficient. For the other eigenvalues, we set them to be
equal since we do not have any prior knowledge about the
other eigenvectors. To this end, we let

C = λvv> +
1− λ
D − 1

(I− vv>), (10)

where λ ∈ [0, 1] controls the strength of the transfer gradient
that the random vectors {ui}qi=1 are biased towards. We
can easily construct a random vector with unit length while
satisfying Eq. (10) as (proof in Appendix A.2)

ui =
√
λ · v +

√
1− λ · (I− vv>)ξi, (11)

where ξi is sampled uniformly from the D-dimensional unit
hypersphere. Hereby, the problem becomes optimizing λ

1. We use e to denote the `2 normalization of a vector e in this paper.

Algorithm 1 Prior-guided random gradient-free algorithm
based on biased sampling (PRGF-BS)
Input: The black-box model f ; input x and label y; the normal-

ized transfer gradient v; sampling variance σ; number of
queries q; input dimension D.

Output: Estimate of the gradient ∇f(x).
1: Estimate the cosine similarity α = v>∇f(x) (detailed in

Section 4.3);
2: Calculate λ∗ according to Eq. (12) given α, q, and D;
3: if λ∗ = 1 then
4: return v;
5: end if
6: ĝ ← 0;
7: for i = 1 to q do
8: Sample ξi from the uniform distribution on the D-

dimensional unit hypersphere;
9: ui =

√
λ∗ · v +

√
1− λ∗ · (I− vv>)ξi;

10: ĝ ← ĝ +
f(x+ σui, y)− f(x, y)

σ
· ui;

11: end for
12: return ∇f(x)← 1

q
ĝ.

that minimizes L(ĝ). Note that when λ = 1
D and C = 1

D I,
such that the random vectors are drawn from the uniform
distribution on the hypersphere, our method degenerates
into the ordinary RGF method. When λ ∈ [0, 1

D ), it indicates
that the transfer gradient is worse than a random vector, so
we are encouraged to search in other directions by using a
small λ.

To find the optimal λ that leads to the minimum value
of the loss L(ĝ), we plug Eq. (10) into Eq. (9), and obtain the
closed-form solution as (proof in Appendix A.3)

λ∗ =





0 if α2 ∈ [0, al]

(1− α2)(α2(D + 2q − 2)− 1)

2α2Dq − α4D(D + 2q − 2)− 1
if α2 ∈ (al, ar)

1 if α2 ∈ [ar, 1]

(12)

where al = 1
D+2q−2 and ar = 2q−1

D+2q−2 (recall that α is the
cosine similarity defined in Eq. (8)).

Remark 1. It can be proven (in Appendix A.4) that λ∗ is a
monotonically increasing function of α2, and a monotonically
decreasing function of q (when α2 > 1

D ). It indicates that a
larger α or a smaller q (when the transfer gradient is not worse
than a random vector) would result in a larger λ∗, which makes
sense since we tend to rely on the transfer gradient more when (1)
it approximates the true gradient better; (2) the number of queries
is not enough to provide much gradient information.

We summarize the PRGF-BS algorithm in Algorithm 1.
Note that when λ∗ = 1, we do not need to sample q random
vectors because they all equal to v, and we directly return
the transfer gradient v as the estimate of ∇f(x) (Step 3-5),
which can save many queries.

4.2 PRGF with Gradient Averaging
In this section, we propose an alternative method to incorpo-
rate the transfer gradient v based on gradient averaging. The
motivation is as follows. We observe that the RGF estimator
in Eq. (5) has the form ĝ = 1

q

∑q
i=1 ĝi, where multiple rough

estimates are averaged. Indeed, the transfer gradient itself
can also be considered as an estimate of the true gradient.
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Thus it is reasonable to perform a weighted average of the
transfer gradient and the RGF estimator.

In particular, we first obtain the ordinary RGF estimator
defined in Eq. (5) with the sampling distribution P being
the uniform distribution on the D-dimensional unit hyper-
sphere, which is denoted as ĝU . Then we normalize ĝU

and perform a weighted average of the normalized transfer
gradient v and the normalized RGF estimator ĝU as

ĝ = µv + (1− µ)ĝU , (13)

where µ ∈ [0, 1] is a balancing coefficient playing a similar
role as λ in PRGF-BS.

Given the gradient estimator in Eq. (13), we also aim
at deriving the optimal µ that minimizes the loss of the

estimator L(ĝ). We let β = 1
q

∑q
i=1(u>i ∇f(x) · ui)

>
∇f(x)

be the cosine similarity between 1
q

∑q
i=1(u>i ∇f(x) · ui) and

the true gradient ∇f(x), where {ui}qi=1 are sampled from
the uniform distribution. As discussed in Section 2.2, the
RGF estimator ĝU → 1

q

∑q
i=1(u>i ∇f(x) · ui) when σ → 0,

and consequently β → ĝU
>∇f(x) as the cosine similarity

between the ordinary RGF estimator and the true gradient.
Recall that α = v>∇f(x) is the cosine similarity between
the transfer gradient and the true gradient. Then we have
the following theorem on the loss of the gradient estimator
in Eq. (13).

Theorem 2. (Proof in Appendix A.5) If f is differentiable at x,
the loss of the gradient estimator defined in Eq. (13) is

lim
σ→0

L(ĝ) = ‖∇f(x)‖22

− (µα+ (1− µ)E[β])2

µ2 + (1− µ)2 + 2µ(1− µ)αE[β]
‖∇f(x)‖22,

(14)

where σ is the sampling variance to get ĝU .

Theorem 2 indicates that we can achieve the minimum
value of L(ĝ) by optimizing µ. We can calculate the closed-
form solution of the optimal µ as (proof in Appendix A.6)

µ∗ =
α(1− E[β]2)

α(1− E[β]2) + (1− α2)E[β]
. (15)

Remark 2. We can easily see that µ∗ is a monotonically increas-
ing function of α, as well as a monotonically decreasing function
of E[β]. As will shown in Eq. (16), a larger number of queries q
for the RGF estimator can result in a larger E[β], such that µ∗

is a monotonically decreasing function of q. These conclusions are
consistent with our intuition as explained in Remark 1.

Although we have derived the optimal µ in Eq. (15), the
true value of E[β] is still unknown. We find that E[β] cannot
directly be calculated but can roughly be approximated as
(proof in Appendix A.7)

E[β] ≈
√

q

D + q − 1
, (16)

where D and q are the input dimension and the number of
queries to get ĝU , respectively. Note that E[β] is irrelevant
to the true gradient ∇f(x). We find such an approximation
works well in practice.

It should be noted that we have µ∗ < 1, which means
that we always need to take q queries to get ĝU . However,

Algorithm 2 Prior-guided random gradient-free algorithm
based on gradient averaging (PRGF-GA)
Input: The black-box model f ; input x and label y; the normal-

ized transfer gradient v; sampling variance σ; number of
queries q; input dimension D; threshold c.

Output: Estimate of the gradient ∇f(x).
1: Estimate the cosine similarity α = v>∇f(x) (detailed in

Section 4.3);
2: Approximate E[β] by

√
q

D+q−1
as in Eq. (16);

3: Calculate µ∗ according to Eq. (15) given α and E[β];
4: if µ∗ ≥ c then
5: return v;
6: end if
7: ĝU ← 0;
8: for i = 1 to q do
9: Sample ui from the uniform distribution on the D-

dimensional unit hypersphere;

10: ĝU ← ĝU +
f(x+ σui, y)− f(x, y)

σ
· ui;

11: end for
12: return ∇f(x)← µ∗v + (1− µ∗)ĝU .

when µ∗ is close to 1, the improvement of using ĝ = µ∗v +
(1 − µ∗)ĝU instead of directly using v as the estimate is
marginal. But the former requires q more queries than the
latter. To save queries, we use the transfer gradient v as the
estimate of ∇f(x) when it approximates ∇f(x) well. Thus
we preset a threshold c ∈ (0, 1) such that when µ∗ ≥ c, we
return v directly as the gradient estimate. We summarize the
overall PRGF-GA algorithm in Algorithm 2.2

Comparisons between PRGF-BS and PRGF-GA. Because
the two proposed methods utilize the transfer-based prior in
different ways, we are interested in the loss (in Eq. (7)) of the
gradient estimators given by different methods, as well as
the improvements over the ordinary RGF estimator and the
transfer-based prior. To this end, we show the loss curves of
gradient estimators given by RGF, transfer gradient, PRGF-
BS, and PRGF-GA, respectively, w.r.t. different α, in Fig. 1.
PRGF-GA can get a lower loss value than PRGF-BS with a
given α, indicating that PRGF-GA can utilize the transfer-
based prior better. This is also verified in the experiments.

krf(x)k22

D � 1

D + q � 1
krf(x)k22

r
q

D + q � 1
0.0

r
2q � 1

D + 2q � 2
↵

Loss

3Dq + D � 3q � 1

3Dq + 4q2 + D � 3q � 1
krf(x)k22

D � 1

D + 2q � 1
krf(x)k22

Fig. 1. The loss curves of the different gradient estimators w.r.t. α. The
loss of the RGF estimator is D−1

D+q−1
‖∇f(x)‖22. The loss of the transfer

gradient is (1 − α2)‖∇f(x)‖22. The loss of the PRGF-BS and PRGF-
GA estimators can be derived by plugging λ∗ and µ∗ into Eq. (9) and
Eq. (14), respectively.

2. The actual implementation of PRGF-GA is slightly different from
Algorithm 2, which will be explained in Appendix B.
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4.3 Estimation of Cosine Similarity
To complete our algorithms, we need to estimate the cosine
similarity α = v>∇f(x) = v>∇f(x)

‖∇f(x)‖2 , where v is the normal-
ized transfer gradient. Note that the inner product v>∇f(x)
can directly be estimated by the finite difference method as

v>∇f(x) ≈ f(x+ σv, y)− f(x, y)

σ
, (17)

with a small σ. Hence, the problem is reduced to estimating
the norm of the gradient ‖∇f(x)‖2.

The basic method of estimating ‖∇f(x)‖2 is to adopt a r-
degree homogeneous function g of S variables, i.e., g(az) =
arg(z) where a ∈ R and z ∈ RS . Then we have

g
(
W>∇f(x)

)
= ‖∇f(x)‖r2 · g

(
W>∇f(x)

)
, (18)

where W = [w1, ..., wS ] denotes the matrix consisting of
the S random vectors {ws}Ss=1. Based on Eq. (18), the norm
of the gradient ‖∇f(x)‖2 could be computed easily if both
g
(
W>∇f(x)

)
and g

(
W>∇f(x)

)
can be obtained.

Suppose that we utilize S queries to estimate ‖∇f(x)‖2.
We draw a set of S random vectors {ws}Ss=1 independently
and uniformly from the D-dimensional unit hypersphere,
and then estimate w>s ∇f(x) based on Eq. (17). Given the
estimated w>s ∇f(x), we can obtain g

(
W>∇f(x)

)
directly.

However, it is non-trivial to obtain the value ofw>s ∇f(x)
as well as the function value g

(
W>∇f(x)

)
. Nevertheless,

we note that the distribution of w>s ∇f(x) is the same re-
gardless of the direction of∇f(x), thus we can compute the
expectation of the function value E

[
g
(
W>∇f(x)

)]
. Based

on that, we use g(W>∇f(x))
E[g(W>∇f(x))]

as an unbiased estimator of

‖∇f(x)‖r2. In particular, we choose g as g(z) = 1
S

∑S
s=1 z

2
s .

Then r = 2, and we have

E
[
g
(
W>∇f(x)

)]
= E

[
(w>1 ∇f(x))2]

= ∇f(x)
>
E[w1w

>
1 ]∇f(x) =

1

D
.

(19)

By plugging Eq. (19) into Eq. (18), we can obtain the estimate
of the gradient norm as

‖∇f(x)‖2 ≈

√√√√D

S

S∑

s=1

(
f(x+ σws, y)− f(x, y)

σ

)2

. (20)

To save queries, we estimate the gradient norm periodi-
cally instead of in every iteration, since usually it does not
change very fast in the optimization process.

5 EXTENSIONS

In this section, we extend our algorithms for incorporating
the data-dependent prior and adopting multiple surrogate
models to give the transfer-based prior.

5.1 Data-dependent Prior
The commonly used data-dependent prior [19] is proposed
to reduce the query complexity, which suggests that we can
utilize the structure of the inputs to reduce the input space
dimension without sacrificing much accuracy of gradient
estimation. The idea of reducing the input dimension has
already been adopted in several works [15], [18], [32], [34],

which has shown promise for query-efficient black-box at-
tacks. We observe that many works restrict the adversarial
perturbations to lie in a linear subspace of the input space,
which allows the application of our theoretical framework.
Specifically, we focus on the data-dependent prior proposed
in [19]. Below we introduce how to incorporate it into RGF,
PRGF-BS, and PRGF-GA appropriately.

RGF. For the RGF gradient estimator in Eq. (5), to
leverage the data-dependent prior, suppose that ui = Vξi,
where V = [v1, v2, ..., vd] is a D×d matrix (d < D), {vj}dj=1

is an orthonormal basis in the d-dimensional subspace of
the input space, and ξi is a random vector sampled from
the d-dimensional unit hypersphere. In [19], the random
vector ξi drawn in Rd is up-sampled to ui in RD by the
nearest neighbor algorithm. The orthonormal basis {vj}dj=1

can be obtained by first up-sampling the standard basis in
Rd with the same method and then applying normalization.
For the ordinary RGF method, ξi is sampled uniformly from
the d-dimensional unit hypersphere, and C = 1

d

∑d
j=1 vjv

>
j

(recall that C = E[uiu
>
i ] as defined in Theorem 1).

PRGF-BS. For PRGF with biased sampling, we consider
incorporating the data-dependent prior into the algorithm
along with the transfer-based prior. Similar to Eq. (10), we
let one eigenvector of C be v to exploit the transfer-based
prior, and the others are given by the orthonormal basis in
the subspace to exploit the data-dependent prior, as

C = λvv> +
1− λ
d

d∑

j=1

vjv
>
j . (21)

By plugging Eq. (21) into Eq. (9), we can similarly obtain the
optimal λ as (proof in Appendix A.8)

λ∗ =





0 if α2 ∈ [0, al]

A2(A2 − α2(d+ 2q − 2))

A4 + α4d2 − 2A2α2(q + dq − 1)
if α2 ∈ (al, ar)

1 if α2 ∈ [ar, 1]

(22)

where A2 =
∑d
j=1(v>j ∇f(x))2, al = A2

d+2q−2 , and ar =
A2(2q−1)

d . Note that A is unknown, which should also be
estimated. We use a method similar to the one for estimating
α, which is detailed in Appendix C.

The remaining problem is to construct a random vector
ui satisfying E[uiu

>
i ] = C, with C specified in Eq. (21).

In general, this is difficult since v is not orthogonal to the
subspace. To address this problem, we sample ui in a way
that E[uiu

>
i ] is a good approximation of C (explanation in

Appendix A.9), which is similar to Eq. (11) as

ui =
√
λ · v +

√
1− λ · (I− vv>)Vξi, (23)

where ξi is sampled uniformly from the d-dimensional unit
hypersphere.

The PRGF-BS algorithm with the data-dependent prior
is similar to Algorithm 1. We first estimate α and A, and
then calculate λ∗ by Eq. (22). If λ∗ = 1, we use the transfer
gradient v as the estimate. Otherwise, we sample q random
vectors by Eq. (23) and get the gradient estimate by Eq. (5).

PRGF-GA. We similarly incorporate the data-dependent
prior into the PRGF-GA algorithm. In this case, we first
get an ordinary subspace RGF estimator ĝS instead of the
ordinary RGF estimator, by sampling ξi uniformly from the
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d-dimensional unit hypersphere and letting ui = Vξi. Then
we normalize ĝS and obtain the averaged gradient estimator
in a similar manner to Eq. (13) as

ĝ = µv + (1− µ)ĝS . (24)

To derive the optimal µ that minimizes the loss L(ĝ),
we define ∇f(x)T = (

∑d
j=1 vjv

>
j )∇f(x) as the projection

of ∇f(x) onto the subspace corresponding to the data-
dependent prior. We also need A2 =

∑d
j=1(v>j ∇f(x))2 =

‖∇f(x)T ‖2. We let β = 1
q

∑q
i=1(u>i ∇f(x) · ui)

>
∇f(x) be

the cosine similarity between 1
q

∑q
i=1(u>i ∇f(x) ·ui) and the

true gradient ∇f(x), in which {ui}qi=1 lie in the subspace.
We have the following theorem on the loss of the gradient
estimator in Eq. (24).

Theorem 3. (Proof in Appendix A.10) Let α1 = v>∇f(x)T .
If f is differentiable at x and A2 > 0, the loss of the gradient
estimator define in Eq. (24) is

lim
σ→0

L(ĝ) = ‖∇f(x)‖2

− (µα+ (1− µ)E[β])2

µ2 + (1− µ)2 + 2µ(1− µ) α1

A2E[β]
‖∇f(x)‖2,

(25)

where σ is the sampling variance to get ĝS .

Based on Theorem 3, we calculate the optimal solution
of µ by minimizing Eq. (25) as (proof in Appendix A.11)

µ∗ =
A2α− α1E[β]2

(A2 − α1E[β])(α+ E[β])
≈ α

α+ E[β]
. (26)

The approximation works mainly because A � E[β] (since
E[β] ≈ A

√
q

d+q−1 as shown Appendix A.11). Therefore, µ∗

can be approximated without α1, such that we do not need
to estimate α1.

The PRGF-GA algorithm with the data-dependent prior
is similar to Algorithm 2. We first estimate α and A, approx-
imate E[β] by A

√
q

d+q−1 , and then calculate µ∗ by Eq. (26).
If µ∗ ≥ c, we use the transfer gradient v as the estimate.
Otherwise, we get the ordinary subspace RGF estimate ĝS

with q queries, and then use ĝ ← µ∗v + (1− µ∗)ĝS .

5.2 Multiple Surrogate Models
The idea of utilizing multiple surrogate models has been
adopted in [16], [22] for improving transfer-based black-box
attacks. They show that the adversarial examples generated
for multiple models are more likely to fool other black-box
models with the increased transferability. In our algorithms,
we can also utilize multiple surrogate models to extract a
more effective transfer-based prior, which can consequently
enhance the attack performance.

Assume that we have M surrogate models. For an input
x, we denote the gradients of these surrogate models at x
as {g(m)}Mm=1, where the gradients are not normalized for
now. A simple approach to obtain the transfer-based prior
is averaging these gradients directly, as v = 1

M

∑M
m=1 g

(m).
Despite the simplicity, this approach treats the gradients of
surrogate models with equal importance and neglects the
intrinsic similarity between different surrogate models and
the target model. It has been observed that the adversarial

examples are more likely to transfer within the same family
of model architectures [35], indicating that we could design
an improved transfer-based prior by leveraging more useful
surrogate models/gradients.

Specifically, we denote the M -dimensional subspace
spanned by {g(m)}Mm=1 as G. The best approximation of
the true gradient ∇f(x) that lies in G is the projection
of ∇f(x) onto the subspace G. Therefore, we first get an
orthonormal basis of G by the Gram–Schmidt orthonormal-
ization method, denoted as {v(m)}Mm=1. Then the projection
of ∇f(x) onto G can be expressed as

∇f(x)G =
M∑

m=1

∇f(x)>v(m) · v(m), (27)

in which the inner product ∇f(x)>v(m) can be approxi-
mated by the finite difference method as shown in Eq. (17).
Hence, we let the transfer-based prior be v = ∇f(x)G. With
v obtained by multiple surrogate gradients, we then perform
PRGF-BS or PRGF-GA attacks with the same algorithms.

6 EXPERIMENTS

In this section, we present the empirical results to demon-
strate the effectiveness of the proposed methods on attack-
ing black-box image classifiers. We perform untargeted at-
tacks under both the `2 and `∞ norms on the ImageNet [29]
and CIFAR-10 [36] datasets. We show the results under the
`2 norm in this section and leave the extra results under the
`∞ norm in Appendix D. The results for both norms are
consistent to verify the superiority of our methods. We also
conduct experiments on defense models in Appendix E. We
first specify the experimental setting in Section 6.1. Then we
show the performance of gradient estimation in Section 6.2.
We further compare the attack performance of the proposed
algorithms with others on ImageNet in Section 6.3, and on
CIFAR-10 in Section 6.4, respectively.

6.1 Experimental Settings
ImageNet [29]. We choose 1, 000 images randomly from the
ILSVRC 2012 validation set to perform evaluations. Those
images are normalized to [0, 1]. We consider three black-box
target models, which are Inception-v3 [37], VGG-16 [38], and
ResNet-50 [39]. For most experiments, we use the ResNet-
v2-152 model [40] as the surrogate model to provide the
transfer gradient. We also study different surrogate models
in Section 6.3.1. For the proposed PRGF-BS and PRGF-GA
algorithms, we set the number of queries in each step of
gradient estimation as q = 50 and the sampling variance as
σ = 0.0001 ·

√
D. We let the attack loss function f in Eq. (2)

be the cross-entropy loss. After we obtain the gradient esti-
mate, we apply the PGD update rule as in Eq. (3) to generate
the adversarial example with the estimated gradient. We set
the perturbation size as ε =

√
0.001 ·D and the step size

as η = 2 in PGD under the `2 norm, while set ε = 0.05
and η = 0.005 under the `∞ norm. For PRGF-GA, there is
a preset threshold c determining whether to directly return
the transfer gradient, which is set as c =

√
2/(
√
2+1).

CIFAR-10 [36]. We adopt all the 10, 000 test images for
evaluations, which are in [0, 1]. The black-box target mod-
els include ResNet-50 [39], DenseNet-121 [41], and SENet-
18 [42]. We adopt a Wide ResNet model (WRN-34-10) [43]
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Fig. 2. (a) The average cosine similarity between the estimated gradient and the true gradient. The estimate is given by PRGF-BS with fixed λ and
optimal λ, respectively. (b) The average λ∗ in PRGF-BS across attack iterations. (c) The average cosine similarity between the transfer and the true
gradients, and that between the estimated and the true gradients, across attack iterations in PRGF-BS. (d) The average cosine similarity between
the estimated gradient and the true gradient. The estimate is given by PRGF-GA with fixed µ and optimal µ, respectively. (e) The average µ∗ in
PRGF-GA across attack iterations. (f) The average cosine similarity between the transfer and the true gradients, and that between the estimated
and the true gradients, across attack iterations in PRGF-GA.

Fig. 3. The estimation error of gradient norm w.r.t. different queries S.

as the surrogate model. We set q = 50 and σ = 0.001 ·
√
D.

The loss function f is the CW loss [8] since it performs better
than the cross-entropy loss on CIFAR-10. The perturbation
size is ε = 1.0 under the `2 norm and ε = 8/255 under the
`∞ norm. The step size in PGD is η = 0.25 under the `2
norm and η = 2/255 under the `∞ norm. The threshold in
PRGF-GA is also set as c =

√
2/(
√
2+1).

Note that when counting the total number of queries in
our methods, we include the additional queries of estimat-
ing the cosine similarity α.

6.2 Performance of Gradient Estimation
We now conduct several ablation studies to show the perfor-
mance of gradient estimation. All experiments in this section
are performed on the Inception-v3 [37] model on ImageNet.

Estimation of gradient norm. First, we demonstrate
the performance of gradient norm estimation as introduced
in Section 4.3. In general, the gradient norm (or cosine
similarity) is easier to estimate than the true gradient since
it’s a scalar value. Fig. 3 illustrates the estimation error of
the gradient norm, defined as the (normalized) RMSE —√
E
(

̂‖∇f(x)‖2−‖∇f(x)‖2
‖∇f(x)‖2

)2

, w.r.t. the number of queries S,

where ‖∇f(x)‖2 is the true norm, ̂‖∇f(x)‖2 is the estimated
one, and the expectation is taken over all images along the
attack procedure. It can be obtained that dozens of queries
are sufficient to reach a small estimation error of gradient
norm. We choose S = 10 in the following experiments to
reduce the number of queries while the estimation error is
acceptable. The gradient norm is estimated every 10 attack
iterations to further reduce the required queries, since usu-
ally its value is relatively stable in the optimization process.

Performance of gradient estimation. Second, we verify
the effectiveness of the derived optimal λ in PRGF-BS and
µ in PRGF-GA (i.e., λ∗ in Eq. (12) and µ∗ in Eq. (15)) for
gradient estimation, compared with any fixed λ, µ ∈ [0, 1].
To this end, we perform attacks against Inception-v3 using
PRGF-BS with λ∗ or PRGF-GA with µ∗, and at the same
time calculate the cosine similarity between the estimated
gradient and the true gradient. In both methods, λ∗ and µ∗

are calculated using the estimated α instead of its true value.
Meanwhile, along the PGD updates, we also use fixed λ or
µ to get gradient estimates, and calculate the corresponding
cosine similarities. Note that λ∗ and µ∗ do not correspond
to any fixed value, since they vary during iterations.

We show the average cosine similarities of different fixed
values of λ in Fig. 2(a), and those of different fixed values of
µ in Fig. 2(d). The first observation is that when a suitable
value of λ (or µ) is chosen, the proposed PRGF-BS (or
PRGF-GA) provides a better gradient estimate than both
the ordinary RGF method with uniform distribution (when
λ = 1

D ≈ 0 or µ = 0) and the transfer gradient (when λ = 1
or µ = 1). The second observation is that adopting λ∗ (or
µ∗) brings further improvement upon any fixed λ (or µ),
demonstrating the effectiveness of our theoretical analyses.

Gradient estimation across attack iterations. Finally,
we aim at examining the effectiveness of the transfer-based
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TABLE 1
The experimental results of black-box attacks against Inception-v3, VGG-16, and ResNet-50 under the `2 norm on ImageNet. We report the attack

success rate (ASR), and the average/median number of queries (AVG. Q/MED. Q) needed to generate an adversarial example over successful
attacks. We mark the best results in bold. The subscript “D” denotes the methods with the data-dependent prior.

Methods Inception-v3 VGG-16 ResNet-50
ASR AVG. Q MED. Q ASR AVG. Q MED. Q ASR AVG. Q MED. Q

NES [12] 95.5% 1752 1071 98.7% 1103 816 98.4% 988 714
SPSA [44] 93.7% 1808 1122 98.1% 1290 1020 98.4% 1236 969
AutoZoom [18] 85.4% 2443 1847 96.3% 1589 949 94.8% 2065 1223
BanditsT [19] 92.4% 1560 810 94.0% 584 225 96.2% 1076 446
BanditsTD [19] 97.2% 874 352 94.9% 278 82 96.8% 512 195
NATTACK [45] 98.2% 1020 510 99.6% 593 357 99.5% 535 357
RGF 97.7% 1309 816 99.8% 749 561 99.6% 673 510
PRGF-BS (λ = 0.05) 97.4% 1047 561 99.7% 624 408 99.3% 511 306
PRGF-BS (λ∗) 98.1% 745 320 99.6% 331 182 99.6% 265 132
PRGF-GA (µ = 0.5) 97.9% 958 572 99.8% 528 364 99.6% 485 312
PRGF-GA (µ∗) 97.9% 735 314 99.7% 320 184 99.5% 250 134
RGFD 99.1% 910 561 100.0% 372 306 99.7% 429 306
PRGF-BSD (λ = 0.05) 98.8% 728 408 99.9% 359 255 99.8% 379 255
PRGF-BSD (λ∗) 99.1% 649 332 99.8% 250 180 99.6% 232 140
PRGF-GAD (µ = 0.5) 99.3% 734 416 100.0% 332 260 99.7% 340 260
PRGF-GAD (µ∗) 99.2% 644 312 99.7% 239 184 99.7% 240 140

prior across attack iterations. We show the average λ∗ and
µ∗ over all images w.r.t. attack iterations in Fig. 2(b) for
PRGF-BS, and in Fig. 2(e) for PRGF-GA, respectively. The
curves show that λ∗ and µ∗ decrease along the iterations.
Besides, Fig. 2(c) and Fig. 2(f) show the average cosine
similarity between the transfer and the true gradients, and
that between the estimated and the true gradients w.r.t.
attack iterations, in PRGF-BS and PRGF-GA. All of these
results demonstrate that the transfer gradient is more use-
ful at beginning, and becomes less useful along the itera-
tions. However, the estimated gradient in either PRGF-BS
or PRGF-GA can remain a higher cosine similarity with
the true gradient, which facilitates the adversarial attacks
consequently. The results also corroborate that we need to
use the adaptive λ∗ or µ∗ in different attack iterations.

6.3 Results on ImageNet
In this section, we perform black-box adversarial attacks
against three ImageNet models, including Inception-v3 [37],
VGG-16 [38], and ResNet-50 [39]. Besides the two proposed
PRGF-BS and PRGF-GA algorithms, we incorporate several
baseline methods, including the ordinary RGF method with
uniform sampling, the PRGF-BS method with the fixed
λ = 0.05, and the PRGF-GA method with the fixed µ = 0.5.
Those fixed values are chosen according to Fig. 2(a) and
Fig. 2(d), which can estimate the gradient more accurately.
We set the number of queries as q = 50 for gradient estima-
tion and the sampling variance as σ = 0.0001 ·

√
D, which

are identical for all of these methods. We also incorporate
the data-dependent prior into these methods for comparison
(which are denoted by adding a subscript “D”). We set the
dimension of the subspace as d = 50× 50× 3.

Besides, we compare the attack performance with var-
ious state-of-the-art attack methods, including the natural
evolution strategies (NES) [12], SPSA [44], AutoZoom [18],
bandit optimization methods (BanditsT and BanditsTD) [19],
and NATTACK [45]. For all methods, we restrict the max-
imum number of queries for each image to be 10,000. We
report a successful attack if a method can generate an ad-
versarial example within 10,000 queries and the size of per-
turbation is smaller than the budget (i.e., ε =

√
0.001 ·D).

Table 1 shows the results, where we report the success
rate of black-box attacks and the average/median number of
queries needed to generate an adversarial example over suc-
cessful attacks. We have the following observations. First,
compared with the state-of-the-art attacks, the proposed
methods generally lead to higher attack success rates and
require much fewer queries. Second, the transfer-based prior
provides useful prior information for black-box attacks since
PRGF based methods perform better than the ordinary RGF
method. Third, using a fixed λ in PRGF-BS or a fixed µ
in PRGF-GA cannot exceed the performance of using their
optimal values, although they already lead to comparable
performance with the state-of-the-art methods. Fourth, the
results also prove that the data-dependent prior is orthog-
onal to the proposed transfer-based prior, since integrating
the data-dependent prior leads to better results. Fifth, PRGF-
GA requires slightly fewer queries than PRGF-BS in most
cases, which are consistent with the loss curves in Fig. 1.

6.3.1 Different Surrogate Models
Here we conduct an ablation study to investigate the ef-
fectiveness of adopting different surrogate models. We use
the ResNet-v2-152 model [40] as the the surrogate model in
the above experiments. We additionally consider Inception-
v4 [46], ResNet-v2-152 + Inception-v4, and ResNet-v2-152
+ Inception-v4 + Inception-ResNet-v2 [46] as the surrogate
models. Note that the latter two include multiple surrogate
models. We adopt the subspace projection method introduced
in Section 5.2 to get the transfer-based prior when multiple
surrogate models are available. Besides, we also compare
this method with the equal averaging method that directly
averages the gradients of multiple models (only in the case
of using ResNet-v2-152 + Inception-v4).

We show the attack performance of PRGF-BS, PRGF-GA,
PRGF-BSD, and PRGF-GAD with different surrogate models
in Table 2. It is easy to see that adopting multiple surrogate
models can significantly improve the attack success rates
and reduce the number of queries. When using three sur-
rogate models, the median number of queries is less than
100 for all target models, which validates the effectiveness
of the transfer-based prior. Besides, it can be noted that the
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TABLE 2
The experimental results of PRGF-BS and PRGF-GA attacks against Inception-v3, VGG-16, and ResNet-50 under the `2 norm on ImageNet using

different surrogate models. We report the attack success rate (ASR), and the average/median number of queries (AVG. Q/MED. Q) needed to
generate an adversarial example over successful attacks. We mark the best results in bold. The subscript “D” denotes the methods with the

data-dependent prior.

Surrogate Model(s) Methods Inception-v3 VGG-16 ResNet-50
ASR AVG. Q MED. Q ASR AVG. Q MED. Q ASR AVG. Q MED. Q

ResNet-v2-152

PRGF-BS 98.1% 745 320 99.6% 331 182 99.6% 265 132
PRGF-GA 97.9% 735 314 99.7% 320 184 99.5% 250 134
PRGF-BSD 99.1% 649 332 99.8% 250 180 99.6% 232 140
PRGF-GAD 99.2% 644 312 99.7% 239 184 99.7% 240 140

Inception-v4

PRGF-BS 98.9% 673 252 99.9% 350 184 99.7% 386 234
PRGF-GA 99.0% 622 242 99.9% 343 186 99.7% 350 192
PRGF-BSD 99.2% 569 252 99.9% 251 180 99.7% 298 224
PRGF-GAD 99.5% 595 248 100.0% 256 186 99.8% 298 194

ResNet-v2-152
+ Inception-v4

(equal averaging)

PRGF-BS 98.2% 592 188 99.7% 290 132 99.8% 282 130
PRGF-GA 98.7% 575 190 99.9% 283 134 99.7% 262 132
PRGF-BSD 99.2% 537 230 99.9% 219 140 99.7% 245 138
PRGF-GAD 99.1% 516 236 99.9% 219 136 99.7% 242 138

ResNet-v2-152
+ Inception-v4

(subspace projection)

PRGF-BS 99.1% 348 94 99.9% 163 59 99.6% 151 70
PRGF-GA 99.5% 342 96 100.0% 146 66 99.6% 135 70
PRGF-BSD 99.1% 412 156 99.9% 165 94 99.8% 182 105
PRGF-GAD 99.5% 404 152 100.0% 169 96 99.7% 164 96

ResNet-v2-152
+ Inception-v4

+ Inception-ResNet-v2
(subspace projection)

PRGF-BS 99.5% 198 50 100.0% 93 40 99.9% 103 40
PRGF-GA 99.8% 191 50 100.0% 89 40 99.8% 96 40
PRGF-BSD 99.7% 296 95 99.9% 122 70 99.9% 135 75
PRGF-GAD 99.6% 267 97 100.0% 118 72 99.8% 126 77

TABLE 3
The experimental results of black-box attacks against ResNet-50, DenseNet-121, and SENet-18 under the `2 norm on CIFAR-10. We report the

attack success rate (ASR) and the average/median number of queries (AVG. Q/MED. Q) needed to generate an adversarial example over
successful attacks. We mark the best results in bold.

Methods ResNet-50 DenseNet-121 SENet-18
ASR AVG. Q MED. Q ASR AVG. Q MED. Q ASR AVG. Q MED. Q

NES [12] 99.7% 642 459 99.6% 631 459 99.8% 582 408
SPSA [44] 99.8% 785 561 99.7% 780 510 99.9% 718 459
BanditsT [19] 100.0% 375 194 100.0% 356 174 100.0% 317 150
NATTACK [45] 100.0% 401 255 100.0% 404 255 100.0% 350 204
RGF 99.9% 460 357 99.9% 472 357 99.9% 423 306
PRGF-BS (λ = 0.05) 99.8% 290 204 99.9% 274 204 99.9% 262 153
PRGF-BS (λ∗) 99.9% 268 124 100.0% 220 124 100.0% 187 76
PRGF-GA (µ = 0.5) 99.3% 306 204 99.7% 260 204 99.9% 243 153
PRGF-GA (µ∗) 99.9% 173 76 99.9% 168 76 99.9% 146 65

subspace projection method performs better than the equal
averaging method, because the subspace projection method
can obtain the transfer-based prior which approximates the
true gradient best in the subspace.

Another observation from the results is that adopting a
similar surrogate model of the target model can enhance the
attack performance. In particular, ResNet-v2-152 is better
than Inception-v4 as the surrogate model for attacking the
ResNet-50 models. On the other hand, Inception-v4 is better
than ResNet-v2-152 for attacking the Inception-v3 model. It
is reasonable since the gradients of models within the same
family of model architectures would be similar, which has
been verified in [35] showing that the adversarial transfer-
ability is higher across similar model architectures.

Finally, we find that the data-dependent prior becomes
less useful with a more powerful transfer-based prior ob-
tained by multiple surrogate models. Specifically, PRGF-BSD
and PRGF-GAD require more queries than PRGF-BS and
PRGF-GA when using two or three surrogate models. The
reason is as follows. For PRGF-BS and PRGF-GA without
the data-dependent prior, it is more likely to obtain λ∗ = 1
or µ∗ = 1 with the more effective transfer-based prior,
such that we do not need to perform q queries to estimate
the gradient. However, in PRGF-BSD and PRGF-GAD, λ∗

and µ∗ are less probable to be 1 due to that sampling in
the data-dependent subspace can also improve the gradient
estimate, and therefore we need q more queries to get the
estimate. Although the data-dependent prior helps to give a
more accurate gradient estimate, the cost of q more queries
degrades the efficiency of attacks.

6.4 Results on CIFAR-10
In this section, we show the results of black-box adversarial
attacks on CIFAR-10. Similar to the experiments on Ima-
geNet, we compare the performance of PRGF-BS and PRGF-
GA with three baselines — RGF, PRGF-BS with the fixed
λ = 0.05, and PRGF-GA with the fixed µ = 0.5, as well as
four other attacks — NES [12], SPSA [44], BanditsT [19], and
NATTACK [45]. Since the image resolution in CIFAR-10 is
not very high (i.e., 32 × 32 × 3), we do not adopt the data-
dependent prior. We also restrict the maximum number of
queries for each image to be 10, 000. Note that hundreds of
queries could be sufficient due to the lower input dimension
of CIFAR-10, but we adopt the maximum 10, 000 queries to
make it consistent with the setting on ImageNet.

The black-box attack results of those methods against
ResNet-50 [39], DenseNet-121 [41], and SENet-18 [42] are
presented in Table 3. It can be seen that with the maximum
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(a) ResNet-50 (b) DenseNet-121 (c) SENet-18

Fig. 4. The average number of queries for generating the adversarial examples that are successfully misclassified by the black-box model at any
desired success rate on CIFAR-10.

number of 10, 000 queries, all attack methods can achieve
near 100% attack success rate. Nevertheless, our proposed
methods (especially PRGF-GA) require much less queries to
successfully generate adversarial examples, which demon-
strates the query efficiency of our proposed methods.

Fig. 4 shows the average number of queries for success-
fully misleading the black-box model by reaching a desired
success rate. For a given attack success rate, our methods
require much less queries, indicating that they are much
more query-efficient than other baseline methods.

7 CONCLUSION

In this paper, two prior-guided random gradient-free al-
gorithms were proposed for improving black-box attacks.
Our methods can utilize a transfer-based prior given by
the gradient of a surrogate model through biased sampling
and gradient averaging, respectively. We appropriately in-
tegrated the transfer-based prior with model queries by
the derived optimal coefficient in both methods under the
gradient estimation framework. Furthermore, we extended
the proposed methods by incorporating the data-dependent
prior and utilizing multiple surrogate models. The experi-
mental results consistently demonstrate the effectiveness of
our methods, which require much fewer queries to attack
black-box models with higher success rates compared with
various state-of-the-art attack methods. We released our
codes at https://github.com/thu-ml/Prior-Guided-RGF.
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APPENDIX A
PROOFS

We provide the proofs in this section.

A.1 Proof of Theorem 1

Theorem 1. If f is differentiable at x, the loss of the gradient estimator ĝ defined in Eq. (5) is

lim
σ→0

L(ĝ) = ‖∇f(x)‖22 −
(
∇f(x)>C∇f(x)

)2

(1− 1
q )∇f(x)>C2∇f(x) + 1

q∇f(x)>C∇f(x)
,

where σ is the sampling variance, C = E[uiu
>
i ] with ui being the random vector, ‖ui‖2 = 1, and q is the number of random vectors

as in Eq. (5).

Remark 3. Rigorously speaking, we assume ∇f(x)>C∇f(x) 6= 0 in the statement of the theorem (and also in the proof), since
when ∇f(x)>C∇f(x) = 0, both the numerator and the denominator of the fraction above are zero. When ∇f(x)>C∇f(x) = 0,
u>i ∇f(x) = 0 holds almost surely, which implies that L(ĝ) = ‖∇f(x)‖2 regardless of the value of σ. In fact, this case will not
happen almost surely. In the setting of black-box attacks, we cannot even design a C with trace 1 such that ∇f(x)>C∇f(x) = 0
since ∇f(x) is unknown.

Proof. First, we derive L(ĝ) based on the assumption that the single estimate ĝi in Eq. (5) is equal to u>i ∇f(x) · ui, which
will hold when f is locally linear.

Lemma 1. Assume that the single estimate ĝi in Eq. (5) is equal to u>i ∇f(x) · ui. We have

L(ĝ) = ‖∇f(x)‖22 −
(∇f(x)>C∇f(x))2

(1− 1
q )∇f(x)>C2∇f(x) + 1

q∇f(x)>C∇f(x)
. (A.1)

Proof. First, we have
E‖∇f(x)− bĝ‖22 = ‖∇f(x)‖22 − 2b∇f(x)>E[ĝ] + b2E‖ĝ‖22.

We have ∇f(x)>E[ĝ] = ∇f(x)>E[ĝi] = E[∇f(x)>uiu
>
i ∇f(x)] = E[(∇f(x)>ui)

2] ≥ 0. Hence

L(ĝ) = min
b≥0

E‖∇f(x)− bĝ‖22 = min
b

E‖∇f(x)− bĝ‖22 = ‖∇f(x)‖22 −
(∇f(x)>E[ĝ])2

E‖ĝ‖22
. (A.2)

Since ĝi = u>i ∇f(x) · ui, and u>i ui ≡ 1, we have

E[ĝi] = C∇f(x),

E‖ĝi‖22 = E[ĝ>i ĝi]

= E[∇f(x)>uiu
>
i uiu

>
i ∇f(x)]

= ∇f(x)>E[ui(u
>
i ui)u

>
i ]∇f(x)

= ∇f(x)>E[uiu
>
i ]∇f(x)

= ∇f(x)>C∇f(x).

Given E[ĝi] and E‖ĝi‖2, the corresponding moments of ĝ can be computed as

E[ĝ] = E[ĝi] = C∇f(x), (A.3)

E‖ĝ‖22 = E‖ĝ − E[ĝ]‖22 + ‖E[ĝ]‖22
=

1

q
E‖ĝi − E[ĝi]‖22 + ‖E[ĝi]‖22

=
1

q
E‖ĝi‖22 + (1− 1

q
)‖E[ĝi]‖22 (A.4)

= (1− 1

q
)∇f(x)>C2∇f(x) +

1

q
∇f(x)>C∇f(x).

Plug them into Eq. (A.2) and we complete the proof.

Next, we prove that if f is not locally linear, as long as it is differentiable at x, then by picking a sufficiently small σ, the
loss tends to be that of the local linear approximation.

Lemma 2. If f is differentiable at x, let L0 denote the right-hand side of Eq. (A.1), then we have

lim
σ→0

L(ĝ) = L0.
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Proof. Let ĝ′i = u>i ∇f(x) · ui, ĝ′ = 1
q

∑q
i=1 ĝ

′
i. Then L0 = L(ĝ′). By Eq. (A.2), Eq. (A.3), and Eq. (A.4), it suffices to prove

limσ→0 E[ĝi] = E[ĝ′i] and limσ→0 E‖ĝi‖22 = E‖ĝ′i‖22.
For clarity, we redefine the notations. We omit the subscript i, make the dependence of ĝi on σ explicit (let ĝσ denote ĝi),

and let ĝ0 denote ĝ′i. Then we omit the hat in ĝ. That is, let g0 , u>∇f(x) ·u and gσ , f(x+σu)−f(x)
σ ·u, where u is sampled

uniformly from the unit hypersphere. Then we want to prove limσ→0 E[gσ] = E[g0] and limσ→0 E‖gσ‖22 = E‖g0‖22.
Since f is differentiable at x, we have

lim
σ→0

sup
‖u‖2=1

∣∣∣∣
f(x+ σu)− f(x)

σ
− u>∇f(x)

∣∣∣∣ = 0. (A.5)

Since ‖u‖2 ≡ 1, we have

lim
σ→0

E‖gσ − g0‖2 ≤ lim
σ→0

sup
‖u‖2=1

∣∣∣∣
f(x+ σu)− f(x)

σ
− u>∇f(x)

∣∣∣∣ = 0,

lim
σ→0

E‖gσ − g0‖22 ≤ lim
σ→0

sup
‖u‖2=1

∣∣∣∣
f(x+ σu)− f(x)

σ
− u>∇f(x)

∣∣∣∣
2

= 0.

By applying Jensen’s inequality to convex function ‖ · ‖2, we have ‖E[gσ] − E[g0]‖2 ≤ E‖gσ − g0‖2. Since limσ→0 E‖gσ −
g0‖2 = 0, and we have limσ→0 E[gσ] = E[g0].

Since
∣∣‖gσ‖2 − ‖g0‖2

∣∣ ≤ ‖gσ − g0‖2, limσ→0 E‖gσ − g0‖2 = 0 and limσ→0 E‖gσ − g0‖22 = 0, we have limσ→0 E
∣∣‖gσ‖2 −

‖g0‖2
∣∣ = 0 and limσ→0 E(‖gσ‖2 − ‖g0‖2)2 = 0. Also, we have ‖g0‖2 ≤ ‖∇f(x)‖2. Hence, we have

lim
σ→0

∣∣E‖gσ‖22 − E‖g0‖22
∣∣ ≤ lim

σ→0
E
∣∣‖gσ‖22 − ‖g0‖22

∣∣

= lim
σ→0

E
[∣∣‖gσ‖2 − ‖g0‖2

∣∣(‖gσ‖2 + ‖g0‖2
)]

≤ lim
σ→0

E
[(
‖gσ‖2 − ‖g0‖2

)2
+ 2‖g0‖2

∣∣‖gσ‖2 − ‖g0‖2
∣∣
]

≤ lim
σ→0

E
[(
‖gσ‖2 − ‖g0‖2

)2
+ 2‖∇f(x)‖2

∣∣‖gσ‖2 − ‖g0‖2
∣∣
]

= 0.

The proof is complete.

By combining the two lemmas above, our proof for Theorem 1 is complete.

A.2 Proof of Eq. (11)
Suppose that v is a fixed random vector and ‖v‖2 = 1. Let the D-dimensional random vector u be

u =
√
λ · v +

√
1− λ · (I− vv>)ξ,

where ξ is sampled uniformly from the unit hypersphere. We need to prove that

C ≡ E[uu>] = λvv> +
1− λ
D − 1

(I− vv>).

Proof. Let r , (I− vv>)ξ. We choose an orthonormal basis {v1, ..., vD} of RD such that v1 = v. Then ξ can be written as
ξ =

∑D
i=1 aivi, where a = (a1, ..., aD)> is sampled uniformly from the unit hypersphere. Hence (I − vv>)ξ =

∑D
i=2 aivi,

and r =
∑D
i=2 aivi√∑D
i=2 a

2
i

. Let bi = ai√∑D
i=2 a

2
i

for i = 2, 3, ..., D, then b = (b2, b3, ..., bD)> is sampled uniformly from the (D − 1)-

dimensional unit hypersphere, and r =
∑D
i=2 bivi. Hence E[r] = 0. To compute E[rr>], we need a lemma first.

Lemma 3. Suppose that d is a positive integer, u =
∑d
i=1 aivi where a = (a1, ..., ad)

> is sampled uniformly from the d-dimensional
unit hypersphere, then E[uu>] = 1

d

∑d
i=1 viv

>
i .

Proof. E[uu>] = E[(
∑d
i=1 aivi)(

∑d
j=1 ajv

>
j )] =

∑d
i=1

∑d
j=1 viv

>
j E[aiaj ]. By symmetry, we have E[aiaj ] = 0 when i 6= j,

and E[a2i ] = E[a2j ] for any i, j. Since
∑d
i=1 a

2
i = 1, we have E[a2i ] = 1

d for any i. Hence E[uu>] = 1
d

∑d
i=1 viv

>
i .

Using the lemma, we have E[rr>] = 1
D−1

∑D
i=2 viv

>
i = 1

D−1 (I − vv>). Since E[r] = 0, we have E[vr>] = E[rv>] = 0.
Hence, we have

E[uu>] = E[(
√
λ · v +

√
1− λ · r)(

√
λ · v +

√
1− λ · r)>]

= λvv> + (1− λ)E[rr>]

= λvv> +
1− λ
D − 1

(I− vv>).
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The proof is complete.

Remark 4. The construction of the random vector u such that E[uu>] = λvv> + 1−λ
D−1 (I − vv>) is not unique. One can choose a

different kind of distribution or simply take the negative of u while remaining E[uu>] invariant.

A.3 Proof of Eq. (12)

Let α = v>∇f(x). Suppose that D ≥ 2, q ≥ 1. After plugging Eq. (10) into Eq. (9), the optimal λ is given by

λ∗ =





0 if α2 ≤ 1

D + 2q − 2
(1− α2)(α2(D + 2q − 2)− 1)

2α2Dq − α4D(D + 2q − 2)− 1
if

1

D + 2q − 2
< α2 <

2q − 1

D + 2q − 2

1 if α2 ≥ 2q − 1

D + 2q − 2

. (A.6)

Proof. After plugging Eq. (10) into Eq. (9), we have

L(λ) = ‖∇f(x)‖22
(

1−
(λα2 + 1−λ

D−1 (1− α2))2

(1− 1
q )(λ2α2 + ( 1−λ

D−1 )2(1− α2)) + 1
q (λα2 + 1−λ

D−1 (1− α2))

)
.

To minimize L(λ), we should maximize

F (λ) =
(λα2 + 1−λ

D−1 (1− α2))2

(1− 1
q )(λ2α2 + ( 1−λ

D−1 )2(1− α2)) + 1
q (λα2 + 1−λ

D−1 (1− α2))
. (A.7)

Note that F (λ) is a quadratic rational function w.r.t. λ.
Since we optimize λ in a closed interval [0, 1], checking λ = 0, λ = 1 and the stationary points (i.e., F ′(λ) = 0) would

suffice. By solving F ′(λ) = 0, we have at most two solutions:

λ1 =
(1− α2)(α2(D + 2q − 2)− 1)

2α2Dq − α4D(D + 2q − 2)− 1
, (A.8)

λ2 =
1− α2

1− α2D
,

where λ1 or λ2 is the solution if and only if the denominator is not 0. Given α2 ≤ 1 and D ≥ 2, λ2 /∈ (0, 1), so we only
need to consider λ1.

First, we figure out when λ1 ∈ (0, 1). We can verify that λ1 = 1 when α2 = 0 and λ1 = 0 when α2 = 1. Suppose that
α2 ∈ (0, 1). Let J denote the numerator in Eq. (A.8) and K denote the denominator. We have that when α2 > 1

D+2q−2 ,
J > 0; otherwise J ≤ 0. We also have that when α2 < 2q−1

D+2q−2 , J < K ; otherwise J ≥ K . Note that J/K ∈ (0, 1) if and
only if 0 < J < K or 0 > J > K . Hence, λ1 ∈ (0, 1) if and only if 1

D+2q−2 < α2 < 2q−1
D+2q−2 .

Case 1: λ1 /∈ (0, 1). Then it suffices to compare F (0) with F (1). We have

F (0) =
(1− α2)q

D + q − 2
, F (1) = α2.

Hence, F (0) ≥ F (1) if and only if α2 ≤ q
D+2q−2 . It means that if α2 ≥ 2q−1

D+2q−2 , then λ∗ = 1; if α2 ≤ 1
D+2q−2 , then λ∗ = 0.

Case 2: λ1 ∈ (0, 1). After plugging Eq. (A.8) into Eq. (A.7), we have

F (λ1) =
4α2(1− α2)(q − 1)q

−1 + 2α2(D(2q − 1) + 2(q − 1)2)− α4(D + 2q − 2)2
. (A.9)

Now we prove that F (λ1) ≥ F (0) and F (λ1) ≥ F (1). Since when 0 < λ < 1, both the numerator and the denominator in
Eq. (A.7) is positive, we have F (λ) > 0, ∀λ ∈ (0, 1). Since the numerator in Eq. (A.9) is non-negative and F (λ1) > 0, we
know that the denominator in Eq. (A.9) is positive. Hence, we have

F (λ1)− F (0) =
q(1− α2)(α2(D + 2q − 2)− 1)2

(q +D − 2)(−1 + 2α2(D(2q − 1) + 2(q − 1)2)− α4(D + 2q − 2)2)
> 0;

F (λ1)− F (1) =
α2(α2(D + 2q − 2) + 1− 2q)2

−1 + 2α2(D(2q − 1) + 2(q − 1)2)− α4(D + 2q − 2)2
> 0.

Hence in this case λ∗ = λ1.
The proof is complete.
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A.4 Monotonicity of λ∗

We will prove that λ∗ is a monotonically increasing function of α2, and a monotonically decreasing function of q (when
α2 > 1

D ).

Proof. To find the monotonicity w.r.t. α2, note that λ∗ = 0 if α2 ≤ 1
D+2q−2 and λ∗ = 1 when α2 ≥ 2q−1

D+2q−2 . When
1

D+2q−2 < α2 < 2q−1
D+2q−2 , we have

λ∗ =
(1− α2)(α2(D + 2q − 2)− 1)

2α2Dq − α4D(D + 2q − 2)− 1

=
α4(D + 2q − 2)− α2(D + 2q − 1) + 1

α4D(D + 2q − 2)− 2α2Dq + 1

=
1

D

(
1− (α2D − 1)(D − 1)

α4D(D + 2q − 2)− 2α2Dq + 1

)
(A.10)

=
1

D
− D − 1

α2D(D + 2q − 2)− (2Dq −D − 2q + 2)− 2 (D−1)(q−1)
α2D−1

.

When α2 < 1
D or α2 > 1

D , a larger α2 leads to larger values of both α2D(D+ 2q− 2) and −2 (D−1)(q−1)
α2D−1 , and consequently

leads to a larger λ∗. Meanwhile, by the argument in the proof of Eq. (12), when 1
D+2q−2 < α2 < 2q−1

D+2q−2 , the denominator
of Eq. (A.8) is positive, hence α4D(D + 2q − 2) − 2α2Dq + 1 < 0. By Eq. (A.10), when α2 < 1

D , λ∗ < 1
D ; when α2 = 1

D ,
λ∗ = 1

D ; when α2 > 1
D , λ∗ > 1

D . We conclude that λ∗ is a monotonically increasing function of α2.

To find the monotonicity w.r.t. q when α2 > 1
D , Eq. (12) tells us that when q ≤ α2(D−2)+1

2(1−α2) , λ∗ = 1; else, 0 < λ∗ < 1. In
the latter case, we rewrite Eq. (A.10) as

λ∗ =
1

D

(
1 +

(α2D − 1)(D − 1)

2α2D(1− α2)q − α4D(D − 2)− 1

)
.

We have (α2D − 1)(D − 1) > 0, and as explained before, the denominator is positive for any q such that 0 < λ∗ < 1.
Hence, when α2 > 1

D , λ∗ is a monotonically decreasing function of q.

A.5 Proof of Theorem 2

Theorem 2. If f is differentiable at x, the loss of the gradient estimator defined in Eq. (13) is

lim
σ→0

L(ĝ) =

(
1− (µα+ (1− µ)E[β])2

µ2 + (1− µ)2 + 2µ(1− µ)αE[β]

)
‖∇f(x)‖22,

where σ is the sampling variance to get ĝU .

Proof. As in Eq. (5), ĝU = 1
q

∑q
i=1 ĝ

U
i and ĝUi = f(x+σui)−f(x)

σ · ui, where ui is sampled from the uniform distribution
on the D-dimensional unit hypersphere. First, we derive L(ĝ) based on the assumption that ĝUi is equal to u>i ∇f(x) · ui,
which will hold when f is locally linear.

Lemma 4. Assume that ĝU = 1
q

∑q
i=1(u>i ∇f(x) · ui) (then β = ĝU

>∇f(x)). We have

L(ĝ) =

(
1− (µα+ (1− µ)E[β])2

µ2 + (1− µ)2 + 2µ(1− µ)αE[β]

)
‖∇f(x)‖22.

Proof. It can be verified3 that ĝU = 0 happens with probability 0, hence we only consider ĝU 6= 0, which does not affect
our conclusion. Then ĝU is always well-defined. The distribution of ĝU is symmetric around the direction of ∇f(x), and
so is the distribution of ĝU . Hence we can suppose that E[ĝU ] = k∇f(x). Since E[β] = E[ĝU ]>∇f(x) = k, we have
E[ĝU ] = E[β]∇f(x).

We have

E[ĝU ]>∇f(x) = E[β]∇f(x)
>∇f(x) = E[β]‖∇f(x)‖2,

and

v>E[ĝU ] = v>E[β]∇f(x) = αE[β].

3. If ĝU = 0, ∇f(x)>ĝU = 1
q

∑q
i=1(u

>
i ∇f(x))2 = 0, hence u>i ∇f(x) = 0 for i = 1, 2, ..., q, whose probability is 0.
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Together with v>∇f(x) = α‖∇f(x)‖2 and ‖v‖2 = 1, we have

E‖∇f(x)− bĝ‖22
= E‖bµv + b(1− µ)ĝU −∇f(x)‖2

= b2µ2 + b2(1− µ)2 + ‖∇f(x)‖22 + 2b2µ(1− µ)v>E[ĝU ]− 2bµα‖∇f(x)‖2 − 2b(1− µ)E[ĝU ]>∇f(x) (A.11)

= b2µ2 + b2(1− µ)2 + ‖∇f(x)‖22 + 2b2µ(1− µ)αE[β]− 2bµα‖∇f(x)‖2 − 2b(1− µ)E[β]‖∇f(x)‖
= ((1− µ)2 + µ2 + 2µ(1− µ)αE[β])b2 − 2(αµ+ E[β](1− µ))‖∇f(x)‖2b+ ‖∇f(x)‖22.

Since ∇f(x)>ĝU = 1
q

∑q
i=1(u>i ∇f(x))2 ≥ 0, then β ≥ 0, and hence E[β] ≥ 0. Then (1 − µ)2 + µ2 + 2µ(1 − µ)αE[β] > 0

and αµ + E[β](1 − µ) ≥ 0. Since L(ĝ) = minb≥0 E‖∇f(x) − bĝ‖22, by optimizing the objective w.r.t. b we complete the
proof.

Next, we prove that if f is not locally linear, as long as it is differentiable at x, then by picking a sufficiently small σ, the
loss tends to be that of the local linear approximation. Here, we redefine the notations as follows. We make the dependency
of ĝU on σ explicit, i.e., we use ĝUσ to denote it. Meanwhile, we define ĝU0 , 1

q

∑q
i=1(u>i ∇f(x) · ui) as the RGF estimator

under the local linear approximation. We define ĝσ = µv+(1−µ)ĝUσ and ĝ0 = µv+(1−µ)ĝU0 . Then we have the following
lemma.

Lemma 5. If f is differentiable at x, then
lim
σ→0

L(ĝσ) = L(ĝ0)

Proof. By Eq. (A.11), it suffices to prove limσ→0 E[ĝUσ ] = E[ĝU0 ].
For any value of u1, u2, ..., uq , we have limσ→0 ĝ

U
σ = ĝU0 , i.e., ĝUσ converges pointwise to ĝU0 . Recall that Pr(ĝU0 = 0) = 0,

so we can only consider ĝU0 6= 0, which does not affect our conclusion. Since x = x
‖x‖2 is continuous everywhere in its

domain, ĝUσ converges pointwise to ĝU0 . Since the family {ĝUσ } is uniformly bounded, by dominated convergence theorem
we have limσ→0 E[ĝUσ ] = E[ĝU0 ].

By combining the two lemmas above, our proof for Theorem 2 is complete.

A.6 Proof of Eq. (15)

Let ĝ be the PRGF-GA estimator with the balancing coefficient µ as defined in Eq. (13). Let L(µ) = limσ→0 L(ĝ) =

‖∇f(x)‖22 − (µα+(1−µ)E[β])2
µ2+(1−µ)2+2µ(1−µ)αE[β]‖∇f(x)‖22. Then the optimal µ minimizing L(µ) is given by

µ∗ =
α(1− E[β]2)

α(1− E[β]2) + (1− α2)E[β]
.

Proof. To minimize L(µ), we should maximize

F (µ) =
(µα+ (1− µ)E[β])2

µ2 + (1− µ)2 + 2µ(1− µ)αE[β]
.

Note that F (µ) is a quadratic rational function w.r.t. µ.
Since we optimize µ in a closed interval [0, 1], checking µ = 0, µ = 1 and the stationary points (i.e. F ′(µ) = 0) would

suffice. By solving F ′(µ) = 0, we have two solutions:

µ1 =
α(1− E[β]2)

α(1− E[β]2) + (1− α2)E[β]
,

µ2 =
E[β]

E[β]− α,

where µ2 is the solution only when α 6= β. Then we have

F (0) = E[β]2,

F (1) = α2,

F (µ1) =
α2 + E[β]2 − 2α2E[β]2

1− α2E[β]2
,

F (µ2) = 0.

We have F (0) ≥ F (µ2), F (1) ≥ F (µ2), F (µ1)− F (0) = α2(1−E[β]2)2
1−α2E[β]2 ≥ 0, F (µ1)− F (1) = E[β]2(1−α2)2

1−α2E[β]2 ≥ 0. Therefore, the
optimal solution of µ is µ∗ = µ1.
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A.7 Proof of Eq. (16)

Let β = 1
q

∑q
i=1(u>i ∇f(x) · ui)

>
∇f(x), we need to prove

E[β] ≈
√

q

D + q − 1
,

where D and q are the input dimension and the number of queries to get ĝU , respectively.

Proof. We let ĝU0 = 1
q

∑q
i=1(u>i ∇f(x) · ui) as above. We can approximate E[β] by

E[β] = E[
√
β2]

≈
√
E[β2]

=

√
1− E[min

b
‖∇f(x)− bĝU0 ‖2]

=

√
1− 1

‖∇f(x)‖22
E[min

b
‖∇f(x)− bĝU0 ‖2]

≈
√

1− 1

‖∇f(x)‖22
min
b

E‖∇f(x)− bĝU0 ‖2

=

√
1− 1

‖∇f(x)‖22
L(ĝU0 )2.

Here, the first equality is because that ∇f(x)>ĝU0 = 1
q

∑q
i=1(u>i ∇f(x))2 ≥ 0 and the second equality is because that we

have minb ‖∇f(x)− bĝU0 ‖2 = 1− (∇f(x)
>
ĝU0 )2 = 1− β2. Intuitively, the two approximations work well because that the

variances of β and ‖ĝU0 ‖2 are relatively small.

Now we define F (ĝU0 ) = 1 − 1
‖∇f(x)‖22

L(ĝU0 )2. Then we have E[β] ≈
√
F (ĝU0 ). Note that when ui is sampled from

the uniform distribution on the unit hypersphere, F (ĝU0 ) is in fact F ( 1
D ) in Eq. (A.7), since ĝU0 is an RGF estimator w.r.t.

locally linear f , and E[uiu
>
i ] = 1

D I which corresponds to λ = 1
D in Eq. (10). We can calculate F ( 1

D ) = q
D+q−1 . Hence,

E[β] ≈
√

q
D+q−1 .

A.8 Proof of Eq. (22)
Let α = v>∇f(x), A2 =

∑d
j=1(v>j ∇f(x))2. Suppose that α2 ≤ 1, d ≥ 1, q ≥ 1. After plugging Eq. (21) into Eq. (9), the

optimal λ is given by

λ∗ =





0 if α2 ≤ A2

d+ 2q − 2
A2(A2 − α2(d+ 2q − 2))

A4 + α4d2 − 2A2α2(q + dq − 1)
if

A2

d+ 2q − 2
< α2 <

A2(2q − 1)

d

1 if α2 ≥ A2(2q − 1)

d

.

Proof. The proof is very similar to that in Appendix A.3. After plugging Eq. (21) into Eq. (9), we have

L(λ) = ‖∇f(x)‖22
(

1− (λα2 + 1−λ
d A2)2

(1− 1
q )(λ2α2 + ( 1−λ

d )2A2) + 1
q (λα2 + 1−λ

d A2)

)
.

To minimize L(λ), we should maximize

F (λ) =
(λα2 + 1−λ

d A2)2

(1− 1
q )(λ2α2 + ( 1−λ

d )2A2) + 1
q (λα2 + 1−λ

d A2)
. (A.12)

Note that F (λ) is a quadratic rational function w.r.t. λ.
Since we optimize λ in a closed interval [0, 1], checking λ = 0, λ = 1 and the stationary points (i.e., F ′(λ) = 0) would

suffice. By solving F ′(λ) = 0, we have at most two solutions:

λ1 =
A2(α2(d+ 2q − 2)−A2)

2A2α2(dq + q − 1)− α4d2 −A4
, (A.13)

λ2 =
A2

A2 − α2d
,

where λ1 or λ2 is the solution if and only if the denominator is not 0. λ2 /∈ (0, 1), so we only need to consider λ1.
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First, we figure out when λ1 ∈ (0, 1). We can verify that λ1 = 1 when α2 = 0 and λ1 = 0 when A2 = 0. Suppose α2 6= 0

and A2 6= 0. Let J denote the numerator in Eq. (A.13) and K denote the denominator. We have that when α2 > A2

d+2q−2 ,

J > 0; otherwise J ≤ 0. We also have that when α2 < A2(2q−1)
d , J < K ; otherwise J ≥ K . Note that J/K ∈ (0, 1) if and

only if 0 < J < K or 0 > J > K . Hence, λ1 ∈ (0, 1) if and only if A2

d+2q−2 < α2 < A2(2q−1)
d .

Case 1: λ1 /∈ (0, 1). Then it suffices to compare F (0) and F (1). We have

F (0) =
A2q

d+ q − 1
, F (1) = α2.

Hence, F (0) ≥ F (1) if and only if α2 ≤ A2q
d+q−1 . It means that if α2 ≥ A2(2q−1)

d , then λ∗ = 1; if α2 ≤ A2

d+2q−2 , then λ∗ = 0.
Case 2: λ1 ∈ (0, 1). After plugging Eq. (A.13) into Eq. (A.12), we have

F (λ1) =
4A2α2(A2 + α2)(q − 1)q

2A2α2(2q(d+ q − 1)− d)− α4d2 −A4
. (A.14)

Now we prove that F (λ1) ≥ F (0) and F (λ1) ≥ F (1). Since when 0 < λ < 1, both the numerator and the denominator
in Eq. (A.12) is positive, we have F (λ) > 0, ∀λ ∈ (0, 1). Since the numerator in Eq. (A.14) is non-negative, and F (λ1) > 0,
we know that the denominator in Eq. (A.14) is positive. Hence, we have

F (λ1)− F (0) =
qA2(α2(d+ 2q − 2)−A2)2

(q + d− 1)(2A2α2(2q(d+ q − 1)− d)− α4d2 −A4)
> 0;

F (λ1)− F (1) =
α2(α2d+A2(1− 2q))2

2A2α2(2q(d+ q − 1)− d)− α4d2 −A4
> 0.

Hence in this case λ∗ = λ1.
The proof is complete.

A.9 Explanation on Eq. (23)
We explain why the construction of ui in Eq. (23) makes E[uiu

>
i ] a good approximation of C.

Recall the setting: In RD , we have a normalized transfer gradient v, and a specified d-dimensional subspace with
{v1, ..., vd} as its orthonormal basis. Let C = λvv> + 1−λ

d

∑d
j=1 vjv

>
j . Here we argue that if u =

√
λ · v +

√
1− λ ·

(I− vv>)Vξ, then E[uu>] ≈ C.
Let r , (I− vv>)Vξ. The reason why E[uu>] 6= C is that E[rr>] 6= 1

d

∑d
j=1 vjv

>
j when v is not orthogonal to the

subspace spanned by {v1, ..., vd}. However, by symmetry, we still have E[r] = 0. To get an expression of E[rr>], we
let vT denotes the projection of v onto the subspace, and let v1 = vT so that v2, ..., vd are orthonormal to vT (hence
also orthonormal to v). We temporarily assume vT 6= v and vT 6= 0. Now let v′1 = (I− vv>)vT = vT − v>vT · v, then
{v′1, v2, ..., vd} form an orthonormal basis of the subspace in which r lies, and v is orthogonal to this modified subspace.
Now we have E[rr>] = λ1v

′
1v
′>
1 + 1−λ1

d−1
∑d
j=2 vjv

>
j where λ1 is a number in [0, 1d ]. Note that when v = vT , although v′1

cannot be defined, we have λ1 = 0. When vT = 0, we can just set v′1 = v1 and λ1 = 1
d . When d is large, λ1 is small, so

for approximation we can replace v′1 with v1; |λ − 1
d | is small, so for approximation we can set λ1 = 1

d . Then we have
E[rr>] ≈ 1

d

∑d
j=1 vjv

>
j . Since E[r] = 0, we have E[uu>] = λvv> + (1− λ)E[rr>] ≈ λvv> + 1−λ

d

∑d
j=1 vjv

>
j .

Remark 5. To avoid approximation, one can choose the subspace as spanned by {v′1, v2, ..., vd} instead of {v1, v2, ..., vd} to ensure
that v is orthogonal to the subspace. Then u can be sampled as

u =
√
λ · v +

√
1− λ ·V′ξ,

where V′ = [v′1, v2, ..., vd] and ξ is sampled uniformly from the d-dimensional unit hypersphere. Note that here the optimal λ is
calculated using A′2 = v′>1 ∇f(x) +

∑d
j=2(v>j ∇f(x))2. However, in practice, it is not convenient to make the subspace dependent

on v, and the computational complexity is high to construct an orthonormal basis with one vector (v′1) specified.

A.10 Proof of Theorem 3
Theorem 3. Let α1 = v>∇f(x)T . If f is differentiable at x and A2 > 0, the loss of the gradient estimator define in Eq. (24) is

lim
σ→0

L(ĝ) =

(
1− (µα+ (1− µ)E[β])2

µ2 + (1− µ)2 + 2µ(1− µ) α1

A2E[β]

)
‖∇f(x)‖2,

where σ is the sampling variance to get ĝS .

Proof. Similar to the proof of Theorem 2, we define ĝS0 = 1
q

∑q
i=1(u>i ∇f(x) · ui) = 1

q

∑q
i=1(u>i ∇f(x)T · ui), where

∇f(x)T = ‖∇f(x)‖2∇f(x)T denotes the projection of ∇f(x) onto the subspace. Then β = ĝS0
>∇f(x) = ĝS0

>∇f(x)T .
Since A2 > 0, we have ∇f(x)T 6= 0. As described in Footnote 3, we can prove Pr(ĝS0 = 0) = 0 similarly. Now we only
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consider ĝS0 6= 0. The distribution of ĝS0 is symmetric around the direction of∇f(x)T , and so is the distribution of ĝS0 . Hence
we can suppose that E[ĝS0 ] = k∇f(x)T . Since E[β] = E[ĝS0 ]>∇f(x)T = k‖∇f(x)T ‖22 = kA2, we have E[ĝS0 ] = E[β]

A2 ∇f(x)T .
Note that

v>E[ĝS0 ] = v>
E[β]

A2
∇f(x)T =

α1

A2
E[β].

The rest of the proof is the same as that of Theorem 2.

A.11 Proof of Eq. (26)
Let ĝ be the PRGF-GA estimator incorporating the data-dependent prior with the balancing coefficient µ as defined in
Eq. (24). Let L(µ) = limσ→0 L(ĝ) = ‖∇f(x)‖22 − (µα+(1−µ)E[β])2

µ2+(1−µ)2+2µ(1−µ) α1
A2 E[β]‖∇f(x)‖22. Then the optimal µ minimizing L(µ)

is given by

µ∗ =
A2α− α1E[β]2

(A2 − α1E[β])(α+ E[β])
.

Proof. The proof is very similar to that in Appendix A.6. To minimize L(µ), we should maximize

F (µ) =
(µα+ (1− µ)E[β])2

µ2 + (1− µ)2 + 2µ(1− µ) α1

A2E[β]
.

Note that F (µ) is a quadratic rational function w.r.t. µ.
Since we optimize µ in a closed interval [0, 1], checking µ = 0, µ = 1 and the stationary points (i.e. F ′(µ) = 0) would

suffice. By solving F ′(µ) = 0, we have two solutions:

µ1 =
A2α− α1E[β]2

(A2 − α1E[β])(α+ E[β])
,

µ2 =
E[β]

E[β]− α,

where µ2 is the solution only when α 6= β. Then we have

F (0) = E[β]2,

F (1) = α2,

F (µ1) =
A4(α2 + E[β]2)− 2A2αα1E[β]2

A4 − α2
1E[β]2

,

F (µ2) = 0.

We have F (0) ≥ F (µ2), F (1) ≥ F (µ2), F (µ1)−F (0) = (A2α−α1E[β]2)2

A4−α2
1E[β]2

≥ 0, F (µ1)−F (1) = E[β]2(A2−αα1)
2

A4−α2
1E[β]2

≥ 0. Therefore,
the optimal solution of µ is µ∗ = µ1.

Let β = 1
q

∑q
i=1(u>i ∇f(x) · ui)

>
∇f(x), in which {ui}qi=1 lie in the subspace, we further need to prove

E[β] ≈ A
√

q

d+ q − 1
,

where d is the subspace dimension, q is the number of queries to get ĝS , and A2 =
∑d
i=1(v>i ∇f(x))2.

Proof. Similar to the proof in Appendix A.7, we approximate E[β] by
√
F (ĝS0 ), in which F (ĝS0 ) = 1− 1

‖∇f(x)‖22
L(ĝS0 )2, and

ĝS0 = 1
q

∑q
i=1(u>i ∇f(x) · ui). Note that when ui is sampled from the uniform distribution on the unit hypersphere in the

subspace, F (ĝS0 ) is in fact F (0) in Eq. (A.12), since ĝS0 is an RGF estimator w.r.t. locally linear f , and E[uiu
T
i ] = 1

d

∑d
i=1 viv

>
i

which corresponds to λ = 0 in Eq. (21). We can calculate F (0) = A2q
d+q−1 . Hence, E[β] ≈ A

√
q

d+q−1 .

APPENDIX B
ACTUAL IMPLEMENTATION OF PRGF-GA
Note that in the PRGF-GA algorithm, the optimal coefficient µ∗ in Eq. (15) is calculated by minimizing the loss L(ĝ) of the
gradient estimator defined as ĝ = µv+ (1− µ)ĝU , where v is the normalized transfer gradient and ĝU is the ordinary RGF
estimator. Since the loss L(ĝ) is a deterministic scalar whose computation requires taking expectation w.r.t. the randomness
of ĝU , µ∗ is a precomputed scalar which does not depend on the value of ĝU . However, since µ is not concerned with the
estimation process to get ĝU , we can actually obtain the value of ĝU first and let µ depend on it, which could be beneficial
when ĝU exhibits high variance.
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Algorithm 3 Actual implementation of prior-guided random gradient-free algorithm based on gradient averaging (PRGF-
GA)
Input: The black-box model f ; input x and label y; the normalized transfer gradient v; sampling variance σ; number of

queries q; input dimension D; threshold c.
Output: Estimate of the gradient ∇f(x).

1: Estimate the cosine similarity α = v>∇f(x) (detailed in Section 4.3);
2: Approximate E[β] by

√
q

D+q−1 as in Eq. (16);
3: Calculate µ∗ according to Eq. (15) given α and E[β];
4: if µ∗ ≥ c then
5: return v;
6: end if
7: ĝU ← 0;
8: for i = 1 to q do
9: Sample ui from the uniform distribution on the D-dimensional unit hypersphere;

10: ĝU ← ĝU +
f(x+ σui, y)− f(x, y)

σ
· ui;

11: end for
12: Estimate v>∇f(x) by f(x+σv,y)−f(x,y)

σ ; Estimate ĝU
>∇f(x) by f(x+σĝU ,y)−f(x,y)

σ ;

13: return ∇f(x)← v>∇f(x) · v + ĝU
>∇f(x) · ĝU .

To this end, we need to calculate µ that leads to the best gradient estimator given the values of v and ĝU . We first assume
that v and ĝU are almost orthogonal with high probability, which is true in a high dimensional input space. (Without this
assumption, we could perform Gram–Schmidt orthonormalization.) The problem is to find a vector in the subspace spanned
by v and ĝU that approximate the true gradient ∇f(x) best. This can be simply accomplished by projecting ∇f(x) onto
the subspace, as

ĝ = v>∇f(x) · v + ĝU
>∇f(x) · ĝU . (B.1)

Therefore, the optimal µ can be expressed as

µ∗ =
v>∇f(x)

v>∇f(x) + ĝU
>∇f(x)

. (B.2)

v>∇f(x) and ĝU
>∇f(x) can be estimated by the finite difference method shown in Eq. (17). We summarize the actual

implementation of PRGF-GA in Algorithm 3.

APPENDIX C
ESTIMATION OF A

Suppose that the subspace is spanned by a set of orthonormal vectors {v1, ..., vd}. Now we want to estimate

A2 =
d∑

j=1

(v>j ∇f(x))2 =

∑d
j=1(v>j ∇f(x))2

‖∇f(x)‖22
=
‖h(x)‖22
‖∇f(x)‖22

,

where h(x) =
∑d
j=1 v

>
j ∇f(x) · vj is the projection of ∇f(x) to the subspace. We can estimate ‖∇f(x)‖22 using the method

introduced in Section 4.3. Here, we introduce the method to estimate ‖h(x)‖22.
Let w = Vξ where V = [v1, v2, ..., vd] and ξ is a random vector uniformly sampled from the d-dimensional unit

hypersphere. By Lemma 3, E[ww>] = 1
d

∑d
j=1 vjv

>
j . Suppose that we have S i.i.d. such samples of w denoted by w1, ..., wS ,

and we let W = [w1, ..., wS ].
With g(x1, ..., xS) = 1

S

∑S
s=1 x

2
s, we have

g(W>∇f(x)) = g(W>h(x)) = ‖h(x)‖22 · g(W>h(x)).

Hence g(W>∇f(x))
E[g(W>h(x))]

is an unbiased estimator of ‖h(x)‖22. Now, h(x) is in the subspace spanned by {v1, ..., vd}, and w1 is

uniformly distributed on the unit hypersphere of this subspace. Hence E[(w>1 h(x))2] is independent of the direction of
h(x) and can be computed. We have

E[g(W>h(x))] = E[(w>1 h(x))2] = h(x)
>
E[w1w

>
1 ]h(x) = h(x)

> 1

d

d∑

i=1

viv
>
i h(x) =

1

d
.

Hence, we have the estimator ‖h(x)‖2 ≈
√

d
S

∑S
s=1(w>s ∇f(x))2, where ws = Vξs and ξs is uniformly sampled from the

unit hypersphere in Rd. Finally we can get an estimate of A by A = ‖h(x)‖2
‖∇f(x)‖2 .
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TABLE 4
The experimental results of black-box attacks against Inception-v3, VGG-16, and ResNet-50 under the `∞ norm on ImageNet. We report the

attack success rate (ASR), and the average/median number of queries (AVG. Q/MED. Q) needed to generate an adversarial example over
successful attacks. We mark the best results in bold.

Methods Inception-v3 VGG-16 ResNet-50
ASR AVG. Q MED. Q ASR AVG. Q MED. Q ASR AVG. Q MED. Q

NES [12] 87.5% 1887 1122 95.6% 1507 1020 96.5% 1433 969
SPSA [44] 93.6% 1766 1020 98.1% 1198 918 98.4% 1166 867
BanditsT [19] 89.5% 1891 952 93.8% 585 175 95.2% 1199 458
BanditsTD [19] 94.7% 1099 330 95.1% 288 46 96.5% 651 158
NATTACK [45] 98.3% 1101 612 99.7% 639 408 99.5% 588 408
RGF 94.4% 1565 816 98.8% 1064 714 99.4% 990 663
PRGF-BS (λ = 0.05) 92.7% 1409 714 97.5% 1031 612 98.3% 891 561
PRGF-BS (λ∗) 93.8% 979 414 98.5% 635 306 99.0% 507 236
PRGF-GA (µ = 0.5) 94.9% 1263 624 98.9% 851 520 99.2% 758 468
PRGF-GA (µ∗) 94.8% 974 424 98.5% 560 298 99.3% 490 226
RGFD 97.2% 1034 561 100.0% 502 383 99.7% 595 408
PRGF-BSD (λ = 0.05) 97.7% 1005 510 99.9% 543 408 99.7% 598 408
PRGF-BSD (λ∗) 97.3% 812 384 99.7% 370 262 99.6% 388 234
PRGF-GAD (µ = 0.5) 98.0% 898 468 100.0% 481 364 99.8% 504 364
PRGF-GAD (µ∗) 98.4% 772 364 99.7% 374 246 99.6% 365 240

TABLE 5
The experimental results of black-box attacks against ResNet-50, DenseNet-121, and SENet-18 under the `∞ norm on CIFAR-10. We report the

attack success rate (ASR) and the average/median number of queries (AVG. Q/MED. Q) needed to generate an adversarial example over
successful attacks. We mark the best results (including ASR ≥ 99.9%) in bold.

Methods ResNet-50 DenseNet-121 SENet-18
ASR AVG. Q MED. Q ASR AVG. Q MED. Q ASR AVG. Q MED. Q

NES [12] 93.9% 781 408 96.1% 742 408 95.8% 699 357
SPSA [44] 99.9% 627 408 99.8% 622 408 99.9% 571 357
BanditsT [19] 100.0% 372 186 100.0% 345 156 100.0% 312 142
NATTACK [45] 100.0% 384 255 100.0% 383 255 100.0% 343 204
RGF 98.4% 524 306 99.0% 499 306 99.1% 470 255
PRGF-BS (λ = 0.05) 99.2% 331 153 99.7% 275 153 99.7% 261 153
PRGF-BS (λ∗) 99.6% 213 78 99.9% 206 113 99.9% 178 74
PRGF-GA (µ = 0.5) 99.1% 310 153 99.7% 259 153 99.8% 229 153
PRGF-GA (µ∗) 99.6% 184 65 99.9% 156 65 99.9% 140 64

APPENDIX D
ADDITIONAL EXPERIMENTS

We show the experimental results of black-box adversarial attacks under the `∞ norm on ImageNet in Table 4, and on
CIFAR-10 in Table 5.
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