
1

Learning and Meshing from Deep
Implicit Surface Networks Using an Efficient

Implementation of Analytic Marching
Jiabao Lei, Kui Jia, and Yi Ma, Fellow, IEEE

Abstract—Reconstruction of object or scene surfaces has tremendous applications in computer vision, computer graphics, and
robotics. The topic attracts increased attention with the emerging pipeline of deep learning surface reconstruction, where implicit field
functions constructed from deep networks (e.g., multi-layer perceptrons or MLPs) are proposed for generative shape modeling. In this
paper, we study a fundamental problem in this context about recovering a surface mesh from an implicit field function whose zero-level
set captures the underlying surface. To achieve the goal, existing methods rely on traditional meshing algorithms (e.g., the de-facto
standard marching cubes); while promising, they suffer from loss of precision learned in the implicit surface networks, due to the use of
discrete space sampling in marching cubes. Given that an MLP with activations of Rectified Linear Unit (ReLU) partitions its input
space into a number of linear regions, we are motivated to connect this local linearity with a same property owned by the desired result
of polygon mesh. More specifically, we identify from the linear regions, partitioned by an MLP based implicit function, the analytic cells
and analytic faces that are associated with the function’s zero-level isosurface. We prove that under mild conditions, the identified
analytic faces are guaranteed to connect and form a closed, piecewise planar surface. Based on the theorem, we propose an algorithm
of analytic marching, which marches among analytic cells to exactly recover the mesh captured by an implicit surface network. We also
show that our theory and algorithm are equally applicable to advanced MLPs with shortcut connections and max pooling. Given the
parallel nature of analytic marching, we contribute AnalyticMesh, a software package that supports efficient meshing of implicit
surface networks via CUDA parallel computing, and mesh simplification for efficient downstream processing. We apply our method to
different settings of generative shape modeling using implicit surface networks. Extensive experiments demonstrate our advantages
over existing methods in terms of both meshing accuracy and efficiency. Codes are at https://github.com/Karbo123/AnalyticMesh.

Index Terms—Generative shape modeling, implicit surface representation, polygon mesh, deep learning, multi-layer perceptron.

F

1 INTRODUCTION

C REATION of 3D content prepares geometric data useful
for analysis and processing in many scientific fields.

For example, in computer vision and robotics, object or
scene surface reconstruction via simultaneous localization
and mapping [1] enables robotic manipulation, indoor
navigation, and urban modeling; in computer graphics,
reconstruction of continuous surface from discrete raw
scanning is the first step in computer-aided design, vir-
tual/augmented reality, and movie production. The geomet-
ric data created in these applications are of 2-dimensional
manifold embedded in the 3D space. In this work, we are
particularly interested in those data of closed manifolds
representing, e.g., the boundary of a 3D solid.

As a mathematical notion of geometry, a continuous
surface manifold is difficult to be modeled directly; in prac-
tice, it is approximated as different representations, such
as spline surface, subdivision surface, or polygon mesh
[2]. Among them, the polygon mesh is arguably the most
popular representation proposed in the literature, which

• J. Lei and K. Jia are with the School of Electronic and Information
Engineering, South China University of Technology, Guangzhou, China.
E-mails: eejblei@mail.scut.edu.cn, kuijia@scut.edu.cn.

• Y. Ma is with the Department of Electrical Engineering and Computer
Sciences, University of California at Berkeley, Berkeley, CA 94720-1770
USA. E-mails: yima@eecs.berkeley.edu.

• Correspondence to: K. Jia.

approximates a smooth surface explicitly as a piecewise,
linear function; for example, the most typical triangle mesh
is defined as a collection of connected faces, each of which
has three vertices that uniquely determine plane param-
eters of the face in the 3D space. Given the parametric
mappings specified by planar faces of a polygon mesh,
the representation is advantageous in surface evaluation
and rendering; however, it is usually difficult to obtain a
mesh directly, especially for topologically complex surface;
queries of points inside or outside the surface are expensive
as well. As an alternative, one may resort to implicit surface
representations, such as signed distance function (SDF) [3],
[4] or occupancy field (OF) [5], [6], which subsume a sur-
face as the zero-level isosurface in the function field; other
implicit representations include discrete volumes and those
based on algebraic [7], [8], [9] and radial basis functions
[10], [11], [12]. To obtain a surface mesh, the continuous
field is often sampled discretely as a regular grid of voxels,
followed by the de-facto standard algorithm of marching
cubes [13]. Efficiency and precision of marching cubes can
be improved on a hierarchically sampled structure of octree
via algorithms such as dual contouring [14].

Implicit functions are traditionally implemented based
on moving least squares [15]. More recently, methods of
deep learning surface reconstruction [4], [5], [6] propose to
leverage the great modeling capacities of deep networks
(e.g., Multi-Layer Perceptrons (MLPs) based on Rectified
Linear Unit (ReLU) [16]) to learn implicit fields. Given a

ar
X

iv
:2

10
6.

10
03

1v
1

 [
cs

.C
V

]
 1

8
Ju

n
20

21

https://github.com/Karbo123/AnalyticMesh

2

learned field, they again take a final step of marching cubes
to obtain the mesh result. While promising, the final step of
marching cubes recovers a mesh that is only an approxima-
tion of the surface captured by the learned implicit network;
more specifically, it suffers from a trade-off of sampling
efficiency and recovery precision, due to the discretization
nature of the marching cubes algorithm. The very recent
deep models using soft ReLU [17] or sine/cosine activation
functions [18] suffer from this limitation as well.

To address the limitation, we are motivated from the
established knowledge that a ReLU based MLP partitions
its input space into a number of linear regions [19]; this
connects with the locally linear property of polygon mesh.
Given an MLP based implicit function, we identify from its
partitioned linear regions the analytic cells and analytic faces
that are associated with the function’s zero-level isosurface.
Assuming that such an implicit function learns its zero-level
isosurface as a closed, piecewise planar surface, we characterize
theoretical conditions under which analytic faces of the
implicit function connect and exactly form the surface mesh.
Based on our theorem, we propose an algorithm of analytic
marching, which marches among analytic cells to recover the
exact mesh of the closed, piecewise planar surface captured
by a learned MLP. Our choices of MLPs also include those
with shortcut connections and max pooling. The proposed
analytic marching algorithm can be naturally implemented
in parallel, for which we contribute AnalyticMesh, a
software package that supports efficient meshing of implicit
surface networks via CUDA parallel computing, and post-
processing of mesh simplification. We apply our meshing
algorithm in the contexts of either direct shape decoding
of raw point observations, or learning to reconstruct novel
shape instances using global or local decoders. Experiments
on benchmark 3D object repositories show the advantages
of our meshing algorithm over existing ones.

1.1 Relations with the Literature

The problem studied in this work is closely related to the
following three lines of research.
Implicit Surface Representations. An implicit surface rep-
resentation is defined as the zero-level set of an scalar-
valued implicit function. Earlier methods take a divide-
and-conquer strategy that represents the surface using atom
functions. For example, blobby molecule [7] is proposed
to approximate each atom by a gaussian potential, and a
piecewise quadratic meta-ball [8] is used to approximate the
gaussian, which is improved via a soft object model in [9]
by using a sixth degree polynomial. Radial basis function
(RBF) is an alternative to the above algebraic functions. RBF-
based approaches [10], [11], [12] place the function centers
near the surface and are able to reconstruct a surface from
a discrete point cloud. It has been recently discovered that
deep networks, owing to their great modeling capacities, are
able to learn implicit surface fields very effectively. DeepSDF
[4] trains ReLU based MLPs as signed distance functions.
IMNet [5] and OccNet [6] learn similar types of networks as
occupancy fields. Deep implicit surface networks are also
used in [20] for surface reconstruction from as few as a
single image. Other than ReLU based networks, smooth
activations such as soft ReLU [17] or sine/consine func-

tions [18] have been showing the new promise for learning
smoother surfaces via implicit fields. We focus on ReLU
based networks in the present work.
Mesh Conversions from Implicit Fields. The conversion
from an implicit representation to an explicit surface mesh is
called isosurface extraction. Probably the simplest approach
is to directly convert an implicit volume via greedy meshing
(GM). The de-facto standard algorithm of marching cubes
(MC) [13] builds from the implicit function a discrete vol-
ume around the surface of interest, and then computes mesh
vertices on the edges of the volume; due to its discretization
nature, mesh results of the algorithm are often short of sharp
surface details. Algorithms similar to MC include marching
tetrahedra (MT) [21] and dual contouring (DC) [14]. MT
divides a voxel into six tetrahedrons and calculates the
vertices on edges of each tetrahedron; DC utilizes gradients
to estimate positions of vertices in a cell and extracts meshes
from adaptive octrees. All these methods suffer from a
trade-off of precision and efficiency, due to their necessity
to sample discrete points from the 3D space.
Local Linearity of MLPs. Among works studying repre-
sentational complexities of deep networks, Montúfar et al.
[19] and Pascanu et al. [22] investigate how a ReLU or
maxout based MLP partitions its input space into a number
of linear regions, and bound this number via quantities
relevant to network depth and width. The region-wise linear
mapping is explicitly established in [23] in order to analyze
generalization properties of deep networks. A closed-form
solution termed OpenBox is proposed in [24] that computes
consistent and exact interpretations for piecewise linear
deep networks. The present work leverages the locally
linear properties of ReLU based MLPs and studies how the
zero-level isosurface can be extracted from such an MLP
based implicit function.

1.2 Contributions
A preliminary version of this work appears in [25], where
for the first time, we establish the analytic relations between
an MLP based implicit function and its captured zero-level
isosurface; we present in [25] a theorem that guarantees
exact meshing from deep implicit surface networks, and a
corresponding meshing algorithm. We re-state its technical
contributions as follows.

1) Given that an MLP with ReLU activation partitions
its input space into a number of linear regions, we
identify from these regions analytic cells and analytic
faces that are associated with zero-level isosurface of
an implicit function constructed from such an MLP;
we characterize the theoretical conditions under
which the identified analytic faces are guaranteed
to connect and form a closed, piecewise planar surface.

2) Based on the above analytic meshing theorem, we
propose an algorithm of analytic marching, which
marches among analytic cells to exactly recover the
mesh captured by an implicit surface network. We
empirically verify that the proposed meshing algo-
rithm achieves a precision upper-bounding those
achieved by existing algorithms.

In the present paper, we extend the theoretical analysis in
[25] for more advanced MLP architectures, and contribute

3

techniques to improve the efficiency of analytic marching.
These extensions enable us to apply our proposed method to
learning and meshing novel and complex shape instances.
In addition, we augment the paper presentation with mo-
tivation of theory and intuitive illustrations. We finally
summarize our new contributions as follows.

1) We present analyses that make the analytic mesh-
ing theorem in [25] applicable to more advanced
MLP architectures, including those with shortcut
connections and max pooling operations. These ex-
tensions support a richer set of architectural designs
for learning and exactly meshing complex surface
shapes with analytic marching.

2) We contribute techniques to improve the efficiency
of analytic marching, including parallel marching
with CUDA implementation, efficient initialization
schemes respectively customized for signed dis-
tance field and occupancy field, and mesh simpli-
fication for efficient downstream processing. Im-
plementations of these techniques are included in
AnalyticMesh, a software package accessible at
https://github.com/Karbo123/AnalyticMesh.

3) We apply our method to different contexts of gen-
erative shape modeling using implicit surface net-
works; we consider both direct shape decoding of
raw point observations, and learning to reconstruct
novel shape instances using global or local shape
decoders. Extensive experiments demonstrate the
advantages of our meshing algorithm over existing
ones in terms of both accuracy and efficiency.

2 PROBLEM STATEMENT AND MOTIVATION

This paper studies the fundamental problem of recovering
an explicit representation Z of an underlying surface M
from some, possibly learned, implicit surface function. We
focus our surface of interest on those representing the
boundary of a non-degenerate 3D solid whose nature is a
continuous and closed 2-dimensional manifold embedded
in the Euclidean space R3 ; such a solid has no infinitely
thin parts and its boundary surface properly separates the
interior and exterior of the solid (cf. Fig. 1.1 in [2] for an
illustration). Among choices of explicit surface representa-
tion, a polygon mesh is the most popular one defined as
Z = {V, {P}}, where V = {v ∈ R3} contains the mesh
vertices and {P ⊂ P2} denotes the collection of connected
polygon faces, each of which contains a coplanar set of
vertices 1. Any planar face thus defines an explicit mapping
gP : Ω → R3 from the domain Ω (e.g., Ω ⊂ R2) to a plane
P2 ⊂ R3; consequently, the mesh Z becomes a piecewise
linear approximation of the underlying M. Recent results
[26], [27], [28], [29] show that the collection {gP} of explicit
mapping functions can be effectively learned as one or
several deep networks, which are trained to generate a
surface mesh via vertex deformation. However, topologies
of the resulting meshes are restricted by those defined on

1. For simplicity, we omit edges in the definition of polygon mesh.
Edges can be inferred as boundaries of polygon faces. In this work, we
consider the non-degenerate case that any edge has no more than two
incident faces and any vertex is incident to no more than one fan of
faces.

the input domain Ω; queries of points inside or outside the
surface are expensive as well.

As an alternative, one may resort to implicit surface
representations, such as signed distance function (SDF) [4]
or occupancy field [5], [6]. Implicit representations enjoy
the benefits of modeling smooth and topologically complex
surfaces. Let F : R3 → R denote a scalar-valued, implicit
field function, and a surface is formally defined as its zero-
level isosurface {x ∈ R3|F (x) = 0}. 2 While F can be
realized using radial basis functions [10], [11], [12] or be
approximated as a regular grid of voxels (i.e., a volume), in
this work, we are particularly interested in implementing F
using deep networks, e.g., Multi-Layer Perceptrons (MLPs)
with Rectified Linear Units [16], which become an increas-
ingly popular choice in recent works of deep learning sur-
face reconstruction [4], [5], [20]. These methods achieve the
state-of-the-art performance in terms of surface modeling,
and they typically take a final step of marching cubes [13]
to recover the surface meshes, by sampling and evaluating
a regular grid of discrete points in the 3D space. As stated in
Section 1, the final step of marching cubes recovers a mesh
that is only an approximation of the surface captured by
F ; more specifically, it suffers from a trade-off of sampling
efficiency and recovery precision, due to the discretization
nature of the marching cubes algorithm.

In this work, we aim to address this limitation by de-
veloping a meshing algorithm whose nature is completely
different from the discrete meshing family of marching
cubes [13], [14], [21]. As stated above, most of existing deep
implicit surface functions are based on MLPs. We note that
a ReLU based MLP partitions its input space into a number
of linear regions [19]; consequently, the zero-level isosurface
{x ∈ R3|F (x) = 0} of such a function F is embedded
in the input space R3 and is intersected by (some of) the
partitioned linear regions. Given the piecewise planar/linear
{gP} of a polygon mesh Z and the locally linear mappings
defined by an MLP based F , we are motivated to connect the
local linearities of the two worlds and analytically identify
the linear regions intersected by the zero-level isosurface;
we expect these intersections to form Z that is an exact
meshing solution from F . In the present section, we give
formal statement of the problem and our motivation. Fig. 1
illustrates the intuition.

2.1 Polygon Mesh as a Piecewise Linear Surface Rep-
resentation

Assume we have a polygon mesh Z = {V, {P}} embed-
ded in the space R3. For any planar face P , let {vi ∈
V|i = 1, . . . , nP} be its defining vertices. Given any three

2. Given an implicit field function F : R3 → R, the surface of interest
is more precisely defined as{

x ∈ R3 | F (x) = 0, |∇xF (x)| 6= 0
}
, (1)

where the constraint |∇xF (x)| 6= 0 ensures that (1) indeed defines
a zero-crossing isosurface. When F implements a signed distance
function, |F (x)| measures the distance of any x ∈ R3 to the surface,
and by convention we have F (x) < 0 for points inside the surface and
F (x) > 0 for those outside. When F represents an occupancy field,
it implements a mapping R3 → {0, 1}, which assigns each x ∈ R3 a
binary occupancy value indicating the exterior (F (x) = 0) or interior
(F (x) = 1) status of x.

https://github.com/Karbo123/AnalyticMesh

4

Polygon Mesh

A
n

a
ly

ti
c

M
a
rc

h
in

g

Deep Implicit Surface Representation

Boundary

Planes

Zero-level

Isosurface

Fig. 1. An illustration on the intrinsic connection between a polygon mesh and the local linearities of its capturing deep implicit surface network.
The polygon mesh is formed by the intersection between the zero-level isosurface of the implicit surface network and some of its partitioned linear
regions in the input Euclidean space.

{vi,vj ,vk} of these vertices, the plane on which the poly-
gon segment P resides can be written as

n>P(x− vi) = 0 s.t. nP =
(V V >)−1V · 13

‖(V V >)−1V · 13‖2
, (2)

where the matrix V = [vi,vj ,vk] collects coordinates of the
three vertices, 13 is a 3-dimensional vector with all its entries
as the value of 1, nP ∈ R3 is the plane kernel or normal
vector, and x ∈ R3 is any space point on the plane. The col-
lection {nP} thus gives a piecewise linear parameterization
of Z . We will show in the following that any ReLU based
MLP F has its zero-level isosurface as polygon segments
embedded in R3, which motivates a possible solution of
analytic meshing from F .

2.2 The Local Linearity of Multi-Layer Perceptrons
We first discuss how a ReLU based MLP, as a nonlinear
function, partitions its input space into linear regions via
compositional structure. The discussion is put in a general
form by assuming an MLP of L hidden layers that takes an
input x ∈ Rn0 from the space X and layer-wisely computes
xl = g(Wlxl−1), where l ∈ {1, . . . , L} indexes the layer,
xl ∈ Rnl , x0 = x, Wl ∈ Rnl×nl−1 , g is the point-wise ReLU
activation, and we omit the network biases for notational
simplicity. We also denote the intermediate feature space
g(Wlxl−1) as Xl and X0 = X . In the context of present
paper, we have X0 ⊂ R3 and n0 = 3.

The thus defined MLP can be compactly written as

Tx = g(WL . . . g(W1x)). (3)

Any kth neuron, k ∈ {1, . . . , nl}, of an lth layer of the MLP
T specifies a pre-activation functional defined as

alk(x) = πkWlg(Wl−1 . . . g(W1x)),

where πk denotes an operator that projects onto the kth

coordinate. All the neurons at layer l define a functional

al(x) = Wlg(Wl−1 . . . g(W1x)).

We define the support of T as

supp(T) = {x ∈ X |Tx 6= 0}, (4)

which are instances of practical interest in the input space 3.
For an intermediate feature space Xl−1 ∈ Rnl−1 , each

hidden neuron of layer l specifies a hyperplane H that parti-
tionsXl−1 into two halves, and the collection of hyperplanes
{Hi}nl

i=1 specified by all the nl neurons of layer l form
a hyperplane arrangement [30]. These hyperplanes partition
the space Xl−1 into multiple linear regions whose formal
definition is as follows.

Definition 1 (Region/Cell). Let A be an arrangement of
hyperplanes in Rm. A region of the arrangement is a connected
component of the complement Rm −

⋃
H∈A

H . A region is a cell

when it is bounded.

Classical result from [22], [31] shows that the arrangement
of nl hyperplanes gives at most

∑nl−1

j=0

(nl

j

)
regions in Rnl−1 .

Given fixed {Wl}Ll=1, the MLP T partitions the input space
X ∈ Rn0 by its layers’ recursive partitioning of intermediate
feature spaces, which can be intuitively understood as a
successive process of space folding [19].

Let R(T), shortened as R, denote the set of all linear
regions/cells in Rn0 that are possibly achieved by T . To
have a concept on the maximal size of R, we introduce
the following functionals about activation states of neuron,
layer, and the whole MLP.

Definition 2 (State of Neuron/MLP). For a kth neuron
of an lth layer of an MLP T , with k ∈ {1, . . . , nl} and
l ∈ {1, . . . , L}, its state functional of neuron activation is defined
as

slk(x) =

{
1 if alk(x) > 0

0 if alk(x) ≤ 0,
(5)

3. Any instance x ∈ X nullified by an MLP T of L hidden layers
defined as (3) would be less useful for downstream tasks, e.g., an
implicit function constructed from T .

5

which gives the state functional of layer l as

sl(x) = [sl1(x), . . . , slnl
(x)]>, (6)

and the state functional of MLP T as

s(x) = [s1(x)>, . . . , sL(x)>]>. (7)

Let the total number of hidden neurons in T be N =∑L
l=1 nl. Denote J = {1, 0}, and we have the state functional

s ∈ JN . Considering that a region in Rn0 corresponds to a
realization of s ∈ JN , it is clear that the maximal size ofR is
upper bounded by 2N . This gives us the following labeling
scheme.

• Any region r ∈ R corresponds to a unique element
in JN ; since s(x) is fixed for all x ∈ X that fall in a
same region r, we use s(r) ∈ JN to label this region.

The following theorem from [19] gives a lower bound on the
maximal size of R.

Theorem 3 ([19]). For a ReLU based MLP T of L hid-
den layers, whose layer widths satisfy nl ≥ n0 for any l ∈
{1, . . . , L}, the maximal size of R(T) is lower bounded by(∏L−1

l=1 bnl/n0cn0

)∑n0

j=0

(nL

j

)
, where b·c ignores the remain-

der. Assuming n1 = · · · = nL = n, the lower bound has an
order of O

(
(n/n0)(L−1)n0nn0

)
.

The above theorem shows that the number of linear regions
into which an MLP can partition the input space grows
exponentially with the network depth and polynomially with
the network width. We have the following lemma adapted
from [23] to characterize the region-wise linear mappings.

Lemma 4 (Linear Mapping of Region/Cell, an adaptation
of Lemma 3.2 in [23]). Given a ReLU based MLP T of L
hidden layers, for any region/cell r ∈ R(T), its associated linear
mapping T r is defined as

T r =
L∏
l=1

W r
l (8)

W r
l = diag(sl(r))Wl, (9)

where diag(·) diagonalizes the state vector sl(r).

Intuitively, the state vector sl in (9) selects a submatrix from
Wl by setting those inactive rows as zero.

2.3 Motivation to Connect the Local Linearities of the
Two Worlds
We implement the implicit surface field function F by
stacking on top of T a regression function f : RnL → R,
giving rise to a functional

F (x) = f ◦ T (x) = w>f g(WL . . . g(W1x)),

where wf ∈ RnL is weight vector of the regressor. Since F
is defined in R3, we have n0 = 3. Given that the MLP T
partitions the input space R3 into a set R of linear regions,
any region r ∈ R satisfies x ∈ supp(T) ∀ x ∈ r, and can
be uniquely indexed by its state vector s(r) defined by (7).
For such a region r, we have the following corollary from
Lemma 4 that characterizes the associated linear mappings
defined at neurons of T and the final regressor.

Corollary 5. Given an implicit surface field function F = f ◦T
built on a ReLU based MLP of L hidden layers, for any r ∈
R(T), the associated neuron-wise linear mappings and that of
the final regressor are defined as

arlk =

πkWl

l−1∏
i=1

W r
i when l > 1

πkWl when l = 1
(10)

arF = w>f T
r = w>f

L∏
i=1

W r
i , (11)

where l ∈ {1, . . . , L}, k ∈ {1, . . . , nl}, and T r and W r
i are

defined as in Lemma 4 (equations (8) and (9) for T r and W r
l ,

respectively).

Assume that the implicit function F models a continuous
and closed 2-dimensional surface manifold embedded in
R3. Our problem of interest is to recover an explicit mesh
Z = {V, {P}} from F , by extracting its zero-level isosur-
face {x ∈ R3|F (x) = 0}. Section 2.1 shows that Z has
the piecewise linear parameterization of {nP ∈ R3}. On
the other hand, Corollary 5 suggests that F = f ◦ T in
fact implements a piecewise linear function defined by the
collection {arF ∈ R3|r ∈ R}; consequently, the zero-level
isosurface {x ∈ R3|F (x) = 0} can either be locally linear
with polygon faces obtained by intersection with some of
the linear regions {r ∈ R}, as illustrated in Fig. 1, or in some
special case coincide with hyperplane boundaries of some
linear regions (detailed explanations are given in Section 3).
We are interested in the former case and expect that the
parameterization {nP} of Z can be analytically identified
as some of the liner mappings {arF |r ∈ R}. We prove in
Section 3 that this is indeed the case, and present an efficient
algorithm of exactly meshing Z from F in Section 4, where
we also show that T can be extended to incorporate shortcut
connections and max pooling, which supports advanced
architectures of T . Details are presented as follows.

3 ANALYTIC MESHING FROM DEEP IMPLICIT SUR-
FACE NETWORKS

3.1 Analytic Cells and Analytic Faces Associated with
a Deep Implicit Surface Network

Corollary 5 is useful to specify linear regions in R and the
zero-level isosurface of the implicit function F . For any r ∈
R, its boundary planes must be among the set

{Hr
lk} s.t. Hr

lk = {x ∈ R3|arlkx = 0}, (12)

where l = 1, . . . , L and k = 1, . . . , nl. The zero-level isosur-
face of F in fact induces a set of region-associated planes in
R3; the induced plane {x ∈ R3|arFx = 0} and the associated
region r have the following relations, assuming that the
plane does not happen to coincide with any boundary plane
of {Hr

lk}. For simplicity, we use the plane kernel/normal
vector arF to represent the region-associated plane induced
by the zero-level isosurface of F .

• Intersection arF splits the region r into two halves,
denoted as r+ and r−, such that ∀x ∈ r+, we have
arFx > 0 and ∀x ∈ r−, we have arFx ≤ 0.

6

• Non-intersection We either have arFx > 0 or arFx < 0
for all x ∈ r.

Let {r̃ ∈ R̃} denote the subset of regions in R that have the
above relation of intersection. It is clear that the zero-level
isosurface {x ∈ R3|F (x) = 0} defined on the support (4) of
T can be only in R̃. Consider such a region r̃ ∈ R̃; for any
x ∈ r̃, it must satisfy (2slk(r̃)−1)ar̃lkx ≥ 0, which gives the
following system of inequalities

(I − 2diag(s(r̃))Ar̃x =



(1− 2s11(r̃))ar̃11
...

(1− 2slk(r̃))ar̃lk
...

(1− 2sLnL
(r̃))ar̃LnL

x � 0,

(13)
where I is an identity matrix of compatible size, Ar̃ ∈ RN×3
collects the coefficients of the N =

∑L
l=1 nl inequalities, and

the state functionals slk and s are defined by (5) and (7).
When the region is bounded, the system (13) of inequalities
essentially forms a convex polyhedral cell defined as

C r̃F = {x ∈ R3|(I − 2diag(s(r̃))Ar̃x � 0}, (14)

which we term as analytic cell of an implicit function’s zero-
level isosurface, shortened as analytic cell. We note that there
could exist redundance in the defining inequalities of (13);
an analytic cell could also be a region open towards infinity
in some directions.

Given the plane functional (11), we define the polygon
face that is an intersection of analytic cell r̃ and zero-level
isosurface of F as

P r̃F = {x ∈ R3|ar̃Fx = 0, (I − 2diag(s(r̃))Ar̃x � 0}, (15)

which we term less precisely as analytic face of an implicit
function’s zero-level isosurface, shortened as analytic face, since
it is possible that the face goes towards infinity in some
directions. With the analytic form (15), we realize that
a ReLU based MLP F defines a piecewise planar zero-
level isosurface, which could be an approximation to an
underlying surface M when F is trained using techniques
presented in Section 6.

𝐻3

𝐻1

𝐻2

𝐻4

𝐻5

𝒂𝐹
෤𝑟1

𝒂𝐹
෤𝑟2

𝒔 ǁ𝑟1 = 1, 0, 1, 1, 0 𝑇

𝒔 ǁ𝑟2 = 0, 0, 1, 1, 0 𝑇

Fig. 2. An 2D illustration for analytic cells and neural states. Red lines
are the analytic faces. The states of two neighboring cells that share a
boundary plane are switched at one neuron.

3.2 A Closed Mesh via Connected Analytic Faces in
Analytic Cells

We have stated in Section 2 that our problem of interest
is to recover a surface mesh Z from the implicit function
F = f ◦ T , and the surface of interest has the property
of being continuous and closed. A closed, piecewise planar
mesh Z means that every of its planar faces is connected
with other faces via shared edges. Analysis in the preceding
section shows that the zero-level isosurface of F is piecewise
planar whose associated analytic cells and analytic faces
respectively satisfy (14) and (15). We have the following the-
orem that characterizes the conditions under which analytic
faces (15) in their respective analytic cells (14) guarantee to
connect and form a closed, piecewise planar Z .

Theorem 6. Assume that the zero-level isosurface Z of an
implicit field function F = f ◦ T defines a closed surface. If
for any region/cell r ∈ R(T), its associated linear mapping T r

(8) and the induced plane arF = w>f T
r (11) are uniquely defined,

i.e., T r 6= βT r′ and arF 6= βar
′

F for any region pair of r and r′,
where β is an arbitrary scaling, then analytic faces {P r̃F } defined
by (15) connect and exactly form the surface Z of polygon mesh.

Proof. The proof is given in Appendix A. Given the assumed
conditions, the proof can be sketched by first showing that
each planar face on Z captured by the SDF F = f ◦ T
uniquely corresponds to an analytic face of an analytic cell,
and then showing that for any pair of planar faces connected
on Z , their corresponding analytic faces are connected via
boundaries of their respective analytic cells.

We note that the conditions assumed in Theorem 6 can be
practically met up to a numerical precision of the weights in
F = f ◦ T . The proof also suggests an algorithm to identify
the analytic polygon faces of the surface captured by F ,
which is to be presented in Section 4.

4 PRACTICAL AND EFFICIENT IMPLEMENTATIONS
OF THE ANALYTIC MARCHING ALGORITHM

In this section, we first present our proposed algorithm of
analytic marching for extraction of the piecewise planar, zero-
level isosurface captured by an implicit F = f ◦ T ; we then
present its efficient implementations, including the CUDA
version on GPUs, and customized strategies for triggering
our algorithm when F respectively represents an SDF or
occupancy field. We finally discuss how the mesh obtained
by analytic marching can be simplified, with least sacrifice
of precision, to support efficient downstream processing.

4.1 The Algorithm of Analytic Marching

Given an implicit function F = f ◦ T whose zero-level
isofurface Z = {x ∈ R3|F (x) = 0} defines a closed,
piecewise planar surface, Theorem 6 suggests that obtaining
the mesh Z concerns with identification of analytic faces
{P r̃F |r̃ ∈ R̃} in analytic cells {C r̃F |r̃ ∈ R̃}. To this end,
we propose an algorithm of analytic marching that marches
among {C r̃F |r̃ ∈ R̃} to identify vertices and edges of the
polygon faces, where the name is indeed to show respect to
the classical discrete algorithm of marching cubes [13].

7

Specifically, analytic marching is triggered by identifying
at least one point x ∈ Z that satisfies F (x) = 0; its state
vector s(x) can be computed via (7), which specifies the
analytic cell C r̃xF (14) and analytic face P r̃xF (15) where x
resides. Analytic marching then successively solves a system
of equations to analytically obtain vertices of the polygon
face inside each analytic cell, and marches to neighboring
analytic cells via transition of cell states. Details are given in
Algorithm 1, with an illustration shown in Fig. 2.

Algorithm 1 The algorithm of Analytic Marching
INPUT: An implicit surface field function F = f ◦ T
constructed from a ReLU based MLP
OUTPUT: The exact zero-level isosurface of F as a polygon
mesh Z = {V, {P}}

1: Initialize an active set S• = ∅, and an inactive set S◦ =
∅.

2: Identify one point x ∈ R3 that satisfies F (x) = 0 (and
∇xF (x) 6= 0).

3: Compute the state s(x) via (7), and push s(x) into S•.

4: while S• 6= ∅ do
5: Take an active state s(r̃) from S• .
6: Let V r̃P be the set of defining vertices for the poly-

gon face P r̃F ; enumerate all the pair (H r̃
lk,H

r̃
l′k′)

of boundary planes {H r̃
lk} defined by (12), with

l = 1, . . . , L and k = 1, . . . , nl.

7: For each pair (H r̃
lk,H

r̃
l′k′), together with P r̃F , solve

the following 3 × 3 system of equations to have a
v ∈ R3

[ar̃lk;ar̃l′k′ ;a
r̃
F]x = 0. (16)

8: Confirm the validity of v ∈ V r̃P when it satisfies the
boundary condition (13) of the cell C r̃F .

9: Form V r̃P of the face P r̃F with all the valid vertices
obtained by solving (16); push vertices of V r̃P into V ,
and the face P r̃F into Z .

10: Record all the boundary planes {Ĥ r̃
lk} of C r̃F that give

valid vertices; for each Ĥ r̃
lk, infer the state s(r̃Neighbor)

of a neighboring analytic cell by switching s(r̃) at
s(r̃lk).

11: Push s(r̃) out of the active set S• and into the
inactive set S◦; push {s(r̃Neighbor)|s(r̃Neighbor) 6∈ S◦}
activated in the preceding step into the active set S•.

12: end while

Given F and an arbitrary space point, the zero-crossing
point x in Step 2 can be obtained simply by solving the
following problem via stochastic gradient descent (SGD)

min
x∈R3

|F (x)|. (17)

In practice, it is not necessary for the obtained x to exactly
satisfy F (x) = 0; the algorithm works as long as F (x) is
sufficiently small that ensures x falls in an analytic cell.

Algorithmic guarantee Theorem 6 guarantees that when the
zero-level isosurface Z of the implicit function F = f ◦ T
is closed, identification of all the analytic faces forms the

closed surface mesh. The proposed analytic marching al-
gorithm is anchored at cell state transition whose success
is of high probability due to a phenomenon similar to the
blessing of dimensionality [32] — it is of low probability that
edges connecting planar faces of Z coincide with edges of
analytic cells (cf. proof of Theorem 6 for detailed analysis).

4.1.1 Analysis of Computational Complexity
Consider the implicit function F = f ◦T built on an MLP of
L hidden layers, each of which has nl neurons, l = 1, . . . , L.
Let N = n1 + . . . , nL. For ease of analysis, we assume
n1 = · · · = nL = n and thus N = nL. The computations
inside each analytic cell concern with computing the bound-
ary planes, solving a maximal number of

(N
2

)
equation

systems (16), and checking the validity of resulting vertices,
which give a complexity order of O(n3L3). We know from
[19] that the maximal size of the set R(T) of linear regions
in general has an order of O

(
(n/n0)(L−1)n0nn0

)
, where

n0 is the dimensionality of input space. Since our focus
of interest is the 2-dimensional surface embedded in the
3D space, we have n0 = 2 and thus the maximal size
of R(T), which bounds the maximal number of analytic
cells, in general has an order ofO

(
(n/2)2(L−1)n2

)
. Overall,

the complexity of our analytic marching algorithm has an
order of O

(
(n/2)2(L−1)n5L3

)
, which is exponential w.r.t.

the MLP depth L and polynomial w.r.t. the MLP width n.
Note that the result can be further improved by applying
the efficient implementations to be presented in Section 4.2.

The above analysis shows that the complexity nature
of analytic marching is the complexity of implicit function,
which is completely different from those of existing algo-
rithms, such as marching cubes [13], whose complexities
are irrelevant to function complexities but rather depend on
the discretized resolutions of the 3D space. Our algorithm
thus provides an opportunity to recover highly precise mesh
reconstruction by using networks of low complexities.

4.2 Efficient Implementations
4.2.1 Pivoting Enumeration in a Working Cell
Steps 6 - 11 in Algorithm 1 involve enumeration of all the
pairs from the boundary planes {H r̃

lk}, with l = 1, . . . , L
and k = 1, . . . , nl, in order to find the valid vertices {v ∈
V r̃P} for the polygon face P r̃F in the working cell C r̃F . The
process is less efficient and requires a postprocessing step to
identify the traversal order of valid vertices. To improve the
efficiency, we present a pivoting-based enumeration scheme
[33] whose details are as follows.

Pivoting enumeration starts with identifying a point
x ∈ P r̃F and a hyperplane H r̃

lk, among {H r̃
lk}, that is a

true boundary of the working cell C r̃F ; we present how such
an x and H r̃

lk can be identified shortly. The scheme then
establishes an index set I r̃ = {(l1, k1), . . . , (lN , kN)} by
sorting, in an increasing order, the Euclidean distances from
each of the N hyperplanes in {H r̃

lk} to the point x ∈ P r̃F ,
where N = n1 + . . . ,+nL is the total number of neurons
in T . Introduce the auxiliary t, t′, t′′ ∈ N, and we use
(lt, kt) to index the boundary plane H r̃

lk identified in the
beginning, written as H r̃

ltkt
; for a later reference, we also

use (l∗, k∗) and H r̃
l∗k∗

to refer to this same boundary. Let

8

I r̃/t = {(l1, k1), . . . , (lt−1, kt−1), (lt+1, kt+1), . . . , (lN , kN)},
and we have |I r̃/t | = N − 1. By initializing V r̃P = ∅ and
t′′ = 1, the scheme firstly repeats the following steps: 1)
solves the system of equations [ar̃ltkt ;a

r̃
lt′′kt′′

;ar̃F]x = 0 to
have a vertex candidate v ∈ R3; 2) confirms the validity
of v ∈ V r̃P by checking whether it satisfies the boundary
condition (13) of the cell C r̃F ; 3) if the above step is true,
pushes v into V r̃P , lets (lt′ , kt′) = (lt, kt) and updates
(lt, kt) = (lt′′ , kt′′), and then exits; otherwise updates
t′′ ← t′′ + 1 upon (lt′′+1, kt′′+1) ∈ I r̃/t or t′′ ← t′′ + 2

upon (lt′′+2, kt′′+2) ∈ I r̃/t , and goes back to step 1.
Given that H r̃

ltkt
is a true boundary of the polyhedral

cell C r̃F , it is guaranteed for the above steps to find a
valid v ∈ V r̃P . Let I r̃/t′/t = {(l1, k1), . . . , (lt′−1, kt′−1),
(lt′+1, kt′+1), . . . , (lt−1, kt−1), (lt+1, kt+1), . . . , (lN , kN)}
and we have |I r̃/t′/t | = N − 2, where we assume
t′ < t for notational simplicity, the scheme then repeats
the following steps: 1) solves the system of equations
[ar̃ltkt ;a

r̃
lt′′kt′′

;ar̃F]x = 0 to have a vertex candidate
v ∈ R3; 2) confirms the validity of v ∈ V r̃P by checking
whether it satisfies the boundary condition (13) of the cell
C r̃F ; 3) if the above step is true, pushes v into V r̃P , and
either exits when (lt′′ , kt′′) indexes the same boundary
plane as the starting one H r̃

l∗k∗
, or sequentially updates

(lt′ , kt′) = (lt, kt), (lt, kt) = (lt′′ , kt′′), and I r̃/t′/t =
{(l1, k1), . . . , (lt′−1, kt′−1), (lt′+1, kt′+1), . . . , (lt−1, kt−1),
(lt+1, kt+1), . . . , (lN , kN)}, and (re-)sets t′′ = 1; otherwise
updates t′′ ← t′′ + 1 upon (lt′′+1, kt′′+1) ∈ I r̃/t′/t or
t′′ ← t′′ + 2 upon (lt′′+2, kt′′+2) ∈ I r̃/t′/t , and goes back to
step 1. The ending condition in the above step 3 suggests
that the scheme has circled back and found all the valid
vertices {v ∈ V r̃P} that form the polygon face P r̃F . We
summarize the algorithm in Appendix B.

Sorting planes according to Euclidean distances reduces
the number of iterations required to find the valid vertices.
We note that acquiring the starting boundary plane H r̃

l∗k∗
and point x ∈ P r̃F does not require any extra effort; H r̃

l∗k∗
can be set exactly as the switching plane that gives the
current cell state (cf. Step 10 of Algorithm 1), and x can
be set as the middle point of the switching edge on the
switching plane. The presented pivoting enumeration has
an average-case complexity of O

(
|VP |n2L2

)
, where |VP | is

the average number of vertices per analytic face; it reduces
the overall complexity of analytic marching to an order of
O
(

(n/2)2(L−1)|VP |n4L2
)

.

4.2.2 Parallel Marching with CUDA Implementation
Our proposed analytic marching naturally supports parallel
implementation. Instead of starting from a single initial
point x ∈ Z obtained by solving (17) (Step 2 of Algorithm
1), one may initialize as many of such points as possible
in parallel; the algorithm can then be fully parallelized by
simultaneously marching towards all the analytic cells in the
active set S• that are unsolved to get their respectively ana-
lytic faces. Parallel marching would improve the efficiency of
analytic marching significantly.

Parallel marching can be practically achieved on par-
allel computing devices (e.g. GPUs). As a contribution to
the community, we present a CUDA implementation of

analytic marching algorithm to support parallel march-
ing. The implementation is incorporated in the package of
AnalyticMesh publicly available at https://github.com/
Karbo123/AnalyticMesh. With CUDA implementation on
Nvidia GPUs, the efficiency of analytic marching can be
improved at an order of 10. We report empirical running
time comparisons in Section 7.1.

4.3 Customized Schemes for Triggering the Algorithm
The algorithm of analytic marching can be triggered by
solving (17) via SGD to find x ∈ Z . Depending on whether
the implicit function F is an SDF or an occupancy field (OF)
function, one may leverage the defining properties of the
respective fields to have customized triggering strategies.
In this section, we present two such schemes respectively
specialized for SDF and OF. Empirical results in Section 7.1
confirm the efficiency of the two schemes when compared
with triggering by solving (17) via SGD.

4.3.1 Sphere Tracing-based Triggering for SDF
By utilizing the property that SDF satisfies the Eikonal
equation |∇xF | = 1, sphere tracing [34] greatly accelerates
the rendering of implicit surface. This inspires us to have
an efficient sphere tracing-based scheme to find x ∈ Z for
SDF. More specifically, let x0 ∈ R3 denote an arbitrary initial
point in the implicit field of SDF F ; given an xt ∈ R3 at a
time step t, we use the following updating rule to have xt+1

xt+1 ← xt − ηF (xt)∇xt
F, (18)

where η ≤ 1 is the step size. Given that F (xt) computes the
signed distance to the surface Z at xt, the rule (18) thus
accelerates standard SGD updating when xt is far away
from Z , and it has a damping effect to prevent surface
penetration when xt moves very close to Z .

4.3.2 Dichotomy-based Triggering for Occupancy Field
A binary OF is usually relaxed by using a sigmoid function
f to construct F = f ◦ T . As such, gradient-based opti-
mization (e.g. SGD) is less effective to find x ∈ Z from an
arbitrary field point, especially when the initial point is far
away from the surface. Fortunately, Bolzano’s theorem [35]
states that a continuous function has a root in an interval if
it has values of opposite signs inside that interval. Based on
this, we propose a dichotomy-based scheme to find x ∈ Z
for OF. More specifically, we first randomly sample seed
points in the implicit OF until a pair {x+

0 ,x
−
0 } is obtained

which satisfies F (x+
0) > 0 and F (x−0) < 0. According

to Bolzano’s theorem, we can assert that there must be at
least one zero-crossing point x satisfying F (x) = 0 on
the line segment x+

0 − x−0 . To find a zero-crossing point,
we repeatedly bisect the line segment, and then select the
subinterval at an iteration t whose two end points x+

t and
x−t have opposite signs of occupancy. The process continues
until F (x+

t)− F (x−t) ≤ ε for a specified tolerance ε.

4.4 Postprocessing for Mesh Simplification
The polygon mesh Z obtained by analytic marching is an
exact solution of the zero-level isosurface of an implicit
function F = f ◦ T . When the network T is large, there

https://github.com/Karbo123/AnalyticMesh
https://github.com/Karbo123/AnalyticMesh

9

would be a huge number of polygon faces in the obtained Z
(cf. Table 5 for a reference of the number of faces practically
obtained). This would bring inconvenience for subsequent
processing on mesh, e.g., rendering and texturing. To reduce
the number of faces with least sacrifice of mesh precision,
we adopt the quadric edge collapse decimation (QECD) al-
gorithm [36] to simplify the obtainedZ ; QECD estimates the
placement of vertices of collapsed edges by minimizing the
distances to neighboring faces, and is hence able to preserve
sharp features of the original Z . In case that the implicit
function F = f ◦T itself captures a less ideal surface Z , e.g.,
a rugged or non-watertight surface, our analytic marching
would also produce the exact but less desirable Z . One
could apply postprocessing steps, such as smoothing [37] or
holes filling [38], to improve the visual quality. We also note
that our obtained polygon meshes can be easily converted
as triangular ones, simply by subdividing polygons into
triangles along diagonals.

We incorporate the above postprocessing operations into
the publicly released package AnalyticMesh, in which we
also provide a handle to control the number of polygon
faces. Fig. 3 shows the interface. Experiments in Section 7
confirm that the proposed postprocessing is able to effec-
tively simplify the meshes obtained by analytic marching;
in many cases, it produces visually more pleasant results.

Fig. 3. The user interface that facilitates use of the publicly released
AnalyticMesh package.

5 EXTENSIONS TO OTHER ARCHITECTURES

We have so far focused our analysis on implicit functions
constructed from MLPs with ReLU activations. In this sec-
tion, we show that our proposed analytic meshing is appli-
cable to implicit functions constructed from more advanced
architectures, including those with shortcut connections [39]
and max pooling. These architectures are used in some of
the recent deep learning surface reconstruction methods [4],
[5], [40], [41]. To facilitate the discussion, we will override
some of the previously introduced math notations, which
are self clear in the respective contexts.

5.1 Multi-Layer Perceptrons with Shortcut Connections
We consider two prototypical residual blocks with short-
cut connections to present the extension. Fig. 4 gives the
illustration. The first residual block aggregates two paths of
forward signal propagation before a final ReLU activation,
where one path is a shortcut connection and the other

…

Linear

Linear

ReLU

ReLU

Max

…

Linear

Linear

ReLU

… …

Linear

Linear

ReLU

…

Linear

Linear

ReLU

ReLU

L
in

ea
r

(a) (b) (c)
Fig. 4. Illustration of the three network architectures discussed in Sec-
tions 5.1 and 5.2. (a) A residual block with a shortcut connection. (b)
A residual block with a shortcut connection of linear mapping. (c) A
network with max pooling as the final aggregation of the outputs from
multiple subnetworks.

path stacks L hidden layers respectively of nl neurons,
l ∈ {1, . . . , L}. Denote an input x ∈ X ⊂ Rn0 ; the residual
block thus defines a mapping TResBlkx = g(x + TPreActx),
with the mapping TPreActx = WLg(. . . g(W1x)), which also
implies n0 = nL. Analysis in Section 2.2 shows that TPreAct in
fact partitions the space X into a number of linear regions.
To understand how the residual block TResBlk partitions the
space, we first note from Definition 2 that the state func-
tional of layer l in TPreAct, l ∈ {1, . . . , L − 1}, is sl(x) =
[sl1(x), . . . , slnl

(x)]>, where slk(x), k ∈ {1, . . . , nl}, is
defined by (5); we then extend Definition 2 and define the
state functional for the output of the final layer of TResBlk as

sL(x) = [sL1(x), . . . , sLnL
(x)]>, (19)

s.t. sLk(x) =

{
1 if πk(x + TPreActx) > 0

0 if πk(x + TPreActx) ≤ 0,

where k ∈ {1, . . . , nL}. We thus have the state functional
of TResBlk as sResBlk(x) = [s1(x)>, . . . , sL(x)>]>. Let RResBlk

denote the set of linear regions in Rn0 that are partitioned
by TResBlk. With definition (19), we can label any region r ∈
RResBlk as sResBlk(r) ∈ JN , where N =

∑L
l=1 nl. The region-

wise linear mapping analogous to Lemma 4 can thus be
defined as

T r
ResBlk = diag(sL(r))

(
I + WL

L−1∏
l=1

W r
l

)
(20)

s.t. W r
l = diag(sl(r))Wl l ∈ {1, . . . , L− 1},

where I is an identity matrix of compatible size. Con-
sequently, the neuron-wise linear mapping analogous to
Corollary 5 is defined as

arlk =


πk

(
I + WL

L−1∏
i=1

W r
i

)
when l = L

πk

(
Wl

l−1∏
i=1

W r
i

)
when l ∈ {2, . . . , L− 1}

πkWl when l = 1,
(21)

where k ∈ {1, . . . , nl} and W r
i is defined the same as W r

l

in (20). One may use TResBlk as building blocks to construct
an MLP T with shortcut connections, and consequently an
implicit function F = f ◦ T . Given the definitions (19),
(20), and (21), the theoretical analysis in Section 3 and the
analytic marching algorithm in Section 4 can be readily

10

applied to such an F . This extends our proposed method
to architectures incorporating TResBlk as building blocks.

The second residual block simply replaces the path of
shortcut connection with a linear mapping V x, giving rise
to a mapping of the residual block as TResBlkx = g(V x +
TPreActx), where V ∈ RnL×n0 and TPreAct is the same as for
the first residual block. This second residual block supports
n0 6= nL. Definitions similar to (19), (20), and (21) can be
derived correspondingly; this extends our method to archi-
tectures incorporating the second type of residual blocks as
building blocks.

5.2 Max pooling as a Final Aggregation of Deep Implicit
Surface Networks

A few recent methods [40], [41] model a solid surface using
constructive solid geometry [2]. They technically implement
a union operation via a final max pooling over multiple
deep implicit surface (sub-)networks. Fig. 4 gives an illus-
tration. In this section, we show that our proposed method
can also be extended to achieve analytic meshing from such
a union of subnetworks.

Let F(i) = f(i) ◦T(i), i = 1, . . . ,M , denote the individual
implicit functions constructed from M subnetworks respec-
tively of L(i) hidden layers. Each F(i) takes as input a same
x ∈ X ⊂ Rn0 ; n0 = 3 in the context of interest. Their union
via max pooling computes

F (x) = max
i∈{1,...,M}

F(i)(x). (22)

Analysis in Sections 2 and 3 suggests that each T(i) parti-
tions the input space X into a setR(i) of linear regions/cells
(convex polyhedrons), of which R̃(i) is the set of analytic
cells relevant to the zero-level isosurface {x ∈ R3|F(i)(x) =
0}. For any x ∈ X , without loss of generality we assume
that it falls in the cells r(i) ∈ R(i), i = 1, . . . ,M , respectively
partitioned by the M subnetworks. Given the neuron-wise
linear mappings defined in Corollary 5, we can spell out (22)
for a local region around x as

F (x) = max{ar(1)F(1)
x, . . . ,a

r(M)

F(M)
x} ∀ x ∈ r(1) ∩ · · · ∩ r(M),

(23)
which is a point-wise maximum of linear functions. Let r :=
r(1) ∩ · · · ∩ r(M) ⊂ R3; classical linear algebra suggests that
r is a convex polyhedron as well.

To achieve analytic meshing from r, the key is to identify
(possibly overlapped) subcells in r by specifying different
j ∈ {1, . . . ,M} as the indices, each of which satisfies
F(j) ≥ F(i) ∀ i ∈ {1, . . . ,M}/j. More specifically, for any
of such an index j, we assume that x is in an analytic
cell r̃(j) ∈ R̃(j), and override the notation r̃ = r =
r(1)∩· · ·∩r̃(j)∩· · ·∩r(M), which is the cell of interest relevant
to extraction of zero-level isosurface — we note that some of
r(i), i ∈ {1, . . . ,M}/j, may also be analytic cells achieved
by their respective subnetworks, and the subsequent analy-
sis holds without explicit specification of their analytic cell
status. Define M − 1 inequalities (a

r(i)
F(i)
− a

r̃(j)
F(j)

)x ≤ 0,

i ∈ {1, . . . ,M}/j; the kernels a
r(i)
F(i)
− a

r̃(j)
F(j)

specify planes
in R3 that partition r̃ as a convex polyhedral subcell, de-

noted as r̃Sub. To specify the subcell, we compactly write the
inequalities as (

A/(j) − 1M−1a
r̃(j)
F(j)

)
x � 0, (24)

where A/(j) = [a
r(1)
F(1)

; . . . ;a
r(j−1)

F(j−1)
;a

r(j+1)

F(j+1)
; . . . ;a

r(M)

F(M)
] ∈

R(M−1)×3 and 1M−1 is a vector with all its M − 1 en-
tries as the value 1. Given that the cell r̃ can be explic-
itly determined by the set of boundary planes {Hr(i)

l(i)k(i)}
with H

r(i)
l(i)k(i) = {x ∈ R3|ar(i)l(i)k(i)x = 0}, where l(i) =

1, . . . , L(i), k(i) = 1, . . . , nl(i) , and i ∈ {1, . . . ,M}/j, and
the similarly defined set {H r̃(j)

l(j)k(j)}, the subcell of interest
for the specified index j can be written as

Br̃Subx =



A/(j) − 1M−1a
r̃(j)
F(j)

(I(1) − 2diag(s(r(1)))A
r(1)

...
(I(j) − 2diag(s(r̃(j)))A

r̃(j)

...
(I(M) − 2diag(s(r(M)))A

r(M)


x � 0, (25)

where Ar(i) , i ∈ {1, . . . ,M}/j, and Ar̃(j) are defined sim-
ilarly as (13), and I(i) is an identity matrix of compatible
size. Given the system (25), we have the analytic subcell
associated with the union function F defined as

C r̃Sub
F = {x ∈ R3|Br̃Subx � 0}. (26)

Since a
r̃(j)
F(j)

x ≥ a
r(i)
F(i)

x ∀ i ∈ {1, . . . ,M}/j in the present
subcell, we have the corresponding analytic face defined as

P r̃Sub
F = {x ∈ R3|ar̃(j)F(j)

x = 0,Br̃Subx � 0}. (27)

In practice, to implement the analytic marching algorithm
proposed in Section 4, for the present subcell r̃Sub specified
by the index j, we define an additional state functional for
the final max pooling operation of F as

sMaxPool(x) = ej , (28)

which is an M -dimensional one-hot vector with the entry
of 1 at the jth index. Given the definitions (26), (27), and
(28), our theoretical analysis in Section 3 and the analytic
marching algorithm in Section 4 can be readily applied to
such an architecture F with a final max pooling aggregation.
The state functional (28) is used, together with the state
functionals of the M subnetworks, to transit among analytic
(sub-)cells during the analytic marching process.

6 LEARNING IMPLICIT SURFACE NETWORKS FOR
GENERATIVE SHAPE MODELING

The analysis and algorithm presented in the previous sec-
tions assume that an implicit function F = f ◦ T has been
given. In this section, we present different manners to con-
struct and learn F for shape modeling and reconstruction.
These manners have their respective advantages when F
represents an implicit field of SDF or an occupancy field.

11

6.1 Learning as a Direct Shape Encoding
We first show the usefulness of analytic marching by directly
fit individual 3D shapes to a model F = f ◦ T constructed
from a ReLU based MLP. A similar strategy is taken in [42]
that demonstrates the compactness of neural network as a
shape representation. Take a field of SDF as the example.
Assume that a surfaceM to be encoded is given. Following
[17], we train the network with a regularized objective

min
F=f◦T

`M(F) + λDirect
1 Ex∼R3

∣∣‖∇xF (x)‖2 − 1
∣∣, (29)

with

`M(F) = Ez∼M [|F (z)|+ λDirect
2 ‖∇zF (z)− nz‖2] , (30)

where λDirect
1 and λDirect

2 are penalty parameters, and nz de-
notes the normal vector at a surface point z ∈ M; the
second term of (30) is optionally used when surface normals
are available [17].

To improve the training efficiency, one may also replace
the ReLU nonlinearity with a smooth version gα(x) =
xeαx/(1 + eαx) [43] during training, where α > 0 is a
parameter controlling the degree of approximation, which
is gradually increased until the training convergence. Note
that after training, we still use the standard ReLU nonlin-
earity for analytic marching.

6.2 Global Decoding for Reconstruction of Novel Sur-
face Shapes
Learning deep models to reconstruct novel shape instances
gains popularity in recent research of deep learning surface
reconstruction [4], [6]. Given training shapes, these methods
usually train an encoder-decoder architecture for the pur-
pose. Considering that the training shapes are point clouds
sampled from ground-truth object surfaces, these methods
train a point set encoder (e.g., a PointNet [44]) that outputs
latent shape representation for a testing point cloud, which,
together with sampled points in the 3D implicit space,
are then fed into the decoder for inference of the implicit
surface. Heavy MLP decoders are usually used in order
for learning to generalize to novel shape instances. Given
that the computation complexity of our analytic marching
depends on the network capacities (cf. Section 4.1.1), we
choose to use a hypernetwork [45] for shape decoding,
instead of directly using an MLP decoder. More specifi-
cally, the hypernetwork can be chosen as a heavy MLP,
which takes as input a latent shape representation from
the encoder, and outputs weights of another light MLP,
and the resulting light MLP is used as the implicit model
F = f◦T for surface inference via analytic marching. Such a
hypernetwork based pipeline enjoys the benefit of precisely
modeling and decoding novel shapes, while keeping an
efficient process of shape inference.

Let E and H respectively denote the encoder and hy-
pernetwork. Given a training set of ground-truth surfaces
{M ∈ M}, each of which is sampled from the distribution
M, we use the following objective to train E and H

min
E,H

EM∼M`R3(E,H;M) + λGlobal‖E(M)‖22, (31)

with

`R3(E,H;M) = Ex∼R3 |F (x;H(E(M)))− d(x;M)|,

where H(E(M)) outputs network weights of an implicit
F (·;H(E(·))), and d(x;M) is the ground-truth signed dis-
tance of x ∈ R3 to the surfaceM; the latent representation
E(M) in (31) is regularized with its L2 norm, and λGlobal is a
penalty parameter.

6.3 Improved Reconstruction via an Ensemble of Local
Decoders
Global decoding either via a direct MLP or indirectly via
a hypernetwork is limited in reconstructing surface shapes
of complex topologies [40], [41]. To remedy, one strategy
is to rely on local models and reconstruct a topologically
complex surface as a union of local surface parts, i.e., a
typical strategy in constructive solid geometry [2].

In this work, we technically implement this strategy
using an ensemble of local decoders, as illustrated in Fig.
4-(c). Let E be the shape encoder, and F(i), i = 1, . . . ,M ,
denote the local decoders. Given the latent representation
E(M) for a surface M, we again use a hypernetwork
H to estimate weights of {F(i)}Mi=1. As indicated by (22),
the global implicit function F can be constructed as a
maximum over outputs of the local decoders, i.e., F (x) =
maxi∈{1,...,M} F(i)(x) for x ∈ R3. Indeed, constructive solid
geometry suggests that any boolean operation of occupancy
fields can be realized by maximum function, and therefore
composition of several components is the maximal value of
individual occupancy values. The max function used in (22)
can also be replaced as a soft version [43] to improve the
training efficiency, i.e.,

F (x) =

∑M
i=1 F(i)(x)eβF(i)(x)∑M

i=1 e
βF(i)(x)

, (32)

where β > 0 is a parameter controlling the degree of soft-
ness, which is gradually increased during training. Given
a training set of ground-truth surfaces {M ∈ M}, we use
the following regularized objective to train such a model on
occupancy fields

min
E,H

EM∼M`R3(E,H;M)+λLocal
1 ‖E(M)‖22+λLocal

2 ‖H(E(M))‖22,
(33)

with

`R3(E,H;M) = Ex∼R3CE (F (x;H(E(M))), o(x;M)) ,

where CE(·, ·) denotes a binary cross-entropy loss,
o(x;M) ∈ {0, 1} indicates the occupancy status of x ∈ R3,
and λLocal

1 and λLocal
2 are penalty parameters. In (33), we

also use an L2-norm regularization to constrain weights of
the local decoders estimated from H , which is effective to
regularize the learning.

7 EXPERIMENTS

Datasets We use two datasets of 3D solid objects for our
experiments. The first dataset consists of object instances
from five categories of the ShapeNet [46] (namely, “Rifle”,
“Chair”, “Airplane”, “Sofa”, and “Table”). We construct our
second, Richly Detailed (RD), dataset by collecting 5 geo-
metrically and topologically complex shapes from Stanford
3D Scanning Repository [47], Artec3D [48], and Free3D [49];
Fig. 8 and Appendix C show these shapes. We normalize

12

object mesh models of the two datasets in the unit sphere
of the 3D space. We use both the two datasets for our
experiments of direct shape encoding (cf. Section 6.1). For
experiments of learning to reconstruct novel object shapes
(cf. Sections 6.2 and 6.3), we use the first dataset from
ShapeNet where we split object instances of each category as
training or test ones by a ratio of 4:1, and obtain input point
clouds for the encoder E(·) by sampling 2,048 points from
each ground-truth mesh; when implementing the training
objectives (31) and (33), ground-truth values of SDF or
occupancy are calculated by linear interpolation from a
dense grid obtained by [50], [51].

Implementation Details For direct shape encoding, we use
an MLP of width 60 and depth 8. The network is trained for
1, 500 epochs, with learning rates starting from 1×10−3 and
dropping by a factor of 0.3 at epochs 1100, 1200, 1350 and
1450; we set λDirect

1 = 0.2, λDirect
2 = 1.0, and the slope α used

in soft ReLU is initialized to 10 and gradually increased
to 10, 000. For experiments of learning to reconstruct novel
shapes, we directly use PointNet [44] as the encoder E(·).
We use a hypernetwork of MLP with depth 2 and width
1,024 for global decoding, which gives a decoding MLP of
width 60 and depth 6; we set λGlobal = 0.01; learning rates
start from 3× 10−4 and drop at the epoch 2, 400, 4, 200, and
5, 400 respectively by a factor of 0.2, until a total of 6, 000
epochs. For local decoding, we again use a hypernetwork
of MLP with depth 2 and width 1,024, which results in an
ensemble of M = 4 local decoders; each local decoder is an
MLP of width 32 and depth 4; we set λLocal

1 = 0.01 and λLocal
2 =

5×10−5; the hypernetwork is trained for 3, 000 epochs, and
learning rates start from 3 × 10−4 and are reduced by a
factor of 0.2 at the epoch 1, 200, 2, 100, and 2, 700; during
inference, individual shape components are independently
extracted and then integrated using [52]. All experiments
are conducted on a single Nvidia Tesla K80.

Comparative Methods and Evaluation Metrics We com-
pare our proposed meshing algorithm of Analytic Marching
(AM) with existing ones, which have already been the
standard meshing choices given that implicit functions are
provided; the comparative methods include Greedy Mesh-
ing (GM), Marching Cubes (MC) [13], Marching Tetrahe-
dra (MT) [21], and Dual Contouring (DC) [14]. All these
methods are based on discrete sampling of the 3D space
for evaluation of signed distances or occupancies for the
sampled points, which are then used for extraction of the
zero-level isosurfaces. They are thus by nature different
from our AM. We emphasize that the comparisons are made on
meshing algorithms themselves, independent of how the implicit
functions have been constructed or learned; our presented methods
of learning implicit surface networks in Section 6 are mainly
to set contexts for such a meshing comparison. As such, we
use evaluation metrics of (approximate) distances between
each ground-truth mesh and those extracted by different
meshing algorithms, including Chamfer Distance (CD) and
Earch Mover Distance (EMD), each of which computes
symmetric, pairwise Euclidean distance between sampled
point sets, Intersection over Union (IoU) that measures how
the two meshes overlap and whose values range in [0, 1],
and F-score (F) that measures the symmetrical percentage of
reachable surface areas within a given distance τ ; we use

a default τ = 5 × 10−3. In addition, we report relevant
attributes of meshing algorithms and results, such as the
number of triangular faces per mesh (#TriFace) and running
time, where triangular faces of the results from our AM are
converted from polygonal ones (cf. Section 4.4 for how the
conversion can be conducted).

7.1 Analysis of Analytic Marching

In this section, we analyze various properties of ana-
lytic marching. Experiments are conducted on instances of
ShapeNet by directly fitting implicit MLP functions.

Effects of Network Capacities Section 4.1 suggests that the
meshing precision of our AM depends on the (maximal)
number of linear regions partitioned by an MLP, whose
order is exponential to network depth and polynomial to
network width. To verify empirically, we design experi-
ments by using two groups of MLPs that respectively have
the same numbers of 360 and 900 neurons. The first group
distributes their neurons as D4-W90, D6-W60, and D8-W45,
where “D” is for depth and “W” is for width, and the second
group distributes their neurons as D10-W90, D15-W60, and
D20-W45. Results in Table 1 confirm that mesh accuracies
increase consistently with the increased network capacities,
but at a cost of much increased face numbers per mesh.
Given the same number of neurons, it seems that a balanced
depth-width neuron distribution is more advantageous at
the studied regime of relatively lower network capacities.

TABLE 1
Meshing accuracies of analytic marching by using MLPs of different
capacities. “D” stands for network depth and “W” stands for network
width. Results are obtained by averaging over 200 instances of the

“Rifle” category from ShapeNet.

Architecture CD ↓ EMD ↓ IoU ↑ F@τ ↑ #TriFace
D4-W90 0.616 0.00860 0.865 0.848 195,658
D6-W60 0.529 0.00800 0.869 0.855 200,263
D8-W45 0.567 0.00812 0.857 0.842 186,903
D10-W90 0.364 0.00585 0.902 0.881 844,114
D15-W60 0.385 0.00623 0.889 0.874 671,752
D20-W45 0.421 0.00689 0.861 0.866 507,742

Results of Different Categories To investigate how AM
performs on instances of different categories whose surface
complexities may vary, we conduct experiments on five
categories of ShapeNet, using the MLP of D6-W60 as men-
tioned above. Table 2 shows that the category of “Airplane”
has the best meshing accuracies in terms of 3 of the total 4
metrics, which is in accordance with the common intuition
on the simplicity of its shapes.

TABLE 2
Meshing accuracites of analytic marching on five categories of

ShapeNet, using an MLP of depth 6 and width 60 (the same D6-W60
network as in Table 1). Results are obtained by averaging over 200

instances of each category.

Category CD ↓ EMD ↓ IoU ↑ F@τ ↑ #TriFace
Rifle 0.529 0.00800 0.869 0.855 200,263
Chair 0.727 0.00801 0.896 0.529 365,231

Airplane 0.325 0.00532 0.894 0.898 262,116
Sofa 0.678 0.00665 0.966 0.532 313,718
Table 0.698 0.00716 0.907 0.516 326,808

13

Efficiencies of Customized Triggering Schemes We present
different triggering schemes of AM in Section 4.3 as im-
provements over the simple one of solving (17) via SGD,
including Sphere Tracing (ST) and Dichotomy (DICH). To
verify their efficiencies, we conduct experiments of finding
1,024 points on the surface for each instance of all the five
categories of ShapeNet, using the aforementioned MLP of
D6-W60. We compare the three schemes in terms of their
required numbers of iterations (#Iter) to converge, the cor-
responding running time (second), and the rate of success
(SR). Table 3 tells that for signed distance field (SDF), all
the schemes can successfully converge to find the points on
the surface and thus trigger the AM algorithm, and ST and
DICH are much faster than SGD; for occupancy field (OF),
DICH is the only scheme that can trigger AM successfully
and efficiently. We thus recommend DICH as the default
triggering scheme of AM.

Parallel Marching with CUDA Implementation Our AM
algorithm supports parallel marching, which simultane-
ously marches the analtyic cells to recover the mesh. In
this work, we implement parallel marching with CUDA
implementation. Table 4 shows that on Nvidia GPUs (64-bit
floating point), parallel marching with the ST triggering of
1,024 points on the surface is nearly an order-of-magnitude
faster than solving AM on CPUs using SGD triggering of a
same number of points. These experiments are conducted
on all the five categories of ShapeNet, using the MLP of
D6-W60 as mentioned above.

Mesh Simplification in AnalyticMesh As indicated by the
results in Tables 1 and 2, in spite of the exactness, AM tends
to produce polygon meshes with huge numbers of polygon
faces. This brings inconvenience to downstream processing
on meshes. It is desirable to simplify the meshes at no or
less sacrifice of mesh precisions. As stated in Section 4.4, we
have incorporated such postprocessing operations into our
publicly released package of AnalyticMesh. Quantitative
results in Table 5 show that by mesh simplification, the
loss of precision is negligible even when preserving only
1% of the original numbers of mesh faces. A corresponding
visualization is shown in Fig. 5. Except mentioning otherwise,
we present all results of AM in the subsequent sections after mesh
simplification at a ratio of 10%.

7.2 Direct Shape Encoding

In this section, we compare our proposed AM with existing
methods in the context of direct shape encoding, where an
implicit network of SDF is trained to fit each shape instance
(cf. Section 6.1 for the details). Experiments are conducted
on both the five categories of ShapeNet and the RD dataset.
For ShapeNet, we use an MLP of depth 6 and width 60 (the
same D6-W60 model as in the preceding section); for RD,
we use an MLP of depth 8 and width 60.

The plotting of numerical results on ShapeNet instances
is shown in Fig. 6. Under different evaluation metrics,
mesh accuracies of existing methods are upper bounded
by our proposed AM. These methods of marching cubes
family recover a mesh by firstly sampling a grid of 3D
points at a specified resolution, followed by identifying the
intersections with the zero-level isosurface; as such, their

accuracies depend on the sampling resolutions. Instead, our
AM recovers the mesh exactly captured by the fitted MLP.

Fig. 7 shows the plotting of numerical results on the
five shape instances of RD dataset. Example results for
one of the shapes are given in Fig. 8. Mesh accuracies of
existing methods are still upper bounded by our proposed
AM. We also notice from Fig. 8 that existing methods may
give geometrically and/or topologically wrong recoveries,
even when their sampling resolutions are increased to 5123.
In contrast, AM gives much better and visually pleasant
results. Results of other shape instances from the RD dataset
are given in Appendix C.

7.3 Global Learning for Novel Shape Reconstruction
In this section, we compare our proposed AM with exist-
ing meshing methods in the context of learning a global
model for decoding of novel shape instances. We train a
hypernetwork of MLP with depth 2 and width 1,024, which
learns weights of a light MLP with depth 6 and width 60
for SDF modeling. Experiments are conducted on the five
ShapeNet categories by training the hypernetwork on the
training shapes and testing on novel ones. Other learning
setups are given in the beginning of Section 7. Quantitative
results in Table 6 show that AM, after mesh simplification
at a ratio of 10%, achieves mesh reconstruction accuracies
nearly identical to those of MC512 (i.e., marching cubes with
sampling of 5123 3D points), while running much faster
with much fewer numbers of mesh faces; this is due to the
better accuracies of the original meshes exactly recovered by
AM. The qualitative comparisons given in Appendix D are
consistent to those quantitative ones.

7.4 Novel Shape Reconstruction by Learning an En-
semble of Local Decoders
In this section, we investigate whether the results of AM
can be improved by learning an ensemble of local decoders
for novel shape reconstruction. We train a hypernetwork of
MLP with depth 2 and width 1,024, which learns weights
for an ensemble of 4 subnetworks for occupancy modeling;
each subnetwork is of depth 4 and width 32; thus in total
the ensemble has 512 neurons, slightly more than the D6-
W60 model used in global decoding. We again conduct
experiments on the five ShapeNet categories by training
the hypernetwork on the training shapes and testing on
novel ones. Other learning setups are given in the beginning
of Section 7. Quantitative results in Table 7 show that the
ensemble model indeed improves the accuracies of mesh re-
constructions over those obtained by a single, global model,
at the cost of a slightly slower inference. On all the five
categories, AM, after mesh simplification at a ratio of 10%, gives
more accurate reconstructions at a much faster inference and
much fewer numbers of mesh faces than MC512 does. The
qualitative comparisons given in Appendix D are consistent
with the quantitative ones, where the recovered components
by individual decoders of the ensemble suggest that the en-
semble learns the shapes naturally in a constructive manner.

8 CONCLUSION AND FUTURE RESEARCH

We have presented in this paper an exact meshing solution
from deep implicit surface networks. Our analytic marching

14

TABLE 3
Comparisons among different triggering scheme of analytic marching (cf. Section 4.3). Results are obtained by finding 1,024 points on the surface

for each instance of all the five categories of ShapeNet, using an MLP of depth 6 and width 60. We use measures of the required number of
iterations (#Iter) to converge, the corresponding running time (second), and the success rate (SR). The mark “-” indicates the failure of triggering.

Method SGD ST DICH
Metric #Iter Time(sec.) SR #Iter Time(sec.) SR #Iter Time(sec.) SR

SDF 531 3.47 1.0 3 0.0267 1.0 11 0.0657 1.0
OF —– —– 0.0 —– —– 0.0 22 0.0933 1.0

100% 50% 20% 10% 5% 2% 1% 0.5% 0.2% 0.1%
Fig. 5. Example results of analytic marching after mesh simplification at different ratios. Better viewing by zooming in the electronic version.

64 128 256 512
Resolution

0.6

0.7

0.8

0.9

1.0

CD

MC(0.557@512)
GM(0.572@512)
MT(0.551@512)
DC(0.554@512)
Ours(0.551)

64 128 256 512
Resolution

0.007

0.008

0.009

0.010

0.011

EM
D

MC(0.00654@512)
GM(0.00675@512)
MT(0.00661@512)
DC(0.00662@512)
Ours(0.00655)

64 128 256 512
Resolution

0.84

0.86

0.88

0.90

0.92

Io
U

MC(0.914@512)
GM(0.901@512)
MT(0.913@512)
DC(0.914@512)
Ours(0.913)

64 128 256 512
Resolution

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

F@

MC(0.668@512)
GM(0.655@512)
MT(0.670@512)
DC(0.670@512)
Ours(0.670)

64 128 256 512
Resolution

0

25

50

75

100

125

150

175

200

Ti
m

e(
se

c.
)

MC(156@512)
GM(171@512)
MT(204@512)
DC(177@512)
Ours(2.78)

Fig. 6. Quantitative comparisons of direct shape encoding under metrics of recovery precision and inference time. For greedy meshing (GM),
marching cubes (MC), marching tetrahedra (MT), and dual contouring (DC), results under a resolution range of discrete point sampling from 643

to a GPU memory limit of 5123 are presented. Experiments are conducted on shape instances of five categories from ShapeNet, using an MLP of
depth 6 and width 60 for SDF modeling.

64 128 256 512
Resolution

3

4

5

6

7

8

CD

DC(2.62@512)
GM(3.23@512)
MC(2.61@512)
MT(2.60@512)
Ours(2.60)

64 128 256 512
Resolution

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

EM
D

DC(0.0186@512)
GM(0.0206@512)
MC(0.0186@512)
MT(0.0186@512)
Ours(0.0184)

64 128 256 512
Resolution

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Io
U

DC(0.876@512)
GM(0.736@512)
MC(0.878@512)
MT(0.878@512)
Ours(0.879)

64 128 256 512
Resolution

0.12

0.14

0.16

0.18

0.20

F@

DC(0.199@512)
GM(0.173@512)
MC(0.200@512)
MT(0.198@512)
Ours(0.198)

64 128 256 512
Resolution

0

100

200

300

400

Ti
m

e
(s

ec
.)

DC(380@512)
GM(226@512)
MC(175@512)
MT(238@512)
Ours(67.2)

Fig. 7. Quantitative comparisons of direct shape encoding under metrics of recovery precision and inference time. For greedy meshing (GM),
marching cubes (MC), marching tetrahedra (MT), and dual contouring (DC), results under a resolution range of discrete point sampling from 643 to
a GPU memory limit of 5123 are presented. Experiments are conducted on five geometrically and topologically complex shape instances, using an
MLP of depth 8 and width 60 for SDF modeling.

TABLE 4
Efficiency of parallel marching with CUDA implementation. Experiments

are conducted on a Nvidia Tesla K80 (64-bit floating point) using an
MLP of depth 6 and width 60 for SDF modeling. Results are averaged

over instances of all the five categories of ShapeNet. SGD, ST, and
DICH are the three triggering schemes discussed in Section 4.3.

Implementation of Parallel Marching Time (second)
CPU + SGD 20.8

CUDA + SGD 6.22
CUDA + DICH 2.82

CUDA + ST 2.78

algorithm works by marching along the analytic cells in the
input 3D space and exactly recovering the analytic faces. We
have proved that under mild, numerical conditions, the re-
covered analytic faces are guaranteed to connect and form a

TABLE 5
Quantitative results of mesh simplification in AnalyticMesh. Mesh
results are obtained by first fitting an MLP of depth 6 and width 60 to

each instance of the five categories of ShapeNet, and then recovering
the mesh via AM and simplifying the mesh using the corresponding

operations in AnalyticMesh. Note that the simplification is controlled
by quadric error metrics [36], and a specified ratio does not translate

exactly as a correspondingly reduced number of mesh faces.
Ratio CD ↓ EMD ↓ IoU ↑ F@τ ↑ #TriFace Mesh Size
100% 0.591 0.00703 0.906 0.666 293,627 4,161 KB
50% 0.591 0.00704 0.906 0.666 148,686 2,093 KB
20% 0.591 0.00704 0.906 0.666 59,218 835 KB
10% 0.591 0.00705 0.905 0.666 29,342 417 KB
5% 0.592 0.00713 0.905 0.665 14,762 209 KB
2% 0.594 0.00722 0.903 0.665 5,909 83.7 KB
1% 0.599 0.00730 0.901 0.664 2,964 42.0 KB

0.5% 0.608 0.00768 0.899 0.663 1,480 21.1 KB
0.2% 0.797 0.00996 0.882 0.653 586 8.54 KB
0.1% 1.59 0.0134 0.853 0.634 294 4.37 KB

15

MC64 MC128 MC256 MC512

Fig. 8. Qualitative comparisons of direct shape encoding. The shown shape instance is fitted to an MLP of depth 8 and width 60 for SDF modeling.
For greedy meshing (GM), marching cubes (MC), marching tetrahedra (MT), and dual contouring (DC), results under a resolution range of discrete
point sampling from 643 to a GPU memory limit of 5123 are presented. Better viewing by zooming in the electronic version.

TABLE 6
Quantitative comparisons between analytic marching (AM) and marching cubes (MC) in the context of learning a global model for decoding of

novel shape instances. Experiments are conducted on shape instances of five categories from ShapeNet, by training a hypernetwork that gives
weights of a light MLP with depth 6 and width 60 for SDF modeling. Results of AM are after simplification of the originally recovered meshes at a

ratio of 10%. For MC, the sampling resolutions of 3D points range from 643 to 5123.
Metric CD #TriFace Time (sec.)

Method MC64 MC128 MC256 MC512 AM MC64 MC128 MC256 MC512 AM MC64 MC128 MC256 MC512 AM
Airplane 18.0 5.00 2.91 2.86 2.86 3601 16511 70051 284293 5948 2.54 3.79 14.3 159 2.04

Chair 28.4 18.7 15.4 15.4 15.4 9850 41265 168071 677782 9465 2.58 3.86 13.1 139 2.57
Rifle 12.3 7.82 6.61 5.34 5.35 2109 8885 36183 146300 4230 2.51 3.65 13.7 157 1.72
Sofa 3.10 3.06 3.05 3.05 3.04 11860 48433 196007 788885 5214 2.59 3.99 14.9 169 1.85
Table 27.1 11.4 9.35 9.34 9.35 9692 42270 172320 695810 10157 2.69 4.28 14.2 147 2.46

closed, piecewise planar surface. Our theory and algorithm
also support advanced MLPs with shortcut connections
and max pooling. We have empirically demonstrated the
advantages of our method over existing meshing algorithms
in the contexts of either direct shape encoding or learning to
decode novel shape instances.

Our current theory and algorithm assume the MLPs

with ReLU activations. For other variants of the ReLU
family, such as leaky ReLU [53] or parametric ReLU [54],
we note that it is possible to develop the corresponding
theory based on the recent result in [55], which extends [19]
and bounds the numbers of linear regions partitioned by
general, piece-wise linear networks. For softer activations
such as Softplus [43], ELU [56], or Swish [57], one may em-

16

TABLE 7
Quantitative comparisons between analytic marching (AM) and marching cubes (MC) in the context of learning an ensemble of local decoders for

reconstructions of novel shape instances. Experiments are conducted on shape instances of five categories from ShapeNet, by training a
hypernetwork that gives weights of the ensemble for occupancy modeling; the ensemble is formed by aggregating, via max pooling, outputs of 4

subnetworks, each of which is of depth 4 and width 32. Results of AM are after simplification of the originally recovered meshes at a ratio of 10%.
For MC, the sampling resolutions of 3D points range from 643 to 5123.

Metric CD #TriFace Time (sec.)
Method MC64 MC128 MC256 MC512 AM MC64 MC128 MC256 MC512 AM MC64 MC128 MC256 MC512 AM
Airplane 2.17 0.803 0.608 0.607 0.607 4881 19626 78375 311699 6775 3.97 6.75 28.6 198 4.62

Chair 3.95 3.82 3.55 3.51 3.51 12538 47807 184007 725064 5625 3.97 6.72 27.2 186 3.61
Rifle 2.48 1.55 1.48 1.42 1.42 2683 10132 38553 150220 3609 3.91 6.57 26.8 186 3.16
Sofa 2.03 1.97 1.91 1.87 1.86 14237 52950 203497 800701 4100 3.99 6.82 28.5 195 3.49
Table 6.36 3.89 3.66 3.63 3.62 10389 43442 174667 700780 4951 4.10 7.62 34.5 247 3.71

ploy them in an asymptotic manner during training of the
implicit networks, similar to the efficient training scheme
used in Section 6.1; after training, the networks approach
ReLU based ones, whose zero-level isosurfaces can then be
recovered by analytic marching. For more general smooth
activations, including the very recent sinusoid one [18], it
remains unclear to develop their exact meshing theories.
One may consider using piecewise linear functions to ap-
proximate the smooth activations, or employing a strategy
of distillation [58] to transfer the knowledge learned in the
teacher implicit networks of general smooth activations into
the student, ReLU based ones. We leave these extended
studies as future research.

Direct shape encoding presented in Section 6.1 suggests
a possibly more compact way of coding, storing, and trans-
mitting 3D shapes as implicit surface networks, as pointed
out firstly in [42]. However, the neurally encoded shapes
in [42] are still to be decoded via meshing algorithms
such as marching cubes, which, as we have argued, would
cause loss of the precisions already encoded in the implicit
networks. As an algorithm of exact meshing, our proposed
analytic marching makes a solid step towards making im-
plicit surface networks truly as a new promise of compact
shape representations.

REFERENCES

[1] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in
ISMAR, 2011, pp. 127–136.

[2] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Levy, Polygon
Mesh Processing. CRC Press, 2010.

[3] B. Curless and M. Levoy, “A volumetric method for building
complex models from range images.” in SIGGRAPH, 1996.

[4] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Love-
grove, “Deepsdf: Learning continuous signed distance functions
for shape representation,” in CVPR, Jun 2019.

[5] Z. Chen and H. Zhang, “Learning implicit fields for generative
shape modeling,” in CVPR, 2019.

[6] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and
A. Geiger, “Occupancy networks: Learning 3d reconstruction in
function space,” in CVPR, 2019.

[7] J. F. Blinn, “A generalization of algebraic surface drawing,” in
TOG, vol. 1, no. 3, Jul. 1982, p. 235–256.

[8] H. Nishimura, M. Hirai, T. Kawai, T. Kawata, I. Shirkawa, and
K. Omura, “Object modeling by distribution function and a
method of image generation,” in Trans. Inst. Electron Commun. Eng.
Japan, vol. 68, 1985, p. 718.

[9] G. Wyvill, C. McPheeters, and B. Wyvill, “Data structure for soft
objects,” in The Visual Computer, vol. 2, Aug 1986, pp. 227–234.

[10] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,
B. C. McCallum, and T. R. Evans, “Reconstruction and represen-
tation of 3d objects with radial basis functions,” in SIGGRAPH.
Association for Computing Machinery, 2001, p. 67–76.

[11] J. C. Carr, W. R. Fright, and R. K. Beatson, “Surface interpolation
with radial basis functions for medical imaging,” in IEEE Transac-
tions on Medical Imaging, vol. 16, no. 1, 1997, pp. 96–107.

[12] G. Turk and J. F. O’Brien, “Shape transformation using variational
implicit functions,” in SIGGRAPH, 1999, p. 335–342.

[13] W. E. Lorensen and H. E. Cline, “Marching cubes: A high reso-
lution 3d surface construction algorithm,” in SIGGRAPH, vol. 21,
no. 4, Aug. 1987, p. 163–169.

[14] T. Ju, F. Losasso, S. Schaefer, and J. Warren, “Dual contouring of
hermite data,” in TOG, vol. 21, no. 3, Jul. 2002, p. 339–346.

[15] R. Kolluri, “Provably good moving least squares,” in ACM
Transactions on Algorithms, vol. 4, 2008.

[16] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in AISTATS, vol. 15, 01 2011, pp. 315–323.

[17] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman, “Implicit
geometric regularization for learning shapes,” in Proceedings of
Machine Learning and Systems, 2020, pp. 3569–3579.

[18] V. Sitzmann, J. N. Martel, A. W. Bergman, D. B. Lindell, and
G. Wetzstein, “Implicit neural representations with periodic ac-
tivation functions,” in NIPS, 2020.

[19] G. Montúfar, R. Pascanu, K. Cho, and Y. Bengio, “On the number
of linear regions of deep neural networks,” in ICANIPS, 2014.

[20] Q. Xu, W. Wang, D. Ceylan, R. Mech, and U. Neumann, “Disn:
Deep implicit surface network for high-quality single-view 3d
reconstruction,” in ICANIPS, vol. 32, 2019.

[21] A. Doi and A. Koide, “An efficient method of triangulating equiv-
alued surfaces by using tetrahedral cells,” in IEICE Transactions on
Information and Systems, vol. 74, Jan 1991.

[22] R. Pascanu, G. Montúfar, and Y. Bengio, “On the number of
response regions of deep feed forward networks with piece-wise
linear activations,” in ICLR, 2014.

[23] K. Jia, S. Li, Y. Wen, T. Liu, and D. Tao, “Orthogonal deep neural
networks,” in TPAMI, vol. 43, no. 4, 2021, pp. 1352–1368.

[24] L. Chu, X. Hu, J. Hu, L. Wang, and J. Pei, “Exact and consistent
interpretation for piecewise linear neural networks: A closed form
solution,” in ACM SIGKDD, 2018, pp. 1244–1253.

[25] J. Lei and K. Jia, “Analytic marching: An analytic meshing solution
from deep implicit surface networks,” in ICML, 2020.

[26] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry,
“A papier-mâché approach to learning 3d surface generation,” in
CVPR, Jun 2018.

[27] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang,
“Pixel2mesh: Generating 3d mesh models from single rgb im-
ages,” in ECCV, 2018.

[28] J. Tang, X. Han, J. Pan, K. Jia, and X. Tong, “A skeleton-bridged
deep learning approach for generating meshes of complex topolo-
gies from single rgb images,” in CVPR, 2019, pp. 4536–4545.

[29] J. Pan, X. Han, W. Chen, J. Tang, and K. Jia, “Deep mesh re-
construction from single rgb images via topology modification
networks,” in ICCV, 2019, pp. 9964–9973.

[30] P. Orlik, H. Terao, M. Berger, B. Eckmann, and S. Varadhan,
Arrangements of Hyperplanes, ser. Grundlehren der mathematischen
Wissenschaften: a series of comprehensive studies in mathematics.
U.S. Government Printing Office, 1992.

[31] T. Zaslavsky, “Facing up to arrangements: Face-count formulas
for partitions of space by hyperplanes,” in Memoirs of the American
Mathematical Society. American Mathematical Society, 1975.

[32] A. Gorban and I. Tyukin, “Blessing of dimensionality: Mathemat-
ical foundations of the statistical physics of data,” in Philos. Trans.
R. Soc. A, vol. 376, Mar 2018.

17

[33] D. Avis and K. Fukuda, “A pivoting algorithm for convex hulls
and vertex enumeration of arrangements and polyhedra,” in An-
nual Symposium on Computational Geometry, 1991, p. 98–104.

[34] J. Hart, “Sphere tracing: a geometric method for the antialiased
ray tracing of implicit surfaces,” in The Visual Computer, 1996.

[35] S. Russ, “A translation of bolzano’s paper on the intermediate
value theorem,” Historia Mathematica, vol. 7, pp. 156–185, 1980.

[36] M. Garland and P. S. Heckbert, “Surface simplification using
quadric error metrics,” in SIGGRAPH, 1997, p. 209–216.

[37] G. Guennebaud and M. Gross, “Algebraic point set surfaces,” in
SIGGRAPH, 2007.

[38] P. Liepa, “Filling holes in meshes,” in Eurographics Symposium on
Geometry Processing. The Eurographics Association, 2003.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016, pp. 770–778.

[40] Z. Chen, K. Yin, M. Fisher, S. Chaudhuri, and H. Zhang, “Bae-net:
Branched autoencoder for shape co-segmentation,” in ICCV, 2019.

[41] E. Tretschk, A. Tewari, V. Golyanik, M. Zollhöfer, C. Stoll, and
C. Theobalt, “Patchnets: Patch-based generalizable deep implicit
3d shape representations,” in ECCV, 2020.

[42] T. Davies, D. Nowrouzezahrai, and A. Jacobson, “On the ef-
fectiveness of weight-encoded neural implicit 3d shapes,” in
arXiv:2009.09808, 2021.

[43] M. Lange, D. Zühlke, O. Holz, and T. Villmann, “Applications
of lp-norms and their smooth approximations for gradient based
learning vector quantization,” in ESANN, 2014.

[44] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “Pointnet: Deep
learning on point sets for 3d classification and segmentation,” in
CVPR, 2017, pp. 77–85.

[45] G. Littwin and L. Wolf, “Deep meta functionals for shape repre-
sentation,” in ICCV, Oct 2019.

[46] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and
F. Yu, “Shapenet: An information-rich 3d model repository,” in
arXiv:1512.03012, 2015.

[47] The stanford 3d scanning repository. [Online]. Available:
http://graphics.stanford.edu/data/3Dscanrep/

[48] Artec3d. [Online]. Available: https://www.artec3d.com/
[49] Free3d. [Online]. Available: https://free3d.com/
[50] H. Xu and J. Barbič, “Signed distance fields for polygon soup

meshes,” in Proceedings of Graphics Interface, 2014, p. 35–41.
[51] F. S. Sin, D. Schroeder, and J. Barbic, “Vega: Non-linear fem

deformable object simulator,” in Computer Graphics Forum, 2013.
[52] M. Douze, J.-S. Franco, and B. Raffin, “Quickcsg: Fast arbitrary

boolean combinations of n solids,” in arXiv:1706.01558, 2017.
[53] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities

improve neural network acoustic models,” in ICML, 2013.
[54] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:

Surpassing human-level performance on ImageNet classification,”
in ICCV, 2015, pp. 1026–1034.

[55] Q. Hu, H. Zhang, F. Gao, C. Xing, and J. An, “Analysis on the
number of linear regions of piecewise linear neural networks,” in
IEEE Trans. Neural Netw. Learn. Syst, 2020, pp. 1–10.

[56] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” in ICLR,
2016.

[57] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” in ICLR, 2018.

[58] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” in NIPS Workshop, 2015.

Jiabao Lei is currently working toward the mas-
ter degree in the School of Electronic and In-
formation Engineering, South China University
of Technology, Guangzhou, China. Recently his
research interests mainly include 3D geometric
representation and surface reconstruction in the
field of deep learning.

Kui Jia received the Ph.D. degree in computer
science from the Queen Mary University of Lon-
don, London, U.K., in 2007. He was with the
Shenzhen Institute of Advanced Technology of
the Chinese Academy of Sciences, Shenzhen,
China, Chinese University of Hong Kong, Hong
Kong, the Institute of Advanced Studies, Uni-
versity of Illinois at Urbana-Champaign, Cham-
paign, IL, USA, and the University of Macau,
Macau, China. He is currently a Professor with
the School of Electronic and Information Engi-

neering, South China University of Technology, Guangzhou, China,
and is the Director of Geometric Perception and Intelligence Research
Lab. His recent research focuses on theoretical deep learning and its
applications in vision and robotic problems, including deep learning of
3D data and deep transfer learning. He has been serving as Associate
Editors for TIP and TSMC.

Yi Ma received the bachelor’s degree in automa-
tion and applied mathematics from Tsinghua
University, Beijing, China, in 1995, and the mas-
ter’s degree in EECS and mathematics and the
Ph.D. degree in EECS from the University of
California at Berkeley, Berkeley, in 2000. From
2000 to 2011, he has served on the Faculty
of the ECE Department, University of Illinois
at Urbana–Champaign. From 2009 to 2014, he
has served as a Principal Researcher and a
Research Manager for the Visual Computing

Group, Microsoft Research Asia, Beijing, China. From 2014 to 2017,
he was a Professor and the Executive Dean of the School of Information
Science and Technology, ShanghaiTech University, China. Since Jan-
uary 2018, he has been with the Faculty of the EECS Department,
University of California at Berkeley. He has written two textbooks An
Invitation to 3D Vision (Springer) and Generalized Principal Component
Analysis (Springer). He is a fellow of ACM. He has received best paper
awards from ICCV, ECCV, and ACCV. He received the CAREER Award
from the NSF and the YIP Award from the ONR. He has served as an
Associate Editor for IJCV, SIIMS, SIMODS, the IEEE TRANSACTIONS
ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI), and
the IEEE TRANSACTIONS ON INFORMATION THEORY.

http://graphics.stanford.edu/data/3Dscanrep/
https://www.artec3d.com/
https://free3d.com/

18

APPENDIX A
PROOF OF THEOREM 6

Proof. Since F = f ◦ T is constructed from a ReLU based
MLP T , its zero-level isosurface Z is piecewise planar. The
proof proceeds by first showing that each planar face on
Z uniquely corresponds to an analytic face in an analytic
cell, and then showing that for any pair of planar faces
connected on Z (since Z is closed by assumption), their
corresponding analytic faces are connected via boundaries
of their respective analytic cells.

Let P1 denote a planar face on the surface Z , and n1 ∈
R3 be its normal. We have n>1 x = 0 ∀ x ∈ P1. Equation (11)
tells that n1 must be proportional at least to one of {arF |r ∈
R}. By the unique plane condition, i.e., each of {arF |r ∈ R}
is uniquely defined, we have n1 ∝ ar1>F of a certain region
r1. Assume r1 is not an analytic cell, which suggests that
there exists no intersection between ar1F and r1 and we have
ar1F x = n>1 x 6= 0 for all x ∈ r1, and thus P1 ∧ r1 = ∅; it
suggests that the normal n1 of P1 is induced in a different
region r′1 by n1 ∝ a

r′1
F = w>f T

r′1 , which contradicts with
the assumed unique plane condition. We thus have that r1
must be an analytic cell.

Let n1 ∝ ar̃1>F of a certain analytic cell r̃1 ∈ R̃ (or C r̃1F),
and we have the analytic face P r̃1F ⊆ P1. Assume there exist
P1 − P r̃1F = {x ∈ Z|x ∈ P1,x /∈ P r̃1F }, which means that
for any x ∈ P1 − P r̃1F , it resides in an analytic face P r̃

′
1

F

of a different cell C r̃
′
1

F ; since x ∈ P1, we have n1 ∝ a
r̃′1>
F

and thus ar̃1F ∝ a
r̃′1
F , which contradicts with the unique

plane condition of ar̃1F 6∝ a
r̃′1
F . We thus have P1 = P r̃1F and

P1 ⊂ C r̃1F . By the definition (15) of analytic face, the above
argument also tells that planar faces on Z and analytic faces
{C r̃F |r̃ ∈ R̃} are one-to-one corresponded.

Assume P1 connects with another planar face P2 on a
shared edge segment E = {x ∈ Z|x ∈ P1,x ∈ P2}.
Define the normal of P2 as n2 ∈ R3, we have n1 6∝ n2.
Let P2 ⊂ C r̃2F , and we thus have E ⊂ C r̃1F and E ⊂ C r̃2F ,
which tells that the two cells C r̃1F and C r̃2F connect at least
on E . Due to the monotonous and convex nature of linear
analytic cells {C r̃F |r̃ ∈ R̃}, E must be on the boundaries of
both C r̃1F and C r̃2F , and the boundaries of C r̃1F and C r̃2F share
at least on E . There exist two cases for the connection of
cell boundaries on E : 1) in the general case, C r̃1F and C r̃2F
share a boundary Br̃1r̃2F defined by a hyperplane H r̃1r̃2

lk =
{x ∈ R3|ar̃1r̃2lk x = 0}, and we have E ∈ Br̃1r̃2F , which,
based on Corollary 5 and Definition 2, suggests that the two
cells have a switching neuron state slk(x) ∀ x ∈ Br̃1r̃2F , and
consequently a switching neuron state slk(x) ∀ x ∈ E ; 2) in
some rare case, E coincides with a cell edge of C r̃1F defined
by {x ∈ R3|ar̃1l1k1x = 0,ar̃1l′1k′1

x = 0}, and a cell edge of
C r̃2F defined by {x ∈ R3|ar̃2l2k2x = 0,ar̃2l′2k′2

x = 0}, and it is
not necessary that l1k1 and l2k2 specify the same neuron,
and l′1k

′
1 and l′2k

′
2 specify another same neuron. Due to a

phenomenon similar to the blessing of (high) dimensionality
[32], the second case of coincidence is expected to happen
with a low probability. In any of the two cases, the bound-
aries C r̃1F and C r̃2F respectively associated with P1 and P2

connect on E .
Since for any pair of planar faces P1 and P2 connected

on Z , we prove that they are uniquely corresponded to a
pair of analytic faces P r̃1F and P r̃2F , which are polygon faces
connected via boundaries of their respective analytic cells
C r̃1F and C r̃2F . The theorem is proved.

APPENDIX B
ALGORITHMIC DETAILS OF PIVOTING ENUMERA-
TION

In this section, we present the Algorithm 2 of pivoting
enumeration that greatly improves the efficiency of analytic
marching.

APPENDIX C
ADDITIONAL RESULTS OF THE RICHLY DETAILED
DATASET

We show additional results of direct shape encoding for the
Richly Detailed (RD) dataset in Fig. 9.

APPENDIX D
QUALITATIVE RESULTS OF NOVEL SHAPE RECON-
STRUCTIONS

We present in Fig. 10 and Fig. 11 the qualitative results of
analytic marching respectively by learning a global decoder
or an ensemble of local decoders for reconstruction of novel
shapes. Quantitative results are respectively presented in
Section 7.3 and Section 7.4 in the main text.

19

MC64 MC128 MC256 MC512

Fig. 9. Qualitative comparisons of direct shape encoding. The shown shape instances are fitted to an MLP of depth 8 and width 60 for SDF modeling.
For greedy meshing (GM), marching cubes (MC), marching tetrahedra (MT), and dual contouring (DC), results under a resolution range of discrete
point sampling from 643 to a GPU memory limit of 5123 are presented.

20

Input PC MC64 MC128 MC256 MC512 Ours GT

Fig. 10. Qualitative comparisons between analytic marching (AM) and marching cubes (MC) in the context of learning a global model for decoding
of novel shape instances. Experiments are conducted on shape instances of five categories from ShapeNet, by training a hypernetwork that gives
weights of a light MLP with depth 6 and width 60 for SDF modeling. We show an example from each of the five categories. Results of AM are after
simplification of the originally recovered meshes at a ratio of 10%. For MC, the sampling resolutions of 3D points range from 643 to 5123.

Input PC MC64 MC128 MC256 MC512 Ours GT

Fig. 11. Qualitative comparisons between analytic marching (AM) and marching cubes (MC) in the context of learning an ensemble of local decoders
for reconstructions of novel shape instances. Experiments are conducted on shape instances of five categories from ShapeNet, by training a
hypernetwork that gives weights of the ensemble for occupancy modeling; the ensemble is formed by aggregating, via max pooling, outputs of 4
subnetworks, each of which is of depth 4 and width 32. We show an example from each of the five categories. Results of AM are after simplification
of the originally recovered meshes at a ratio of 10%. For MC, the sampling resolutions of 3D points range from 643 to 5123. Different colors indicate
the shape components recovered by individual subnetworks.

21

Algorithm 2 Pivoting enumeration in analytic marching.

INPUT: A point x ∈ P r̃F ; a hyperplane H r̃
lk ∈ {H r̃

lk} that is
a true boundary of the working cell C r̃F .
OUTPUT: A set V r̃P of ordered vertices.

1: Establish an index set I r̃ = {(l1, k1), . . . , (lN , kN)} by
sorting, in an increasing order, the Euclidean distances
from each of the N hyperplanes in {H r̃

lk} to the point
x ∈ P r̃F , where N = n1 + · · · + nL is the total number
of neurons in T .

2: Introduce the auxiliary t, t′, t′′ ∈ N; use (lt, kt) to
index the firstly identified boundary plane H r̃

lk,
written as H r̃

ltkt
(this same boundary is denoted as

(l∗, k∗) and H r̃
l∗k∗

for a later reference). Let I r̃/t =
{(l1, k1), . . . , (lt−1, kt−1), (lt+1, kt+1), . . . , (lN , kN)},
and I r̃/t′/t = {(l1, k1), . . . , (lt′−1, kt′−1), (lt′+1, kt′+1),
. . . , (lt−1, kt−1), (lt+1, kt+1), . . . , (lN , kN)}.

3: Initialize V r̃P = ∅ and t′′ = 1.
4: while V r̃P = ∅ do
5: Solve the system of equations [ar̃ltkt ;a

r̃
lt′′kt′′

;ar̃F]x =

0 to have a vertex candidate v ∈ R3.
6: if v satisfies condition (13) then
7: Push v into V r̃P .
8: Update (lt′ , kt′) = (lt, kt).
9: Update (lt, kt) = (lt′′ , kt′′).

10: else
11: Update t′′ ← t′′ + 1 upon (lt′′+1, kt′′+1) ∈ I r̃/t or

t′′ ← t′′ + 2 upon (lt′′+2, kt′′+2) ∈ I r̃/t .
12: end if
13: end while
14: while true do
15: Solve the system of equations [ar̃ltkt ;a

r̃
lt′′kt′′

;ar̃F]x =

0 to have a vertex candidate v ∈ R3.
16: if v satisfies condition (13) then
17: Push v into V r̃P .
18: if (lt′′ , kt′′) indexes H r̃

l∗k∗
then

19: break
20: else
21: Update (lt′ , kt′) = (lt, kt).
22: Update (lt, kt) = (lt′′ , kt′′).
23: Update I r̃/t′/t = {(l1, k1), . . . , (lt′−1, kt′−1),

(lt′+1, kt′+1), . . . , (lt−1, kt−1), (lt+1, kt+1), . . . ,
(lN , kN)}.

24: Reset t′′ = 1.
25: end if
26: else
27: Update t′′ ← t′′ + 1 upon (lt′′+1, kt′′+1) ∈ I r̃/t′/t

or t′′ ← t′′ + 2 upon (lt′′+2, kt′′+2) ∈ I r̃/t′/t .
28: end if
29: end while

	1 Introduction
	1.1 Relations with the Literature
	1.2 Contributions

	2 Problem Statement and Motivation
	2.1 Polygon Mesh as a Piecewise Linear Surface Representation
	2.2 The Local Linearity of Multi-Layer Perceptrons
	2.3 Motivation to Connect the Local Linearities of the Two Worlds

	3 Analytic Meshing from Deep Implicit Surface Networks
	3.1 Analytic Cells and Analytic Faces Associated with a Deep Implicit Surface Network
	3.2 A Closed Mesh via Connected Analytic Faces in Analytic Cells

	4 Practical and Efficient Implementations of the Analytic Marching Algorithm
	4.1 The Algorithm of Analytic Marching
	4.1.1 Analysis of Computational Complexity

	4.2 Efficient Implementations
	4.2.1 Pivoting Enumeration in a Working Cell
	4.2.2 Parallel Marching with CUDA Implementation

	4.3 Customized Schemes for Triggering the Algorithm
	4.3.1 Sphere Tracing-based Triggering for SDF
	4.3.2 Dichotomy-based Triggering for Occupancy Field

	4.4 Postprocessing for Mesh Simplification

	5 Extensions to Other Architectures
	5.1 Multi-Layer Perceptrons with Shortcut Connections
	5.2 Max pooling as a Final Aggregation of Deep Implicit Surface Networks

	6 Learning Implicit Surface Networks for Generative Shape Modeling
	6.1 Learning as a Direct Shape Encoding
	6.2 Global Decoding for Reconstruction of Novel Surface Shapes
	6.3 Improved Reconstruction via an Ensemble of Local Decoders

	7 Experiments
	7.1 Analysis of Analytic Marching
	7.2 Direct Shape Encoding
	7.3 Global Learning for Novel Shape Reconstruction
	7.4 Novel Shape Reconstruction by Learning an Ensemble of Local Decoders

	8 Conclusion and Future Research
	References
	Biographies
	Jiabao Lei
	Kui Jia
	Yi Ma

	Appendix A: Proof of Theorem 6
	Appendix B: Algorithmic Details of Pivoting Enumeration
	Appendix C: Additional Results of the Richly Detailed Dataset
	Appendix D: Qualitative Results of Novel Shape Reconstructions

