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Abstract—Bi-Level Optimization (BLO) is originated from the area of economic game theory and then introduced into the optimization
community. BLO is able to handle problems with a hierarchical structure, involving two levels of optimization tasks, where one task is
nested inside the other. In machine learning and computer vision fields, despite the different motivations and mechanisms, a lot of
complex problems, such as hyper-parameter optimization, multi-task and meta learning, neural architecture search, adversarial learning
and deep reinforcement learning, actually all contain a series of closely related subproblms. In this paper, we first uniformly express these
complex learning and vision problems from the perspective of BLO. Then we construct a best-response-based single-level reformulation
and establish a unified algorithmic framework to understand and formulate mainstream gradient-based BLO methodologies, covering
aspects ranging from fundamental automatic differentiation schemes to various accelerations, simplifications, extensions and their
convergence and complexity properties. Last but not least, we discuss the potentials of our unified BLO framework for designing new
algorithms and point out some promising directions for future research.
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1 INTRODUCTION

B I-LEVEL Optimization (BLO) is the hierarchical math-
ematical program where the feasible region of one

optimization task is restricted by the solution set mapping of
another optimization task (i.e., the second task is embedded
within the first one) [1]. The outer optimization task is
commonly referred to as the Upper-Level (UL) problem,
and the inner optimization task is commonly referred to as
the Lower-Level (LL) problem. BLOs involve two kinds of
variables, referred to as the UL and LL variables, accordingly.

The origin of BLOs can be traced to the domain of
game theory and is known as Stackelberg competition [2].
Subsequently, it has been investigated in view of many
important applications in various fields of science and
engineering, particularly in economics, management, chem-
istry, optimal control, and resource allocation problems [3],
[4], [5], [6]. Especially, in recent years, a great amount of
modern applications in the fields of machine learning and
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computer vision (e.g., hyper-parameter optimization [7], [8],
[9], [10], multi-task and meta learning [11], [12], [13], neural
architecture search [14], [15], [16], generative adversarial
learning [17], [18], [19], deep reinforcement learning [20],
[21], [22] and image processing and analysis [23], [24], [25],
just name a few) have arisen that fit the BLO framework.

In general, most of the earlier BLOs are highly compli-
cated and computationally challenging to solve due to their
nonconvexity and non-differentiability [26], [27]. Despite
their apparent simplicity, BLOs are nonconvex problems
with an implicitly determined feasible region even if the UL
and LL subproblems are convex [28], [29]. Indeed, it has
been proved that even strictly checking the local optimality
of the simplest BLO model (e.g., linear BLO) is still a NP-
hard problem [30], [31]. In addition, the existence of multiple
optima for the LL subproblem can result in an inadequate
formulation of BLOs, which could aggravate the difficulty
of theoretical analysis [32]. Despite the challenges, a lot
of research topics consisting of methods and applications
of BLOs have followed in this field, see [27], [33]. Early
studies focused on numerical methods, including extreme-
point methods [34], branch-and-bound methods [3], [35],
descent methods [36], [37], penalty function methods [38],
[39], trust-region methods [40], [41], and so on. The most
often used procedure is to replace the LL subproblem with its
Karush–Kuhn–Tucker (KKT) conditions, and if assumptions
are made (such as smoothness, convexity, among others)
the BLOs can be transformed into single-level optimization
problems [42], [43], [44]. However, due to the high complexity
of bi-level models, solving BLOs for large-scale and high-
dimensional practical applications in learning and vision
fields is still challenging [45].
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The classical idea (e.g., the first-order approach in eco-
nomics literature) to reformulate BLO is to replace the LL
subproblem Eq. (1) by its KKT conditions and minimize over
the original variables x and y as well as the multipliers. The
resulting problem is a so-called Mathematical Program with
Equilibrium Constraints (MPEC) [46], [47]. Unfortunately,
MPECs are still a challenging class of problems because of
the presence of the complementarity constraint [48]. Solution
methods for MPECs can be categorized into two types of
approaches. The first one, namely, the nonlinear program-
ming approach rewrites the complementarity constraint
into nonlinear inequalities, and then allows to leverage
powerful numerical nonlinear programming solvers. The
other one, namely, the combinatorial approach tackles the
combinatorial nature of the disjunctive constraint. Despite
the difficulties, MPEC has been studied intensively in the
last three decades [49]. Recently, some progress on the MPEC
approach in dealing with BLOs have been witnessed by the
community of mathematical programming, in the context
of selecting optimal hyper-parameters in regression and
classification problems. There are two issues caused by
the multipliers in the MPEC approach. First, in theory, if
there exist more than one multipliers for the LL subproblem,
MPEC will not be equivalent to the original BLO (in the local
optimality scenario) [50]. Second, the introduced auxiliary
multiplier variables can limit the numerical efficiency when
solving the BLO problem.

In recent years, a variety of machine learning and
computer vision tasks, including but not limited to, hyper-
parameter optimization [13], [51], [52], [53]), multi-task
and meta learning [54], [55], [56], [57], neural architecture
search [14], [16], [58], [59], adversarial learning [17], [18], [21],
[60], and deep reinforcement learning [20], [21], [61], [62],
have been investigated in application scenarios. Despite the
different motivations and mechanisms, all these problems
contain a series of closely related subproblems and have
a natural hierarchical optimization structure. However, al-
though received increasing attentions in both academic and
industrial communities, there still lack a unified perspective
to understand and formulate these different categories of
hierarchical learning and vision problems.

We notice that most previous surveys on BLOs (e.g.,
[1], [63], [64], [65], [66], [67], [68]) are purely from the
viewpoint of mathematical programming and mainly focus
on the formulations, properties, optimality conditions and
these classical solution algorithms, such as evolutionary
methods [5]. In contrast, the aim of this paper is to utilize
BLO to express a variety of complex learning and vision
problems, which explicitly or implicitly contain closely
related subproblems. Furthermore, we present a unified
perspective to comprehensively survey different categories of
gradient-based BLO methodologies in specific learning and
vision applications. In particular, we first provide a literature
review on various complex learning and vision problems, in-
cluding hyper-parameter optimization, multi-task and meta
learning, neural architecture search, adversarial learning,
deep reinforcement learning and so on. We demonstrate that
all these tasks can be modeled as a general BLO formulation.
Following this perspective, we then establish a best-response-
based single-level reformulation to express these existing
BLO models. By further introducing a unified algorithmic

framework on the single-level reformulation, we can uni-
formly understand and formulate these existing gradient-
based BLOs and analyze their accelerations, simplifications,
extensions, and convergence and complexity proprieties.
Finally, we demonstrate the potentials of our framework
for designing new algorithms and point out some promising
research directions for BLO in learning and vision fields.

Compared with existing surveys on BLOs, our major
contributions can be summarized as follows:

1) To the best of our knowledge, this is the first
survey paper to focus on uniformly understanding
and (re)formulating different categories of complex
machine learning and computer vision tasks and
their solution methods (especially in the context of
deep learning) from the perspective of BLO.

2) By introducing a best-response-based single-level re-
formulation and constructing a best-response-based
algorithmic framework, we obtain a general and
flexible platform that can successfully unify different
existing gradient-based BLO methodologies and uni-
formly analyze these accelerations, simplifications,
and extensions in literature.

3) The convergence behaviors of gradient-based BLOs
are comprehensively analyzed. Especially, we es-
tablish a general convergence analysis template to
investigate the iteration behaviors of a series of
gradient-based BLOs from a unified perspective. The
time and space complexity of various mainstream
schemes is also systematically analyzed.

4) Our gradient-based BLO platform not only compre-
hensively covers mainstream gradient-based BLO
methods, but also has potentials for designing new
BLO algorithms to deal with more challenging tasks.
We also point out some promising directions for
future research.

We summarize our mathematical notations in Table 1.
The remainder of this paper is organized as follows. We
first introduce some necessary fundamentals of BLOs in
Section 2. Then, Section 3 provides a comprehensive survey
of various learning and vision applications that all can be
modeled as BLOs. In Section 4, we establish an algorithmic
framework in a unified manner for existing gradient-based
BLO schemes. Within this framework, we further understand
and formulate two different categories of BLOs (i.e., explicit
and implicit gradients for best-response) in Section 5 and
Section 6, respectively. We also discuss the so-called lower-
level singleton issue of BLOs in Section 7. The convergence
and complexity properties of these gradient-based BLOs are
discussed in Section 8. Section 9 puts forward potentials of
our framework for designing new algorithms to deal with
more challenging pessimistic BLOs. Finally, Section 10 points
out some promising directions for future research.

2 FUNDAMENTALS OF BI-LEVEL OPTIMIZATION

Bi-Level Optimization (BLO) contains two levels of opti-
mization tasks, where one is nested within the other as a
constraint. The inner (or nested) and outer optimization tasks
are often respectively referred to as the Lower-Level (LL) and
Upper-Level (UL) subproblems [1]. Correspondingly, there
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TABLE 1
Summary of mathematical notations.

Notation Description Notation Description
Dtr/Dval Training/Validation data oij/xijo Operations/Operation weights
π/r Policy/Reward s/a State/Action
Qπ Q-function under π Qπ(s, a) State-action value-function
G/D Generator/Discriminator u/v Real-world image/Random noise
ρt Aggregation parameters x ∈ Rm/y ∈ Rn UL/LL variable
F/f UL/LL objective S(x) Solution set of the LL subproblem (given x)
y∗(x) BR mapping S̃(x) Solution set of the ISB subproblem (given x)
dist(·) Point-to-set distance ◦ Compound operation
Ψ(x) Ψ = ΨT ◦ · · · ◦Ψ1 ◦Ψ0 Ψθ(x) Hyper-network with parameters θ
Ψt Dynamical system at t-th stage ∂ϕ(x)

∂x
Gradient of x

∂F (x,y∗(x))
∂x

Direct gradient of x G(x) Indirect gradient of x
∂y∗(x)
∂x

BR Jacobian ∂ϕ(xk)

∂xk Numerical BR Jacobian w.r.t. xk

ϕ(x) UL value-function ψ(x) LL value-function
d(yt−1;x) Optimistic aggregated gradient d̃(yt−1;x) Pessimistic aggregated gradient(

∂2f
∂y∂y′

)−1

Inverse Hessian matrix
(

∂2f
∂y∂y′

)−1
∂F
∂y

Inverse Hessian-vector product
t/k Index of the LL/UL iteration T/K Maximum LL/UL iteration number
(·)t t-th LL iteration (·)k k-th UL iteration
(·)
′

Transposition operation (x∗,y∗) The optimal UL and LL solutions
ZT

∑T
t=1

(∏T
i=t+1 Ai

)
Bt ZT−M

∑T
t=T−M+1

(∏T
i=t+1 Ai

)
Bt

P(yt−1,ω) Layer-wise transformation
∞∑
j=0

(
I− ∂2f

∂y∂y′

)j
Neumann series

At
∂Ψt(yt−1;x)

∂yt−1
Bt

∂Ψt(yt−1;x)

∂x

infy∈S(x) F (x,y) Optimistic objective ψµ(x) parameterized LL value-function (with µ)
supy∈S(x) F (x,y) Pessimistic objective ϕµ,θ,τ (x) parameterized UL value-function (with µ, θ and τ )

are two types of variables, namely, the LL (y ∈ Rn) and UL
(x ∈ Rm) variables. Specifically, the LL subproblem can be
formulated as the following parametric optimization task

min
y∈Y

f(x,y), (parameterized by x), (1)

where we consider a continuous function f : Rm × Rn → R
as the LL objective and Y ⊆ Rn is a nonempty set. By
denoting the value-function as ψ(x) := miny∈Y f(x,y), we
can define the solution set of the LL subproblem with given
x as S(x) := {y ∈ Y | f(x,y) ≤ ψ(x)} . Then the standard
BLO problem can be formally expressed as

min
x∈X

F (x,y), s.t. y ∈ S(x), (2)

where the UL objective F : Rm×Rn → R is also a continuous
function and the feasible set X ⊆ Rm. In fact, a feasible
solution to BLO in Eq. (2) should be a vector of UL and LL
variables, such that it satisfies all the constraints in Eq. (2),
and the LL variables are optimal to the LL subproblem in
Eq. (1) for the given UL variables as parameters. In Fig. 1,
we provide a simple visual illustration for BLOs stated in
Eq. (2).

The above BLO problem has a natural interpretation as a
non-cooperative game between two players (i.e., Stackelberg
game [1]). Correspondingly, we may also call the UL and LL
subproblems as the leader and follower, respectively. Then
the “leader” chooses the decision x first, and afterwards the
“follower” observes x so as to respond with a decision y.
Therefore, the follower may depend on the leader’s decision.
Likewise, the leader has to satisfy a constraint that depends
on the follower’s decision.

(a) (b)

Fig. 1. Illustrating the problem of BLO. (a) first shows a standard BLO
problem with the situation of multiple solutions of f . Green curves denote
LL objectives denoted by f , and their corresponding minimizers given
by S(x) were shown as green dots. The red curve represents the
UL objective F , whose minimizer is shown as the red dot. (b) further
illustrates that, in general, not all points (green dots) in S(x) could
minimize the UL objective denoted by F .

It is worthwhile noting that the LL subproblem may have
multiple solutions for every (or some) fixed value of the
UL decision making variable x. When the solution of the
LL subproblem is not unique, it is difficult for the leader to
predict which point in S(x) the follower will choose (see
Fig. 1 (b) for example).

3 UNDERSTANDING AND MODELING PRACTICAL
PROBLEMS BY BLOS

In this section, we demonstrate that even with different
motivations and mechanisms, a variety of modern complex
learning and vision tasks (e.g, hyper-parameter optimization,
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multi-task and meta learning, neural architecture search,
adversarial learning, deep reinforcement learning and so
on) actually share close relationships from the BLO perspec-
tive. Moreover, we provide a uniform BLO expression to
(re)formulate all these problems. Table 2 provides a summary
of learning and vision applications, which can be understood
and modeled by BLO.

3.1 Hyper-parameter Optimization

Hyper-parameter Optimization (HO) refers to the problem
of identifying the optimal set of hyper-parameters that
can’t be learned using the training data alone. Early in
learning and vision areas, designing regularized models
or support vector machines are generally the recommended
approaches of selecting hyper-parameters [157]. Based on the
representation of the hierarchical structure, these approaches
are first expressed as a BLO problem and then transformed
into the single-level optimization problem by replacing the
LL subproblem with its optimality condition [158]. Due to
the high computational cost, especially in high-dimensional
hyper-parameter space, these original methods even could
not guarantee a local optimal solution [159].

In recent years, gradient-based HO methods with deep
neural networks have received extensive attention, which are
generally divided into two categories: iterative differentiation
(i.e., [7], [10], [11], [12], [13], [23], [71], [73], [75], [160]) and im-
plicit differentiation (i.e., [8], [9], [72], [74], [136], [161], [162],
[163], [164]), depending on how the gradient (w.r.t. hyper-
parameters) can be computed. The former approximates
the best-response function by performing several steps of
gradient descent on the loss function, while the latter derives
the hyper-gradients through the implicit function theory.
One particular type of gradient-based HO is the data hyper-
cleaning problem [13], [51], which generally trains a linear
classifier with a cross-entropy function (w.r.t. parameters y)
and learns to optimize the hyper-parameters x with a `2
regularization function.

Fig. 2. Schematic diagram of HO. The UL subproblem involves opti-
mization of hyper-parameters x based on (Dtr,Dval), while the LL
subproblem involves optimization of weight parameters y, aiming to
find the learning algorithm gy(·) based on Dtr.

Indeed, HO can be understood as the most straightfor-
ward application of BLO in learning and vision fields [157].
Specifically, the UL objective F (x,y;Dval) aims to minimize
the validation set loss with respect to the hyper-parameters
(e.g. weight decay), and the LL objective f(x,y;Dtr) needs
to output a learning algorithm by minimizing the training
loss with respect to the model parameters (e.g. weights and
biases). As illustrated in Fig. 2, the full dataset D is divided
into the training and validation datasets (i.e., Dtr ∪ Dval)
and we instantiate how to model the HO task from the

perspective of BLO. Inspired by this nested optimization,
most HO applications can be characterized by the bi-level
structure and formulated as the BLO problems. The UL
subproblem involves the optimization of hyper-parameters x
and the LL subproblem (w.r.t. weight parameters y) aims to
find the learning algorithm gy(·) by minimizing the training
loss.

3.2 Multi-task and Meta Learning
The goal of meta learning (a.k.a., learning to learn) is to
design models that can learn new skills or adapt to new
environments rapidly with a few training examples (see Fig. 3
for a schematic diagram). As a variant of meta learning, multi-
task learning just intends to jointly perform all the given
tasks [165], [166]. One of the most well-known instances of
meta learning is few-shot classification (i.e., N -way M -shot).
Each task is aN -way classification designed to learn the meta-
parameter with M training samples selected from each of
the class. Specially, the full meta training data set D = {Dj}
(j = 1, · · · , N ) can be segmented into Dj = Djtr ∪ Djval,
where Dj is linked to the j-th task.

Fig. 3. Illustrating the training process of meta learning. The whole
process is visualized to learn new tasks quickly by drawing upon related
tasks on corresponding data sets. It can be decomposed into two parts:
the “base-learner” trained for operating a given task and the “meta-
learner” trained to learn how to optimize the base-learner.

According to the dependency between the meta-
parameters and the network parameters, current meta learn-
ing based methods can be roughly categorized as two groups,
i.e., meta-feature learning and meta-initialization learning, as
can be seen in Fig. 4. Specifically, meta-initialization learning
aims to investigate the meta information of multiple tasks
by the network initialization, which can also be understood
as the promotion of fine-tuning [85], [87]. From the BLO
perspective, we actually formulate the network parameters
and their initialization (based on multi-task information)
by the LL and UL subproblems, respectively. In contrast,
meta-feature learning methods first separate the network
architecture as the meta feature extraction part and the task-
specific part. Then they formulate a hierarchical learning
process [11], [12], [56]. So in such tasks, we use the UL and
LL subproblems to model the meta-feature part and the
task-specific part, respectively.

3.2.1 Meta-feature Learning
Meta-Feature Learning (MFL) aims to learn a sharing meta
feature representation of all tasks. Recently, series of meta
learning based approaches show that multi-task with hard
parameter sharing and meta-feature representation are essen-
tially similar [167], [168]. The optimization of meta-learner
with respect to meta-parameters based on the UL subproblem
is similar to HO [11], [12], [73]. The cross-entropy function
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TABLE 2
Summary of related learning and vision applications that can be (re)formulated as BLOs. The abbreviations are listed as follows: Hyper-parameter
Optimization (HO), Meta-Feature Learning (MFL), Meta-Initialization Learning (MIL), Neural Architecture Search (NAS), Adversarial Learning (AL),

and Deep Reinforcement Learning (DRL).

Task Important work Other work

HO
[51] (ICML, 2017),
[13] (AISTATS, 2019),
[32] (ICML, 2020)

[69] (SIAM, 2014), [70] (EURO, 2020), [71] (ICML, 2015), [72] (AISTATS, 2020),
[73] (ICML, 2018), [74] (ICML, 2016), [75] (arXiv, 2019), [9] (ICLR, 2019),
[53] (ICML, 2021), [76] (ICML, 2017), [77] (NIPS, 2020), [12] (ICML, 2018)

MFL [12] (ICML, 2018),
[56] (ICML, 2017)

[11] (arXiv, 2017), [79] (CVPR, 2018), [80] (CVPR, 2018), [81] (ICLR, 2018),
[82] (ICLR, 2017), [83] (ICLR, 2018), [84] (ICML, 2019)

MIL

[85] (NIPS, 2019),
[57] (ICLR, 2019),
[86] (ICLR, 2019),
[87] (NIPS, 2019)

[88] (ICLR, 2017), [55] (ICML, 2017), [89] (ICML, 2017), [90] (arXiv, 2018),
[91] (arXiv, 2019), [92] (CVPR, 2020), [93] (AAAI, 2020), [94] (arXiv, 2018),
[95] (NIPS, 2019), [96] (ICLR, 2020), [97] (ICML, 2019), [98] (ICML, 2018),
[99] (CVPR, 2020), [100] (AAAI, 2020), [101] (ICASSP, 2020)

NAS

[14] (ICLR, 2019),
[102] (NIPS, 2018),
[58] (TGRS, 2020),
[103] (CVPR, 2020),
[59] (ICLR, 2019)

[104] (ICLR, 2019), [105] (CVPR, 2018), [16] (ICLR, 2019), [106] (ICCV, 2019),
[107] (AISTATS, 2020), [108] (CVPR, 2020), [109] (AAAI, 2020), [110] (CVPR, 2020),
[111] (CVPR, 2019), [112] (NIPS, 2019), [113] (ICCV, 2019), [114] (NIPS, 2019),
[115] (CVPR, 2020), [116] (arXiv, 2019), [117] (SIGKDD, 2020), [118] (CVPR, 2020),
[119] (CVPR, 2020), [120] (arXiv, 2020)

AL [121] (arXiv, 2016),
[21] (arXiv, 2016)

[122] (AAAI, 2020), [123] (CVPR, 2020), [18] (arXiv, 2018), [17] (PR, 2019),
[124] (ICML, 2020), [60] (CVPR, 2020), [19] (CVPR, 2020), [125] (ICML, 2018)

DRL
[20] (AAAI, 2020),
[21] (arXiv, 2016),
[61] (ICML, 2020)

[126] (CIRED, 2019), [62] (arXiv, 2020), [127] (NIPS, 2019), [128] (ICML, 2020),
[129] (AAMAS, 2020), [130] (arXiv, 2019), [131] (TSG, 2019), [132] (NeurIPS, 2016),
[133] (NeurIPS, 2017), [134] (arXiv, 2018), [61] (ICML, 2020), [135] (ICML, 2019)

Others

[136] (SIAM, 2013),
[23] (SSVM, 2015),
[137] (TIP, 2020),
[138] (TNNLS, 2020),
[139] (TIP, 2016)

[140] (ICML, 2016), [141] (ICLR, 2019), [25] (IJCAI, 2020), [142] (arXiv, 2019),
[143] (UAI, 2020), [144] (arXiv, 2021), [145] (arXiv, 2020), [146] (TIP, 2020),
[147] (arXiv, 2019), [148] (arXiv, 2020), [149] (T-RO, 2020), [150] (WACV, 2020),
[151] (arXiv, 2020), [152] (NIPS, 2020), [153] (arXiv, 2020), [154] (arXiv, 2020),
[155] (CVPR, 2020), [156] (ICLR, 2018)

`(x,yj ;Djtr) is actually considered as the task-specific loss
for the j-th task on the meta training data set to define the
LL objective.

As illustrated in the subfigure (a) of Fig. 4, following the
bi-level framework, the network architecture in this category
can be subdivided into two groups. The first is the cross-
task intermediate representation layer parameterized by x
(illustrated by the blue block), outputting the meta features.
The second is the logistic regression layer parameterized by
yj (illustrated by the green block), as the ground classifier
for the j-th task. As can be seen, the feature layers are shared
across all episodes, while the softmax regression layer is
episode (task) specific. We can also observe that the process
of network forward propagation corresponds to the process
of passing from the feature extraction part to the softmax
part.

3.2.2 Meta-initialization Learning
Meta-Initialization Learning (MIL) aims to learn a meta ini-
tialization for all tasks. MAML [89], known for its simplicity,
estimates initialization parameters with the cross-entropy
and mean-squared error for supervised classification and
regression tasks purely by the gradient-based search. Except
for initial parameters, recent approaches have focused on
learning other meta variables, such as updating strategies
(e.g., descent direction and learning rate [88], [91], [169]) and
an extra preconditioning matrix (i.e., [78], [83], [98]). More-
over, implicit gradient methods have a rapid development

in the context of few-shot meta learning. There exist a large
variety of algorithms replacing the gradient process of the
optimization of base-learner through calculation of implicit
meta gradient [85], [86], [95], [170]. Due to the large amount
of computation required to calculate the Hessian vector prod-
uct in the training process, various Hessian-free algorithms
have been proposed to alleviate the costly computation of
second-order derivatives, including but not limited to [54],
[55], [56], [57], [94], [96]. In particular, various first-order
approximation BLO algorithms have been proposed to avoid
the time-consuming calculation of second-order derivatives
in [90]. For instance, a modularized optimization library was
proposed in [53] to unify several meta learning algorithms
into a common BLO framework1.

As can be shown in subfigure (b) of Fig. 4, x denoted
by blue blocks corresponds to network initialization pa-
rameters, and y denoted by green blocks corresponds to
model parameters and is treated as the updated variable
satisfying the condition yj0 = x. Compared to MFL, there is
no deeply intertwined and entangled relationship between
two variables (x,yj), and x is only explicitly related to
y in the initial state. As a bi-level coupled nested loop
strategy, the LL subproblem based on base-learner is trained
for operating a given task, and the UL subproblem based
on meta-learner aims to learn how to optimize the base-

1. The code for this library is available at https://github.com/
dut-media-lab/BOML.

https://github.com/dut-media-lab/BOML
https://github.com/dut-media-lab/BOML


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

learner. Among the well-known approaches in this direction,
most recent approaches (i.e., [90], [171]) have claimed that
the LL objective is denoted by the task-specific loss on
the training data set, i.e., f(x, {yj}) = `(x,yj ;Djtr). By
utilizing cross-entropy function, the UL objective is given by
F (x, {yj}) =

∑
j `(x,y

j ;Djval).

(a) MFL (b) MIL

Fig. 4. Illustration of two architectures that are generally applied to multi-
task and meta learning: MFL and MIL. Both of them can be separated into
two parts: meta-parameters denoted by x (blue blocks) and parameters
denoted by yj (green blocks). (a) shows meta-parameters for features
shared across tasks and parameters of the logistic regression layer. (b)
shows meta (initial) parameters shared across tasks and parameters of
the task specific layer.

Both MFL and MIL are essential solution strategies of
one optimizer based on another optimizer, thus conforming
to the construction of the BLO scheme. As a task-specific
loss associated with the j-th task, the LL objective can be
defined as yj ∈ arg minyj∈Y f

(
x,yj ;Djtr

)
, j = 1, · · · , N .

Also, based on {Djval}, the UL objective can be given by
minx∈X F

(
x, {yj}; {Djval}

)
.

To summarize, the UL meta-learner performs gradient
descent operations and updates the meta-parameter with
feedback from base-learners to extract generalized meta
knowledge. Subsequently, the better meta knowledge is fed
into the base-learner (i.e., the LL subproblem) as part of its
model for optimizing y, thereby forming an optimization
cycle.

3.3 Neural Architecture Search

Neural Architecture Search (NAS) seeks to automate the
process of choosing the optimal neural network architec-
ture [172]. Recently, there has aroused a great deal of interest
in gradient-based differentiable NAS methods [14], [173],
[174]. Specifically, these gradient-based differentiable NAS
methods mainly contain three main concepts: search space,
search strategy and performance estimation strategy. As
shown in Fig. 5, by designing an architecture search space,
they generally use a certain search strategy to find the
optimal network architecture. Such a process can be regarded
as the system of optimizing the operation and connection of
each node.

DARTS [14], the most well-known instance, relaxed the
search space to be continuous and conducted searching
for architectures in a differentiable way to simultaneously
optimize the architectures and weights. Actually, each op-
eration corresponds to a coefficient in DARTS. By denoting
x = {xij} as the architecture parameters and xij as the form
of connection between two nodes, the expression formula of

Fig. 5. Schematic diagram of NAS. Derived from a predefined search
space A, NAS first selects an architecture A to transport into the
performance estimation strategy, then returns the estimated performance
of A to the search strategy.

mixed operations ōij(·) based on the softmax function can
be written as

ōij(·) =
∑
o∈O

exp(xijo )∑
o′∈O

exp(xijo′)
o(·),

where o and o′ are operations andO is the set of all candidate
operations. Then, oij = arg maxo∈O xijo is further evaluated
and performed in order to obtain the optimal architecture.
However, due to the sharp deterioration in performance
caused by the large number of skip connections, a great deal
of improved approaches have emerged, such as ENAS [105],
PC-DARTS [59], P-DARTS [106], just to name a few.

Currently, a series of gradient-based differentiable NAS
methods combined with meta learning have been proposed,
see [16], [108], [175], [176]. Based on the bi-level coupling
mechanism, these gradient-based differentiable NAS meth-
ods have achieved promising results in the numerous visual
and learning applications, such as image classification [58], se-
mantic segmentation [111], [115], [177], object detection [103],
[112], [113], [117], [118], medical image analysis [115], [177],
video classification [140], recommendation system [120],
graph network [116], [130] and representation learning [130],
etc.

Given the proper search space, it is helpful for these
gradient-based differentiable NAS methods to derive the
optimal architecture for different vision and learning tasks.
From the BLO’s point of view, the UL objective w.r.t. the
architecture weights (e.g. block/cell) can be parameterized
by x. And the LL objective w.r.t. the model weights can be
parameterized by y. Therefore, the full searching process can
virtually be formulated as a BLO paradigm, where the UL
objective is defined by F (x,y;Dval) based on the validation
data set Dval, and the LL objective is given by f(x,y;Dtr)
based on the training data set Dtr.

3.4 Adversarial Learning

Adversarial Learning (AL) is currently deemed as one of the
most important learning tasks. It has been applied in a large
variety of application areas, i.e., image generation [18], [60],
[123], adversarial attacks [178] and face verification [17].
For example, the work proposed in [60] introduced an
adaptive BLO model for image generation, which guided
the generator to reasonably modify the parameters in a
complementary and promoting way. Moreover, a new ad-
versarial training strategy has been proposed by learning
a parametric optimizer with neural networks to study the
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adversarial attack [18]. As the current influential model,
Generative Adversarial Network (GAN) can be deemed as
deep generative models [179]. Recently, targeting at finding
pure Nash equilibrium of generator and discriminator, the
author proposed to exploit a fully differentiable search
framework by formalizing as solving a bi-level mini-max
optimization problem [19].

Fig. 6. Illustrating the architecture of GAN. The generator G is rep-
resented as a deterministic feed forward neural network (red blocks),
through which a fixed random noise v is passed to output G(v). The
discriminator D is another neural network (green blocks) which maps the
sampled real-world image u ∼ pdata and G(v) to a binary classification
probability.

Most of the AL approaches can formulate the unsuper-
vised learning problem as a bi-level game between two
opponents: a generator which samples from a distribution,
and a discriminator which classifies the samples as real or
false, as shown in Fig. 6. The goal of GAN is to minimize the
duality gap denoted by V(D,G):

min
G

max
D
V(D,G) = Eu∼pdata(u) logD(u)

+ Ev∼N(0,1)
log(1−D(G(v))),

where the fixed random noise source v obtained from v ∼
N(0,1) is input into the generator G, which, together with the
sampled real-world image u ∼ pdata, is then authenticated
by the discriminator D. Notice that E denotes the expectation
which implies that the average value of some functions under
a probability distribution.

Indeed, AL problems generally correspond to the mini-
max BLO problems, where the UL discriminator denoted by
F targets on learning a robust classifier, and the LL generator
denoted by f tries to generate the adversarial samples.
Specifically, the UL and LL objectives can be respectively
formulated as

F (x,y) = −Eu∼pdata(u) logD(u)

− Ev∼N(0,1)
log(1−D(G(v))),

f(x,y) = −Ev∼N(0,1)
log(D(G(v))),

where G and D are parameterized with variables y and
x, respectively. In other words, the UL subproblem aims
to reduce the duality gap V(D,G) and the LL subproblem
interactively optimizes the discriminator parameters denoted
by x to obtain the optimal solution.

3.5 Deep Reinforcement Learning
Deep Reinforcement Learning (DRL) aims to make optimal
decisions by interacting with the environment and learning
from the experiences. Indeed, a variety of DRL tasks, includ-
ing Single-Agent Reinforcement Learning (SARL) [21], [22],
[62], Multi-Agent Reinforcement Learning (MARL) [20], [126],

[129], [180], Meta Reinforcement Learning (MRL) [61], [135],
[181], [182], and Imitation Learning (IL) [132], [133], [134],
which all can be modeled and tackled by BLO techniques.

As for SARL problems, Actor-Critic (AC) type methods
have been widely studied and viewed as a bi-level or two-
time-scale optimization problems [22], [62], as illustrated
in Fig. 7. Indeed, AC type DRL methods often aim to
simultaneously learn a state-action value-function Qπ that
predicts to expect the discounted cumulative reward and a
policy which is optimal for that value function:

Qπ(s, a) = Esi+j∼P,ri+j∼R,ai+j∼π

( ∞∑
k=0

γjri+j |si = s, ai = a

)
,

where P and R denote dynamics of the environment and
reward function, s and a are the state and action, i and j
represent the i-th and j-th steps, and E is the expectation
which implies that the average value of some function under
a probability distribution. The policy maximizes the expected
discounted cumulative reward for that state-action value-
function, i.e., π∗ = arg maxπ Es0∼p0,a0∼π (Qπ(s0, a0)) ,
where s0, a0 and p0 correspond to the initial state, initial
action and the initial state distribution, respectively. Under
the BLO paradigm, the actor and critic correspond to the UL
and LL variables, respectively. Let x denote the parameters of
the state-action value-function and y denote the parameters
of the policy π. The UL and LL objectives respectively take
the form

F (x,y) = Esi, ai ∼ π(div(Esi+1,ai+1,ri+1

(ri+1 + γQ(si+1, ai+1)) ‖ Q(si, ai))),

f(x,y) = −Es0∼p0,a0∼πQπ(s0, a0),

where div(·||·) represents any divergence.
MARL studies how multiple agents can collectively learn,

collaborate, and interact with each other in an environment.
In the classical MARL system, agents are treated equally and
the goal is to solve the Markov game to an arbitrary Nash
equilibrium when multiple equilibria exist, thus lacking a
solution for selection. To address this issue, the work in [20]
formulates MARL as the multi-state model-free Stackelberg
equilibrium learning problem. Thus, under Markov games,
they construct a BLO formulation to find Stackelberg equi-
librium to address the MARL task. Similarly, a multi-agent
bi-level cooperative reinforcement learning algorithm was
proposed in [126] to solve the stochastic decision-making
problem.

In recent years, MRL approaches (a.k.a., meta learning
on reinforcement learning tasks), which aim to learn a policy
that adapts fast to new tasks and/or environments, have
achieved remarkable success [181], [183]. For example, the
work in [182] learns a policy that can quickly adapt to other
related models only with one policy gradient step. By adding
control variables into gradient estimation, the work in [135]
can obtain low variance estimates for policy gradients. While
the work in [61] characterizes the optimality gap of the
stationary points attained by MAML for both reinforcement
learning and supervised learning. Since all these works are
based on the meta-initialization platform, it is also nature to
formulate these meta reinforcement learning methods from
the perspective of BLOs.

Generally, IL techniques are very useful when it is easier
for an expert to demonstrate the desired behavior rather
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than to specify a reward function which would generate
the same behavior or to directly learn the policy in DRL
tasks [184]. In recent years, by connecting imitation learning
with generative adversarial learning, a series of Generative
Adversarial Imitation Learning (GAIL) techniques [132],
[133], [134] have been investigated to imitate an expert in
a model-free DRL scenario. Since GAIL type methods have
a natural connection to the mechanism of GANs, we can
definitely formulate these models using BLOs.

Fig. 7. Illustrating the schematic diagram of AC learning. First the actor
π interacts with the environment to learn the state-action value-function
Qπ(s, a), and then the actor π is again obtained based on Qπ(s, a).

3.6 Other Related Applications

The rapid development of deep learning has claimed its
domination in the area of image processing and analysis.
In addition to the above mentioned tasks, there exist a
significant amount of other related learning and vision
tasks that can be re(formulated) as BLO problems, such
as image enhancement [24], [136], [139], [142], [185], image
registration [25], image-to-image translation [186], image
recognition [187], image compression [188] and other related
works [141], [143], [152]. For example, the earlier work pre-
sented in [136] considered the problem of parameter learning
for image denoising models and incorporated p-norm–based
analysis priors. Under a BLO formulation, the LL subproblem
was given by a variational model which consisted of the data
fidelity and regularization term, and the UL subproblem
was expressed by the loss function. Furthermore, the work
proposed in [139] formulated the discriminant dictionary
learning method for image recognition tasks as a BLO. From
this point of view, the UL subproblem can directly minimize
the classification error, while the LL subproblem can use
the sparsity term and the Laplacian term to characterize the
intrinsic data structure.

By addressing a unified BLO problem, the LL subproblem
is usually expressed as fundamental models that conform to
the laws or principles of physics, while the UL subproblem
usually considers the further constraints on variables [23],
[140].

4 GRADIENT-BASED BLOS

In past years, gradient-based techniques have became the
most popular BLO solution strategies in learning and vision
fields. In fact, one of the first gradient-based BLO method-
ology is [30]. Currently, a variety of explicit gradient-based
methods have been investigated to solve BLOs [71], [73],
[189]. Specifically, the works in [12], [51] first calculate gradi-
ent flow of the LL objective and then perform either reverse

or forward gradient computations for the UL subproblem.
Similar ideas have also been considered in [23], [75], [190], but
with different specific implementations. On the other hand,
there also exist some implicit gradient based methods [72],
[85], [191] to use the implicit function theorem to obtain the
gradient. In this section, we first review three categories of
mainstream BLO formulations, which have been considered
in various application scenarios. We then demonstrate how
to uniformly reformulate these different BLOs from a single-
level optimization perspective and investigate the intrinsic
structures of existing gradient-based BLO algorithms within
a unified algorithmic platform.

4.1 Different Formulations of BLO

It is worthwhile to notice that the original BLO model given
in Eq. (2) is not clear in case of the multiple LL optimal
solutions for some of the selections of the UL decision
maker [1]. Therefore, it is necessary to define, which solution
out of the multiple LL solutions in S(x) should be considered.
Here we actually consider three categories of viewpoints, i.e.,
singleton, optimistic and pessimistic BLOs.

The most straightforward idea in existing learning and
vision literature is to assume that S(x) is a singleton.
Formally, we call the BLO model is with the Lower-Level
Singleton (LLS) condition if ∀x ∈ X , the solution set of the
LL subproblem (i.e., S(x)) is a singleton. In this case, we can
simplify the original model as

min
x∈X

F (x,y), s.t. y = arg min
y∈Y

f(x,y). (3)

Such singleton version of BLOs is well-defined and could
cover a variety of learning and vision tasks (e.g., [7], [9],
[71], [74], just name a few). Thus, in recent years, dozens
of methods have been developed to address this nested
optimization task in different application scenarios (see the
following sections for more details).

Furthermore, the situation becomes more intricate if the
LL subproblem is not uniquely solvable for each x ∈ X .
Essentially, if the follower can be motivated to select an
optimal solution in S(x) that is also best for the leader (i.e.,
with respect to F ), it yields the so-called optimistic (strong)
formulation of BLO

min
x∈X

{
min
y∈Y

F (x,y), s.t. y ∈ arg min
y∈Y

f(x,y)

}
. (4)

The above stated optimistic viewpoint has drawn increasing
attention in BLO literature [192], [193], [194] and recently
also been investigated in learning and vision fields [32], [189],
[195]. In Section 7, we will further explore how to solve such
optimistic BLOs in detail.

If the leader does not have the information whether the
follower returns the best response y from S(x) in terms
of the UL objective F , then we have to assume that the
follower is not cooperate with the leader. This is known as
the pessimistic (weak) formulation of BLO [196], [197] and
can be given as:

min
x∈X

{
max
y∈Y

F (x,y), s.t. y ∈ arg min
y∈Y

f(x,y)

}
. (5)
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It should be pointed out that till now we still lack efficient
gradient-based algorithms to address the pessimistic BLO
problems2.

4.2 BR-based Single-Level Reformulation

In this work, we consider the optimal solution of the LL
subproblem with a given UL variable x as the Best-Response
(BR) of the follower (denoted as y∗(x)). Then we can
interpret BLO as a game process, in which the leader x
considers what BR of the follower y is, i.e., how it will
respond once it has observed the quantity of the leader [1],
[198]. Based on the above understanding, we can reformulate
the three different categories of BLOs as a unified single-level
optimization problem.

Specifically, given the UL variable x, we denote the
corresponding BR mapping as y∗(x). In fact, if considering
the singleton BLO, y∗(x) can be directly obtained by the
unique LL solution. While for the optimistic and pessimistic
BLOs, we actually first define their Inner Simple Bi-level
(ISB) subproblems (w.r.t., y)3 as

Optimistic ISB: min
y∈S(x)

F (x,y) and Pessimistic ISB: max
y∈S(x)

F (x,y).

(6)
Then by defining the solution set of ISB as S̃(x), we could
consider any y∗(x) ∈ S̃(x) as the BR mapping, because
points in S̃(x) all obtain the minimum/maximum of F (x,y)
in S(x). Therefore, we can formulate the general BR mapping
for different categories of BLOs as follows:

y∗(x) := arg min
y∈Y

f(x,y), Singleton,

y∗(x) ∈ S̃(x) :=


arg min

y∈S(x)
F (x,y), Optimistic,

arg max
y∈S(x)

F (x,y), Pessimistic.

(7)
Based on Eq. (7), we actually obtain the following value-
function-based reformulation (a single-level optimization
model) for BLOs stated in Eq. (2), i.e.,

min
x∈X

ϕ(x) := F (x,y∗(x)), (8)

in which ϕ(x) actually can be used to uniformly represent the
UL value-function of F from the singleton, optimistic (i.e.,
infy∈S(x) F (x,y)) and pessimistic (i.e., supy∈S(x) F (x,y))
viewpoints.

4.3 A Unified Platform for Gradient-based BLOs

Moving one step forward, the gradient of ϕ w.r.t. the UL
variable x can be written as4

∂ϕ(x)

∂x︸ ︷︷ ︸
grad. of x

=
∂F (x,y∗(x))

∂x︸ ︷︷ ︸
direct grad. of x

+ G(x),︸ ︷︷ ︸
indirect grad. of x

(9)

2. In Section 9, we will demonstrate that we can also obtain some
practical gradient-based iteration scheme within our general algorithmic
platform for the pessimistic formulation of BLO.

3. It is known that the simple bi-level optimization is just a specific
BLO problem with only one variable [32], [199].

4. Please notice that we actually do not distinguish between the
operation of the derivatives and partial derivatives to simplify our
presentation.

where the indirect gradient G(x) can be further specified as
the following two components:

G(x) =

BR Jacobian︷ ︸︸ ︷(
∂y∗(x)

∂x′

)′ direct grad. of y︷ ︸︸ ︷
∂F (x,y∗(x))

∂y
.︸ ︷︷ ︸

indirect grad. of x

(10)

Here we use “grad.” as the abbreviation of gradient and
denote the transpose operation as (·)′. Note that, y∗(x) as
a general mapping, can be given specific constraints and
necessary assumptions to fit their particular requirements
for these specific gradient-based BLO approaches in order to
obtain different iteration formats and theoretical properties.
For details, please refer to the following contents. In fact,
by simple computation, the direct gradient is easy to obtain.
However, the indirect gradient is intractable to obtain be-
cause we must compute the changing rate of the optimal LL
solution with respect to the UL variable (i.e., the BR Jacobian
∂y∗(x)
∂x ). Please notice that we will also call ∂ϕ(xk)

∂xk as the
practical BR Jacobian w.r.t. xk in the following statements.
The computation of the indirect gradient G(x) naturally
motives formulating y∗(x) and hence ∂y∗(x)

∂x . For this pur-
pose, a series of techniques have recently been developed
from either explicit or implicit perspectives, which obtain
their optimal solutions by recurrent differentiation through
dynamic system and based on implicit differentiation theory,
respectively.

Now we demonstrate how to formulate various existing
gradient-based BLOs from a unified algorithmic platform.
We first summarize a general BLO updating scheme in Alg. 1.
It can be seen that the key component of this algorithm is
to calculate the BR Jacobian. Then with ∂ϕ(xk)

∂xk , we can just
perform standard (stochastic) gradient descent schemes to
update xk. Based upon our general algorithmic platform, we
can observe that the main differences of these existing BLO
approaches are just their specific strategies for calculating
Jacobian of the BR mapping under different conditions (i.e.,
w/ LLS and w/o LLS).

Algorithm 1 A General Gradient-based BLO Scheme
Input: The UL and LL initialization.
Output: The optimal UL and LL solutions.

1: for k = 1, · · · ,K do
2: Calculate the BR Jacobian ∂ϕ(xk)

∂xk .
% (Mainstream calculation strategies are summarized
in Figs. 8-9 and thoroughly surveyed in the following
sections)

3: Perform (stochastic) gradient descent to update xk.
% (based on ∂ϕ(xk)

∂xk )
4: end for

In Fig. 8, we summarize mainstream gradient-based BLOs
and illustrate their intrinsic relationships within our general
algorithmic platform. It can be observed that in the LLS
scenario, from the BR-based perspective, existing gradient
methods can be categorized as two groups: Explicit Gradient
for Best-Response (EGBR, stated in Section 5) and Implicit
Gradient for Best-Response (IGBR, stated in Section 6). As
for EGBR, there are mainly three types of methods, namely,
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recurrence-based EGBR (e.g., [12], [13], [14], [51], [71]),
initialization-based EGBR (e.g., [90], [94] ) and proxy-based
EGBR methods (e.g., [78], [82], [87], [171]), differing from
each other in the way of formulating the BR mapping. For
IGBR, existing works consider two groups of techniques (e.g.,
linear system [74], [85] and Neumann series [72]) to alleviate
the computational complexity issue for the BR Jacobian. We
emphasize that the validity of above BLO methodologies
must depend on the singleton of their LL solution set.
When solving BLOs without the LLS assumption, recent
works in [32], [189] have demonstrated that we need to
first construct BR mapping based on both UL and LL
subproblems, and then solve two optimization subproblems,
namely, the single-level optimization subproblem (w.r.t. x)
and the ISB subproblem (w.r.t. y). While the work in [195] has
introduced a series of barrier functions and utilized interior
point methods to obtain the BR mapping for each given x.

To end up this section, we plot Fig. 9 to illustrate the
optimization processes of existing mainstream gradient-
based BLO methods from the BR mapping perspective and
within our unified algorithmic platform. In the following
(i.e., Sections 5-7), we will thoroughly survey these different
categories of gradient-based BLO algorithms (including
their acceleration, simplification and extension techniques)
and their theoretical properties (convergence behaviors and
computational complexity), accordingly.

5 EXPLICIT GRADIENT FOR BEST-RESPONSE

With the LLS condition, we delve deep into the EGBR
category of methods, which aims to perform automatic
differentiation through the LL dynamic system [200], [201] to
solve the BLO problem. Specifically, given an initialization
y0 = Ψ0(x) at t = 0, the iteration process of EGBRs can be
generally written as

yt = Ψt(yt−1;x), t = 1, · · · , T, (11)

where Ψt denotes some given updating scheme (based on
the LL subproblem) at t-th stage and T denotes the overall
LL iterations number. For example, we can formulate Ψt

based on the gradient descent rule, i.e.,

Ψt(yt−1;x) = yt−1 − ηtdf (yt−1,x), (12)

where df (yt−1,x) is the descent mapping of f at t-th
stage (e.g., df (yt−1,x) = ∂f(x,yt−1)

∂yt−1
) and ηt denotes the

corresponding step size . Then we can calculate ∂ϕ(xk)
∂xk by

substituting yT := Ψ(x) approximately for y∗(x), and the
full dynamical system can be defined as

Ψ(x) := ΨT ◦ · · · ◦Ψ1 ◦Ψ0(x). (13)

Here the notation ◦ represents the compound dynamical
operation of the entire iteration. That is, we actually consider
the following optimization model

min
x∈X

ϕT (x) := F (x,yT (x)), (14)

and need to calculate ∂ϕT (x)
∂x (instead of Eq. (9)) in the

practical optimization scenario. Since it should be noted
that Ψ actually obtains an explicit gradient for best-response
of the follower, we call this category of gradient-based BLOs

as EGBR approaches hereafter. Starting from the Eq. (11),
it is obvious to notice that yt may be affected coupling
with the variable x throughout the iteration. This coupling
relationship will have a direct impact on the optimization
process of UL variable in Eq. (9). In fact, existing EGBR
algorithms can be summarized from three perspectives. The
first is that, if x closely acts on yt during the whole iteration
process, the subsequent optimization of variable x will be
carried out recursively. The second is that when x only acts
in the initial step, the subsequent optimization of variable
x will be simplified. The third class is to replace the whole
iterative process with a hyper-network, so as to efficiently
approximate the BR mapping. Ultimately, in such cases, we
divide them into three categories in terms of the coupling
dependence of the two variables and the solution proce-
dures, namely recurrence-based EGBR (stated in Section 5.1),
initialization-based EGBR (stated in Section 5.2) and proxy-
based EGBR (stated in Section 5.3).

5.1 Recurrence-based EGBR
It can be seen from Eq. (11) that all the LL iterative variables
y0,y1, · · · ,yT depend on x, and x acts as a recurrent
variable of the dynamical system. One of the most well-
known approaches for calculating ∂ϕT (x)

∂x (with the above
recurrent structure) is Automatic Differentiation (AD) [160],
[202], which is also called algorithmic differentiation or
simply “AutoDiff”. There exist two diametrically opposite
ways on computing gradients for recurrent neural networks,
of which one corresponds to back-propagation through time
in a reverse-mode way [203], [204], and the other corresponds
to real-time recurrent learning in a forward-mode way [205],
[206]. Quite a number of methods, closely related to this
subject, have been proposed since then [12], [13], [51], [71].
Here we would like to review recurrence-based BR methods,
covering forward-mode, reverse-mode AD, truncated and
one-stage simplifications.

Forward-mode AD (FAD): To compute ∂ϕT (x)
∂x , FAD

appeals to the chain rule for the derivative of the dynamical
system [51]. Specifically, recalling that yt = Ψt(yt−1,x),
we have that the operation Ψt indeed depends on x both
directly by its expression and indirectly through yt−1. Hence,
by drawing upon the chain rule, the formulation is given as5

∂yt
∂x

=
∂Ψt(yt−1;x)

∂yt−1

∂yt−1

∂x
+
∂Ψt(yt−1;x)

∂x
. (15)

To simplify the notation, we denote Zt = ∂yt

∂x , At =
∂Ψt(yt−1;x)

∂yt−1
, Bt = ∂Ψt(yt−1;x)

∂x for t > 0 and Z0 = B0 =
∂Ψ0(x)
∂x . Then we can rewrite Eq. (15) as Zt = AtZt−1 + Bt

(t = 1, · · · , T ). In this way, we have the following formula-
tion to approximate the BR Jacobian

∂yT (x)

∂x
= ZT =

T∑
t=0

(
T∏

i=t+1

Ai

)
Bt. (16)

Based on the above derivation, it is apparent that ∂ϕT (x)
∂x

can be computed by an iterative algorithm summarized

5. Please notice that here we actually require yt(x) to be a continu-
ously differentiable function (w.r.t. x) for all t = 1, · · · , T . In existing
EGBRs, they just introduce differentiable Ψt to meet this requirement.
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Fig. 8. Summary of the mainstream gradient-based BLOs. We categorize these existing approaches into two main groups, i.e., w/ and w/o LLS
assumptions. When solving BLOs with LLS assumption, these methods can be further divided into two categories: EGBR and IGBR. As for EGBRs,
they can be solved by different Automatic Differentiation (AD) techniques (as denoted by the dashed rectangle). Very recently, two algorithms
have also been proposed to address BLOs without the LLS assumption. In particular, they actually introduce a bi-level gradient aggregation or a
value-function-based interior-point method to calculate the indirect gradient.

Fig. 9. Illustrating the roadmap of different categories of gradient-based BLOs. In the left bottom region, the formulations in the solid rectangles
(i.e., singleton and optimistic) have been widely studied. In contrast, since gradient-based methods for pessimistic BLOs have not been properly
investigated in existing literature, we denote this category of formulation by a dashed rectangle. In Section 9, we demonstrate that we can also obtain
a practical pessimistic BLO scheme within our general algorithmic platform.

in Alg. 2. Actually, FAD allows the program to update
parameters after each step, which may significantly speed
up the dynamic iterator and take up less memory resources
when the number of hyper-parameters is much smaller than
the number of parameters. It can be time-prohibitive for
many hyper-parameters with a more efficient and convenient
way.

Reverse-mode AD (RAD): RAD is a generalization of
the back-propagation algorithm and based on a Lagrangian
formulation associated with the parameter optimization
dynamics. By replacing y∗(x) by yT and incorporating
Eq. (16) into Eq. (9), a series of RAD works (e.g., [12], [51],

Algorithm 2 Forward-mode AD (FAD)
Input: The UL variable at the current stage x and the LL

initialization y0.
Output: The gradient of ϕT with respect to x, i.e., ∂ϕT

∂x .
1: Z0 = ∂Ψ0(x)

∂x .
2: for t = 1, · · · , T do
3: yt = Ψt(yt−1;x).
4: Zt = AtZt−1 + Bt.
5: end for
6: return ∂F (x,yT )

∂x + Z′T
∂F (x,yT )
∂yT

.

[71]) derived
∂ϕT (x)

∂x
=
∂F (x,yT )

∂x
+ Z′T

∂F (x,yT )

∂yT
. (17)
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Rather than calculating ZT by forward propagation as
that in FAD (i.e., Alg. 2), the computation of Eq. (17) can
also be implemented by back-propagation. That is, we first
define gT = ∂F (x,yT )

∂x and λT = ∂F (x,yT )
∂yT

. Then we update
gt−1 = gt + B′tλt, and λt−1 = A′tλt, with t = T, · · · , 0.
Finally, we have that ∂ϕT (x)

∂x = g−1. Indeed, the above
RAD calculation is structurally identical to back-propagation
through time [51]. Moreover, we can also derive it following
the classical Lagrangian approach. That is, we reformulate
Eq. (14) as the following constrained model

min
x∈X

ϕT (x) s.t.

{
y0 = Ψ0(x),
yt = Ψt(yt−1;x), t = 1, · · · , T. (18)

The corresponding Lagrangian function can be written as

L(x, {yt}, {λt}) = ϕT (x) + λ′0 (Ψ0(x)− y0)

+
T∑
t=1
λ′t (Ψt(yt−1;x)− yt) ,

(19)

where λt denotes the Lagrange multiplier associated with
the t-th stage of the dynamic system. The KKT optimality
condition of Eq. (18) is obtained by setting all derivatives of L
to zero, satisfying the condition that yt(x) is a continuously
differentiable function w.r.t. x for the case that t = 1, · · · , T .
Then by some simple algebras, we have ∂ϕT (x)

∂x = ∂L
∂x .

Overall, we present the RAD algorithm in Alg. 3.

Algorithm 3 Reverse-mode AD (RAD)
Input: The UL variable at the current stage x and the LL

initialization y0.
Output: The gradient of ϕT with respect to x, i.e., ∂ϕT

∂x .
1: y0 = Ψ0(x).
2: for t = 1, · · · , T do
3: yt = Ψt(yt−1;x).
4: end for
5: gT = ∂F (x,yT )

∂x and λT = ∂F (x,yT )
∂yT

.
6: for t = T, · · · , 0 do
7: gt−1 = gt + B′tλt and λt−1 = A′tλt.
8: end for
9: return g−1.

Truncated RAD (TRAD): The above two precise calcu-
lation methods in many practical applications are tedious
and time-consuming with full back-propagation training. As
aforementioned, due to the complicated long-term depen-
dencies of the UL subproblem on yT (x), calculating Eq. (17)
in RAD is a challenging task. This difficulty is further aggra-
vated when both x and y are high-dimensional vectors. More
recently, the truncation idea has been revisited to address
the above issue and shows competitive performance with
significantly less computation time and memory [13], [207],
[208]. Specifically, by ignoring the long-term dependencies
and approximating Eq. (17) with partial sums (i.e., storing
only the last M iterations), we have

∂ϕT (x)

∂x
≈ gT−M :=

∂F (x,yT )

∂x
+ Z′T−M

∂F (x,yT (x))

∂yT
,

(20)
where ZT−M =

∑T
t=T−M+1

(∏T
i=t+1 Ai

)
Bt. It can be

seen that ignoring the long-term dependencies can greatly
reduce the time and space complexity for computing the

approximate gradients. Recently, the work in [13] has in-
vestigated the theoretical properties of the above truncated
RAD scheme, and confirmed this fact that using few-step
back-propagation could perform comparably to optimization
with the exact gradient, while requiring far less memory and
half computation time.

One-stage RAD: Limited and expensive memory is often
a bottleneck in modern massive-scale deep learning applica-
tions. For instance, multi-step iteration of the inner program
will cause a lot of memory consumption [89]. Inspired by
BLO, a variety of simplified and elegant techniques have
been adopted to circumvent this issue. The work in [14]
proposes another simplification of RAD, which considers a
fixed initialization y0 and only performs one-step iteration
in Eq. (11) to remove the recurrent structure for the gradient
computation in Eq. (17), i.e.,

∂ϕ1(x)

∂x
=
∂F (x,y1(x))

∂x
+

(
∂y1(x)

∂x′

)′
∂F (x,y1(x))

∂y1(x)
. (21)

By formulating the dynamical system as that in Eq. (12), we
then write ∂y1(x)

∂x as

∂y1

∂x′
=
∂
(
y0 − ∂f(x,y0)

∂y0

)
∂x′

= −∂
2f(x,y0)

∂y0∂x′
. (22)

Since calculating Hessian in Eq. (22) is still time consuming,
to further simplify the calculation, we can adopt finite
approximation [14] to cancel the calculation of the Hessian
matrix (e.g., central difference approximation). The specific
derivation can be formalized as follows:

∂F (x,y1)

∂y1

∂2f(x,y0)

∂y0∂x′
≈

∂f(x,y+
0 )

∂x − ∂f(x,y−0 )
∂x

2ε
, (23)

in which y±0 = y0± ε∂F (x,y1)
∂y1

. Note that ε is set to be a small
scalar equal to the learning rate [59].

5.2 Initialization-based EGBR

The research community has started moving towards the
challenging goal of building general purpose initialization-
based optimization systems whose ability to learn the initial
parameters better. Regardless of the recurrent structure, we
need to consider the special setting to analyze a family of
algorithms for learning the initialization parameters, named
initialization-based EGBR methods. In this series, MAML [89]
is considered as the most representative and important work.
By making more practical assumptions about the coupling
dependence of two variables, these methods no longer
use the full dynamical system to explicitly and accurately
describe the dependency between x and y as discussed
above in Eq. (18), but adopt a further simplified paradigm.

Specifically, by treating the iterative dynamical system
with only the first step that y is explicitly related to x, this
process can be formulated as

min
x∈X

ϕT (x) s.t.

{
y0 = Ψ0(x),
yt = Ψt(yt−1), t = 1, · · · , T, (24)

where x represents the network initialization parameters,
and yt represents the network parameters after performing



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

some sort of update. Given initial condition Ψ0(x), then we
obtain the following simplified formula

yT = Ψ0(x)−
T∑
t=1

df (yt−1), (25)

where df (yt−1) is the descent mapping of f at the t-th stage
(e.g., df (yt−1) = ∂f(x,yt−1)

∂yt−1
). Finally, we have the Jacobian

matrix as follows

∂yT
∂x

=

∂

(
Ψ0(x)−

T∑
t=1

df (yt−1)

)
∂x

. (26)

Then we have to calculate the Hessian matrix term ∂2f
∂yt−1∂x′

,
which is time consuming in real computation scenario.
To reduce the computational load, we will introduce two
remarkably simple algorithms via a series of approximate
transformation operations below. Among various schemes to
simplify the algorithm based on initialization-based EGBR
approaches, first-order approximation (e.g., [90], [94]) and
layer-wise transformation (e.g., [78], [82], [87], [171]) are
among the more popular. Very recently, the works in [209],
[210] also consider the initialization as an auxiliary variable
to improve the performance of RAD.

First-order Approximation: For example, the most rep-
resentative algorithms (i.e., FOMAML [90] and Reptile [94])
adopted the operation by first-order approximation, a way
to alleviate the problem of Hessian term computation while
not sacrificing much performance. Specifically, this approxi-
mation ignores the second derivative term by removing the
Hessian matrix ∂2f

∂yt−1∂x′
, and then simplifies substitution of

∂ϕT (x)
∂x performed by

∂ϕT (x)

∂x
=
∂F (x,yT (x))

∂x
+

(
∂Ψ0(x)

∂x′

)′
∂F (x,yT (x))

∂yT (x)
.

(27)
In addition, there is another way of first-order extension
to simplify Eq. (26) through the operation of difference
approximation [94]. It no longer avoids the Hessian term
but tries another soft way to approximate ∂yT

∂x (i.e.,yT − x
and (yT −x)/α), in which α is the step size used in gradient
decent operation. Unlike [90], this method proposed to
use different linear combinations of all steps rather than
using just the final step. But overall, the above algorithm
could significantly reduce the computing costs while keeping
roughly equivalent performance.

Layer-wise Transformation: Indeed, there are also a
series of learning-based BLOs related to layer-wise transfor-
mation, i.e., Meta-SGD [82], T-Net [171], Meta-Curvature [87]
and WarpGrad [78]. In addition to initial parameters, this
type of work focuses on learning some additional parameters
(or transformation) at each layer of the network. From the
above Eq. (25), it can be uniformly formulated as

yT = Ψ0(x)−
T∑
t=1

P(yt−1,ω)df (yt−1), (28)

where P(yt−1,ω) defines the matrix transformation learned
at each layer and ω is an auxiliary vector (e.g., learning rate).
For example, Meta-SGD [82] learns a vector ω of learning
rates and P corresponded to diag(ω), and T-Net [171] aims

to learn block-diagonal preconditioning linear projections.
Similarly, an additional the block-diagonal preconditioning
transformation is also performed by Meta-Curvature [87].
WarpGrad [78] is closely related to the concurrent work
of Meta-Curvature [87], which defines the preconditions
gradient from a geometrical point of view and replaces the
linear projection with a non-linear preconditioning matrix as
a warp layer.

5.3 Proxy-based EGBR

Generally speaking, calculating the BR mapping (or BR
Jacobian) is key to solve BLOs. Recently, several proxy-based
EGBR methods (e.g., [9], [77], [164]) utilize the differentiable
hyper-network (denoted as Ψθ(x) with parameters θ) to
substitute the dynamic system Ψ(x) and then approximate
the BR mapping6, i.e.,

Ψθ(x)→ Ψ(x) ≈ y∗(x). (29)

Specifically, they train a hyper-network that takes hyper-
parameters x as input and outputs the approximate optimal
set of weights as the optimal solution of the LL subproblem.

In fact, both global and local proxy techniques have
been considered to approximate the BR mapping. From
the perspective of global approximation, first, if the dis-
tribution p(x) ⊆ X is fixed, they learn θ by minimizing
Ex∼p(x)f(x,Ψθ(x)), so that Ψθ(x) can approximate the BR
mapping in a neighborhood around the current x, and second
update x with Ψθ as a proxy substituted into Eq. (14), i.e.,

x∗ ≈ arg min
x∈X

F (x,Ψθ(x)). (30)

For local approximation, by introducing a small UL dis-
turbing term, they first minimize the objective Eε∼p(ε|δ)f(x+
ε,Ψθ(x+ε)), where ε represents the perturbation noise added
to x, and p(ε|δ) is defined as a factorized Gaussian noise
distribution with a fixed scale parameter δ. After that, the
UL variable x is updated by minimizing the proxy function,
i.e., Eq. (30).

In comparison to other type EGBRs, proxy-based EGBRs
can easily replace existing modules in deep learning libraries
with hyper-counterparts that accept an additional vector of
UL variable as input and adapt online, thereby requiring less
memory consumption to meet the performance requirements.

6 IMPLICIT GRADIENT FOR BEST-RESPONSE

In contrast to the EGBR methods surveyed above, IGBR
methods in essence can be interpreted as introducing Im-
plicit Function Theory (IFT) to derive BR Jacobian [211]. In
particular, IGBR type BLOs only rely on the solution to the LL
optimization and can effectively decouple the UL gradient
computation from the choice of LL optimizer. Indeed, the
gradient-based BLO methodologies with implicit differen-
tiation are radically different from EGBR methods, which
have been extensively applied in a string of applications
(e.g., [72], [85], [191]). As an example, a set of early IGBR
approaches (e.g., [161], [162]) used implicit differentiation
to select hyper-parameters of kernel-based models. Recently,

6. Note that, these methods assume y∗(x) is a continuously differen-
tiable function and X and Y denote the whole space [9], [77], [164].
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IGBR type approaches have been applied in different appli-
cation scenarios, such as learning hyper-parameter for neural
networks [72] and variational models [136].

Now we demonstrate how to derive IGBRs to solve
BLOs. Specifically, in the LLS optimization scenario, we first
require that f(x,y) satisfies the smooth condition (or at least
twice continuously differentiable) w.t.r. both the UL and LL
variables, and y∗(x) is a continuously differentiable function
w.r.t. x. Then we can directly obtain the implicit gradient of
x (i.e., G(x)) based on the first-order optimality condition
(i.e., ∂f(x,y∗(x))

∂y∗(x) = 0). That is, by deriving the above equation
w.r.t. x, we have that

∂y∗(x)

∂x′
+

(
∂2f(x,y∗(x))

∂y∗(x)∂y∗(x)′

)−1
∂2f(x,y∗(x))

∂y∗(x)∂x′
= 0.

By further assuming that ∂2f(x,y∗(x)
∂y∗(x)∂y∗(x)′ is invertible, and

drawing upon the chain rule, the indirect gradient G(x) can
be obtained as follows:

G(x) = −
(
∂2f(x,y∗(x))

∂y∗(x)∂x′

)′ (
∂2f(x,y∗(x))

∂y∗(x)∂y∗(x)′

)−1

∂F (x,y∗(x))

∂y∗(x)
.

(31)

Intuitively, Eq. (31) has offered the exact indirect gradient
formulation but is generally calculated based on numerical
approximations in practice. From a computational point of
view, due to involving a large number of repeated product
operations of Hessian-vector and Jacobian-vector, EGBRs
based on high-dimensional data are usually computationally
expensive and time-consuming. Thus a few implicit tech-
niques, such as IGBR based on linear system [74], [85] and
Neumann series [72], have been proposed to address this
computational issue.

Based on Linear System: To calculate the Hessian matrix
inverse more efficiently, it is generally assumed that solving
linear systems is a common operation (e.g., HOAG [74],
IMAML [85]). Specially, ( ∂2f

∂y∂y′ )
−1 ∂F

∂y can be computed as

the solution to the linear system ( ∂2f
∂y∂y′ )q = ∂F

∂y for q. Based
on the above derivation, it is apparent that ∂F∂x can be directly
computed by the algorithm summarized in Alg. 4.

Based on Neumann Series: Instead of solving the linear
system, another type of IGBM (i.e., Neumann IFT [72])
method aims to calculate the Neumann series to approximate
the inverse of Hessian matrix. Specifically, rather than solving
the linear system in the second step of Alg. 4, the inverse
Hessian is expressed as the following Neumann series:(

∂2f

∂y∂y′

)−1

= lim
i→∞

i∑
j=0

(
I− ∂2f

∂y∂y′

)j
,

where I denotes an identity matrix with proper size. If
the operator I − ∂2f

∂y∂y′ is contractive, it leverages that
unrolling differentiation for i steps around locally optimal
weights y∗(x) is equivalent to approximating the inverse
with the first i terms in Neumann series. In this way, the
entire computation can efficiently perform vector-Jacobian
products, thus providing a cheap approximation to the
inverse-Hessian-vector product.

Algorithm 4 Implicit Gradient by Solving Linear System
Input: The UL variable at the current state, i.e., x
Output: The gradient of F with respect to x, i.e., ∂F∂x

1: Optimize the LL variable up to tolerance ε. That is, find
yε such that

‖y∗(x)− yε‖ ≤ ε.

2: Solve the linear system(
∂2f(x,yε)

∂yε∂y′ε

)
q =

∂F (x,yε)

∂yε
,

for q up to the tolerance ε, i.e.,
∥∥∥( ∂2f

∂yε∂y′ε

)
q− ∂F

∂yε

∥∥∥ ≤ ε.
3: Compute approximate gradient by

p =
∂F (x,yε)

∂x
−
(
∂2f(x,yε)

∂yε∂x′

)′
q.

4: return p.

7 BLO BEYOND LOWER-LEVEL SINGLETON

As stated in the above Sections 4-6, different categories of
gradient-based algorithms have been proposed to address
BLOs. However, most of these approaches rely on the LLS
assumption (i.e., the solution set of the LL subproblem is a
singleton) stated in Section 4 to simplify their optimization
process and theoretical analysis. That is to say, the sequence
{yt}Tt=0 generated by these mainstream methods could con-
verge to the true optimal solution only if the LLS condition
is satisfied. Unfortunately, it has been demonstrated that
such LLS assumption is too restrictive to be satisfied in most
real-world learning and vision applications. For example,
the works in [32], [189] have designed a series of counter-
examples to illustrate that these existing EGBRs cannot obtain
the correct solution if the LLS assumption is not satisfied.

In this section, we review some recent works [32], [189],
[195], which can efficiently address the LLS issue in the
optimistic BLO scenario. The key optimization process of
these works is to obtain the solution set of the ISB (i.e., Eq. (6)).
That is, these works actually adopted different techniques,
such as the UL and LL gradient aggregation [32], [189] and
value-function-based interior-point method [195] to solve
Eq. (6) for BLOs without the LLS condition.

UL and LL Gradient Aggregation: Differing from pre-
vious EGBR type methods which only rely on the gradient
information of the LL subproblem to update y, a more gen-
eralized EGBR type method, Bi-level Descent Aggregation
(BDA) method [32], characterizes an aggregate computation
of both the LL and the UL descent information. With a given
UL variable x, the aggregated descent direction w.r.t. the ISB
subproblem (i.e., Eq. (6)) can be defined as

d(yt−1;x) = ρt
∂F (x,yt−1)

∂yt−1
+ (1− ρt)

∂f(x,yt−1)

∂yt−1
, (32)

where ρt ∈ (0, 1] is the aggregation parameter (tending to
zero [212], [213]), and ∂F (x,yt−1)

∂yt−1
(or ∂f(x,yt−1)

∂yt−1
) stands for

the descent directions of the UL (or LL) objectives.
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Value-Function-based Interior-point Method: Different
from EGBRs and IGBRs, a more recent Value-Function Best-
Response (VFBR) type BLO methods reformulate BLO into
a ISB optimization problem by the value function of the UL
objective. After that, they further transform it into a single-
level optimization problem with an inequality constraint
through the value function of the LL objective. Recently, a
typical VFBR work, named Bi-level Value-Function-based
Interior-point Method (BVFIM) [195], has designed a log-
barrier penalty-based single-level reformulation for Eq. (6) to
address the LLS issue in the non-convex scenario. Specifically,
BVFIM first reformulates the ISB subproblem in Eq. (6) as
follows:

min
y∈Y

F (x,y), s.t. f(x,y) ≤ ψµ(x), (33)

where ψµ(x) is a regularized value function of the LL
subproblem, i.e.,

ψµ(x) = min
y∈Y

f(x,y) +
µ1

2
‖y‖2 + µ2. (34)

Here µ1, µ2 are two positive constants and we denote µ =
(µ1, µ2). Then the relaxed inequality constraint f(x,y) ≤
ψµ(x) is penalized to the objective by a log-barrier penalty
and thus Eq. (33) can be approximated by

ϕµ,θ,τ (x) = min
y∈Y

F (x,y)+
θ

2
‖y‖2− τ ln(ψµ(x)−f(x,y)), (35)

where (µ, θ, τ) > 0. Finally, BVFIM proves that indirect
gradient G(x) in Eq. (10) can be obtained by solving a series
of Eq. (35) with decreasing parameters (µ, θ, τ) (tending to
zero). It should be noticed that BVFIM can successfully avoid
these time-consuming Hessian-vector and Jacobian-vector
products, which are necessary in previous gradient-based
BLOs. So this method is more suitable for BLO tasks with
complex LL subproblems.

8 THEORETICAL INVESTIGATIONS

In addition to modeling various learning and vision ap-
plications from the perspective of BLO and establishing a
general algorithmic framework to unify different categories
of existing BLO algorithms, in this section, we further inves-
tigate some important theoretical issues of BLOs, including
the convergence behaviors and computational complexity
of gradient-based BLOs, which actually can provide us
insights and guidance in practical application scenarios (e.g.,
adopt/design proper BLO methods).

8.1 Convergence Properties and Required Conditions
In existing literature, two categories of convergence proper-
ties have been proved for gradient-based BLOs. The first type
is “convergence towards stationarity”, which guarantees that
the UL value-function can converge to a first-order stationary
point satisfying limK→∞ ‖∂ϕ(xK

T )

∂xK
T
‖ = 0. Here we actually

consider the convergence property of the UL variable, i.e.,
the number of UL iteration K tends to infinity (with fixed
number of LL iteration T ). The other convergence results
actually characterize the following properties: xT

s−→ x∗7 and

7. Here we use “ s−→” to denote subsequential convergence.

infx∈X ϕT (x) → infx∈X ϕ(x)) when T → ∞. That is, they
prove that for any limit point x̄ of the sequence {xT }, if xT
is a global (resp. local) minimum of ϕT (x), then x̄ is a global
(resp. local) minimum of ϕ(x). For convenience, we call this
type of property as “convergence towards global/local mini-
mum”8. In Table 3, we analyze the convergence properties
and conditions required by the UL and LL subproblems
for different categories of gradient-based BLOs, including
EGBRs (e.g., RHG [12], TRAD [13], HF-MAML [214], STN [9]
and BDA [32]), IGBRs (e.g., HOAG [74] and IMAML [85])
and VFBR (e.g., BVFIM [195]).

To guarantee the convergence to stationary solutions,
some EGBRs (e.g., TRAD [13], HF-MAML [214] and STN [9])
required the first-order Lipshitz assumption for the UL and
LL objectives (i.e., “LF ” and “Lf” for short) and the twice
continuously differentiable property for the LL objective. In
addition, there are also some EGBRs that require additional
strong assumptions to obtain the first-order stationary points.
For instance, HF-MAML [214] relies on second-order Lipshitz
assumption (denoted as “Lipschitz-Hessian”) for the LL
objective, while STN [9] needs the nonsingular Hessian as-
sumption for the LL objective. As for IGBRs (e.g., HOAG [74]
and IMAML [85]), they generally require that the gradient
(w.r.t. y) of both the UL objective and the LL objective are
Lipschitz continuous. As another mainstream EGBR, the
work [12] requires that the LL dynamic system {yT (x)} is
uniformly bounded on X and yT (x) uniformly converges to
y∗(x) when T → ∞. Then we can obtain the convergence
towards the global/local minimum. As for IGBRs, both the
Lipshitz Hessian and nonsingular Hessian are key properties
to guarantee their stationarity convergence [74], [85], [214].

8.2 A General Proof Template for EGBRs
In this subsection, we would like to further provide a
general proof template to analyze the convergence behaviors
(i.e., convergence towards global/local minimum) of EGBR
methods in more detail. In particular, given the output of
the LL dynamic system (i.e., yT (x)), we first introduce two
elementary properties on it as follows:

(1) Uniform approximation quality to the LL solution:
{yT (x)} is uniformly bounded on X , and for any
ε > 0, there exists t(ε) > 0 such that whenever
T > t(ε), we have

sup
x∈X
{f(x,yT (x))− ψ(x)} ≤ ε,

or
sup
x∈X
‖∂f(x,yT (x))

∂yT (x)
‖ ≤ ε,

where ψ(x) denotes the LL value-function, i.e.,
ψ(x) := miny∈Y f(x,y).

(2) Point-wise approximation quality to the ISB solu-
tion: For each x ∈ X , we have

lim
T→∞

dist(yT (x), S̃(x)) = 0,

where S̃(x) represents the solution set of the ISB
subproblem in Eq. (6) and dist(·, ·) denotes the
point-to-set distance.

8. We will provide more details on this convergence property in the
following subsection (i.e., Theorem 1).



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

TABLE 3
Summarizing the convergence results of mainstream gradient-based methods for BLOs within our framework.

Category Method LLS UL LL Main convergence results
LF SC Lf C2 SC Lip-Hess NS-Hess

EGBR

TRAD [13] 3 7 7 3 3 3 7 3
Stationarity: ∂ϕ(xK

T )

∂xK
T

→ 0.HF-MAML [214] 3 3 7 3 3 7 3 7
STN [9] 3 7 7 3 3 3 7 3

RHG [12] 3 7 7 7 7 7 7 7
Global/local minimum:

xT
s−→ x∗,

infx∈X ϕT (x)→ infx∈X ϕ(x).

BDA [32] 3 3 7 3 7 7 7 7
7 3 3 3 7 7 7 7

BDA [189] 7 3 7 3 7 7 7 7
VFBR BVFIM [195] 7 7 7 7 7 7 7 7

IGBR HOAG [74] 3 3 7 3 3 3 3 3 Stationarity: ∂ϕ(xK
T )

∂xK
T

→ 0.IMAML [85] 3 3 7 3 3 3 3 3
1 Notice that F (x,y) is continuously differentiable on X × Y (X is a compact set) and f(x,y) is continuously differentiable on
Rm × Y . The feasible solution set Y represents the whole space Rn.

2 “LF (resp. Lf )” means the gradient of F (x, ·) (resp. f(x, ·)) is Lipschitz continuous with Lipschitz constant LF (resp. Lf ). SC
means strongly convex and C2 implies that f(x, ·) is second-order continuously differentiable w.r.t. y. “NS-Hess” and “Lip-Hess”
represent the nonsingularity and Lipschitz properties of Hessian ∂2f

∂y∂y′ , respectively. Please refer to [74], [85], [214] for more details
on these variational analysis concepts.

3 Here we respectively represent “required” and “not required” by “3” and “7” for these properties.
4 We summarize two kinds of convergent properties, i.e., “stationarity” and “global/local minimum”. The former implies that the

gradient descent on the UL value-function converges to first-order stationary points satisfying limK→∞ ‖
∂ϕ(xK

T )

∂xK
T

‖ = 0 (with fixed

number of LL iterations T ), while the latter characterizes the convergence towards global/local minimum satisfying xT
s−→ x∗ and

infx∈X ϕT (x)→ infx∈X ϕ(x) as T →∞.

Equipped with the above two properties on {yT (x)}, we can
present general convergence results of Eqs. (11)-(14) in the
following theorem9.

Theorem 1. (Convergence towards global/local minimum) Sup-
pose that the generated sequence {yt(x)} satisfies the above two
properties. Let xT be a global (resp. local) minimum of ϕT (x), i.e.,
xT ∈ arg minx∈X ϕT (x). Then we have

(1) Any limit point x̄ of the sequence {xT } is a global (resp.
local) minimum of ϕ(x), i.e., x̄ ∈ arg minx∈X ϕ(x).

(2) infx∈X ϕT (x)→ infx∈X ϕ(x) as T →∞.

Proof. In the following, we first state the key steps for proving
convergence properties in the global scenario and then
demonstrate how to obtain the local convergence properties
accordingly.

Step 1. We should first verify that for x̄ ∈ X , ψ satisfies

lim sup
x→x̄

ψ(x) = ψ(x̄).

Step 2. Then for any limit point x̄ of the sequence {xT },
there exist ym(xm)→ ȳ for a subsequence {xm} and some
ȳ. Thus we can obtain ȳ ∈ S(x̄).

Step 3. Next, we verify the convergence property of the
UL objective as follows:

lim
T→∞

ϕT (x) = ϕ(x).

Step 4. For any ε > 0, we verify the following inequality:

ϕ(x̄) ≤ F (xm,ym(xm)) + ε ≤ lim
m→∞

ϕm(x) + ε, ∀x ∈ X .

Step 5. Finally, we verify the following inequality

lim sup
T→∞

{
inf
x∈X

ϕT (x)

}
≤ inf

x∈X
ϕ(x).

9. Here we actually provide a brief proof roadmap, which is sum-
marized based on theoretical studies in existing works [32], [51], [189],
[195].

Thus we can obtain convergence results stated in Theorem 1.
For convergence to the local minimum, we actually

consider xT as a local minimum of ϕT (x) with uniform
neighborhood modulus δ > 0. Then any limit point x̄ of the
sequence {xT } is a local minimum of ϕ(x), i.e., there exists
δ̃ > 0 such that ϕ(x̄) ≤ ϕ(x),∀x ∈ Bδ(x̄) ∩ X . According to
the neighborhood property to spread out the analysis, the
result of convergence towards local minimum can also be
proved by the same steps.

The above theoretical results actually provide us a general
recipe to analyze the iteration behaviors and convergence
properties of gradient-based BLOs, especially for EGBRs. In
other words, we can understand that these existing numerical
schemes and their required assumptions on the UL and LL
subproblems are just to meet the above elementary iteration
properties.

It can be observed that classical EGBRs (e.g., [12], [13])
require to first enforce the LLS assumption on the BLO
problem. The work in [12] assumes that the UL and LL
objectives are continuously differentiable and also enforces
the restrictive (local) strong convexity assumption on the LL
objective. In fact, such properties can ensure the uniform
convergence of {yT (x)} towards y∗(x), thus lead to the
two elementary properties. In fact, the LLS assumption
considered in [12] is more strict than that required in the
proof template. The works in [32], [189] also consider that
the UL and LL objectives are continuously differentiable,
but make a weaker assumption on the LL objective, i.e.,
f(x,y) is level-bounded in y and locally uniform in x ∈ X
(or the gradient of f(x, ·) is Lipschitz continuous). Indeed,
it can be verified that the conditions in [32], [189] can
also ensure two elementary properties required by our
proof template. Therefore, we have that the above two
elementary convergence properties hold and we can obtain
the convergence results stated in Theorem 1.
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It has been verified in [32], [189] that these classical
EGBRs [12], [13] may lead to incorrect solutions if the LLS
assumption is not satisfied. As stated in the above Section 7,
BDA [32], [189] has been proposed to extend the EGBR
method to address this issue. Theoretically, the work in [32]
actually introduces the LL solution set property and the UL
objective convergence property. Theoretical investigations
in [189] further demonstrate that the iterative gradient-
aggregation dynamics can solve the ISB subproblem without
the LL singleton assumption and the UL strong convexity.
Again, in order to remove the restrictive singleton and convex
assumptions on the LL objective, BVFIM [195] further proves
the same convergence results by introducing the strong
constraints on a series of positive decreasing parameters
(µ, θ, τ) when f(x,y) and F (x,y) are level-bounded in y
and locally uniformly in x ∈ X .

8.3 Time and Space Complexity
In this subsection, we analyze the complexity of time and
space for these mainstream gradient-based BLO methods (i.e.,
EGBRs [13], [32], [51], IGBRs [72], [74], [85] and VFBR [195]),
as summarized in Table 4. Please notice that here we just
follow most BLO literature (e.g., [13], [14], [51]) to only
estimate the complexity of computing the gradient of ϕ w.r.t.
x (defined in Eq. (9)) with a fixed (e.g., T -step) LL iteration.

EGBR: As discussed in Section 5, EGBRs generally
construct the BR mapping y∗(x) or the indirect gradient
G(x) with the implementation of an unrolled dynamic
system (see Eq. (13)). In [51], the dynamic system can be
implemented in either a forward automatic differential mode
(i.e., FAD) or a reverse automatic differential mode (i.e., RAD).
Especially, BDA implements a reverse aggregated gradient
flow from the UL and LL subproblems to approximate the
BR mapping. More specifically, taking into account the fact
that the Hessian-matrix product is repeatedly calculated
(i.e.,

∑T
t=0

(∏T
i=t+1 Ai

)
Bt) in the forward propagation,

FAD requires the space complexity O(mn) and the time
complexity O(m2nT ). RAD in the backward pass needs to
evaluate Hessian- and Jacobian-vector products, and stores
all the intermediate variables {yt ∈ Rn}Tt=1 in memory. So
we have that the time and space costs are O(n(m + n)T )
and O(m + nT ), respectively. By ignoring the long-term
dependencies, TRAD uses the truncated back-propagation
trajectory with a smaller number of steps (i.e., M < T ). As
for BDA, with the similar backward propagation manner, we
have that the complexity of time and space is the same as
that for RAD.

IGBR: As for IGBRs, we have that they require to derive
the indirect gradient based on the implicit function theorem,
which results in the overloaded computation with respect
to the inverse of Hessian (see Eq. (31)). To mitigate this
problem, IGBRs generally solve a linear system by Conjugate
Gradient (CG) [74], [85] or Neumann series [72], as stated in
Section 6. Without loss of generality, we uniformly assume
that these methods perform J-step iterations to solve the
linear system. Each step contains a hessian-vector product
computation requiring the time cost O(m+ n2J). Then with
a T -step gradient descent on the LL subproblem, we have
that the overall time and space complexities can be written
as O(m+ nT + n2J) and O(m+ n), respectively. It should

be noted that the iteration step J generally relies on the
properties of Hessian-matrix, thus it should be set much
larger than T .

VFBR: It has been stated in Section 7 that VFBR type
method (i.e., BVFIM) does not require to solve the unrolled
dynamic system or approximate the inverse of Hessian, thus
can obtain lower time and space complexity than EGBRs
and IGBRs, especially on BLOs with high-dimensional LL
subproblems. Specifically, we use Q1 and Q2 to represent
the number of gradient iterations for solving the regularized
subproblems in Eqs. (34) and (35), respectively. Then it can
be checked that the time costs of calculating each gradient
descent for the LL and UL value-functions are O(nQ1) and
O(nQ2), respectively. Moreover, we require additional O(m)
time to perform the UL gradient updating. Thus the overall
time cost of BVFIM is O(m+ n(Q1 +Q2)). As for the space
complexity, it is easy to check that BVFIM requires O(m+ n)
space cost and is the same as that in IGBRs.

TABLE 4
Comparison of the time and space complexity for several gradient-based

mainstream BLOs.

Category Method Time Space

EGBR

FAD [51] O(m2nT ) O(mn)

RAD [51] O(n(m+ n)T ) O(m+ nT )

BDA [32] O(n(m+ n)T ) O(m+ nT )

TRAD [13], O(n(m+ n)M) O(m+ nM)

IGBR
CG [74], [85] O(m+ nT + n2J) O(m+ n)

Neumann [72] O(m+ nT + n2J) O(m+ n)

VFBR BVFIM [195] O(m+ n(Q1 +Q2)) O(m+ n)

It can be seen in Table 4 that the reverse propaga-
tion methods (i.e., RAD, TRAD and BDA) have benefited
from the lightweight matrix-vector multiplication (rather
than the overweight Hessian-matrix), thus can obtain less
computational complexity in comparison to the forward
propagation approach (e.g., FAD). Especially for TRAD, the
time and space complexity can be further reduced by the
truncated back-propagation strategy. Compared with EGBRs,
IGBRs maintain higher computational complexity due to the
overloaded computation in terms of the inverse of Hessian.
In contrast, VFBR can obtain lower time consuming than
both EGBRs and IGBRs. It actually also outperforms EGBRs
in costing less memory, especially when solving the LL
subproblem on high-dimensional tasks (e.g., with extremely
large n).

9 POTENTIALS FOR NEW ALGORITHMS DESIGN

As the last but not least part of the survey, this section aims
to demonstrate the potentials of our general algorithmic
framework for designing new gradient schemes for challeng-
ing BLO formulations, such as pessimistic BLOs (stated in
Eq. (5)).

In fact, pessimistic BLO formulation can be naturally
interpreted as a non-cooperative game between two players
and has been utilized to formulate problems in the area
of mathematical programming [215], [216], [217] and other
application fields, such as economics [218], [219] and bi-
ology [220]. However, from the pessimistic viewpoint, the
UL player (i.e., leader) cannot anticipate the LL player (i.e.,
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follower)’s decision, the constraint must be satisfied for any
rational decision of the follower, thus pessimistic BLO is
perceived to be very difficult to solve, especially in high-
dimensional application scenarios [196].

Now we demonstrate how to develop a practical al-
gorithm within our BR mapping based BLO algorithmic
framework for pessimistic BLO formulations10. Concretely,
based on Eq. (5) and pessimistic BR mapping (defined in
Eq. (7)), we can follow the similar idea in Eq. (32) to aggregate
the UL and LL gradients

d̃(yt−1;x) = −ρt
∂F (x,yt−1)

∂yt−1
+ (1− ρt)

∂f(x,yt−1)

∂yt−1
.

With the above procedure, it can be seen that the only
difference between d and d̃ is just the sign of the UL gradient.
Thus we can adopt the same calculation scheme as that
in [32], [53] to solve Eq. (5). The corresponding roadmap is
also illustrated in Fig. 9.

10 CONCLUSIONS AND FUTURE PROSPECTS

Bi-Level Optimization (BLO) is an important mathematical
tool for modeling and solving machine learning and com-
puter vision problems that have hierarchical optimization
structures, such as hyper-parameter optimization, multi-task
and meta learning, neural architecture search, adversarial
learning and deep reinforcement learning, etc. In the above
sections, we first demonstrated how to formulate different
learning and vision tasks from a uniform BLO perspective.
We then established a value-function-based single-level
reformulation for different categories of BLO models and
proposed a best-response-based optimization platform to
uniformly understand and formulate a variety of existing
gradient-based BLO methods. The convergence behaviors
and complexity properties of these BLO algorithms have also
been discussed. We also demonstrated potentials of our BLO
platform for designing new algorithms to solve the more
challenging pessimistic BLOs tasks. The future research of
BLOs may focus but is not limited to the following aspects:

• Theoretical breakthrough: The convergence behav-
iors of gradient-based algorithms on various chal-
lenging BLOs, such as pessimistic BLOs [215], [221],
[222], BLOs with complex constraints [223], [224], non-
convex objectives [225] and multiple followers [226],
should be investigated.

• Computational improvement: It is also urgent to de-
sign efficient acceleration techniques (e.g., momentum
and its variations) to speed up gradient-based BLOs
in high-dimensional optimization scenario [227], [228],
[229].

• Wider applications: Recent deep learning tasks (e.g.,
knowledge distillation [230], self-supervised learn-
ing [231], and transformer [232]) are more and more
sophisticated. BLOs should be a promising tool
to formulate and analyze these complex learning
paradigms.

10. We emphasize that we just present an example to demonstrate the
potentials of our framework for new algorithm design. Strict theoretical
analysis and evaluations are definitely out of the scope in this paper and
will be considered as the future work.
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