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Abstract—Using cross validation to select the best model from a library is standard practice in machine learning. Similarly, meta

learning is a widely used technique where models previously developed are combined (mainly linearly) with the expectation of

improving performance with respect to individual models. In this article we consider the Conditional Super Learner (CSL), an algorithm

that selects the best model candidate from a library of models conditional on the covariates. The CSL expands the idea of using cross

validation to select the best model and merges it with meta learning. We propose an optimization algorithm that finds a local minimum

to the problem posed and proves that it converges at a rate faster than Opðn�1=4Þ. We offer empirical evidence that: (1) CSL is an

excellent candidate to substitute stacking and (2) CLS is suitable for the analysis of Hierarchical problems. Additionally, implications

for global interpretability are emphasized.

Index Terms—Cross-validation, meta learning, super learner, interpretability, nonparametric hierarchical models
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1 INTRODUCTION

THE idea of combining different models to obtain one that
is better than any of its constituents (meta learning) has

been explored extensively and it is currently used in many
applications [1], [2], [3]. Meta learning today, however,
mainly consists of creating linear combinations of models
(i.e stacking). Its purpose is to improve the accuracy of the
individual models, albeit at the expense of interpretability.
Related ideas are also explored for ensemble methods
which create linear combination of simpler models. Two
main ensemble methods can be highlighted: bagging and
boosting [4], [5]. In bagging, models are averaged to reduce
the variance of individual models and improve accuracy. In
boosting, simple models are sequentially learned reducing
the bias of the estimator at each step [6].

Usually thought independently of meta learning, the use
of cross validation to select the best algorithm from a library
(either different models or different hyperparameters) is
widely popular [7]. Establishing the theoretical basis for
designing an oracle algorithm that will select the best from a

library of models (using cross validation), Van der Laan et al.
demonstrated that cross validation can be usedmore aggres-
sively than previously thought, terming the cross validation
selector “super learner” [8]. Specifically, it was shown that if
the number of candidate estimators, KðnÞ, is polynomial in
sample size, then the cross validation selector is asymptoti-
cally equivalent to the oracle selector –one that knows the
best algorithm [8]. Similarly to the empirical use of cross vali-
dation, the super learner proposes to select one model from
the library for all the observations. Everything else being
equal, we would prefer if a simple model is selected to be
able to afford interpretability and easier deployment. How-
ever, if the data generating process is complex and one uses
simple models in the library, it is possible that the model
selected to be the best in one region might not be the best in
another. Therefore, using simple models in the library will
introduce biases and decrease accuracy.

In the present article, we develop an algorithm that
selects the best model from a library conditional on the
covariates, called here the Conditional Super Learner (CSL).
This meta algorithm can be thought as learning in the cross
validation space. With the CSL, therefore, we investigate a
meta learning strategy that reduces the bias of the models in
the library by selecting them conditional on the covariates.
We show how the CSL has implications for both: the accu-
racy and inteerpretability. Additionally, we also provide
extensive empirical results on how the CSL can be seen as
an alternative to stacking and, due to its hierarchical nature,
an excellent candidate for the analysis of hierarchical prob-
lems. Specifically, in this article we:

1) Develop the theoretical foundations for the Condi-
tional Super Learner: An algorithm that selects the best
model from a library conditional on the covariates.

2) Provide convergence rate theorems and inequalities
for the CSL.

3) Illustrate how the CSL is a generalized partitioning
algorithm that finds different boundary functions
(not just vertical cuts as CART does) with M-estima-
tors algorithms at the nodes.
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4) Establish the connection between CSL and interpre-
tability.

5) Show empirically how CSL improves over the regu-
lar strategy of using cross validation to select the
best model for all observations.

6) Show empirically how CSL can give better R2/ accu-
racy than stacking in a set of regression problems
and classification problems.

7) Show empirically how CSL performs in the analysis
of Hierarchical Data.

2 CONDITIONAL SUPER LEARNER

The algorithms that we discuss in this paper are supervised
learning algorithms. The data are a finite set of paired obser-
vations X ¼ fðxi; yiÞgN1 . The input vectors x, whose compo-
nents are called here covariates, are assumed to be on Rp,
while y can be either a regression or classification label.

We propose to solve supervised learning problems by 1)
dividing the input space into a set of regions that are learned
by an iterative algorithm and 2) fit simple interpretable mod-
els that we call “experts” to the data that fall in these regions.
The regions are learned by fitting a multi-class classification
model that we call the “oracle” which learns which expert
should be used on each region. Given an oracle oðxÞ, region k
is defined as foðxÞ ¼ kg, that is, the set of points for with the
oracle predict to use the function fkðxÞ.

An example of an application of the CSL is shown in
Fig. 1. In here we have 4 variables to predict houses prices:
bedrooms, bathrooms, latitude, longitude. Two of these var-
iables (latitude and longitude) are given to the “oracle”. The

rectangular region shows how the oracle divides the lati-
tude and longitude (normalized) in 3 regions. Each region
has its own expert, represented here by a diagram of a tree,
to make predictions. Each of the experts receives as input
the 4 variables.

As with any meta-learning algorithm, the Conditional
Super Learner algorithm for learning the oracle oðxÞ (given
the fits of the K experts) will be applied to a cross-validated
data set, using V -fold cross validation. That is, for each Yi fall-
ing in one of the V validation samples, we have a correspond-
ing training sample. We couple each observation Yi with K
expert algorithms trained on subsets (from the current best
estimate of oracle) of its corresponding training data set,
thereby creating a cross-validated data set ofN observations.
In this section, for the sake of explaining the conditional
super-learner algorithm, this formality of cross validation
will be suppressed, but in our theoretical section (see supple-
mentary material, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2021.3131976) we make the full conditional
super-learning algorithm formal.

2.1 Definition of CSL

Given an oracle oðxÞ andK experts models fFkðxÞgKk¼1 fitted
on each of the corresponding regions foðxÞ ¼ kg, the CSL
can be defined as

CSLðxÞ ¼
XK
k¼1

1foðxÞ ¼ kgFkðxÞ (1)

where oðxÞ 2 f1; 2; ::;Kg. CSLðxÞ is the Conditional Super
Learner that outputs the prediction from the best model
FkðxÞ selected from a library ofK models conditional on the
covariate x. The idea is to find the oðxÞ and corresponding
fits fFkðxÞgK1 that minimize a given loss function over the
training data

argmin
o;fFkgK1

XN
i¼1

L

 
yi;
XK
k¼1

1foðxiÞ ¼ kgFkðxiÞ
!

(2)

2.2 Fitting the Oracle

To find the solution to Equation (2) we will employ a trick
often used in machine learning. We will iterate between
solving oðxÞ and solving for fFkðxÞgK1 . To solve for oðxÞ we

will assume that all fFkðxÞgK1 are known, the library, and
that we also have unbiased estimations (i.e., cross-vali-
dated) of the loss at each training point Lðyi; FkðxiÞÞ. In this
case, CSLðxÞ will aim to find the best oðxÞ that minimizes
the loss function over the training data

argmin
oðxÞ

XN
i¼1

L yi;
XK
k¼1

1foðxiÞ ¼ kgFk xið Þ
 !

(3)

and using the definition of the indicator function, we can
take the sum outside the loss function and get Equation (4)

argmin
oðxÞ

XN
i¼1

XK
k¼1

1foðxiÞ ¼ kgLðyi; FkðxiÞÞ (4)

Fig. 1. This diagram shows an application of the CLS model. In this data-
set we have 4 variables: number of bedrooms, bathrooms, latitude and
longitude to predict house prices. The oracle was given two of the varia-
bles (longitude and latitude). The rectangular region shows how the ora-
cle divides the latitude and longitude (normalized) in 3 regions. Each
region has its own expert (using the all 4 variables), represented here by
a diagram of a tree, to makes predictions.
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To introduce how we fit the oracle, we define a new data-
set that we called “extended” dataset. This is a dataset for a
multi-class classification problem with K classes, each class
corresponding to one of the expert models. This dataset has
K �N observations – each xi appears K times with corre-
sponding labels f1; . . .; Kg and a specific weight.

Definition 1. Given dataset X ¼ fðxi; yiÞgN1 , expert functions
F ¼ fFkgK1 we define the extended dataset XF ¼ fð~xi;k;
zi;k; wi;kÞg withK �N observations where:

� ~xi;k ¼ xi
� zi;k ¼ k
� wi;k ¼ li;þ � li;k is a weight on observation ð~xi;k; zi;kÞ,

being li;k ¼ Lðyi; FkðxiÞÞ and li;þ ¼PK
1 li;k :

Lemma 2.1. Solving problem (4) is equivalent to finding the ora-
cle oðxÞ that minimizes the weighted misclassification error of
an extended dataset XF

argmin
oðxÞ

X
wi;k1foð~xi;kÞ 6¼ zi;kg (5)

Proof. First, note that a misclassification loss for a multi-
class classification problem can be written as Lðy; fðxÞÞ ¼
1ffðxÞ 6¼ yg. We want to write Equation (4) as a misclassi-
fication loss of a classification problem. For each observa-
tion, ðxi; yiÞ consider the weighted dataset fðxi; 1; wi;1Þ;
ðxi; 2; wi;2Þ; . . .ðxi;K;wi;kÞg with misclassification lossPK

k¼1 wi;k1foðxiÞ 6¼ kg. That is, we want to find for each
observation ðxi; yiÞweights ðw1; . . .; wKÞ such that

XK
k¼1

1foðxiÞ ¼ kgLðyi; FkðxiÞÞ ¼
XK
k¼1

wk1foðxiÞ 6¼ kg

(6)

Since oðxiÞ can just have values in f1; . . .; Kg we can
consider all the options. For example, if oðxiÞ ¼ k, the
equality in Equation (6) becomes Lðyi; FkðxiÞÞ ¼PK

j¼1 wi;j � wi;k. If we consider all possible values for
oðxiÞwe get the following set of equations

Lðyi; F1ðxiÞÞ ¼
XK
j¼1

wi;j � wi;1

..

.

Lðyi; FKðxiÞÞ ¼
XK
j¼1

wi;j � wi;K

The previous equation can be written in matrix form
lTi ¼ ½ONEK �DIAGK �ðwi;1; . . .wi;KÞT . Which gives us

ðwi;1; . . .wi;KÞT ¼ ½ONEK �DIAGK ��1lTi tu
As a result of Lemma 2.1, oðxÞ is the solution of a multi-

class classification problem on the extended dataset XF . We
approximate oðxÞ by fitting any standard classification algo-
rithm on XF .

2.3 Fitting the Experts

Similarly to the previous section, in order to fit the experts
we assume that oðxÞ is known. Then Equation (2) becomes

K independent classification/ regression problems that
minimize the empirical loss over observations fi : oðiÞ ¼ kg,
for each k ¼ 1; . . . ; K, which is generally already solved by
standard machine learning algorithms.

argmin
Fk

X
xi :oðxiÞ¼k

Lðyi; FkðxiÞÞ (7)

2.4 A Two Step Algorithm

Finding fFkðxÞgK1 indicates that Equation (2) can be mini-
mized iteratively. Following the K-mean algorithm’s philos-
ophy, let us propose the minimization of Equation (2) in
two steps: one to fit the oracle and the other to fit the
experts. Please note that if we take into consideration that at
every time that each step is applied the loss function
decreases, the convergence to a local minimum is guaran-
teed. Of course, this is only true if we use, for each observa-
tion, the estimation of ðyi; FkðxiÞÞ on the training data. This,
however, will most likely result in overfitting. After this dis-
cussion we are ready to write Conditional Super Learner
pseudocode (see above).

Algorithm 1. Conditional Super Learner (CSL)

Input: X ¼ fðxi; yiÞgN1 ; F ¼ ðF1; F2; . . .; FKÞ
Initialize: for each sample split v ¼ 1; . . . ; V , fit the experts
F ¼ ðF1; F2; . . .; FKÞ on initial subsets of the vth training
data set. For each i, let Fk;�i be the kth expert trained on
training sample that excludes Yi. Construct the correspond-
ing cross-validated data set ðYi; F1;�iðxiÞ; . . . ; FK;�iðxiÞÞ,
i ¼ 1; . . . ; N .

for t ¼ 1 : iterations do
For each point and each expert compute: Lðyi; Fk;�iðxiÞÞ
Create extended dataset XF
Fit oðxÞ on XF
Re-fit each expert Fk on foðxÞ ¼ kg for the V -training
samples.

end
Based on final oðxÞ, refit each expert Fk on foðxÞ ¼ kg for total

sample.
Result

PK
k¼1 1foðxÞ ¼ kgFkðxÞ

3 RELATED WORK

To further the understanding of the CSL, let us highlight
different relationships and connections that it has with dif-
ferent algorithms. First, please note that oðxÞ partitions the
space in K regions or subsets fRgK1 where the models
fFkðxÞgK1 are used for prediction; ergo establishing the con-
nection between meta learning and generalized partitioning
machines through the CSL. Different from recursive algo-
rithms like CART, MediBoost or the Additive Tree [9], [10],
[11], CSL partitions defined by the oracle can have complex
forms and are not forced to be perpendicular to the
covariates.

CSLðxÞ also generalizes the strategy of using cross vali-
dation to select the best model. Please note that if in Equa-
tion (1) we force oðxÞ ¼ c where c is a constant 2 f1::Kg
then the solution to (4), ôðxÞ, just selects the model that min-
imizes the cross validation error. Using cross validation to
select the best model is the simplest case of CSLðxÞ where
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the meta learner predicts a constant regardless of the
covariates.

CSL can also be thought as a generalization of the
K-means algorithm. If the expert models are constant, and
the oracle has infinity capacity to always be able to assign
each observation to the best mean, then CSL becomes the
K-mean algorithm.

Another algorithm that is closely related to the CSL is the
Hierarchical Mixture of Experts(HME) [12]. In both cases, a
hierarchical topology is found. In the HME, however, this
hierarchy depends on a parametric specification of the prob-
ability distribution while the CSL can estimate the hierarchi-
cal topology in a non-parametric fashion with a rich set of
meta algorithms that can include linear models, trees or
neural networks. Equally important, the HME predicts with
a combination of experts, which harms interpretability
while the CSL does not. Finally, as shown above, due to its
archictecure, CSL is a non-parametric hierarchical algorithm
and performs quite well for this type of problems.

4 ALGORITHM ASSESSMENT

In this section, we describe our experiments. We consider
regression and classification problems from the PennMachine
Learning Benchmarks [13]. In the first set of experiments, data-
sets where the number of observations was between 200 and
500000 (N ¼ 84) were considered. In the second set of experi-
ments, we selected a subset of those with at least 2000 points
(N ¼ 19). Table 1 describes the characteristics of the classifica-
tion datasets used in our second experiments. In the third set
of experiments, we consider synthetic hierarchical data.

We report R2 as the performance metric for regression
and accuracy for classification. In the first experiments,
datasets were split in 80% training and 20% testing sets. For
the second set of experiments, we need a validation set,
therefore data was split in 70%=15%=15% for train/valida-
tion/test.

In all our experiments, we use the following set of base
algorithms or experts:

1) Ridge: alphas = [1e-4, 1e-3, 1e-2, 1e-1, 1, 2, 4, 8, 16, 32,
64, 132]

2) ElasticNet: l1 ratio = 0 (Lasso)
3) ElasticNet: l1 ratio = 0.5
4) Decision Tree: max depth = 4
5) Decision Tree: max depth = 5
6) Decision Tree: max depth = 6

Although the CSL can be used with more complex mod-
els as experts, using simple linear or tree models protects

the algorithm for overfitting and improves interpretability,
as discussed below.

4.1 Single Step CSL and its Comparisson to Cross
Validation

First, we wanted to evaluate empirically how CSL (F 3 class
of meta learners in the theoretical section presented in the
supplemental material, available online) performs com-
pared to the naive strategy of using the expert model
selected through cross validation for all the points (F 1 class
in the theoretical section). We used the library of experts
described above and a decision tree algorithm with
max depth ¼ 1 as our oracle. No partition was allowed if
the terminal node did not have more than 2% of observa-
tions belonging to it. This decision tree algorithm was
selected as the oracle because if not partition is performed,
then the minimization of Equation (1) results in selecting
the model that minimizes the cross validation error (equal
to F 1 class in the supplemental material, available online).
As such, our CSL in this case includes the possibility of just
using cross validation, and it should perform, on average,
equal or better than using cross validation to select one
model. Please note that in this section the experts are
obtained on all the training data and only one iteration is
allowed for the meta. The empirical evaluation of this CSL
was compared to the performance obtained if we use cross
validation to select the best model from one of the sixth
algorithms mentioned above.

Fig. 2 shows the results obtained when we compared R2

for both CSL and cross validation. In 77:5% of the datasets
CSL had at least the same performance as cross validation
and in 20% its R2 was bigger by at least 1%. Although these
results show that CSL improves over naive cross validation,
overfitting can happen and extra attention needs to be paid.
In fact, we obtained an outlier where cross validation out-
performed the CSL by 0.125. This problem is the synthetic
dataset 658� fri� c3� 250� 25 from the Friedman’s
regression datasets [13], [14]. The same is a hard problem
where algorithms are prompt to overfit since training only
contains 200 points with 25 explanatory variables, several of
them correlated to each other.

TABLE 1
Description of the Number of Observations, Number of Covari-

ates and number of Classes in the Classification Datasets

Dataset Obser Covariates Classes

agaricus_lepiota 8145 22 2
churn 5000 20 2
connect_4 67557 42 3
phoneme 5404 5 2
ring 7400 20 2

Fig. 2. One shot CSL versus cross validation. Partitioning the space in
two regions with a depth = 1 decision tree and choosing a model for
each result in an improvement, on average, over cross-validaiton.
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In the next section, we compare a full CSL to stacking. F 2

versus F 3 meta learning strategies in our theoretical discus-
sion (supplemental material, available online).

4.2 CSL Versus Stacking

Stacking [1], [3], [15] is a general procedure where a learner
is trained to combine the individual learners. The base level
models are trained on the original training set, then a meta-
model is trained on the outputs of the base level model as
features. The base level often consists of different learning
algorithms. In our experiments, we use the same 6 base
models defined in previous section. As meta-model in
stacking we use a linear regression model.

CSL. In this experiment, we use the same set of experts as
in previous section and we use a two layer feed-forward
neural network as the oracle. The oracle was written in
PyTorch and fitted with Adam optimizer with learning
rates of 0.15. The number of epochs at each iteration was a

function of the sample size ( 3000
log ðNÞ2). The hidden layer was

also set as a function of the sample size (minð2log ðNÞ; 150Þ).
After the first linear layer and before the Relu activation
function, batch normalization was used. A dropout layer
with p ¼ 0:2 is used before the second linear layer.

In Table 2 we show results from comparing CSL and
stacking on regression datasets. For each dataset we run
each algorithm 10 times by splitting training, validation and
testing sets using different seeds. CSL_mean shows the
mean R2 over all experiments. Similarly, Stack_mean shows
the mean R2 of the stacking experiments. Diff shows the %
difference between CSL_mean and Stack_mean. Column Test
results shows whether a t-test found the difference in mean
to be significant. There were 19 datasets in this experiment.
For one dataset, stacking is significantly better than CSL. In
8 problems, both algorithms are statistically the same. In 11
problem, CSL is better. In the experiment for dataset

574_house_16H, one of the runs produces an outlier, which
is responsible for the mean difference.

In Table 3 we show results from comparing CSL and
stacking on classification datasets. For each dataset we run
each algorithm 10 times by splitting training, validation and
testing sets using different seeds. CSL_mean shows the
mean accuracy over all experiments. Similarly, Stack_mean
shows the mean accuracy of the stacking experiments. Diff
show the difference between CSL_mean and Stack_mean.
Column Test results shows whether a t-test found the differ-
ence in mean to be significant. There were 5 datasets in this
experiment. For one dataset, both algorithms are statistically
the same. In 4 problem, CSL is better.

4.3 CSL on Hierarchical Synthetic Data

Hierarchical models are extremely important in fields like
Medicine [16]. CSL, due to its architecture, seems specially
suited to analyze hierachical data. In this section, we evalu-
ate the performance of CSL on hierarchical synthetic prob-
lems. Specifically, we wanted to investigate if:

1) CSL can discover hierarchical structures.
2) Compare its performance in these type of problems

to gradient boosting and random forest.

TABLE 2
Results Comparing CSL and Stacking on 19 Regression Datasets

Dataset CSL_mean Stack_mean % Diff Test result

1193_BNG_lowbwt 0.623 0.594 4.88 non-significant
1199_BNG_echoMonths 0.532 0.452 17.70 significant
1201_BNG_breastTumor 0.145 0.109 33.03 significant
1203_BNG_pwLinear 0.619 0.606 2.15 significant
197_cpu_act 0.977 0.959 1.88 significant
201_pol 0.964 0.908 6.17 significant
215_2dplanes 0.943 0.929 1.51 significant
218_house_8L 0.541 0.574 -5.75 significant
225_puma8NH 0.631 0.608 3.78 significant
227_cpu_small 0.964 0.955 0.94 non-significant
294_satellite_image 0.804 0.809 -0.62 non-significant
344_mv 0.992 0.979 1.33 significant
503_wind 0.772 0.756 2.12 significant
529_pollen 0.789 0.79 -0.13 non-significant
537_houses 0.652 0.661 -1.36 non-significant
562_cpu_small 0.965 0.955 1.05 non-significant
564_fried 0.9 0.775 16.13 significant
573_cpu_act 0.973 0.961 1.25 significant
574_house_16H 0.167 0.443 -62.30 non-significant

In one dataset stacking is significantly better than CSL. In 8 problems both algorithms are statistically the same. In 11 problems CSL is better. The significance
threshold was defined as p value < 0.05 for the Null hypothesis in a pairwise T-test comparison among both algorithms.

TABLE 3
Results Comparing CSL and Stacking on 5 Classification

Datasets

Dataset CSL_mean Stack_mean % Diff Test result

churn 0.941 0.94 0.10 non-significant
connect_4 0.717 0.683 4.97 significant
phoneme 0.835 0.815 2.45 significant
ring 0.92 0.805 14.28 significant

In one dataset both algorithms are statistically the same. In 4 problems CSL is
better.
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Given a real dataset fðxi; yiÞgN1 from the Penn Machine
Learning Benchmarks, we generate syntetic data by using
the observations from the covariates but generating new
labels. Here is how we generated the new (~y):

1) Sample 70% of the data.
2) Use the covariates to find K ¼ 3 clusters using

K-means algorithm.
3) Fit a 2-layer neural network using the cluster id as a

label.
4) Using the neural network, predict a cluster id (li) on

each of the original observations, creating the dataset
fðxi; yi; liÞgN1 .

5) Fit each subset fðxi; yiÞ such that li ¼ kg for k 2
f1; 2; 3g to a regression model (Ridge). Use the pre-
diction from the regression model as the new syn-
thetic label (~y).

For the experiments in Table 4, gradient boosting was ran
with the following parameters: min_child_weight = 50,
learning rate = 0.1, colsample_bytree = 0.3, max_depth= 15,
subsample = 0.8, and with 500 trees. For random forest, we
used 1000 trees, max_features =’sqrt’ and we found max_-
depth with cross validation for each problem. The problems
are a subset of the problems in Table 2, where the R2 of the
base expert is lower than 0.9. The CLS algorithm was initial-
ized using 11 linear models as based experts. It turns out
that by using trees together with linear models on these
problems the algorithm sometimes would get stuck in sub-
optimal local minima so run the CSL multiple times.

Table 4 shows the results (R2) of CSL on synthetic data
compared to random forest, gradient boosting or the best
base expert (selected using cross validation). As it can be
seen, CSL significantly outperforms all other algorithms as
expected.

4.4 Implications on Interpretability

Without attempting to formally quantify and define
interpretability here, we will illustrate below how the CSL
results in models that are highly transparent.

Predicting House Prices. To illustrate how CSL can be use
as an interpretable algorithm, we use a dataset of house
rental prices in New York City. We have 4 input variables:
latitude, longitude, number of bedrooms and number of
bathrooms. Two make it really simple to visualize and inter-
pret, the oracle was given two of the variables: latitude and
longitude. The CSL model found a solution in which the
oracle partition the space of latitude and longitude in 3
regions (see top of Fig. 1) and for each region a tree of depth
5 predicts the house prices. This simple solution gets an R2

of 0.68. As a comparison, the best single model of a tree of
depth 5 has an R2 of 0.62 and a random forest with 500 trees
(of depth 9) has an R2 of 0.72. To find the best random for-
est, we did grid search on the number of variables and the
depth of the trees.

The simple solution of a tree of depth 5 is interpretable
since a tree of depth 5 can be easily examined. Also, 3 trees
of depth 5 can be easily examined, as well as the 2 dimen-
sional space where the oracle split the restricted input
regions. On the other hand, the random forest with 500 trees
and unrestricted depth would be harder to interpret.

5 THEORETICAL RESULTS

In this section, due to space constrains, we will summarize
the main theoretical results obtained and presented in the
supplemental materials, available online. The main result,
proven on Theorem S1, establishes that a Super Learner
given by the function fn will converge to the oracle f0n, the
true underlying function generator, at a rate at least faster
thanOpðn�1=4Þwhere n is the number of observations. Addi-
tionally, we provided a theoretical analysis of the variance-
bias tradeoff incur for different choices of the meta learning
algorithm and the base learners. Specifically, if one consid-
ers relatively large meta-learning models, as is easily the
case for our conditional super-learner, then there is a risk
that one worsens the performance relative to simpler meta-
learning models. Therefore, the most sensible strategy is to
define a sequence of Super Learner models where one goes
from the simplest (cross-validation) to more complex (trees,
neural networks, etc.) This process is referred to as double
super-learning, and a detailed discussion is presented in the
supplemental materials, available online. We then finalized
by presenting an oracle inequality for the double super-
learner, showing that it is asymptotically equivalent to a
super-learner that knows the true oracle choice of meta-
learning. Additionally, we also presented a finite sample
oracle inequality for an �-net double super-learner. These
results establish that the double super-learner also approxi-
mates the oracle choice in its meta-learning model at a rate
at least as fast as n�1=4.We refer those readers interested in
diving deeper into our theoretical analysis to the supple-
mental materials, available online.

6 DISCUSSION

In the present article we introduced the CSL, provided
extensive empirical simulations and baseline results in a
wide variety of problems and mathematical proofs about its
convergence rates (see supplemental material, available
online).

There are some important technical points that can help
understand the CSL and point to possible avenues for its
improvement. In our experiments, we initialized the CSL by
picking the type of experts (e.g., trees, linear models, etc.)
and a random subset of the data to fit each expert to intro-
duce diversity. CSL, similar to K-means, can get stuck in
local minimum. Therefore, we ran the algorithm a few times
in our experiments and used a validation set (different from
the test set) to select the best solution.

TABLE 4
Results on Running CSL on Synthetic Data

Dataset CSL Base RF GBM

564_fried 0.97 (0.02) 0.45 (0.17) 0.82 (0.04) 0.82 (0.06)
574_house_16H 0.98 (0.01) 0.84 (0.04) 0.87 (0.01) 0.93 (0.01)
294_satellite 0.99 (0.01) 0.88 (0.01) 0.98 (0.01) 0.98 (0.01)
218_house_8L 0.97 (0.02) 0.75 (0.03) 0.94 (0.01) 0.93 (0.01)

Comparison are made with random forest, gradient boosting and the best pre-
forming base expert. For each dataset, we generate 10 synthetic problems. For
each method, the mean test R2 and standard deviation is shown.
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Researching better initialization methods will likely
improve the performance of the algorithm. While running
CSL, it is often the case that some experts will collapse (e.g.,
model selection). This happens when the range of values
predicted by oðxÞ is less than K or similarly when the size
of fx : oðxÞ ¼ kg becomes very small. In these cases, we re-
adjust the size of K as the algorithm runs. This behavior is
highly desirable because it allows the end user to specify a
many bases and the algorithm will provide model selection
provided enough regularization is applied.

There are different strategies to regularize the CSL. One
would be to penalize over complex meta learners using the
specific hyper-parameters for the chosen model. Addition-
ally, we can use the step when we are fitting the experts to
introduce regularization. If the oracle oðxÞ also estimates
probability of an observation belonging to a model (e.g.,
logistic regression), then we can use pð0ðxÞ ¼ k;xÞ to intro-
duce similarity among the experts when we are fitting
them, specially around the boundaries defined by the ora-
cle. Other ways of regularization can also be explored in the
future, given that the partition nature of the CSL makes the
local models data hungry. In fact, for those datasets where
CSL was better, on average they had 3805 data points com-
pared to 2368 in those datasets where cross validation did
better. Therefore, as a general rule, CSL needs more than
2500 data points to perform better than cross validation.
These empirical results corroborate our suggestions on the
theoretical session and the need for a two tier Super Learner
algorithm where the type of meta strategy, or class of func-
tions as defined here, is also selected. It also underscores the
need for regularization. In that sense, global regularization
for the local parameters like that explored at the Highly
Adaptive Lasso estimators seem to be appealing and will be
investigated in the future [17].

Finally, we would like to finish our discussion with some
notes on the implications that the CSL can have on
interpretability. In many high-stake domains like medicine
and the law, interpretability of machine learning algorithms
is highly desirable, since errors can have dire consequences
[10], [18], [19]. This has led to a renew interest for the devel-
opment of interpretable models. Interpretability, however,
can only be judge relative to the field of application.

There is a considerable disagreement on what the con-
cept means and how to measure it [20], [21], [22]. Different
algorithms afford different degrees of interpretability, and
even black boxes can be investigated to gain some intuition
on how predictions are being made. For instance, variable
importance or distillation can be used to interpret neural
networks [23]. Alternatively, post hoc local model explain-
ability is a popular topic. Algorithms like LIME or SHARP
build models around specific points [24], [25]. Specifically,
LIME explains a complex model behavior for a specific
observation by perturbing the covariates around the point,
getting the model’s prediction and then fitting a linear
model. Although the specific limitations of this approach to
recover the true underlying explanations are beyond the
scope of our article, we must say that at its best LIME pro-
vides local explanations [25]. This level of interpretability
might be enough for applications that do not impose high
risk. In other applications (e.g medicine), the need to under-
stand the models globally rises [10], [11], [26].

The CSL is then a hybrid between the idea of using one
very simple model for all observations and building a dif-
ferent model for each. By finding a finite number of simple
models that will be used for predictions (e.g., linear mod-
els), it then provides a sense of global understanding of
what variables are important and their contribution.

7 CONCLUSION

In this work, we introduced the CSL algorithm. We proved
theoretically and empirically how we can extend the idea of
meta learning and develop an algorithm that outperforms
the naive use of cross validation to select the best model.
We proved that the CSL has a rate of convergence faster
than Opðn�1=4Þ. Moreover, we have obtained very interest-
ing and practical results. For instance, CSL outperformed
stacking in most of the datasets analyzed. Additionally, it
significantly outperformed Random Forests or Gradient
Boosting in the analysis of Hierarchical Data. Finally, its
connection to interpretability and other algorithms were
highlighted to deepen our understanding of its perfor-
mance. CSL is an algorithm suited for the analysis of data-
sets in high stake domains where hierarchical models,
accuracy and interpretability are of importance.

ACKNOWLEDGMENTS

The content is solely the responsibility of the authors and does
not necessarily represent the official views of theNational Insti-
tutes ofHealth. Finally, wewould also like to thankDr. Charles
McCullow for initially suggesting investigating this topic.

REFERENCES

[1] L. Breiman, “Stacked regressions,” Mach. Learn., vol. 24, no. 1,
pp. 49–64, 1996.

[2] M. LeBlanc and R. Tibshirani, “Combining estimates in regression
and classification,” J. Amer. Stat. Assoc., vol. 91, no. 436,
pp. 1641–1650, 1996.

[3] D. H. Wolpert, “Stacked generalization,” Neural Netw., vol. 5,
no. 2, pp. 241–259, 1992.

[4] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2,
pp. 123–140, 1996.

[5] Y. Freund, R. E. Schapire et al., “Experiments with a new boosting
algorithm,” in Proc. ICML, 1996, pp. 148–156.

[6] J. H. Friedman, “Greedy function approximation: A gradient
boosting machine,” Ann. Stat., vol. 29, pp. 1189–1232, 2001.

[7] B. Efron, “Estimating the error rate of a prediction rule: Improve-
ment on cross-validation,” J. Amer. Stat. Assoc., vol. 78, no. 382,
pp. 316–331, 1983.

[8] M. J. Van der Laan, E. C. Polley, and A. E. Hubbard, “Super
learner,” Stat. Appl. Genet. Molecular Biol., vol. 6, no. 1, 2007,
Art. no. 25.

[9] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classifi-
cation and regression trees., Monterey, CA, USA: Brooks/Cole Pub-
lishing, 1984.

[10] G. Valdes, J. M. Luna, E. Eaton, C. B. Simone et al., “MediBoost:
A patient stratification tool for interpretable decision making in
the era of precision medicine,” Sci. Rep., vol. 6, 2016, Art. no.
37854.

[11] J. M. Luna et al., “Building more accurate decision trees
with the additive tree,” Proc. Nat. Acad. Sci., USA, vol. 116, no.
40, pp. 19 887–19 893, 2019.

[12] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and
the em algorithm,”Neural Comput., vol. 6, no. 2, pp. 181–214, 1994.

[13] R. S. Olson, W. La Cava, P. Orzechowski, R. J. Urbanowicz, and
J. H. Moore, “PMLB: A large benchmark suite for machine learn-
ing evaluation and comparison,” BioData Mining, vol. 10, no. 1,
2017, Art. no. 36.

10242 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 12, DECEMBER 2022



[14] J. H. Friedman et al., “Multivariate adaptive regression splines,”
Ann. Stat., vol. 19, no. 1, pp. 1–67, 1991.

[15] P. Smyth and D. Wolpert, “Stacked density estimation,” in Proc.
Int. Conf. Neural Inf. Process. Syst., ser. NIPS’97, 1997, pp. 668–674.

[16] S.-L. T. Normand, M. E. Glickman, and C. A. Gatsonis, “Statistical
methods for profiling providers of medical care: Issues and
applications,” J. Amer. Stat. Assoc., vol. 92, no. 439, pp. 803–814, 1997.

[17] D. Benkeser and M. Van Der Laan, “The highly adaptive lasso
estimator,” in Proc. Int. Conf. Data Sci. Adv. Anal., 2016, pp. 689–696.

[18] F. Louzada, A. Ara, and G. B. Fernandes, “Classification methods
applied to credit scoring: Systematic review and overall
comparison,” Surv. Oper. Res. Manage. Sci., vol. 21, no. 2, pp. 117–
134, 2016.

[19] F. Cabitza and G. Banfi, “Machine learning in laboratory medi-
cine: Waiting for the flood?,” Clinical Chem. Lab. Med., vol. 56,
no. 4, pp. 516–524, 2018.

[20] Z. C. Lipton, “The mythos of model interpretability,” 2016,
arXiv:1606.03490.

[21] Z. C. Lipton, “The doctor just won’t accept that!” in Proc. Symp.
Interpretable Mach. Learn. Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 1–3.

[22] F. Doshi-Velez and B. Kim, “Towards a rigorous science of inter-
pretable machine learning,” 2017, arXiv:1702.08608.

[23] S. Tan, R. Caruana, G. Hooker, and A. Gordo, “Transparent model
distillation,” 2018, arXiv:1801.08640.

[24] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 4765–4774.

[25] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?:
Explaining the predictions of any classifier,” in Proc. ACMSIGKDD
Int. Conf. Knowl. Discov. DataMmining, 2016, pp. 1135–1144.

[26] E. D. Gennatas et al., “Expert-augmented machine learning,” Proc.
Nat. Acad. Sci., USA, vol. 9, pp. 4571–4577, 2020.

Gilmer Valdes received the PhD degree in medi-
cal physics from the University of California, Los
Angeles, in 2013. He was a postdoctoral fellow
with the University of California, San Francisco
between 2013 and 2014 and from 2014 to 2016,
a medical physics resident with the University of
Pennsylvania. He is currently an assistant profes-
sor with dual appointments with the Department
of Radiation Oncology and the Department of
Epidemiology and Biostatistics, University of Cali-
fornia, San Francisco.

Yannet Interian received the PhD degree in
applied mathematics from Cornell University and
the BS degree in mathematics from the University
of Havana, Cuba. She is currently an assistant
professor in the master’s in Data Science pro-
gram. Her research interests include application
of machine learning and deep learning to medical
data. After a postdoctoral fellowship with UC Ber-
keley, she worked for five years as a data scientist
with Google. She co-founded Akualab, a start-up
that helped organizations develop data-driven

products using machine intelligence and has designed data science
courses for both UC Berkeley and USF.

Efstathios Gennatas received the MBBS degree
in medicine from Imperial College London and the
PhD degree in neuroscience from the University
of Pennsylvania. From 2017 to 2019, he was
assistant professional researcher with the Univer-
sity of California San Francisco and from 2019 to
2020 a research scientist with Stanford University.
In August 2020, he was with the Department of
Epidemiology and Biostatistics, University of Cali-
fornia, San Francisco.

Mark Van der Laan received the PhD degree in
statistics from Utrech University in 1993. He is
currently the Jiann-Ping Hsu/Karl E. peace pro-
fessor of biostatistics and statistics with the Uni-
versity of California, Berkeley. He is a founding
editor of the Journal of Causal Inference.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

VALDES ETAL.: CONDITIONAL SUPER LEARNER 10243



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


