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Abstract—During clinical practice, radiologists often use attributes, e.g., morphological and appearance characteristics of a lesion, to

aid disease diagnosis. Effectively modeling attributes as well as all relationships involving attributes could boost the generalization

ability and verifiability of medical image diagnosis algorithms. In this paper, we introduce a hybrid neuro-probabilistic reasoning

algorithm for verifiable attribute-based medical image diagnosis. There are two parallel branches in our hybrid algorithm, a Bayesian

network branch performing probabilistic causal relationship reasoning and a graph convolutional network branch performing more

generic relational modeling and reasoning using a feature representation. Tight coupling between these two branches is achieved via a

cross-network attention mechanism and the fusion of their classification results. We have successfully applied our hybrid reasoning

algorithm to two challenging medical image diagnosis tasks. On the LIDC-IDRI benchmark dataset for benign-malignant classification

of pulmonary nodules in CT images, our method achieves a new state-of-the-art accuracy of 95.36% and an AUC of 96.54%. Our

method also achieves a 3.24% accuracy improvement on an in-house chest X-ray image dataset for tuberculosis diagnosis. Our

ablation study indicates that our hybrid algorithm achieves a much better generalization performance than a pure neural network

architecture under very limited training data.

Index Terms—Bayesian networks, deep neural networks, medical image analysis, neuro-probabilistic reasoning

Ç

1 INTRODUCTION

DUE to their rapid progress in the past ten years, deep neu-
ral networks have achieved tremendous success in boost-

ing the performance of image recognition [18], [19], [27], [50]
and other visual computing tasks [38], [48]. Such progress has
also propelled forwardmany related research areas including
medical image analysis. Nowadays, deep neural networks
have been widely used for medical image analysis and diag-
nosis. They have demonstrated unprecedented accuracy on a
variety of tasks, such as the detection of acute intracranial
hemorrhage in head CT images [29], breast cancer diagnosis
using mammography [39], the detection of diabetic retinopa-
thy in retinal fundus photographs [14], and the classification
of skin cancers [9].

Despite the high accuracy deep neural networks have
achieved in medical image diagnosis, they still exhibit two

major limitations, insufficient generalization ability and verifi-
ability. It iswell known that deepneural networks require large
amounts of training data. When high quality training data is
scarce, as is typically the case in themedical image domain, the
performance of trained deep neural networks on novel testing
datamaydeteriorate significantly. In addition, deep neural net-
works typically produce a final result without showing how
and why the result can be reached. This is undesired because
very often computer-generated diagnostic results only serve as
decision support for human doctors, who need to verify their
credibility before accepting them.

To improve verifiability, a medical image diagnosis algo-
rithm needs to learn the knowledge reasoning process fol-
lowed by radiologists during clinical practice. They start
from visual evidences in medical images and reach diagnos-
tic conclusions by referring to causal relationships between
diseases and the visual evidences. For example, radiologists
use intuitive morphological and appearance characteristics
of a pulmonary nodule, such as lobulation, spiculation, and
texture, as visual evidences to assess whether the nodule is
benign or malignant [21] (Fig. 1). In this paper, such charac-
teristics of a lesion or, in general, radiological abnormalities
in a medical image are defined as the attributes of the lesion
or image. Thus, equipping a machine learning model with
the capability of simultaneously predicting attributes as
well as underlying diseases improves the causality and veri-
fiability of the model now that radiologists can verify the
predicted attributes as well as the knowledge reasoning
process that goes from attributes to diagnostic conclusions.

In addition to causal relationships between diseases and
attributes, there also exist relationships, such as co-occurrence,
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among the attributes themselves. Effectively modeling and
exploiting the hidden relationships among these attributes as
well as the relationships between attributes and the underly-
ing diseases can boost the accuracy of attribute and disease
prediction.Nonetheless, there have been fewmethods inmed-
ical image diagnosis exploiting such relationships.

To address generalization ability, we need to look at the
strengths and limitations of both neural and probabilistic
learning algorithms for relational modeling and reasoning.
Examples of neural algorithms include graph neural net-
works [26] and relation networks [51]while examples of prob-
abilistic learning algorithms include Bayesian networks [47]
and factor graphs [11]. Neural algorithms are good at learning
from large amounts of empirical data. The trainedmodels can
interpolate and approximate known information very well to
reach high accuracy, but have relatively poor generalization
ability, causality and explainability.On the other hand, proba-
bilistic learning algorithms, which can be considered as a type
of symbolic AI methods, can learn from smaller datasets. The
trained models have better generalization ability, causality
and explainability, but lower accuracy when facing real-
world empirical data.

In this paper, to exploit the complementary strengths of
neural and probabilistic learning algorithms as well as over-
come the limitations of both ends, we introduce a hybrid
neuro-probabilistic reasoning algorithm for verifiable attri-
bute-based medical image diagnosis. Specifically, the pro-
posed hybrid algorithm consists of multiple stages. It first
employs a deep neural network backbone to extract features
from an input image. Such features build the foundation
of reasoning that happens in later stages. Next, a Bayesian
network (BN) branch and a graph convolutional network
(GCN) branch process the features extracted by the backbone
and perform relational reasoning in parallel. The BN branch

first converts features into attributes as evidences, then per-
forms probabilistic reasoning using the causal relationships
between the disease and attributes, and finally produces
their marginal posterior distributions. On the other hand, the
GCN branch performs feature-based relational modeling. It
represents attributes and generic relationships among them
using a graph. The GCN branch exploits the relationships
among the graph nodes to enhance the feature of every attri-
bute. More accurate diagnoses and attribute classifications
can be achieved using the enhanced features from the GCN.
Although the BN and GCN belong to two parallel branches,
they are not completely independent. We tightly couple the
BN and GCN branches so that the BN is utilized to improve
the causality and generalization ability of the GCNwhile the
accuracy of the GCN is retained. Such tight coupling is
achieved via a cross-network attention mechanism and the
fusion of their classification results. By fusing the results
from the two branches, causality enforced by the BN branch
may be partially compromised. Therefore, a second Bayesian
networkmodule is appended at the end of the entire network
to reinforce causality.

The entire network except the Bayesian network modules
can be trained using gradient back-propagation as the infer-
ence phase of a Bayesian network is differentiable and gra-
dients can be propagated through the two Bayesian
networks in our algorithm. However, we notice that the
compatibility between the structure of the Bayesian net-
works and the rest of our hybrid network significantly
affects the performance of the entire network. Thus, once
we learn the initial structure of the Bayesian networks using
ground-truth annotations, the training procedure proceeds
by alternating between two phases. The first phase updates
the CNN and GCN weights using stochastic gradient
descent while the second phase updates the structures and

Fig. 1. Sample 2D slices of 3D pulmonary nodules from the LIDC-IDRI dataset, each with one of the following eight attributes: Subtlety, Internal Struc-
ture, Calcification, Sphericity, Margin, Lobulation, Spiculation, Texture. The annotated grade of each attribute is shown between the parentheses. For
example, Subtlety (5) means its annotated grade is 5.
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parameters of the two Bayesian networks using the attribute
classification results most recently predicted by their pre-
ceding stages in our hybrid network as training labels.

Note that verifiability is more stringent than explainabil-
ity. For computer-generated diagnoses to be verifiable, the
internal decision process of an algorithm not only should be
explainable, but also needs to comply with the domain
knowledge of human doctors. As mentioned earlier, in
medical image diagnosis, radiologists start from visual evi-
dences in medical images and reach diagnostic conclusions
by referring to causal relationships between diseases and
the visual evidences. Thus the algorithm needs to collect the
same types of visual evidences as a doctor would do, and
also learn the causal relationships between evidences and
diseases as a doctor would do. The proposed algorithm in
this paper models visual evidences as attributes and collects
such visual evidences through attribute prediction. It fur-
ther models causal and non-causal relationships using BN
and GCN, which quantitatively encode such medical
domain knowledge as “the presence of attribute A in this
CT scan increases/decreases the likelihood that the patient
has disease D” or “the occurrence of attribute A in this CT
scan increases/decreases the chance that attribute B also
occurs in the same scan”. Every node in these networks (BN
and GCN) represents a high-level concept (a disease or an
attribute), and a disease diagnosis exploits the relationships
between the disease and a set of other high-level concepts.
In comparison to previous medical image diagnosis meth-
ods, radiologists may find the knowledge reasoning process
of the proposed algorithm more consistent with their own
practice and, consequently, the disease diagnoses made by
our method more credible.

We have successfully applied our hybrid reasoning algo-
rithm to two challenging medical image diagnosis tasks.
The first task is benign-malignant classification of pulmo-
nary nodules in chest computed tomography (CT) images
in the LIDC-IDRI benchmark dataset. As mentioned earlier,
for pulmonary nodule classification, morphological and
appearance attributes have been commonly used to assist
clinical diagnosis [21]. The second task is tuberculosis (TB)
diagnosis using chest X-ray images. For this task, we adopt
an in-house dataset carefully annotated by senior medical
experts. Every image in this TB dataset is not only annotated
with a disease diagnosis, but also multiple types of radio-
logical abnormalities, such as ‘Pulmonary Consolidation’,
‘Pulmonary Cavitation’, ‘Diffuse Nodules’, and ‘Fibrotic
Appearance’, potentially caused by tuberculosis. According
to the experimental results of pulmonary nodule classifica-
tion on the LIDC-IDRI benchmark, our method achieves a
new state-of-the-art accuracy of 95.36% and an AUC of
96.54%. On our in-house dataset for tuberculosis classifica-
tion, our algorithm also achieves a 4.98% improvement in
accuracy in comparison to previously best-performing algo-
rithm for attribute-based medical image classification.

Our main contributions in this paper can be summarized
as follows.

� We introduce a hybrid neuro-probabilistic reasoning
algorithm for attribute-based medical image diagno-
sis. To support causal and verifiable relational model-
ing and reasoning, this algorithm tightly couples

Bayesian networks and a graph convolutional net-
work. Such coupling is achieved via a cross-network
attentionmechanism and a classification result fusion
scheme.

� We devise an effective training procedure for the pro-
posed hybrid network. It alternates between two
phases. The first phase updates the CNN backbone
and GCNweights while the second phase updates the
structures and parameters of the Bayesian networks.

� We have successfully applied the proposed hybrid
reasoning algorithm to two representative medical
image diagnosis tasks, benign-malignant classifica-
tion of pulmonary nodules in chest CT images and
tuberculosis diagnosis using chest X-ray images. The
proposed algorithm achieves state-of-the-art perfor-
mance on the LIDC-IDRI benchmark dataset for the
first task and an in-house dataset for the second task.

2 RELATED WORK

2.1 Attribute Learning

Attributes, such as texture, color, and shape, are of great
importance to describe objects. Attribute learning has been
studied in computer vision for many years [1], [10], [28], [30],
[33], [34], [42]. Ferrari et al. [10] proposed to use low-level
semantic features for attribute representation and they pre-
sented a probabilistic generative model for visual attributes,
togetherwith an image likelihood learning algorithm.Human
faces have many attributes, and remain a challenge for attri-
bute learning. Kumar et al. [28] trained binary classifiers to
recognize the presence or absence of describable aspects of
facial visual appearance using traditional hand-crafted fea-
tures. Liu et al. [37] proposed a CNN framework for face local-
ization and attribute prediction, respectively. Attributes have
also been exploited in tasks such as zero-shot learning [23],
[30]. Effectively modeling the hidden relationships among
attributes is useful for improving the accuracy of attribute
prediction and causal association. Nonetheless, most of the
early works in attribute learning did not model relationships
among attributes and explore such relationships for attribute
reasoning. The development of graph neural networks
(GNN) [26] made it possible to learn relationships among
attributes. For example,Meng et al. [41] usedmessage passing
to perform end-to-end learning of image representations,
their relationships as well as the interplay among different
attributes. They observed that relative attribute learning natu-
rally benefits from exploiting the graph of dependencies
among different image attributes. In this paper, we not only
utilize a graph neural network to model the correlations
among attributes, but also embed Bayesian networks into the
whole framework to bettermodel causality.

2.2 Bayesian Networks

Bayesian networks (BN), introduced by Judea Pearl [46], repre-
sent a natural approach tomodel causality and perform logical
reasoning. Bayesian network learning includes two phases,
structure learning and parameter learning. The most intuitive
method for structure learning is that of ‘search and score,’
where one searches the space of directed acyclic graphs
(DAGs) using dynamic programming and identifies the one
that minimizes the objective function [58]. For parameter
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learning, the most frequently used method is maximum likeli-
hood estimation (MLE) [46]. However, when given a dataset,
BN cannot learn a feature representation, which limits its fur-
ther development. Recently, researchers have started to focus
on the integration betweenBNanddeep learning. For example,
Rohekar et al. [49] proposed to utilize BN models for learning
better deep neural networks. Meanwhile, a few improved ver-
sions of BN have been proposed for new applications in com-
puter vision. For example, Barik [3] improved BN using low-
rank conditional probability tables. Elidan et al. [8] used the
Copula BayesianNetworkmodel for representingmultivariate
continuous distributions. The method in this paper differs
from the above work in that it exploits the representation
power of deep neural networks and the causality modeling
capability of BNby embedding them into a unified framework.

2.3 Bayesian Neural Networks

In addition to poor interpretability, deep neural networks also
suffer from overfitting on limited labeled data and the incapa-
bility of uncertainty analysis. To tackle these issues, research-
ers combined Bayesian methods with deep learning to
construct Bayesian neural networks (BNN) for a probabilistic
representation of uncertainty of the latter [12], [25], [56]. Specif-
ically, a BNN estimates posterior distributions for the weights
in a neural network. There exist a few estimation methods,
such as variational inference [25] and dropout variational
inference [12]. However, the proposed method in this paper
differs significantly from Bayesian neural networks. Unlike
BNNs, our proposed method aims to improve the causality
and interpretability of deep learning via the fusion of deep
learning and traditional graph-based probabilistic reasoning.
It cannot perform uncertainty analysis. Nonetheless, due to
the few trainable parameters in Bayesian networks, the pro-
posed method can clearly mitigate overfitting on small train-
ing datasets, as demonstrated in one of our ablation studies.

2.4 Neuro-Symbolic Learning

The integration of connectionist (neural networks) and sym-
bolic AI has long been a key issue in machine learning [32],

[53], [54], [65], [66]. Early works [53], [54] primarily focused
on the injection of symbolic information as prior knowledge
into a neural network. More recently, with the wide spread
of deep learning, researchers [32], [65], [66] started to com-
bine the merits of deep feature representation with symbolic
reasoning to build strong, reliable and explainable neural-
symbolic AI systems. Relevant studies have been conducted
on visual question answering (VQA) [65], semantic pars-
ing [66] and handwritten formula recognition [32]. One of
the key issues in neural-symbolic learning is that most sym-
bolic approaches are not differentiable, making end-to-end
training difficult. In this study, we partially solved this issue
by performing gradient back-propagation through both
Bayesian networks, which serve as the symbolic reasoning
module in our hybrid network, for a better feature represen-
tation and a more efficient training procedure.

3 ALGORITHM

3.1 Overview

The proposed hybrid neuro-probabilistic reasoning algo-
rithm takes an image patch as the input and outputs a clas-
sification result, as shown in Fig. 2. The proposed algorithm
consists of the following three stages.

The Backbone Stage. A backbone based on ResNet [18] or
EfficientNet [57] is utilized for deep feature representation,
which builds the foundation for reasoning in later stages.
Moreover, a feature pyramid network (FPN) [36] is inte-
grated into the backbone for multi-scale feature aggregation
(Fig. 2). A distinct global average pooling (GAP) operator is
applied to the feature map at each scale of the FPN to reduce
the number of parameters. And for reducing information
loss in low-level feature maps, we ensure that the dimension
of the resulting feature from GAP is kept the same at differ-
ent scales of the FPN. For instance, when the size of a feature
map in the FPN is 64� 64� 256, we first reshape it to 32�
16� 2048 by concatenating the third dimensions of every 2�
4 neighbors in the first two dimensions together, then use
GAP to produce a 2048-dimensional feature vector. All GAP-
reduced features go through parallel FC layers before they

Fig. 2. Our proposed framework consists of three stages: 1) Deep feature extraction using an CNN-FPN backbone; 2) hybrid attribute relational
modeling and reasoning using a pair of coupled Bayesian network and deep graph network; 3) causality reinforcement using a second Bayesian net-
work. Note that BN-1 and BN-2 are distinct in both parameters and structures.
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are fused via a sum operator and a subsequent FC layer to
obtain the final feature, F0, at the backbone stage.

The Reasoning Stage. Both a Bayesian network and a graph
convolutional network are adopted for relational reasoning
in parallel. The BN branch first converts deep features into
attributes through attribute classification, then performs
probabilistic causal reasoning using these attributes, and
finally outputs marginal posterior distributions. The GCN
branch first transforms the deep features from the backbone
into a feature representation for individual attributes and
represents the relationships among the attributes using an
undirected graph, then enhances the feature of each attri-
bute via graph convolutions. The BN and GCN are tightly
coupled together through a cross-network attention mecha-
nism and the fusion of their classification results, which will
be described in Section 3.4.

The Second BN Module. To reinforce causality of the pro-
posed hybrid algorithm, a second BN is appended at the
end of the entire network.

3.2 Integration Between BN and Backbone

A Bayesian network is incorporated in the reasoning stage
to model probabilistic dependencies among various attrib-
utes for disease diagnosis. Specifically, a Bayesian network,
B ¼< VB; EB;Q>, is a directed acyclic graph (DAG) <
VB; EB > with a conditional probability table (CPT) for each
node, and Q represents all parameters (CPTs), which enco-
des the joint probability distribution of the BN. Each node
vi 2 VB stands for a random variable, and a directed edge
e 2 EB between two nodes ðvi; vjÞ indicates vi probabilisti-
cally depends on vj. The training of a Bayesian network
undergoes two phases, structure learning and parameter
learning [7], [46], [47]. We adopt dynamic programming
with the Bayesian information criterion (BIC) [58] for struc-
ture learning to determine the topology of the DAG and
maximum likelihood estimation for parameter learning to
determine Q. Our BN module first learns its structure and
then updates all parameters, i.e., the conditional probability
tables at all nodes in the network. In this paper, each attri-
bute has a corresponding node in the Bayesian network.
Without loss of generality, assume there is only one disease
we wish to diagnose, and that disease is an extra node in
the network.

To integrate the Bayesian network with our backbone,
the final feature from the backbone, F0, is fed to another FC-
layer with weight matrix WB to obtain a feature map FB.
Thus, FB ¼ WBF0ð2 RðNþ1Þ�CÞ, where N is the number of
attribute categories and C is the number of grades for each
attribute or disease. Each attribute must have at least two
grades to indicate whether that attribute is present or not. In
practice, there is often a need to have more than two grades
for each attribute or disease to indicate intermediate levels
of certainty or severity. Note that different grades of the
same attribute are mutually exclusive while different attrib-
utes are not because more than one attribute could be pres-
ent at the same time. Thus, FB can be interpreted as the
concatenation of N þ 1 C-dimensional vectors, one for each
node in the Bayesian network. We further define P 0

B ¼
sðFBÞð2 ½0; 1�ðNþ1Þ�CÞ, where the softmax operator s is
applied to each C-dimensional vector in FB, and the result

represents a discrete distribution over the grades of an attri-
bute or disease. This distribution becomes the input evi-
dence at the corresponding node in the Bayesian network.

Once we perform inference in the Bayesian network
using the conditional probability tables as well as the input
evidences at all nodes, we obtain marginal posterior distri-
butions at all nodes, including the extra node for disease
diagnosis, as the output of the Bayesian network. Let the
nodes in the Bayesian network be vi; i 2 f0; 1; . . . ; ng. With-
out loss of generality, according to [46], the marginal poste-
rior distribution PBðv0Þ at node v0 is formulated as

PBðv0Þ ¼
Z

� � �
Z
V

P ðv0; v1; . . . ; vnÞdv1 . . . dvn; (1)

where

P ðv0; v1; . . . ; vnÞ ¼
Yn
i¼0

P ðvijParentsðviÞÞ; (2)

where ParentsðviÞ is NULL if vi does not have any parent
nodes. The equation in (2) is derived using the local Markov
property of Bayesian networks. In practice, to evaluate (1),
we use the belief propagation algorithm in [45].

3.3 GCN Module

In addition to the Bayesian network, we also adopt a graph
convolutional network in the reasoning stage to perform
feature-based relational modeling and reasoning among
attributes to facilitate medical image diagnosis. Specifically,
a GCN is based on an undirected graph G ¼ ðVG; EGÞ, where
VG and EG are the set of nodes and edges respectively. Here,
there is a node corresponding to each attribute or disease,
and the node holds a feature vector associated with that
attribute or disease. Again, assume there is only one disease
we wish to diagnose, and the total number of nodes is N þ
1. If vertices vi and vj are connected in the graph, there
might exist certain type of relations between them. We asso-
ciate a learnable weight with every edge in the graph to
indicate the strength of the connection. The GCN in our
algorithm consists of L layers, all of which share the same
number of nodes. But the edge weights in these layers may
be different.

A general graph convolution operation F at the lth layer
can be formulated as follows:

FðGl;W lÞ ¼ UpdateðAggregateðGl;Wagg
l Þ;Wupdate

l Þ; (3)

where Gl ¼ ðVGl; ElÞ is the graph at the lth layer; Wagg
l and

Wupdate
l are the learnable weights of the aggregation and

update functions of the lth layer, respectively. We use a
max-pooling node feature aggregator to pool the pairwise
differences of features at node vi and all of its neighbors.
But the feature difference between vi and one of its neigh-
bors is modulated by the edge weight between them before
the pooling operation. The node feature updater is a multi-
layer perceptron (MLP) with batch normalization and ReLU
as the activation function. The above MLP concatenates the
original node feature with the aggregated feature as its
input.

We adopt the residual graph convolution introduced in
[31]. Let HGl 2 RN�Dl be the feature map holding the
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features at all nodes of Gl, where N is the number of attrib-
utes and Dl is the feature dimension in the lth layer. The
residual graph convolution between the lth and (lþ 1)th
layers of the GCN is formulated as follows:

HGlþ1
¼ FðGl;WlÞ þHGl : (4)

To integrate the above GCN with our backbone, we need
to obtain N þ 1 features from the final feature in the back-
bone, one for each node in the GCN. For this purpose, F0 is
fed to another FC-layer with weight matrix WG to obtain
feature map HG0 . Thus, HG0 ¼ WGF0ð2 RðNþ1Þ�D0Þ, where N
is the number of attribute categories and D0 is the input fea-
ture dimension for every node in the GCN. HG0 thus can be
interpreted as the concatenation of N þ 1 D0-dimensional
feature vectors, one for each node in the first layer of the
GCN as input.

The final feature map of the GCN isHGL 2 RðNþ1Þ�DL . We
further use a FC-layer followed by a softmax operator to
obtain attribute and disease classification results in the fol-
lowing equation:

PG ¼ sðWPHGLÞ; (5)

where PG 2 ½0; 1�ðNþ1Þ�C denotes the attribute and disease
predictions.

3.4 Coupling Between BN and GCN

Although both the BN and GCN are utilized for relational
reasoning, they are not completely independent. In this
work, we tightly couple BN and GCN via a cross-network
attention mechanism and the fusion of classification results.
As for the former, BN provides attention for the node fea-
tures in each layer of the GCN. Specifically, the marginal
posterior distributions at all nodes of the BN are taken as
the input of L node attention modules, one for each layer of
the GCN to figure out the relative importance of attributes
in that layer. Node attention values prescribed by the lth
attention module are defined as follows:

Ml
attn ¼ sðW l1ReLUðWl0PBðVÞÞÞ; l 2 1; 2; . . . ; L; (6)

where Ml
attn 2 RNþ1 is the node attention vector for the lth

layer of the GCN, V includes all attribute and disease nodes
of the BN, and PBðVÞ 2 RðNþ1Þ�C represents the
concatenated marginal distributions at all nodes of the BN.
Note that there is one attention value in Ml

attn for each node
in the lth layer of the GCN. We nameMl

attn the spatial atten-
tion map for GCN nodes since nodes are spatial entities of a
graph, similar to pixels in a CNN.

We also extend squeeze-and-excitation based channel-
wise attention in SENet [20] to graph convolutional net-
works as follows to further enhance the features of every
layer in the GCN

Cl
attn ¼ sðW lexReLUðW lsqGAP ðHGlÞÞÞ; (7)

where Cl
attn 2 RDl ; l 2 1; 2; . . . ; L is the channel-wise atten-

tion vector for the lth layer of the GCN, W lsq and Wlex are
the weights for squeezing and excitation, respectively.

Once both spatial and channel-wise attention vectors
have been calculated, first the same channel of all features

in Gl is multiplied by its corresponding channel-wise atten-
tion value, then the entire feature at each node in Gl is multi-
plied by its corresponding spatial attention value. Such
spatially and channel-wise modulated features at the lth
layer of the GCN serve as the input to the next graph convo-
lution to produce the feature map HGlþ1

at the ðlþ 1Þth
layer.

As for the fusion of the disease classification results from
BN and GCN, a residual fusion scheme is formulated as fol-
lows:

Pd
fusion ¼ wB � Pd

B þ ð1� wBÞ � sðW0ConcatðPd
G; P

d
BÞÞ: (8)

For attribute classification results, the same residual fusion
scheme is adopted as follows:

Pa
fusion ¼ w0

B � Pa
B þ ð1� w0

BÞ � sðW 0
0ConcatðPa

G; P
a
BÞÞ: (9)

In these equations, Pd
B and Pa

B are the marginal posterior
distributions at the disease and attribute nodes in the BN,
Pd
G and Pa

G are the probabilistic disease and attribute classifi-
cation results from the GCN, wB and w0

B are two learnable
trade-off coefficients, W0 and W 0

0 are the weight matrices of
two fully connected layers, and Concat() is the concatena-
tion operator.

3.5 The Second BN Module

It should be noted that by fusing the results of both BN and
GCN branches, causality enforced by the BN branch may be
compromised to some extent. To tackle this issue, we
append a second Bayesian network at the end of the entire
network to reinforce causality. The fused attribute and dis-
ease soft classification results in (9) and (8) are used as the
input evidences at the nodes in this second Bayesian net-
work. The marginal posterior distribution at the disease
node, denoted as Pd

final, can also be defined using equations
similar to those in (1) and (2). In practice, it is also evaluated
using the belief propagation algorithm. This marginal poste-
rior distribution at the disease node of the second BN
becomes the final disease prediction of the entire network.
Note that BN-1 and BN-2 are distinct in both parameters
and structures.

3.6 Training Scheme

Our entire network except the BN modules can be trained
using stochastic gradient descent. Meanwhile, we observe
that the inference phase of a BN is differentiable with
respect to its inputs and parameters, but not its structure.
That implies gradients can be backpropagated through a
BN from its outputs (i.e., marginal posterior distributions)
to its inputs (i.e., evidences). Parameter learning in a BN is
tightly coupled with structure learning, and is driven by
global statistics of the training set. Performing parameter
learning separately from structure learning using stochastic
gradient descent is unlikely to be very effective. Moreover,
we discovered that the compatibility between the Bayesian
network structures and the neural parts of our hybrid net-
work significantly affects the overall performance. There-
fore, we propose the following two alternating phases to
train the entire hybrid network.
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� The first phase updates the weights of the CNN
backbone and the GCN branch using gradient back-
propagation by fixing the structures and parameters
of the two BNs. Gradients are simply backpropa-
gated through these two BNs.

� The second phase updates the structures and condi-
tional probability tables of the BN modules using the
attribute and disease classification results most
recently predicted by their preceding stages in the
hybrid network as training labels. As for structure
learning, dynamic programming is used with the
same score function as in [58]. Once the structure of
BN modules are determined, their conditional prob-
ability tables are updated immediately using maxi-
mum likelihood estimation.

It should be noted that we actually set amaximumvalue on
the number of times the structures and parameters of the two
BNs are updated (20 times in practice). Once the two phases
have been alternated for such a number of times, we fix the
structures and parameters of the two BNs and only update the
weights in the neural parts of our hybrid network. In this way,
we can guarantee the convergence of our training process.

The ground-truth annotations of the training samples are
only used to train the initial structure and parameters of the
BN modules. In subsequent iterations, for the first BN, the
ground-truth attribute and disease annotations of a training
sample are replaced with its attribute and disease classifica-
tion results most recently produced by the backbone, i.e.,
P 0
B; for the second BN, they are replaced with its most recent

fused attribute and disease classification results, Pd
fusion and

Pa
fusion in (8) and (9). The effectiveness of this training strat-

egy has been empirically verified. Potential reasons for the
effectiveness are twofold: first, attribute classification results
produced at intermediate stages of our hybrid network are
soft labels, which are actually distributions, and have more
complete information than the ground-truth attribute labels
represented as one-hot vectors; second, using soft attribute
labels generated within the hybrid network makes the
trained Bayesian network structures more compatible with
the neural parts of the hybrid network.

We rely on the belief propagation algorithm to perform
inference in a Bayesian network and compute the marginal
posterior distributions for its variables. Since we train the
weights in the neural networks by propagating gradients
through the Bayesian networks, we need to obtain the gradient
of the belief propagation algorithm. A method for computing
this gradient is described in theAppendix, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2021.3130759.

3.6.1 Training Loss

During the first phase of the above alternating training pro-
cedure, we adopt the deep supervision strategy by distrib-
uting multiple supervision signals to various stages of our
hybrid network. Most of the time, each supervision signal is
primarily responsible for training a subset of the modules in
the network. The overall loss function during the first phase
of training is a weighted combination of five loss functions

Lall ¼ w1L0
G þ w2L0

B þ w3La þ w4Ld þ w5Lfinal; (10)

where
P5

i¼1 wi ¼ 1. In our experiments, we always set
wi ¼ 0:2; i 2 1; 2; ::; 5.

The first two supervision signals corresponding to losses
L0
B and L0

G are respectively located at the beginning of the
BN and GCN branches. Two classifiers are involved. One of
them is simply P 0

B ¼ sðFBÞð2 ½0; 1�ðNþ1Þ�CÞ, the input evi-
dences at the nodes of the first Bayesian network. The cross-
entropy loss for this classifier is written as follows:

L0
B ¼ �

XNþ1

i¼1

XC
j¼1

ðyijlog ðpB;0ij Þ þ ð1� yijÞlog ð1� pB;0ij ÞÞ: (11)

The second classifier is defined as P 0
G ¼ sðWT HG0 Þð2

½0; 1�ðNþ1Þ�CÞ, which takes HG0 as the input and performs
both attribute and disease classification. The cross-entropy
loss for this classifier is written as follows:

L0
G ¼ �

XNþ1

i¼1

XC
j¼1

ðyijlog ðpG;0
ij Þ þ ð1� yijÞlog ð1� pG;0

ij ÞÞ: (12)

In the above two loss functions, yij’s denote one-hot encod-
ing of the ground-truth attribute or disease grades of train-
ing samples, pB;0ij and pG;0

ij are components of P 0
B and P 0

G

respectively. These two classification losses disentangle
attributes from the deep features of the backbone under the
supervision of ground-truth labels. These two supervision
signals are primarily responsible for training the backbone
as well as the connection layers between the backbone and
the BN or GCN.

The second group of two supervision signals are applied
to the fused results of the BN and GCN in (8) and (9). Two
cross-entropy losses La and Ld are imposed again on the
classification results of attributes and diseases, respectively.
The first loss is imposed on the fused disease classification
result, Pd

fusion in (8), and is formulated as follows:

Ld ¼ �
XC
j¼1

ðydj log ðpdj Þ þ ð1� ydj Þlog ð1� pdj ÞÞ; (13)

where yd denotes one-hot encoding of the ground-truth dis-
ease grades of training samples, and pdj represents a compo-
nent of Pd

fusion. The second loss La is imposed on the fused
attribute classification results, Pa

fusion in (9), and is formu-
lated as follows:

La ¼ �
XN
i¼1

XC
j¼1

ðyaijlog ðpaijÞ þ ð1� yaijÞlog ð1� paijÞÞ; (14)

where ya denotes one-hot encoding of the ground-truth
attribute grades of training samples, and paij represents a
component of Pa

fusion. Since we do not update parameters in
the BNs during the first phase of the training scheme, these
two supervision signals are primarily responsible for train-
ing the backbone and the GCN.

The last supervision signal is located at the end of the
entire hybrid network, and is responsible for training all
modules in the entire network. A cross-entropy loss is
imposed on the final disease classification result, Pd

final,
defined in Section 3.5 and produced by the second Bayesian
network. It is written as follows:
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Lfinal ¼ �
XC
j¼1

ðydj log ðp
final
j Þ þ ð1� ydj Þlog ð1� pfinalj ÞÞ; (15)

where pfinalj represents a component of Pd
final.

4 MEDICAL IMAGE DIAGNOSIS

In this section, we apply our attribute-based hybrid reason-
ing algorithm to two challenging medical image diagnosis
tasks. The first task is benign-malignant classification of pul-
monary nodules in chest computed tomography (CT)
images. The second task is tuberculosis diagnosis using
chest X-ray images. We define attributes and perform attri-
bute relationship learning and reasoning for both tasks.

Following the common practice of previous attribute-
based classification methods, not all attributes are used for
training, i.e., we select attributes that have high causal rela-
tions with the diseases, and those unrelated attributes have
been discarded.

4.1 Pulmonary Nodule Classification

Lung cancer gives rise to the most cancer-related deaths
around the world [4]. Early diagnosis and treatment are of
great importance to long-term survival of lung cancer
patients. Benign-malignant classification of pulmonary nod-
ules in chest CTs is vital for timely diagnosis of lung can-
cer [43]. In practice, radiologists often gain many clinical
insights from the connections between domain knowledge
and clinical symptoms as well as from the dependencies
between diverse attributes and the underlying disease. This
is applicable to pulmonary nodule diagnosis. For instance,
when a nodule has an irregular shape and presents obvious
spiculation, it has a high probability of being malignant.

4.1.1 LIDC-IDRI Dataset

The LIDC-IDRI dataset [2] from the Cancer Imaging
Archive (TCIA) is one of the largest publicly available lung
cancer datasets. It has 1018 clinical chest CT scans obtained
from seven institutions. Each scan is associated with an
XML file that details the locations of nodules on each
512�512 slice. The diameters of the nodules range from
3mm to 30mm. Each suspicious lesion is categorized as a
non-nodule, a nodule < 3mm, or a nodule � 3mm in diam-
eter. Adopting the same setting as in [6], [15], [61], [62], [64],
we only consider nodules � 3mm in diameter since nodules
< 3mm are not considered to be clinically relevant by cur-
rent screening protocols [6], [15], [16], [22], [52], [55].

The malignancy of each nodule was evaluated with a 5-
point scale, from benign to malignant, by up to four experi-
enced thoracic radiologists. Following the same procedure
used in previous studies [6], [15], [61], [62], [64], we select
those nodules annotated by at least one radiologist and cal-
culate the median malignancy level (MML) for each of
them. Nodules with an MML less than or higher than 3 are
respectively labeled as benign or malignant. To reduce the
uncertainty of nodule malignancy evaluation, nodules with
an MML of 3 (noted as ‘uncertain’) are excluded from our
experiments as previous studies did. Thus there are a total
of 1301 benign, 612 uncertain and 644 malignant nodules.
The distribution of nodules over their MML is shown in
Table 3. Apart from malignancy, eight attributes are also

graded for each nodule, i.e., subtlety, internal structure, cal-
cification, sphericity, margin, lobulation, spiculation, and
radiographic solidity. The grade of each attribute is between
1 and 5 except for internal structure (1-4) and calcification
(1-6). We scale the grades of all attributes to 1-5 to maintain
consistency, where 1 means the least obvious and 5 means
the most obvious. Fig. 1 shows sample 2D slices with dis-
tinct attributes.

We also normalize all chest CTs to a unified voxel size of
1:0� 1:0� 1:0mm3 using spline interpolation. In addition,
following the same setting as in [61], [62], we assume the
location of a nodule is the mean of the annotated centers of
the nodule by radiologists. For each nodule, we crop a 64�
64� 64 patch centered on its location.

4.1.2 Experimental Setup

In all experiments, we perform 10-fold cross validation, and
each model is independently trained and tested 5 times
with randomly initialized weights on each fold. The overall
performance of a model is assessed with several commonly
used metrics, including the mean and standard deviation of
accuracy, sensitivity/recall, specificity, precision with the
cut-off value of 0.5, F-score and AUC (area under the
receiver operator curve).

All models are trained for 160 epoches from scratch using
PyTorch [44] on NVIDIA Titan X pascal GPUs while
Adam [24] being the optimizer with the initial learning rate
set to 1e-3, which is reduced by a factor of 10 after every 30
epochs. The weight decay is set to 1e-4. Both ResNet and
EfficientNet are adopted as the backbone models. We have
implemented their 3D versions for the LIDC dataset by
revising the original 2D versions. The size of the input
image patches is 64� 64� 64, and the batch size is 6 on a
single GPU. Separate models are trained with and without
data augmentation, which includes standard operations
including flipping, rotation, and random cropping.

4.1.3 Comparison With the State of the Art

We have compared our hybrid algorithm with several state-
of-the-art models for pulmonary nodule classification on
the LIDC-IDRI dataset and the results are shown in Table 1,
where O2 and O2� represent our models trained without
and with standard data augmentation. The proposed
method achieves the best performance under every evalua-
tion metric when data augmentation is applied while it is
still ranked first under every evaluation metric except for
specificity when data augmentation is not used. Such a per-
formance demonstrates the effectiveness of hybrid neural
and probabilistic reasoning proposed in this paper, as well
as the important role of attribute learning in medical image
diagnosis. Specifically, method A adopts a multi-crop con-
volutional neural network trained a subset of 825 nodules
from LIDC and achieves an accuracy of 87.14%. Method B
trains a 3D CNNwith a subset of 1144 nodules and achieves
a higher accuracy (91.26%). All methods from C to H train
models using the same number of nodules, which is 1945.
However, method H introduced additional 1839 unlabeled
nodules for semi-supervised learning and achieves the
highest accuracy (92.53%) among methods from C to H.
Method I proposes a multi-scale 3D ResNet with a cost-
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sensitive loss and delivers a higher performance (92.64%)
than method H using a subset of 1712 nodules. In compari-
son, when adopting the same backbone (3D ResNet) as
method I, our method (O1) achieves a better performance
(93.74%), indicating the importance of attribute relationship
modeling in enhancing the performance of pulmonary nod-
ule classification. Most importantly, Table 1 shows that
when using an EfficientB4-FPN backbone, our model with
data augmentation (O2*) achieves the highest accuracy of
95.36%, and our model without data augmentation (O2)
gains 4.41% over the baseline using the same backbone
(M4).

In addition, Table 2 shows that under the training setting
and testing protocol adopted in [59], our algorithm also
achieves the highest accuracy, further demonstrating the
effectiveness of our method. In this comparison, we adopt
the same backbone (DenseNet) as in [59], and do not apply
any data augmentation during training. During testing, we
adopt the same “off-by-one” accuracy as in [59], which con-
siders attribute/malignancy grading within 	1 of the
ground truth as correct results. Note that although we do

not exploit the additional supervision signal provided by
the nodule segmentation masks, that are used in [59], our
method still achieves the highest accuracy of 98.12%.

We have further compared with attribute relationship
modeling methods including M31, M41, M32, and M42. For
a fair comparison, methods in the same comparison always
adopt the same backbone, which is either 3D ResNet-50 or
EfficientNet-B4. The relational network module proposed in
[51] and the GRU module proposed in [41] respectively
achieve an improvement of 1.59% and 1.30% in accuracy
when compared with the 3D ResNet-50 baseline while our
method improves the accuracy of the same baseline by
3.63%. The same conclusion can be drawn for the Efficient-
Net-B4 backbone. We have also compared with two classic
attribute learning methods T1 and T2, and they deliver a
lower accuracy of 88.73% and 91.01%, respectively. In sum-
mary, all the above well-designed experiments demonstrate
that the proposed hybrid neuro-probabilistic reasoning
algorithm achieves clearly better performance than existing
methods on the LIDC-IDRI dataset.

Sample input images and their associated attribute and
disease classification results from our method and a few
other baseline methods are shown in Fig. 3. In addition, we
provide the importance of individual attributes for pulmo-
nary nodule classification, i.e., quantitatively evaluating
how important individual attributes are in making the pre-
diction. To be specific, we measure how much the final dis-
ease classification probability is affected by deactivating

TABLE 1
Performance Comparison of Lung Nodule Classification Models on the LIDC-IDRI Dataset

Methods Number Results(%) (mean	standard deviation)

B M Accuracy Sensitivity / Recall Specificity AUC Precision F-score

A Shen et al., 2017 [55] (Multi-crop CNN) 528 297 87.14 77.00 93.00 93.00 Not given Not given
B Hussein et al., 2017 [21] (3D CNN) 635 509 91.26 Not given Not given Not given Not given Not given
C Han et al., 2015 [15] (3D GLCM feature+SVM) 1301 644 85.38	0.10 70.20	0.15 92.80	0.20 88.19	0.16 82.85	0.38 75.99	0.10
D Dhara et al., 2016 [6] (Multi-visual features) 1301 644 87.90	0.17 84.50	0.19 89.09	0.25 93.77	0.15 79.31	0.37 81.82	0.21
E Xie et al., 2018 [63] (Deep + visual features) 1301 644 88.73	0.15 84.40	0.20 90.88	0.13 94.02	0.20 82.09	0.24 83.23	0.21
F Xie et al., 2017 [60] (TMME with Resnet-50) 1301 644 91.01	0.10 83.83	0.15 94.56	0.13 95.35	0.15 88.40	0.24 86.07	0.15
G Xie et al., 2019a [61] (Knowledge-based) 1301 644 91.60	0.15 86.52	0.25 94.00	0.30 95.70	0.24 87.75	0.52 87.13	0.16
H Xie et al., 2019b [62] (Semi-Supervised) 1301 644 92.53	0.05 84.94	0.17 96.28	0.08 95.81	 0.19 Not given Not given
I Xu et al., 2020 [64] (Multi-Scale Cost-Sensitive) 1156 556 92.64	 0.12 85.58 	 0.44 95.87	1.26 94.00 	0.26 90.39 	0.48 87.91 	0.11

T1 Low-Level-Feature [10] 1301 644 88.73	0.15 84.40	0.20 90.88	0.13 94.02	0.20 82.09	0.24 83.23	0.21
T2 Basic-visual-Feature [28] 1301 644 91.01	0.10 83.83	0.15 94.56	0.13 95.35	0.15 88.40	0.24 84.07	0.15
M1 ResNet-50 1301 644 88.14	0.23 82.17	0.14 90.77	0.15 91.21	0.14 82.18	0.11 82.36	0.14
M2 Efficient-B4 1301 644 89.21	0.12 83.83	0.24 91.18	0.22 92.05	0.27 86.88	0.19 83.04	0.23
M3 ResNet-50-FPN 1301 644 90.01	0.13 84.23	0.21 91.54	0.21 92.81	0.31 84.26	0.12 84.71	0.21
M4 Efficient-B4-FPN 1301 644 90.91	0.22 85.74	0.13 92.27	0.15 93.23	0.10 87.10	0.24 86.97	0.14
M31 ResNet-50-FPN-GCN-Relation [51] 1301 644 91.60	0.15 86.52	0.25 92.32	0.15 93.70	0.24 86.75	0.52 85.13	0.16
M41 Efficient-B4-FPN-GCN-Relation [51] 1301 644 92.15	0.12 86.97	0.23 93.13	0.11 93.89	0.23 87.14	0.21 85.57	0.24
M32 ResNet-50-FPN-GRU [41] 1301 644 91.41	0.11 86.12	0.14 92.92	0.19 93.61	0.23 87.44	0.21 85.22	0.15
M42 Efficient-B4-FPN-GRU [41] 1301 644 92.21	0.10 86.94	0.11 93.89	0.24 93.72	0.12 88.24	0.13 86.63	0.21
O1 Our-ResNet-50-FPN 1301 644 93.74	0.17 89.23	0.21 95.76	0.24 96.12	0.12 94.21	0.14 88.27	0.31
O2 Our-Efficient-B4-FPN 1301 644 95.31	0.15 90.51	0.15 96.15	0.22 96.47	0.31 95.95	0.24 88.83	0.45
O2� Our-Efficient-B4-FPN� 1301 644 95.36	0.10 91.01	0.16 96.47	0.12 96.54	0.32 95.96	0.21 89.13	0.15

‘B’ and ‘M’ are the Numbers of Benign and Malignant Lung Nodules.

TABLE 2
Comparison With Existing Lung Nodule Classifica-
tion Models Under a Second Training and Testing

Protocol

Methods Accuracy % # Nodules

TumorNet [22] 82.47 1145
TumorNet-attribute [22] 92.31 1145
SHC-DCNN [5] 82.40 1432
MCNN [55] 86.84 1100
CNN-MTL [21] 91.26 1340
PN-SAMP-S1 [59] 92.03 1404
PN-SAMP-S2 [59] 95.30 1404
PN-SAMP-M [59] 97.58 1404
Ours 98.12 1404

TABLE 3
Distribution of Median Malignancy Levels (MML) in the LIDC-

IDRI Dataset for Lung Nodule Classification

Dataset Benign Uncertain Malignant

MML 1 2 3 4 5
# Nodules 358 943 612 474 170
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one attribute at a time in the input signals to BN-1 and GCN.
For the input signals to GCN, an attribute can be deacti-
vated by setting its corresponding feature vector to an aver-
age feature for that attribute over the samples where that
attribute attains the lowest possible grade. For the input sig-
nals to BN-1, since each attribute in the LIDC-IDRI dataset
is associated with 5 grades, deactivation means assigning
the lowest grade (1) to the attribute.

4.1.4 Ablation Study

We have performed a systematic ablation study on the LIDC
dataset to verify the effectiveness of the components in our
framework. The results are shown in Table 4. Specifically, we
have explored the effects of both the first and second BN (BN-
1 and BN-2), cross-network attention and residual fusion
(CNA-RES), SE channel-wise attention (SEatt) [20], gradient
backpropagation through BN (GradBN), BN and DNN alter-
nating training (AlterTrain) and the Relational NetworkMod-
ule (Relation) [51] on the EfficientNet-B4 backbone. Table 4
shows that all proposed components or strategies contribute

to the final performance of our algorithm. More specifically,
we have found out that ‘CNA-RES’ is the most important
component, the performance would drop by 1.67% if it was
removed, which verifies the effectiveness of our proposed
network coupling strategy. When both ‘BN-2’ and ‘CNA-
RES’ are removed and the final result of the network is com-
puted by a simple average of the results from BN-1 and GCN,
the network becomes an ensemble model integrating the BN-
1 and GCN branches. The performance drops significantly by
3.2% under this ensemble model setting. This result indicates
that various components in our hybrid framework are highly
coupled, and altogether they deliver a performancemuch bet-
ter than a simple ensemble model. ‘GradBN’ and ‘AlterTrain’
also have a significant impact, and the performance drops by
1.5% and 1.0% respectively if either of them is removed. In
addition, completely removing BN-1 and its coupling with
GCNwould decrease the performance by 2.90%while remov-
ing BN-2 alone would decrease the performance by 0.57%.
Moreover, the performance would drop by 3.16% when both
BN modules are removed and a relational network is
appended after the GCN module. This result demonstrates

Fig. 3. Sample results of our method (O2) and four baseline methods (T1, T2, M41, M42) on the LIDC-IDRI dataset. Short names are defined as fol-
lows: SUB (Subtlety), IS (Internal Structure), CAL (Calcification), SP (Sphericity), MG (Margin), LB (Lobulation), SL (Spiculation), TE (Texture), and
MA (Malignancy). The radar charts visualize the actual grades of attributes and disease, and there exist five possible grades for each attribute or dis-
ease. GTstands for the ground truth. The Histograms denote the numerical importance of different attributes for diagnosing malignancy (MA).

TABLE 4
Ablation Study of Our Classification Algorithm on the LIDC-IDRI Dataset

GCN BN-2 CNA-RES SEatt BN-1 GradBN AlterTrain Relation Accuracy Sensitivity / Recall Specificity AUC Precision F-score

✓ ✓ ✓ ✓ ✓ ✓ ✓ ) 95.31	0.15 90.51	0.15 96.15	0.22 96.47	0.31 95.95	0.24 88.83	0.45
✓ ) ✓ ✓ ✓ ✓ ✓ ) 94.74	0:09#0:57 88.92	0.13 95.86	0.41 95.83	0.09 92.54	0.06 88.04	0.04
✓ ) ) ✓ ✓ ✓ ✓ ) 92.11	0:14#3:20 88.14	0.22 93.74	0.15 94.91	0.26 88.11	0.09 86.88	0.12
) ) ) ) ✓ ✓ ✓ ) 91.21	0:22#4:10 87.26	0.14 93.21	0.13 93.47	0.54 88.01	0.09 86.07	0.56
✓ ✓ ) ✓ ✓ ✓ ✓ ) 93.64	0:11#1:67 88.01	0.15 95.03	0.13 95.02	0.13 91.42	0.13 87.92	0.04
✓ ✓ ✓ ) ✓ ✓ ✓ ) 94.01	0:02#1:30 88.64	0.08 95.23	0.07 95.32	0.11 91.11	0.04 87.13	0.09
✓ ✓ ) ✓ ) ✓ ✓ ) 92.41	0:14#2:90 88.14	0.22 93.74	0.15 94.91	0.26 92.11	0.09 86.88	0.12
✓ ✓ ✓ ✓ ✓ ) ✓ ) 93.81	0:10#1:50 88.04	0.32 93.74	0.15 94.91	0.26 90.21	0.07 86.96	0.10
✓ ✓ ✓ ✓ ✓ ✓ ) ) 94.31	0:10#1:00 88.28	0.41 94.23	0.12 94.87	0.76 89.11	0.22 87.03	0.20
✓ ) ) ) ) ) ) ✓ 92.15	0:12#3:16 86.97	0.23 93.13	0.11 93.89	0.23 87.14	0.21 85.57	0.24
✓ ) ) ) ) ) ) ) 91.31	0:12#4:00 87.83	0.24 93.15	0.13 94.07	0.12 86.65	0.12 87.04	0.13

‘BN-1’ and ‘BN-2’ Denote the First and Second BN Modules, ‘CNA-RES’ Denotes Cross-Network Attention and Residual Fusion, ‘SEatt’Means Adopting SE
Channel-Wise Attention in the GCN, ‘GradBN’ Means Gradient Backpropagation through the BN Modules, ‘AlterTrain’ Denotes the Proposed Alternating
Training Strategy. ‘Relation’Means Removing Both BN Modules and Appending the Relational Network from [51] after the GCNModule.
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the strong dependencymodeling ability of BNmodules. Fig. 4
shows the structure of the first BN module (BN-1) learned
from the LIDC-IDRI dataset. This learned BN structure indi-
cates that the node for malignancy has one parent node (i.e.,
spiculation) and four children nodes (i.e., subtlety, calcifica-
tion, margin and lobulation).

We can draw the following conclusions from the results
given in Table 4,

� ‘BN-1’, ‘CNA-RES’, ‘GradBN’, ‘AlterTrain’ and ‘SENet’
are important to the classification performance on the
LIDC-IDRI dataset. Note that removing ‘AlterTrain’
actually means using ground-truth attribute labels

instead of soft attribute labels for training the BNmod-
ules because the BN structures will not change if we
always use ground-truth attribute labels during alter-
nating training.

� BN modules are vital for attribute relational model-
ing. Their performance surpasses the performance of
the advanced relational network.

� Although a simple ensemble model consisting of BN
and GCN can already improve the performance, our
proposed cross-network attention mechanism takes
full advantage of BN and GCN, thus performs better.

4.2 Tuberculosis Diagnosis

Chest radiographs are a type ofmedical images that can be con-
veniently acquired for disease diagnosis. Radiologists can find
out many diseases quickly via observing chest X-ray images,
which are useful for early diagnosis and intervention. Tubercu-
losis [35] has the highest mortality around the globe among
infectious diseases.However, if itwas detected at an early stage
from chest radiographs, the death rate could decrease by
70% [17]. Meanwhile, tuberculosis is a type of bacterial infec-
tion that can give rise to multiple types of radiological abnor-
malities in chest radiographs such as diffuse nodules and
fibrotic appearance. Just like morphological characteristics of

Fig. 4. The Bayesian network structure learned from the LIDC-IDRI data-
set. Notations are defined as follows. SPI: spiculation; MAL: malignancy;
SUB: subtlety; CAL: calcification; MAR: margin; LOB: lobulation.

TABLE 5
Distribution of Disease and Radiological Abnormalities in the TB-Xatt Dataset for Tuberculosis Diagnosis

Abnormality/
Disease

Fibrotic
Streaks

Pulmonary
Consolidation

Diffuse
Nodules

Pulmonary
Cavitation

Atelectasis Multiple
Nodules

Pleural
Effusion

Pulmonary
Tuberculosis

#Images 1,640 1,200 1,500 1,400 800 1,200 900 1,972

Fig. 5. Sample chest X-ray images used for building the TB-Xatt dataset, each with one of the following seven attributes except the last one: Fibrotic
Streaks, Pulmonary Consolidation, Diffuse Nodules, Pulmonary Cavitation, Atelectasis, Multiple Nodules, and Pleural Effusion. The last image
shows a case of the disease, Pulmonary Tuberculosis.
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lung nodules, these radiological abnormalities can be treated as
attributes to facilitate the diagnosis of tuberculosis by medical
experts. Therefore, we choose tuberculosis diagnosis as an
additional task to further evaluate the proposed hybrid neuro-
probabilistic reasoning algorithm, which is able to model the
dependencies between tuberculosis and radiological abnor-
malities to improve the reasoning capability of deep learning
methods.

4.2.1 TB-Xatt Dataset

As for the task of tuberculosis diagnosis, there are a total of
14200 frontal chest X-ray images in an in-house dataset named
TB-Xatt. The retrospective study on this dataset has been
approved by the institutional review board of West China
Hospital. Every image in this dataset has been carefully

annotated by certificated and experienced radiologists. Image
annotations include 7 types of radiological abnormalities,
‘Pulmonary Consolidation’, ‘Pulmonary Cavitation’, ‘Diffuse
Nodules’, ‘Fibrotic Streaks’, ‘Atelectasis’, ‘Multiple Nodules’,
‘Pleural Effusion’ and one disease, ‘Pulmonary Tuberculosis’.
On average, there are 3 occurrences of disease or radiological
abnormalities per image and 1326 annotated images for each
type of disease or radiological abnormalities. The distribution
of images over disease and radiological abnormalities is pre-
sented in Table 5. In this study,we aim to improve the classifi-
cation performance of ‘Pulmonary Tuberculosis’ with the
help of the seven types of radiological abnormalities, which
are treated as the attributes of a chest X-ray image in our
hybrid algorithm since these seven types of radiological
abnormalities are the main expressions of active tuberculosis
in the lung. Fig. 5 shows sample images with these attributes
and disease from the TB-Xatt dataset. Note that the image
samples in the dataset are pre-processed versions of the origi-
nal X-ray images. We first perform lung segmentation in the
original X-ray images and extract bounding boxes of the left
and right lungs as shown in Fig. 6, then resize these bounding
boxes to 512� 256 and place each pair of left and right bound-
ing boxes side by side as a single image sample. In all experi-
ments, we perform 10-fold cross validation, and each model
is independently trained and tested 5 times with randomly
initialized weights on each fold, the same as we did on LIDC.
The performance of amodel is also assessedwith the same set
of metrics as LIDC, including accuracy, sensitivity/recall,
specificity, precision, F-score andAUC.

4.2.2 Experimental Setup

Different from LIDC, the ResNet and EfficientNet backbones
are pre-trained on ImageNet. Adam is also the optimizer with
the initial learning rate set to 1e-3, and the batch size is 32. All
models are trained 60 epochs and the learning rate is reduced
by a factor of 10 after 20 and 40 epochs.

4.2.3 Comparison With the State of the Art

On our in-house TB-Xatt dataset for tuberculosis diagnosis,
we have also compared our hybrid algorithm with existing

TABLE 6
Performance Comparison of Tuberculosis Diagnosis Models on the TB-Xatt Dataset

Methods Results(%) (mean	standard deviation)

Accuracy Sensitivity / Recall Specificity AUC Precision F-score

A1 Low-Level-Feature [10] 86.14	0.14 83.11	0.26 89.17	0.10 90.11	0.76 81.10	0.12 81.71	0.11
A2 Basic-visual-Feature [28] 87.23	0.12 84.16	0.27 92.00	0.09 91.27	0.63 83.26	0.71 83.44	0.17
S1 Attention-Guide [13] 93.12	0.10 86.17	0.16 91.22	0.34 93.67	0.43 87.21	0.53 85.64	0.29
S2 ADINet [40] 93.43	0.19 87.24	0.25 91.87	0.11 94.11	0.29 87.44	0.54 84.21	0.13
M1 ResNet-50 90.17	0.11 90.44	0.12 89.16	0.23 90.03	0.21 82.09	0.12 84.15	0.23
M2 Efficient-B4 93.21	0.25 91.54	0.22 92.55	0.11 92.67	0.19 84.27	0.98 87.23	0.09
M3 ResNet-50-FPN 91.23	0.28 91.96	0.42 91.22	0.33 91.54	0.07 83.27	0.08 85.26	0.44
M4 Efficient-B4-FPN 94.19	0.19 92.78	0.09 92.97	0.01 94.01	0.10 86.11	0.02 89.17	0.08
M31 ResNet-50-FPN-GCN-Relation [51] 91.74	0.29 92.16	0.32 93.23	0.25 92.26	0.12 86.14	0.11 86.54	0.13
M41 Efficient-B4-FPN-GCN-Relation [51] 95.17	0.11 92.29	0.18 94.01	0.12 94.83	0.21 86.77	0.14 90.21	0.19
M32 ResNet-50-FPN-GRU [41] 91.66	0.13 92.06	0.34 94.26	0.26 93.13	0.12 86.01	0.21 87.11	0.98
M42 Efficient-B4-FPN-GRU [41] 94.65	0.32 92.94	0.18 95.19	0.13 94.88	0.23 86.98	0.12 91.03	0.24
O1 Our-ResNet-50-FPN 94.67	0.11 94.22	0.33 96.25	0.23 97.22	0.43 90.29	0.22 90.01	0.10
O2 Our-Efficient-B4-FPN 97.13	0.19 95.51	0.10 97.11	0.16 98.10	0.34 92.44	0.31 91.78	0.27
O2� Our-Efficient-B4-FPN� 98.41	0.10 96.32	0.11 97.91	0.21 98.91	0.12 93.24	0.10 92.77	0.14

Fig. 6. Construction of image samples in the TB-Xatt dataset. First, lung
segmentation in chest X-ray images using a trained segmentation
model. Second, resizing the left and right lung patches to the same reso-
lution and placing them side by side.
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methods, including two state-of-the-art models (S1 and S2),
two attribute learningmethods (A1 and A2) and two relation-
ship modeling methods (M31, M41 and M32, M42). The
results are shown in Table 6, where O2 and O2� represent our
models trained without and with standard data augmenta-
tion, respectively. No matter whether data augmentation is
used, the proposed algorithm achieves the best performance
under all evaluation metrics, including accuracy, sensitivity/
recall, specificity, precision with the cut-off value of 0.5, F-
score and AUC. Specifically, both A1 and A2 are classic attri-
bute learning methods that use hand-crafted features, and
achieve an accuracy of 86.14% and 87.23%, respectively.

When compared with state-of-the-art disease classification

models S1 and S2, the proposed hybrid algorithm demon-

strates better performance with 4.01% and 3.70% improve-

ment in accuracy, respectively. Furthermore, as in the

pulmonary nodule classification task, we implemented two
attribute relationshipmodelingmethods (M31,M41 andM32,
M42) based on the ResNet-50 and EfficientNet-B4 backbones.
Results indicate that our method achieves better perfor-
mance due to its strong causality modeling and relation-
ship reasoning capabilities. The classification performance
of our method with ResNet-50-FPN and EfficientNet-B4-
FPN backbones are 94.67% and 97.13%, which respectively
gain 3.44% and 2.94% over the two baselines using the
same backbones. The results in Table 6 demonstrate the
effectiveness of our proposed algorithm on the tuberculo-
sis diagnosis task. Sample input images and their associ-
ated attribute and disease classification results from our
method and a few other baseline methods are shown in
Fig. 7, where we have binary attribute and disease classifi-
cations. We also evaluate the importance of individual

Fig. 7. Sample results of our method (O2) and four baseline methods (T1, T2, M41, M42) on the in-house TB-Xatt dataset. Short names are defined
as follows: FIB (Fibrotic Streaks), CON (Pulmonary Consolidation), DIF (Diffuse Nodules), CAV (Pulmonary Cavitation), ATE (Atelectasis), MUL
(Multiple Nodules), and PLE (Pleural Effusion). The colored bars visualize attribute classification results from individual methods as well as the
ground truth. GT stands for the ground truth. ✓ and � visualize the diagnoses of pulmonary tuberculosis from individual methods as well as the
ground truth. The histograms under the X-ray images visualize the importance of individual attributes for diagnosing pulmonary tuberculosis.
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attributes for pulmonary tuberculosis diagnosis. Similarly,
we measure how much the final disease classification
probability is affected by deactivating one attribute at a
time in the input signals to BN-1 and GCN. In this case, for
the input signals to BN-1, deactivation means setting the
classification probability of a specific attribute to zero. The
deactivation scheme for the input signals to GCN is the
same as that for the LIDC-IDRI dataset.

4.2.4 Ablation Study

We have also conducted an ablation study on the TB-Xatt
dataset to verify the effectiveness of the components in our
proposed framework. The results are shown in Table 7. As
in the pulmonary nodule classification task, EfficientNet-B4
is the chosen backbone, and performance is measured when
individual components are removed or replaced. Similar
patterns in performance have been found here as well, and

all the considered components contribute to the final perfor-
mance of our hybrid algorithm.

Moreover, we have also tested the performance of our
algorithm under the condition of a limited training set by
sampling an increasingly smaller subset of the TB-Xatt data-
set as the training set while keeping the size of the validation
and testing sets unchanged. The sampling results are shown
in Table 9, where P1 means all original training samples, and
P2, P3 and P4 mean 75%, 50% and 25% of the original train-
ing samples, respectively. For a fair comparison, we perform
stratified sampling and ensure the same ratio between the
number of positive and negative samples under all settings.
This ratio is always 1/8 for the training sets, and 1/3 for the
validation and testing sets. All results are shown in Table 8,
which indicates that the proposed algorithm can still per-
form better than the baselines when given a decreasing num-
ber of training samples. Note that all baselines adopt
EfficientNet-B4 as the backbone since we empirically find

TABLE 7
Ablation Study of Our Classification Algorithm on the TB-Xatt Dataset

GCN BN-2 CNA-RES SEatt BN-1 GradBN AlterTrain Relation Accuracy Sensitivity / Recall Specificity AUC Precision F-score

✓ ✓ ✓ ✓ ✓ ✓ ✓ ) 97.13	0.19 95.51	0.10 97.11	0.16 98.10	0.34 92.44	0.31 91.78	0.27
✓ ) ✓ ✓ ✓ ✓ ✓ ) 96.78	0:11#0:35 94.26	0.13 96.78	0.23 97.12	0.11 90.93	0.17 90.03	0.07
✓ ✓ ) ✓ ✓ ✓ ✓ ) 96.21	0:44#0:57 94.12	0.31 96.22	0.41 97.17	0.41 90.61	0.20 90.01	0.20
) ) ) ) ✓ ✓ ✓ ) 95.69	0:12#1:09 93.58	0.17 95.44	0.32 96.71	0.21 90.01	0.10 89.96	0.24
✓ ✓ ✓ ) ✓ ✓ ✓ ) 96.89	0:32#0:24 94.47	0.55 96.79	0.42 97.87	0.31 91.02	0.33 90.64	0.25
✓ ✓ ) ✓ ) ✓ ✓ ) 95.69	0:14#1:44 94.55	0.43 94.78	0.11 95.94	0.12 87.11	0.23 91.21	0.54
✓ ✓ ✓ ✓ ✓ ) ✓ ) 96.12	0:24#0:66 94.66	0.31 94.51	0.23 95.17	0.21 90.14	0.32 90.11	0.23
✓ ✓ ✓ ✓ ✓ ✓ ) ) 96.53	0:13#0:60 94.71	0.24 94.62	0.33 95.19	0.47 90.28	0.34 90.51	0.33
✓ ) ) ) ) ) ) ✓ 94.97	0:21#2:81 93.09	0.08 93.46	0.29 94.93	0.21 86.77	0.14 90.21	0.19

‘BN-1’ and ‘BN-2’ Denote the First and Second BN Modules, ‘CNA-RES’ Denotes Cross-Network Attention and Residual Fusion, ‘SEatt’Means Adopting SE
Channel-Wise Attention in the GCN, ‘GradBn’ Means Gradient Backpropagation through the BN Modules, ‘AlterTrain’ Denotes the Proposed Alternating
Training Strategy. ‘Relation’Means Removing Both BN Modules and Appending the Relational Network from [51] After the GCNModule.

TABLE 8
Performance Comparison of Our Tuberculosis Diagnosis Models Trained With Increasingly Smaller Datasets

Methods Results(%) (mean	standard deviation)

Accuracy Sensitivity / Recall Specificity AUC Precision F score

P1 Low-Level-Feature [10] 86.14	0.14 83.11	0.26 89.17	0.10 90.11	0.76 81.10	0.12 81.71	0.11
Basic-visual-Feature [28] 87.23	0.12 84.16	0.27 92.00	0.09 91.27	0.63 83.26	0.71 83.44	0.17
Efficient-B4-FPN-GCN-Relation [51] 94.97	0.21 93.09	0.08 93.46	0.29 94.93	0.21 86.77	0.14 90.21	0.19
Efficient-B4-FPN 94.19	0.19 92.78	0.09 92.97	0.01 94.01	0.10 86.11	0.02 89.17	0.08
Our-Efficient-B4-FPN 97.13	0.19"2:94 95.51	0.10 97.11	0.16 98.10	0.34 92.44	0.31 91.78	0.27

P2 Low-Level-Feature [10] 84.23	0.12 80.07	0.04 86.22	0.20 86.78	0.15 78.24	0.09 78.16	0.27
Basic-visual-Feature [28] 83.45	0.22 81.07	0.54 89.21	0.12 87.13	0.01 80.55	0.44 79.21	0.03
Efficient-B4-FPN-GCN-Relation [51] 91.26	0.34 91.11	0.25 90.24	0.27 91.45	0.67 84.12	0.03 87.64	0.11
Efficient-B4-FPN 91.21	0.14 90.16	0.22 89.98	0.34 92.12	0.22 82.56	0.13 86.26	0.17
Our-Efficient-B4-FPN 93.21	0:44"2:11 91.02	0.33 91.20	0.21 93.56	0.17 87.65	0.12 89.43	0.14

P3 Low-Level-Feature [10] 80.11	0.09 75.67	0.12 80.32	0.55 81.26	0.64 72.13	0.07 72.51	0.62
Basic-visual-Feature [28] 79.14	0.24 78.27	0.63 82.11	0.10 80.65	0.44 76.17	0.23 74.56	0.35
Efficient-B4-FPN-GCN-Relation [51] 87.24	0.12 86.10	0.65 87.21	0.46 87.13	0.55 81.21	0.46 83.27	0.35
Efficient-B4-FPN 86.25	0.22 84.23	0.27 84.22	0.54 82.45	0.32 79.15	0.21 80.24	0.55
Our-Efficient-B4-FPN 92.44	0:65"6:19 90.01	0.21 89.26	0.17 89.22	0.10 86.14	0.25 85.23	0.17

P4 Low-Level-Feature [10] 76.21	0.09 79.27	0.31 74.32	0.45 77.26	0.13 66.45	0.16 67.84	0.17
Basic-visual-Feature [28] 75.67	0.54 77.15	0.13 76.55	0.43 76.21	0.22 72.56	0.34 71.27	0.21
Efficient-B4-FPN-GCN-Relation [51] 80.11	0.01 78.20	0.15 81.31	0.11 80.13	0.24 75.56	0.31 76.27	0.45
Efficient-B4-FPN 78.11	0.12 79.26	0.36 78.23	0.34 80.15	0.24 76.27	0.15 73.62	0.14
Our-Efficient-B-FPN 86.98	0:27"8:87 87.23	0.19 87.63	0.24 88.11	0.12 85.23	0.11 80.16	0.47

The Amount of Training Data in P1-P4 Has the Following Ratio, 1: 0.75 : 0.5: 0.25.
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out it is the best backbone under different settings. Further-
more, the performance gap between our algorithm and its
corresponding baseline widens when the number of training
samples decreases. When only 25% of the original training
samples are used, this performance gap reaches 8.87% for
the EfficientNet-B4 backbone. More surprisingly, although
the number of training samples used in P4 is only half of that
in P3, the performance of ourmodels trained in the P4 setting
is comparable and sometimes even better than the perfor-
mance of corresponding baseline models in the P3 setting.
These results demonstrate the strong generalization ability
of ourmodels trained using a small dataset.

We further investigate the classification performance
of the individual output signals from the BN-1 and GCN
modules to show how the two mechanisms work collab-
oratively when the size of training data varies. As shown
in Table 10, (1) when the training dataset is small, BN-1
achieves better performance than GCN; (2) when the
training dataset is large, GCN achieves better perfor-
mance than BN-1. The justification is that (1) when the
training dataset is small, BN-1 probabilistically models
the causal relationships between attributes and diseases
to mitigate the problem of insufficient data; (2) when the
training dataset is large, GCN has the capability to learn
expressive and powerful feature representations from
the large-scale annotated dataset. Moreover, we notice
that our residual fusion scheme always achieves higher
accuracy than both individual networks (BN-1 and
GCN). It has become clear that the strong generalization
ability of our trained models is made possible by the
complementarity between our neural and probabilistic
reasoning algorithms. The neural branch in our network
realizes its full power when the training set is large
while the probabilistic branch prevents overfitting from
happening when the training set is small as probabilistic
models are better at learning from smaller datasets.

5 CONCLUSION AND DISCUSSION

In this paper, we have introduced a hybrid neuro-probabilistic
reasoning algorithm for verifiable attribute-based medical
image diagnosis. There are twoparallel branches in our hybrid
algorithm, a Bayesian network branch performing probabilis-
tic causal relationship reasoning and a graph convolutional
network branch performing more generic relational modeling
and reasoning using a feature representation. Tight coupling
between these two branches is achieved via a cross-network
attention mechanism and residual fusion of classification
results.We train the hybrid network by alternatively updating
neural network weights and the structure/parameters of the
Bayesian networks. We have successfully applied our hybrid
reasoning algorithm to two challenging medical image diag-
nosis tasks, benign-malignant classification of pulmonary
nodules in chest computed tomography images and tubercu-
losis diagnosis using chest X-ray images. On the LIDC-IDRI
benchmark dataset for pulmonary nodule classification, our
method achieves a new state-of-the-art accuracy of 95.36%
and an AUC of 96.54%. Our method also achieves a 2.94%
accuracy improvement on the in-house tuberculosis diagnosis
dataset. Our ablation study indicates that our hybrid algo-
rithm achieves a much more robust performance than a pure
neural network architecture under very limited training data.
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