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Semantics-Guided Contrastive Network for
Zero-Shot Object Detection

Caixia Yan, Xiaojun Chang, Minnan Luo, Huan Liu, Xiaoqin Zhang, and Qinghua Zheng

Abstract—Zero-shot object detection (ZSD), the task that extends conventional detection models to detecting objects from unseen
categories, has emerged as a new challenge in computer vision. Most existing approaches tackle the ZSD task with a strict
mapping-transfer strategy that may lead to suboptimal ZSD results: 1) the learning process of these models neglects the available
semantic information on unseen classes, which can easily bias towards the seen categories; 2) the original visual feature space is not
well-structured for the ZSD task due to the lack of discriminative information. To address these issues, we develop a novel
Semantics-Guided Contrastive Network for ZSD, named ContrastZSD, a detection framework that first brings contrastive learning
mechanism into the realm of zero-shot detection. Particularly, ContrastZSD incorporates two semantics-guided contrastive learning
subnets that contrast between region-category and region-region pairs respectively. The pairwise contrastive tasks take advantage of
supervision signals derived from both the ground truth label and class similarity information. By performing supervised contrastive
learning over those explicit semantic supervision, the model can learn more knowledge about unseen categories to avoid the bias
problem to seen concepts, while optimizing the visual data structure to be more discriminative for better visual-semantic alignment.
Extensive experiments are conducted on two popular benchmarks for ZSD, i.e., PASCAL VOC and MS COCO. Results show that our
method outperforms the previous state-of-the-art on both ZSD and generalized ZSD tasks.

Index Terms—Object detection, zero-shot learning, zero-shot object detection, supervised contrastive learning.

1 INTRODUCTION

B ECAUSE of its importance to image understanding and
analysis, object detection has received increasing atten-
tion in recent years [1f], [2], [3], [4]. With the impressive
development of deep learning, a surge of novel detection
models built upon deep Convolutional Neural Networks
(CNNs) have been developed in recent years, pushing the
detection performance forward remarkably [5], [6], 7], [8],
[9]. The most state-of-the-art object detection models follow
a region proposal based paradigm [1], [10], [11]], [12], which
detect objects by 1) first generating region proposals as
candidates that might have objects within them, and 2)
then performing bounding box regression and classification
simultaneously on each proposal. Despite their efficacy,
the detection performance of these methods purely relies
on the discriminative capabilities of region features, which
often depends on sufficient training data with complete
annotations for each category. However, labeling for object
detection, which requires a pair of a class label and a
bounding box location for each object within each image, is
both prohibitively costly and labor-intensive. Furthermore,
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even if all the data samples can be well annotated, we still
face the problem of data scarcity, due to the fact that novel
categories (e.g., rare animals) are constantly emerging in
practical scenarios [13]. In such a scenario, the traditional
object detection models often become infeasible because
scarce or even no visual data from those novel categories is
available for model training. The above mentioned issues,
namely the burden of manual labelling and the problem
of data scarcity, lead us to investigate the detection task
with additional source of complexity, i.e., zero-shot object
detection (ZSD).

Recently, preliminary efforts have been put into the
study of zero-shot object detection (ZSD) [14], [15], [16],
[17], [18], [19]. Most of these methods are based on a strict
mapping-transfer strategy that tackles the ZSD task with
a two-stage pipeline. Specifically, at the training stage, a
mapping function is learned to project the visual features
and semantic vectors from seen classes to a joint embedding
space. In the embedding space, the visual features can be
compared directly with class embeddings using a compati-
bility function, which requires the score for the correct class
is higher than that for all the incorrect classes. At the testing
stage, the mapping function learned on labeled visual data
from seen classes is directly applied to project the visual
features and semantic representations of the unseen classes
into the joint embedding space, followed by nearest neigh-
bor (NN) search for unseen class label prediction.

However, since the learning process of these models
merely relies on the visual data and class embeddings from
seen categories, the output nodes corresponding to unseen
classes are always inactive during learning. As a result, the
learned model can easily bias towards the seen categories,
leading to limited transferable ability of the model [20],
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Fig. 1. lllustration of (a) the conventional embedding function based
ZSD methods that rely on node-to-node projection (black dotted arrows),
where s; and u; refer to seen and unseen classes respectively, and (b)
the proposed ContrastZSD improves the projection with different con-
trastive learning strategies (red and blue arrows) under the guidance of
class labels (e.g., s1, s2, s3) and class similarities (e.g., m11, ma1, m31)
for better visual-semantic alignment.

[21], [22]. Especially in the more challenging generalized
zero-shot object detection (GZSD) setting, where the test
samples may come from either seen or unseen classes, the
bias problem would degrade the performance significantly.
The objects from unseen categories tend to be recognized
as seen class objects at the test stage. Additionally, the
discriminative ability of visual features, which has been
ignored by most previous methods, is proved to be bene-
ficial for enhancing the ZSD/GZSD performance [23]. We
have noted that the conventional mapping-transfer based
ZSD methods are directly performed on the visual features
extracted from pre-trained backbone networks. However,
those high-dimensional visual features are far from the
semantic information and thus are lack of discriminative
ability. Thus, directly aligning the original visual features
with the semantic information is suboptimal for ZSD. Tak-
ing both the model’s bias problem and indistinctive visual
space into consideration, a simple node-to-node projection
across different spaces, as shown in Fig. may not align
the visual features and semantic embeddings well.

In this paper, we develop a semantics-guided contrastive
network, namely ContrastZSD, that seeks to optimize the
visual feature distribution and simultaneously alleviate the
bias problem for improved zero-shot detection. Particularly,
instead of adopting the commonly-used mapping-transfer
strategy, we develop a mapping-contrastive strategy for the
proposed ContrastZSD model. Equipped with the similar
region feature encoding network as Faster R-CNN, Con-
trastZSD first extracts global feature maps from the input
images via CNN backbone, then produces region propos-
als in an objectiveness manner using the region proposal
network (RPN). Subsequently, both the region features and
semantic embeddings are mapped to a joint embedding
space for visual-semantic alignment. Unlike most existing
works on ZSD that learn projection function from visual to
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semantic space, a common intermediate embedding space
is learned in ContrastZSD, making it possible to adjust
the data structures of both semantic vectors and visual
features. As illustrated in Fig. when mapping the
region features and semantic embeddings to the common
space, ContrastZSD incorporates two semantics-guided con-
trastive learning subnets for better visual-semantic match-
ing: 1) Region-category contrastive learning (RCCL) subnet,
which is the key component that endows our model with
the ability of detecting unseen objects. This subnet employs
a two-path learning mechanism to contrast seen region pro-
posals with both seen and unseen class embeddings. Both
the unseen class embeddings and unseen class similarity
information can be effectively utilized in the training pro-
cess, thereby alleviating the bias problem to seen categories,
and 2) Region-region contrastive learning (RRCL) subnet,
which regulates the visual feature distribution to be more
discriminative by resorting to the class label information.
Specifically, this subnet contrasts between different region
proposals in order to distinguish positive samples from
a large number of negative samples, resulting in higher
intra-class compactness and inter-class separability of the
visual structure. To optimize the proposed deep network,
we design a novel multi-task loss that includes both the
classification, bounding box regression and contrastive loss.
Our main contributions are summarized below:

o We develop a novel semantics-guided contrastive net-
work for ZSD, underpinned by a new mapping-
contrastive strategy superior to the conventional
mapping-transfer strategy. To the best of our knowl-
edge, this is the first work that applies contrastive
learning mechanism for ZSD.

e The proposed deep model incorporates both region-
category and region-region contrastive learning to bet-
ter align the region features and the corresponding
semantic descriptions.

o In order to perform contrastive learning in a supervised
paradigm, we design novel contrastive losses super-
vised by explicit semantic information to guarantee
both the discriminative and transferable property of the
proposed ZSD model.

o We evaluate the proposed model on two popular object
detection datasets, i.e., PASCAL VOC and MS COCO.
The experimental results show that our method per-
forms favorably against the state-of-the-art approaches
over both the ZSD and GZSD task.

2 RELATED WORKS

In this section, we briefly review the related works on the
fields relevant to our study: object detection, zero-shot learn-
ing, zero-shot object detection and supervised contrastive
learning.

Object detection. As one of the most important tasks in
computer vision, object detection has received considerable
attention and experienced significant development in the
past decade. Modern object detection models can be roughly
categorized into two groups. One follows the conventional
two-stage detection pipeline, namely region proposal based
methods. They first generate all possible regions of interest,



then pass the region proposals to the down-stream task-
specific layers for classification and box regression. The
region proposal based methods mainly include Faster R-
CNN [24], R-ECN [3], FPN [25], SPP-net [26] and Mask R-
CNN [6]. The other popular group, referred as one-stage
detection models, adopts a single-step regression pipeline
to map straightly from image pixels to bounding box co-
ordinates and class probabilities. The most representative
methods in this group include SSD [27], YOLO [28], FCOS
[7] and RetinaNet [29]. Despite the empirical success on
object categories with sufficient training data, these methods
are unable to deal with the detection problem on novel
concepts without training samples. In general, one-stage
methods with a simple single-step pipeline enjoy reduced
time expense, but typically achieve lower accuracy rates
than region proposal based methods. Thus, we here focus
on tackling the ZSD problem with region proposal based
detection models due to their high performance.

Zero-Shot Learning. The previous research literature on
zero-shot learning exhibits great diversity, such as learning
independent attribute classifiers [30], [31]], [32], [33]I, [34],
learning embedding functions [35], [36], [37], [38] and gen-
erative adversarial networks based methods [39], [40]. In
this section, we focus on the embedding based methods
that are the most relevant to ours. The key idea of those
methods is to learn an embedding function that maps the
semantic vectors and visual features into an embedding
space, where the visual features and semantic vectors can be
compared directly. Embedding based ZSL methods differ in
what embedding space is employed, which can be broadly
divided into three types: learning a common embedding
space for visual space and semantic space [35], [36], learning
an embedding from visual space to semantic space [37], [38],
[41], [42], and learning an embedding from semantic space
to visual space [43]. Among those embedding strategies, the
common intermediate embedding space makes it possible
to adjust data structures of both semantic vectors and vi-
sual features [44]. Thus, the common intermediate space is
employed in our work.

Zero-Shot Object detection. ZSD is a recently introduced
task in [15] and still remains under-explored in the computer
vision literature. Most existing methods on ZSD focus on
learning an embedding function from visual to semantic
space [14], [15], [16], [17], [18]. For example, Rahman et al.
[15] developed a Faster R-CNN based semantic alignment
network with a novel semantic clustering loss for ZSD.
Considering the ambiguous nature of background class in
ZSD, Bansal et al. [14] designed several background-aware
detectors to address the confusion between unseen and
background objects using external annotations. Demirel et
al. [18] developed a hybrid region embedding model that
joins a convex combination of semantic embeddings with
an object detection framework. Apart from those visual-to-
semantic mapping methods, there also exist some methods
that learn a common space between visual space and se-
mantic space [17] or learn an embedding from semantic to
visual space [45], [46]. Despite their efficacy, all of these
methods fail to consider the two key factors that impair
the ZSD performance, i.e., the model’s bias problem to seen
classes and the indistinctive visual space. To alleviate these
issues, the proposed model goes further to bring contrative
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learning mechanism into the realm of ZSD, allowing for
further improvement of ZSD performance.

Contrastive Learning. Contrastive learning, which can be
considered as learning by comparing, has achieved signif-
icant advancement in self-supervised representation learn-
ing [47], [48], [49], [50]. Recently, a trend has emerged of
leveraging contrastive learning to facilitate self-supervised
computer vision tasks [51], [52], [53]. First, a number of pos-
itive/negative samples are usually created for each anchor
image through data augmentation. Then, contrastive learn-
ing is performed between positive and negative pairs of
images against each other, with the objective of pulling the
representation of “similar” samples together and pushing
that of “dissimilar” samples further away in the embedding
space. However, contrastive learning used in those self-
supervised algorithms fails to consider the high-level class
semantics since they assign only the augmented view for
each image. For this issue, a few approaches have been
proposed to leverage human-annoted labels, which has been
shown to be more robust to corruption. For example, Khosla
et al. [54] directly used class labels to define similarity,
where samples from the same class are positive and samples
from different classes are negative samples. Majumder et
al. [55] devised few-shot learning with Instance discrim-
ination based contrastive learning in a supervised setup.
Inspired by the success of these methods, we first introduce
contrastive learning mechanism to ZSD, and develop two
contrastive learning subnets that utilize high-level semantic
information as additional supervision signals.

3 THE PROPOSED METHOD

This section begins with the problem setting of ZSD in
Section 3.1. Section 3.2 describes the overall model frame-
work. Next, we introduce the semantics-guided contrastive
learning subnets in Section 3.3. Finally, Section 3.4 discusses
the training and inference details of the proposed network.

3.1 Problem Formulation

Notations. In the framework of ContrastZSD, we denote the
set of all classes as ) = Y/ U {yo}, where J/ denotes the
set of all foreground classes and yy refers to the background
class. More specifically, V¥ canbe decomposed into two dis-
joint subsets, i.e., yi=ysyyu (Y*NY* = @), where Y° =
{y17y2> T ayns} and V" = {yns+17yns+27 T >yns+nu} de-
note the set of seen and unseen classes respectively. Given
all the classes defined above, the whole label space turns
to be YV = {v0,¥1,¥2, " ,Yn.+n, With the cardinality
being n. = mns + n, + 1. Inspired by previous works
on ZSL, each foreground class in ) can be represented
by a d.-dimensional semantic embedding generated in an
unsupervised manner from external linguistic sources, such
as Word2Vec [56] or Glove [57]. Considering the ambiguous
nature of the background class, it's unfeasible to learn a
fixed class embedding from off-the-shelf linguistic sources
for it. In order to reduce the confusion between the back-
ground and unseen objects, we follow the Background
Learnable RPN developed in [58] to learn a discriminative
semantic vector aq for the background class yo. We denote
A = [ay,,ay,,ay,,...,a,, | €R"*% as the matrix that



collects the semantic embeddings of all the categories; here,
a,, refers to the label embedding of class y; in V.
Category Similarity. To allow for semantic relation guided
knowledge transfer, we further introduce a class similarity
matrix S = [Sg,S1,...,Sn.4n,] € R" "™, where s; =
{sij} € R™ is the i-th row vector of S that characterizes
the unseen distribution of the i-th class in YV; s;; is the j-th
element of s;. Specifically, for each seen category y; € V?,
its semantic relation to unseen class y; € J* is obtained
by computing the cosine similarity of their corregpqglding
. . . y; Ay
semantic embeddings a,, and a,,, ie., s;; = m
All the similarity values corresponding to a seen category
are squashed by Softmax to acquire unseen probabilities.
For each unseen class y; € V", its unseen distribution is set
as a one-hot vector s; € {0,1}" with s;; = 0(j # i) and
si;; = 1, while the unseen distribution of background class
Yo is set as zero vector, i.e., sg = 0 € R"™=.
Task Definition. Assuming an image set X’ that includes n
images about ns+n,, object categories is provided for detec-
tion. Each image in X’ consists of several objects with boxes
B = {b;}}r, and ground truth labels {c;};",, where n, is
the number of boxes; b; = (x4, y;, w;, h;) is the i-th object
box with ¢; being the ground truth label. More specifically,
X is composed of two subsets, i.e., {X", X¢}, where X"
and X' correspond to the training and testing image set re-
spectively. The training image set X" = {x1, 22, -+ ,Zp,, }
collects n;, labeled visual data that contain only objects
from seen categories )°, while the images in testing set
X = {Zp, +1,Tnyt2, s Tny+n,. | contain objects be-
longing to testing categories }'“. Notably, the definition of
testing category set V' depends on the task settings, where
Yte = YU for ZSD and V¢ = YUY for GZSD respectively.
Under the guidance of the common semantics among seen
and unseen classes, i.e., A and S, our ContrastZSD model
is trained on the seen object annotations over the training
set X", with the objective of generalizing to the detection
of unseen objects in X*¢. Specifically, for each test image
in X', the task of ZSD or GZSD is to recognize all the
foreground objects in the image that belong to the testing
categories yte and simultaneously localize their bounding
box coordinates.

3.2 Model Architecture

In this section, we systematically introduce the overall ar-
chitecture of the proposed ContrastZSD, including region
feature encoding subnet, bounding box regression subnet
and visual-semantic alignment subnet. The overall frame-
work of ContrastZSD is shown in Fig. 2| Here, we elaborate
each subnet in detail.

3.2.1 Region Feature Encoding Subnet

CNN Backbone. Given an arbitrary image as input, the
CNN backbone network produces intermediate convolu-
tional activations as image-level feature map. In our work,
the basic architecture of the CNN backbone is ResNet
composed of four convolutional blocks (convl to conv4)
[59], where the output of conv4 module is regarded as
the global feature map of input image. Taking a RGB im-
age with dimension R3*#*W ag input, the output of the
CNN backbone network is a feature map with dimension
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R1024% 16 15, where H and W denote the height and width
of the input image respectively with the output channel
being 1024. Subsequently, the image-level feature maps will
be fed into the region proposal network to generate regions
of interest (Rols) and object-level features.

Region Proposal Network (RPN). Taking the image’s global
feature map as input, the RPN first generates k£ anchor boxes
at each sliding window location of the feature map. Specifi-
cally, we set k as 9 in our work, and thus the total number of
anchor boxes is 9 x 1% X TVZ' Then, all the anchor boxes are fed
into two modules: (1) the classification module scores each
proposal as either an object (positive anchor) or background
(negative anchor); (2) the box regression module predicts the
coordinate offsets for each region proposal. Next, it ranks
the positive anchors at each sliding window location, then
generates a set of candidate object proposals (Rols) after ap-
plying the predicted offsets, denoted as R = {r;}}",. Since
the top ranking candidate proposals can be of variable sizes,
a Rol-pooling layer is further applied to project the visual
features of varying-sized proposals to fixed-dimensional
representations. We denote F = [}, f5,...,f, ] € R™*% ag
the feature representation matrix corresponding to R, where
f; refers to the visual feature of proposal ; with d, being the
feature dimension. The subsequent parts of the model aim to
construct an effective zero-shot detector using the extracted
region features and class semantics.

3.2.2 Visual-Semantic Alignment Subnet

Mapping-Transfer Strategy. Most existing methods on ZSD
are based on a strict mapping-transfer strategy, where the
mapping function is learned on seen classes then transferred
directly to unseen classes. The mapping function connects
the visual features and auxiliary semantic descriptions by
projecting them into a joint embedding space, such that they
can be compared directly. The space spanned by semantic
embeddings is often chosen as the embedding space in
previous works [14], [15], [17]. After projecting the extracted
visual region features to semantic space, a compatibility
function S (W;)r f;,a,;) is employed to measure the match-
ing degree between the projected proposal r; and class y;,
where W, € R4 *dc i the trainable weight matrix of the
projection layer. The mapping function is usually trained by
standard cross entropy loss or max-margin loss to facilitate
the separation between ground truth class and the rest
classes [18], [60].

At the testing stage, the model trained on seen classes
is directly generalized to the detection of unseen objects.
Given a test sample r, the label prediction is performed by
simply selecting the most matching unseen category in the
embedding space, i.e.,

y* = arg nax, S(VV;f7 ay, ), 1)
where f € R?% denotes the visual feature of test sample 7.

The key to these methods is learning an exact projec-
tion by tightly mapping labeled visual data to their cor-
responding seen classes. We conjecture that such a strict
projection constraint can easily bias the learning process
towards seen categories, and thus sacrifice the model’s gen-
eralization ability to unseen classes. Moreover, the visual-
semantic projection tends to be suboptimal for the ZSD task,
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Fig. 2. lllustration of the proposed ContrastZSD framework. First, the region feature encoding network takes raw images as input to produce region
proposals and object-level visual features, followed by box regression branch for coordinate offset prediction. Then, the region features and class
embeddings are mapped to a joint embedding space by using embedding function p,, and ps respectively. Next, region-region contrastive learning is
conducted with projection head h,, to optimize the visual feature distribution with higher discriminability. Simultaneously, region-category contrastive
learning is performed over the mapped region features and class embeddings in order to improve the transferable ability of the model, where g,
and g,, are projection heads developed for seen and unseen classes respectively; @ refers to element-wise product.

since it is performed on the original feature space that is
usually not well-structured. To this end, we develop a novel
mapping-contrastive strategy to improve the conventional
mapping-transfer strategy through semantics-guided con-
trastive learning.

Mapping-Contrastive Strategy. Considering the huge gap
between visual and semantic spaces, we treat the common
intermediate space as the embedding space to optimize
the data structures of both visual features and semantic
descriptions. First, we employ two mapping functions, i.e.,
pu(+) and pg(-), to embed the visual features and semantic
descriptions into the joint embedding space respectively:

Do (fz) = 6(W1)f1 + bv)a (2)
Ds (ayj) = 6(Wsayj + bs)y (3)

where p,(-) and p(-) are implemented as Multi-Layer Per-
ceptron (MLP) network with W,, W being the trainable
weight matrix and b,, by denoting the bias; § refers to
the nonlinear activation. Subsequently, the mapped visual
features p, (f;) and semantic descriptions ps(a,, ) in the joint
embedding space are fed into two semantics-guided con-
trastive branches, i.e., region-category contrastive learning
(RCCL) and region-region contrastive learning (RRCL), for
better visual-semantic alignment.

Different from the mapping-transfer strategy that em-
ploys a fixed compatibility function S(-), the RCCL subnet
in our model automatically judges how well the object is
consistent with a specific class through contrastive learning.
To avoid biasing to the seen classes, it contrasts seen region
features with unseen class embeddings guided by the simi-
larity information between seen and unseen classes. In this
way, the proposed model can explicitly transfer knowledge

from seen classes to unseen categories during the training
phase, leading to improved generalization ability.

Additionally, the RRCL subnet regulates the visual data
distribution in the joint embedding space by contrasting
between different region proposals. Under the guidance of
class label information, samples belonging to the same class
are pulled together in embedding space, while simultane-
ously pushing apart samples from different classes. As a
result, our model can produce more discriminative region
features with high intra-class compactness and large inter-
class margin, with a boost to visual-semantic alignment as
byproduct. We will introduce the details of each contrastive
learning branch in Section 3.3.

3.2.3 Bounding Box Regression Subnet

Unlike the image classification task containing only classifi-
cation results, object detection also predicts object locations,
which is performed by adding suitable offsets to the gen-
erated regions in order to align them with the ground truth
coordinates. In this work, we employ the standard bounding
box regression branch in Faster R-CNN, considering that it
is class-agnostic and transferable enough.

Given a detected bounding box b; = (xf,y?, w?, h?)
and its ground truth box coordinates (xf,y!,w!, ht), the
regressor is configured to learn scale-invariant transfor-
mation between two centers and log-scale transformation
between widths and heights. The ground truth offsets
tr = (t5,,tr,,th,,t5,) can be computed as:
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. lat=at

N

¢ ’ tiy - y‘? ’
1 1

¢ ¢ 4)

w
t;, = log —~
w w;) I

thlogh—;.



At the same time, the box regression layer takes the visual
feature f; € R? as input to predict the coordinate offsets
as t; = (tiz,tiy, tiw, tin). Subsequently, we minimize the
regression loss for all the n, region proposals, i.e.,

Lyeg = Z Z smoothy, (ti; — t;;), (5)

i=1l je{z,y,w,h}

where smoothy, () denotes the same smooth ¢; loss used in
Faster R-CNN that tweaks the predicted region coordinates
to the corresponding target bounding box.

3.3 Semantics-Guided Contrastive Learning

The ZSD task aims to train an effective zero-shot detector
that is both “discriminative” enough to discriminate be-
tween seen classes and “transferable” well to unseen classes.
Accordingly, in this section, we introduce two semantics-
guided contrastive learning branches to guarantee both
the discriminative and transferable ability of the proposed
ContrastZSD model.

3.3.1 Region-Category Contrastive Learning

Visual-Semantic Consistency. During the training stage,
only the visual features from seen categories are provided,
while the semantic embeddings corresponding to both seen
and unseen classes are available to access. In order to enable
explicit knowledge transfer from seen to unseen domain,
we propose to contrast the visual features of seen objects
with both seen and unseen classes to distinguish whether
they are consistent or not. Recall that we have encoded
the visual features of seen region proposals and all the
class embeddings into the joint embedding space in Sec-
tion 3.2. For each region-category pair (f;, a,,) encoded as
(po(fi), ps(ay,)), we first fuse their information and then
distinguish how consistent the fusion is. The consistency
value between p,(f;) and p,(a,, ) can be computed as

o(gs(po(fi) ®p3(ayj)))7 y; €YU {yo},
G(gu(ptz(fi) ®ps(ayj)))7 Yy; € vy, ©

where ® refers to the element-wise product operation for
visual-semantic information fusion; gs(-) and g,(-) are two
independent projection heads developed for seen and un-
seen classes respectively to enable two-path learning, both
of which are implemented as MLP network with o being the
nonlinear activation.

Consistency Based Classification Branch. Given n, region
proposals, we first operate Eq. (6) over all the classes to
predict the consistency scores in matrix form, denoted as
0° = {o};} € R**(n+D) and O" = {ol4} € R
for seen and unseen classes respectively. Then, we utilize
not only the ground truth labels {¢;}? ; but also the class
similarity matrix S as supervision signals, and derive the
full classification loss as

o(fi,ay,) = {

Lcls = Lf;ls + )\LZZS, (7)

where L, and LY, refer to the classification loss with
respect to seen and unseen classes respectively; A is a trade-

off parameter. More specifically, L7,  is designed to endow
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the model with the discriminative ability to distinguish dif-
ferent seen classes, which can be formulated as the general
cross-entropy loss, i.e.,

zls = - Z Ci log Ofcﬂ ®)
=1

where ¢; refers to the ground truth label index of the i-th
proposal. To enable explicit knowledge transfer, we further
take advantage of the class similarity information in S as
additional supervision signals. For each training sample,
the predicted unseen class probability in O" should be
consistent with the corresponding unseen class similarity
pre-defined in S. Thus, L, the second item in Eq. (7), turns
to be the following binary cross-entropy loss:

e = — ZZSC”‘ log 0j; + (1 — s¢,5) log(1 — o). (9)
i=1j=1

By minimizing L, ., we can learn unseen class predictors

using training proposals from a group of related seen classes
as their pseudo-instances, thereby alleviating the bias prob-
lem caused by the lacking of training data. In this way, the
model’s transferable capability to the unseen domain can be
strengthened without disturbing the seen object detection
optimized by L7;..

3.3.2 Region-Region Contrastive Learning

The key to region-category contrastive learning lies in that
the embedded semantic vector of one class should try to
be consistent with every visual instance features from this
class. However, the distribution of instances in the original
visual space tends to be indistinctive and thus is suboptimal
for zero-shot detection. The case can be even worse for
the object detection task since the top ranking proposals
may only cover parts of objects instead of the whole ob-
jects. Motivated by this, we propose to contrast between
different region proposals with the help of semantic label
information, with the objective of optimizing the visual data
structure to be more discriminative in the joint embedding
space. Given n, region proposals generated from the same
batch of images, we first map their features {p,(f;)};=, to
new representations {z;};”, using an embedding network
hy(+):

z; = hy(py(£)) = (Wh,pu(fi) + bn,), (10)

where h,(-) is a MLP network with weight matrix W}, and
bias by, ; 0 refers to nonlinear activation.

Unlike the conventional self-supervised contrastive
learning that focuses only on instance discrimination, we
aim to achieve class discrimination by effectively leveraging
the label information. For each region proposal r, we treat
the proposals from the same class with r as positive samples,
and all the other proposals generated from the same batch of
images as negative samples. Taking the ¢-th region proposal
encoded as z; as an example, we assume that there are
N? positive proposals {z] ,z5 , - - - ,z;ip} and N negative
samples {z; ,z, ,--- ,Zyn }. Each positive sample z ™ shares
the same label with z;, while the class label of z~ is different



Algorithm 1: Pseudo-code of the proposed ContrastZSD
in Pytorch—style

r: region featur ncoding network
# p_ p_. P fur i s f i al I
# g_s, g_u: projectio >r seen and 1
# h_v: emt ling network of RRCL
# A, : class embec Aty , stribt
# n_s, n_u: number of see ar unseen classes
for x in data_loader: # minibatch of 1 mpl
# generate region proposals (RoIs)
RoI, RoI_fea, RoI_label, RoI_target = e_r.forward(x)
t predict the coordinate offset
offset_p = regressor. forward(RoI fea)
# bo g1 i loss, Eq \D:
loss_reg = smooth_Zl_loss(offset_p, RoI_target)
# region-region contrastive learning
fea_p = p_v.forward(RoI_fea) # sual PP
Z = h_v. forward(fea p) # embedding oF RCL
¢ contr tiv lo , Eagn : n \E]‘
loss_con = contras loss(Z, RoI_label)
# Joly| classi C 1
A_p = p_s.forward(A) # semantic pin
bs = fea_p.size(0) # bat : RoI

fea_s = fea_p.unsqueeze (0) . repeat(n s+1, 1,
1) .transpose (0, 1) # fea im: x (n_s+1) * r
A_s = A_pl:n_s+1l, :].unsqueeze(0).repeat(bs, 1, 1)# ~
. _s+1) *d_

O_s = g_s.forward(fea_s*A_s) # ntrastive values

# classificati Los ) ,T\m[]w

loss_cls_s = CrossEntropyLoss (O_s, RoI_label)

# unseen pro ility predic 1T
fea_u = fea_p. unsqueeze(O) .repeat (n_u, 1,
1) .transpose (0, 1) # _u dim: I _uxd_
A_u = A _p[-n_u:, :].unsqueeze(0).repeat(bs, 1, 1)
im: 5 * 1N, 1 r
O_u = g_u.forward(fea_uxA_u) # rasti all
# classific i loss r unseen, Egn. E]w

loss_cls_u = BinaryCrossEntropyLoss (O_u, S)

eral oss and SGLC a
loss = loss_reg+loss_cls_s+Aloss_cls_u+fBloss_con
optimizer.zero_grad()
loss.backward()
optimizer.step () +#

from z;. The region-region contrastive loss used for a pair of
bounding boxes (z;, zj‘) takes the following form,

i
exp(ﬁ)

SN exp(ZE) 4 TN exp(ZEh )
(11)

Egon(zlv j) = —log

where 7 is the temperature parameter set as 0.1 by default
as in [54]. Thus, the total contrastive loss L, for n, region
proposals can be formulated as

Z me zi,2)

— ’L ] 1

(12)

Benefiting from the constraint in Eq. (I2), the region features
from the same class is pulled closer, while the instances from
different classes are pushed farther apart, resulting in a more
distinguishable visual data structure.

3.4 Training and Inference Details

Training. Unlike previous works on ZSD that usually rely
on multi-step training, we adopt an end-to-end training
mechanism to jointly optimize the network parameters. We
keep the bottom layers fixed to the weights pre-trained
on ImageNet [61]], and then train the RPN, bounding box

7

regression and visual-semantic alignment network. More
specifically, the RPN is trained with the same classification
and regression loss as in Faster R-CNN. Notably, the RPN,
which is trained on seen visual data without the exploitation
of any semantic information, can generate proposals for
unseen objects also, since it is designed to generate object
proposal based on the objectness measure. To optimize the
proposed contrastive network, we minimize a multi-task
loss specifically designed for ZSD, including both the clas-
sification, bounding box regression and contrastive losses.
The overall ZSD loss takes the following form:

Lzsd = LTeg + Lgls + )‘Lgls + 6Lcon7 (13)

where A and 3 are hyper-parameters that control the trade-
off between the loss terms in Eq. (13). The pseudo-code of
the proposed ContrastZSD is shown in Algorithm
Inference. Given a test image I’ € X'¢, we first forward
I'® into the trained region feature encoding subnet to get
all the region proposals R = {r;}}.;. For each proposal
r; with visual feature f;, we can generate its coordinate
offsets ¢; by the box regressor and classification scores o; by
the two-path visual-semantic alignment subnet. Specifically,
the first path g, (-) merely produces the unseen probability
o¥ € R™, while the second path g;(-) takes both the seen
and unseen class embeddings as input to generate the con-
trastive values o? € R for all the classes. Then, oj € RMe
and o} € R™ are fused through an extra calculation process
to jointly determine the final scores, i.e.,

0; = (O?ST) ® oj. (14)

Finally, Non-Maximum Suppression (NMS) is applied to
remove the proposals with small Intersection over Union
(IoU) values and get the final detection results, where IoU
is used to measure the overlap between the predicted and
ground truth bounding boxes.

4 EXPERIMENTS
4.1 Experimental Setup

Datasets. We evaluate the proposed ContrastZSD model on
two widely-used datasets for object detection, i.e., PASCAL
VOC 2007+2012 [62] and MS COCO 2014 [63]. PASCAL
VOC consists of 20 common object categories for object
class recognition. More specifically, PASCAL VOC 2007
contains 2501 training images, 2510 validation images and
5011 test images. PASCAL VOC 2012 was released without
test images provided, and includes 5717 training images and
5823 validation images. MS COCO was designed for object
detection and semantic segmentation tasks. It contains 82783
training and 40504 validation images from 80 categories.
Being zero-shot, each dataset should be split into the
combination of seen/unseen subsets. For the purpose of fair
comparison, we follow previous works that also target on
the ZSD task to split the datasets. For the PASCAL VOC
dataset, we adopt the same setting in [18] to split the 20
categories, where 16 classes are selected as seen and the
remaining 4 are unseen classes. In terms of the MS COCO
dataset, we follow the same procedures described in [14] to
divide the dataset into two different splits: 1) 48 seen and 17
unseen classes, and 2) 65 seen and 15 unseen classes. Based



on the above seen/unseen class splits, we follow the steps
in [64] to create the train and test set for each dataset.
Implementation Details. As for the class semantic embed-
dings, we use the {5 normalized 300-dim Word2Vec for
MS COCO classes, which is produced by a model trained
on a Wikipedia corpus in an unsupervised manner [56].
For PASCAL VOC classes, we use the average of 64-dim
binary per-instance attributes of all training images from
aPY dataset [65]. The image scale is resized to the shorter
edge of 600, while keeping the original image aspect ratio.
We perform horizontal flip for augmenting the training data.
Non-Maximum Suppression (NMS) with an IoU threshold
of 0.7 is employed to remove redundant bounding boxes.
We adopt ResNet-101 [59] pretrained on ImageNet [61] as
the CNN backbone. The mapping functions p, and p, are
implemented as two fully-connected layers, taking 2048-dim
region features and d.-dim semantic embeddings as input
respectively, then transform them to the same dimension
as the common space (2048-dim in our case). In terms of
the semantics-guided contrastive learning subnet, we imple-
ment the MLP networks in RCCL, i.e., g5 and g, as stacked
linear layers with output size of [1024, 1]. Additionally, the
MLP network in RRCL, i.e., h,, is implemented as a single
fully-connected layer with output size of 512. Except for the
last layer of g, that uses Sigmoid activation, all the other
linear layers are implemented with ReLU activation. We
employ SGD optimizer with momentum of 0.9 and learning
rate of 0.01 to optimize the proposed model.

Comparison Methods. To demonstrate the effectiveness of
the proposed method, we compare it with both the baseline
method and state-of-the-art approaches developed for the
ZSD task. We provide a brief description of the comparison
methods as follows. ConSE-ZSD is the baseline method that
adapts the standard Faster R-CNN model trained without
any semantic information to the ZSD task by employing
ConSE [66] at the testing stage. SAN [15] is the first deep
network developed for the ZSD task that jointly models the
interplay between visual and semantic domain information.
HRE [18] is a YOLO [28] based end-to-end zero-shot detec-
tor that learns a direct mapping from region pixels to the
space of class embeddings. SB and DSES are background-
aware zero-shot detectors proposed in [14] that differentiate
background regions based on a large open vocabulary. TD
[17] learns both visual-unit-level and word-level attention
to tackle the ZSD task with textual descriptions instead
of a single word. PL [64] designs a novel polarity loss for
RetinaNet based ZSD framework to better align visual and
semantic concepts. BLC [58] integrates Cascade Semantic R-
CNN, semantic information flow and background learnable
RPN into a unified ZSD framework.

Evaluation Metrics. We adopt the widely-used evaluation
protocols, i.e., Recall@100 and mAP, to evaluate the perfor-
mance of our model, where a larger recall or mAP value in-
dicates better performance [14], [15]. Specifically, Recall@100
is defined as the recall with only the top 100 detections from
an image, while mAP indicates the mean average precision
of the detection. For mAP, we first calculate the per-class
average precision (AP) for each individual class to study
category-wise performance, then take the mean (mAP) as
a measure of overall performance. More specifically, the
widely adopted 11-point interpolation approach [62] is used

TABLE 1
ZSD and GZSD mAP(%) at loU threshold 0.5 on PASCAL VOC
dataset, where “S” and “U” refer to the average performance on seen
and unseen classes with “HM” denoting their harmonic mean.

Model Seen ZSD GZSD

S 18] HM
ConSE-ZSD 77.0 52.1 59.3 223 324
SAN 69.6 59.1 48.0 37.0 41.8
HRE 65.6 54.2 62.4 255 36.2
PL 63.5 62.1 - - -
BLC 75.1 55.2 58.2 22.9 329
ContrastZSD 76.7 65.7 63.2 46.5 53.6

to compute AP, which is defined as the average precision of
eleven equally spaced recall levels [0, 0.1, 0.2, ..., 1]. For
ZSD, the testing phase only involves samples from unseen
categories, and thus the performance is measured over the
set of unseen classes Y*. While for GZSD, the samples
from both seen categories )J* and unseen categories )
are utilized to test the model performance. The harmonic
mean performance on seen and unseen classes is computed
to reflect the overall performance for GZSD.

4.2 Quantitative Results
4.2.1 PASCAL VOC

ZSD and GZSD Performance. We present the mAP per-
formance in Table [1| to compare different methods over the
PASCAL VOC dataset. Based on the settings in [18]], the per-
formance of each method is reported in three different test-
ing configurations, i.e., “Seen”, “ZSD” and “GZSD”, where
“Seen” refers to the conventional object detection task used
to detect objects from }®. We can observe from Table[1] that
our method outperforms all the comparison methods under
the “ZSD” setting, increasing the mAP from 62.1% achieved
by the second-best method PL to 65.7%, which indicates
the good transferable ability of the proposed ContrastZSD
model to unseen classes. In addition to the state-of-the-
art ZSD performance, it’s interesting to see that our model
also performs well on the general “Seen” object detection
task, even comparable to the ConSE-ZSD baseline that only
focuses on training an excellent Faster R-CNN model over
seen classes. We can attribute this good performance to the
region-region contrastive learning subnet of our model that
optimizes the visual structure for better discriminating dif-
ferent seen classes. Despite the effectiveness of ConSE-ZSD
on seen object detection, it achieves the worst performance
on ZSD task due to the lack of semantic information in the
training phase.

In contrast to the “Seen” and “ZSD” task, “GZSD” is
a more challenging and realistic task where both seen and
unseen classes are present at inference. As depicted in Table
for each comparison method, the unseen object detection
performance of GZSD drops significantly compared with
that of the corresponding ZSD results. One possible reason
for this performance degradation is that those comparison
methods can easily bias towards the seen classes, such
that most unseen objects are recognized as seen classes



TABLE 2

Class-wise AP and mAP (%) on the PASCAL VOC dataset at loU threshold 0.5, where mAP; and mAP,, refer to the mAP values with respect to

seen and unseen classes respectively.

g < S
FO 8 T ., T 8 8 & §o« =
[ _~ R S ~ Q =
S & ® § £ g £ & 8 =T £ 8 ¢ = 3§y = < p & § <
Methods § 2 5 £ 2 £ 8§ f§ B < & § 8% 4% B E|lEZ2 VR OE G
Seen Classes ‘ Unseen Classes
ConSE-ZSD | 82.2 85.8 832 66.7 700 775 874 60.1 80.0 69.4 845 85.0 846 56.6 81.4 781 77.0|49.0 750 53.0 31.3 521
SAN 714 785 749 614 482 760 89.1 51.1 784 61.6 842 768 769 425 71.0 71.7 69.6 |56.2 853 62.6 264 57.6
HRE 70.0 73.0 76.0 540 42.0 86.0 64.0 40.0 540 75.0 80.0 80.0 75.0 34.0 69.0 79.0 65.6|55.0 82.0 55.0 26.0 54.2
PL 744 712 67.0 50.1 50.8 67.6 847 44.8 68.6 39.6 749 760 79.5 39.6 61.6 66.1 63.5|63.7 872 532 441 62.1
BLC 785 832 776 67.7 701 75.6 87.4 559 775 712 852 828 77.6 56.1 77.1 785 751|437 86.0 60.8 30.1 552
ContrastZSD | 81.9 85.6 85.0 66.6 70.8 77.0 889 584 795 66.8 847 822 849 554 811 784 76.7|655 86.4 63.1 47.9 65.7
during testing. Compared with those methods, our model TABLE 3

shows more promising results on unseen object detection
for GZSD, i.e., 46.5% vs 37.0%, while not disturbing the seen
object detection performance, i.e., 63.2% vs 62.4%. Thus, our
method can obtain a more balanced performance on the seen
and unseen classes for GZSD.

Class-wise Performance. To study the per-category results,
we present the class-wise mAP performance on PASCAL
VOC in Table 2l The results on seen and unseen classes are
evaluated independently in “Seen” and “ZSD” setting for
fair comparison with other methods. Not surprisingly, the
baseline method ConSE-ZSD shows more promising results
on seen classes than other methods. As shown in Table
ConSE-ZSD achieves the best performance on 7 out of 16
seen categories, e.g., “aeroplane”, “chair” and “cow”. As
for the class-wise ZSD results, our method outperforms all
the competitors on three of the four unseen classes by a
large margin, which further verifies the superiority of our
model for the ZSD task. Compared with other methods,
the performance gain is more pronounced for “car” and
“train” classes. We think this is because the car and train
objects are visually similar, making the system hard to
distinguish. Benefiting from the region-region contrastive
learning strategy, our model can learn more discriminative
visual features to better distinguish objects belonging to the
two categories.

422 MS COCO

ZSD Performance. For the MS COCO dataset, we follow the
experimental settings in [14] and [17] to evaluate the ZSD
performance with different IoU thresholds, i.e., 0.4, 0.5 and
0.6. The experimental results in terms of both Recall@100
and mAP are presented in Table (3| For the 48/17 split,
we compare our model with ConSE-ZSD, SB, DSES, TD,
PL and BLC. From the ZSD results in Table B] we can
observe that our method achieves a significant gain on both
metrics (MAP and Recall@100). Compared with the second-
best method BLC, the proposed model gains an absolute
improvement of 1.9% in mAP and 3.6% in Recall@100 at
IoU threshold 0.5. On the 65/15 split, we compare our
model only with ConSE-ZSD, PL and BLC, since other
methods didn’t report their results on this split. As shown in
Table[3] the proposed model outperforms all the comparison

ZSD performance in terms of Recall@100(%) and mAP(%) with
different loU thresholds on MS COCO dataset.

Model Split Recall@100 mAP
IoU=04 I0oU=0.5 IoU=0.6 IoU=0.5
ConSE-ZSD 48/17 28.0 19.6 8.7 3.2
SB 48/17 345 22.1 11.3 0.3
DSES 48/17 40.2 27.2 13.6 0.5
TD 48/17 455 34.3 18.1 -
PL 48/17 - 435 - 10.1
BLC 48/17 51.3 48.8 45.0 10.6
ContrastZSD 48/17 56.1 52.4 47.2 12.5
ConSE-ZSD 65/15 30.4 23.5 10.1 3.9
PL 65/15 - 37.7 - 12.4
BLC 65/15 57.2 54.7 51.2 14.7
ContrastZSD 65/15 62.3 59.5 55.1 18.6
TABLE 4

GZSD performance in terms of Recall@100 (%) and mAP (%)
achieved with loU=0.5 over each seen/unseen split of MS COCO.

Method Split Recall@100 mAP

S U HM S U HM
ConSE-ZSD 48/17 438 123 192 372 1.2 2.3
PL 48/17 382 263 312 359 4.1 7.4
BLC 48/17 576 464 514 421 4.5 8.2
ContrastZSD 48/17 65.7 524 583 451 6.3 111
ConSE-ZSD 65/15 41.0 156 226 35.8 3.5 6.4
PL 65/15 364 372 368 341 124 182
BLC 65/15 564 51.7 539 360 131 19.2
ContrastZSD 65/15 629 58.6 60.7 40.2 16.5 234

methods by a large margin, which improves the mAP and
Recall@100 achieved by the second-best method BLC from
14.7% and 54.7% to 18.6% and 59.5% at IoU threshold 0.5.
These improvements demonstrates the effectiveness and
significance of the proposed contrastive model on detecting
unseen objects.

GZSD Performance. In Table {4, we further present the



TABLE 5
Class-wise Recall@100 for the 48/17 and 65/15 split of MS-COCO with the loU threshold being 0.5.

IS T =
= = IS IS o : S &
S S £ o < S S g E g
0 50 2 Y = = % = =2 2 =S = R = - S 151
48/17 split 5 = 8 = § & 2 3 =z S g & & 8 8§ § 5 &
BLC-Base 729 946 673 681 00 0.0 199 240 124 240 637 116 9.2 8.3 483 707 634 387
BLC 774 884 719 772 0.0 0.0 417 380 456 343 652 238 141 208 483 799 618 464
ContrastZSD 828 921 769 820 23 11 450 51.7 417 442 742 33.7 210 323 556 838 69.5 524
=
~ -~ ?
§ ) ® © g 2 - ~ E
= 2 = S 50 - 3 S 2 =1
= s £ . s &£ £ §¥ ¢« T ] & : T = 3
65/15 split g & s g = 3 & 3 8, g < 2 g 8 < g
BLC-Base 53.9 70.6 5.9 90.2 85.1 40.7 259 59.9 33.7 76.9 64.4 33.2 3.3 64.1 14 47.3
BLC 58.7 72.0 10.2 96.1 91.6 46.9 44.1 65.4 379 82.5 73.6 43.8 7.9 359 2.7 51.3
ContrastZSD 67.7 77.5 17.3 97.4 94.6 56.6 57.2 72.0 43.7 85.0 73.6 67.7 17.6 474 4.1 58.6
GZSD results achieved by ConSE-ZSD, PL, BLC and the pro- TABLE 6

posed ContrastZSD. The results demonstrate that our model
exceeds the three comparison methods in terms of both
mAP and Recall@100. As shown in Table [} the proposed
ContrastZSD outperforms the second-best method BLC by
a large margin, where the absolute HM performance gain is
6.9% Recall@100 and 2.9% mAP for the 48/17 split and 6.8%
Recall@100 and 4.2% mAP for the 65/15 split. Moreover,
it is worth noting that the performance gain of our model
is more remarkable on GZSD than ZSD, as shown in Table
and [ This phenomenon reflects the significance of the
proposed explicit knowledge transfer on the GZSD task.
Due to the lack of semantic information during model train-
ing, the performance of ConSE-ZSD is far worse than the
other methods on both of mAP and Recall@100 metrics. In
contrast, PL yeilds notable improvement over ConSE-ZSD
by adopting the direct mapping-transfer strategy. However,
the recall and mAP on seen classes are much higher than
on unseen classes, leading to a low harmonic mean (HM)
performance. This is because the mapping-transfer strategy
is prone to over-fitting the seen classes, such that very little
knowledge is learned for unseen classes.

Class-wise Performance. The class-wise performance on
unseen classes of the two splits is reported in Table [f|under
the GZSD setting. Compared with the state-of-the-art BLC
method, our model achieves higher Recall@100 on 15 out of
17 unseen classes on 48/17 split and 14 out of 15 unseen
classes on 65/15 split. This phenomenon suggests that our
model can improve the GZSD performance evenly, instead
of only focusing on certain categories. We have also noted
that BLC fails to detect any objects from the “umbrella”
and “tie” class, resulting in a recall rate of 0. One possible
reason is that those classes have fewer semantically similar
concepts in the seen category set, which greatly increases
the difficulty of knowledge transfer. Benefiting from the
region-category contrastive learning over unseen classes,
the training proposals from a group of related seen classes
are explicitly leveraged to train the unseen classes. As a
result, our model successfully surpasses BLC over those
unseen classes without close counterparts in the seen class

set, e.g., the “umbrella”, “tie” and “hair drier” class.

The effect of each key component for ZSD and GZSD performance in
terms of mAP at loU threshold 0.5 over PASCAL VOC dataset.

Variants RCCL,, RRCL ZSD GZSD
S U HM
w/o. RRCL Vv 615 593 442 506
w/o. RCCL,, Vv 612 61.0 306 408
ContrastZSD 4 4 65.7 632 46.5 53.6
70 70
~e=ZSD =~ GZSD —— ZSD —+- GZSD
65
geo /\_\_‘ gso
o o
< 50 £
50
40 45
0 02 04 06 08 1 0 02 04 06 08 1

(a) Varying A (b) Varying 8

Fig. 3. Hyper-parameter sensitivity of the proposed ContrastZSD model
on the PASCAL VOC dataset.

4.3 Ablation Studies
4.3.1 Ablation for Contrastive Learning Subnets

We conduct extensive quantitative analysis for the key com-
ponents, i.e., RRCL and RCCL, in the proposed model by
leaving one component out of our framework at a time.
In table 6] we present the ZSD and GZSD performance in
terms of mAP on the PASCAL VOC dataset to compare
the effects of different contrastive learning subnets. The
results of “ContrastZSD” are obtained by simultaneously
considering all the components, leading to the best ZSD and
GZSD performance.

Effectiveness of RCCL,. The method “w/o. RCCL,” re-
moves the unseen class contrastive learning process in the
RCCL subnet to contrast seen objects merely with seen
categories, thus the explicit knowledge transfer from seen
to unseen classes cannot be conducted. As a result, both the
ZSD and GZSD mAP suffer from a degradation compared
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(c) Uneen visual features produced by ConSE-ZSD

(d) Unseen visual features produced by ContrastZSD

Fig. 4. Visualization of the visual feature distribution on PASCAL VOC using t-SNE, where the points from different categories are marked in different
colors. The visual features of seen and unseen classes are shown in (a) (b) and (c) (d) respectively.

with ContrastZSD. Notably, while there is only a small
decrease on the ZSD performance, the mAP on unseen
classes of GZSD drops significantly from 48.3% to 30.6%,
leading to a low harmonic mean performance. This phe-
nomenon indicates the explicit knowledge transfer plays a
more important role in GZSD than ZSD, since it can prevent

the model from biasing towards the seen classes.

Effectiveness of RRCL. “w/o0. RRCL” denotes the variant
method that removes the RRCL subnet, such that the origi-
nal visual space cannot be optimized based on the class label
information. Compare with ContrastZSD, the mAP perfor-
mance over both ZSD and GZSD experiences a decline, i.e.,
61.5% vs 65.7% on ZSD and 50.6% vs 53.6% on GZSD. This
is because the original visual space is lack of discriminative
ability and thus is suboptimal for ZSD/GZSD. With the help
of the RRCL subnet, our model can optimize the visual data
structure, including both the seen and unseen distribution,

to be more distinguishable.

4.3.2 Sensitivity Analysis

In order to investigate the importance of each key compo-
nent, we further analyze the effect of hyper-parameters to
our model by varying A\ and § in the range of {0, 0.2, 0.4,
0.6, 0.8, 1}. The ZSD and GZSD performance in terms of
mAP achieved with varying parameters on PASCAL VOC

are demonstrated in Fig.

Sensitivity Analysis for \. We first discuss the impact of pa-
rameter A\ on the performance of the proposed ContrastZSD.
As shown in Fig. @ when the value of )\ increases from 0,
the performance of our model gains a notable improvement.
This indicates that the explicit knowledge transfer in RCCL
can indeed enable the model to learn more knowledge
about the unseen domain. Notably, choosing A around 0.2
tends to yield the best ZSD and GZSD performance. If we
keep increases the value of A, both of the ZSD and GZSD
performance begin to decrease. Thus, we conjecture that A
should be set small in order to achieve good performance.
Sensitivity Analysis for 5. Then we discuss the impact of
the parameter 8 on our model that controls the contribution
of the RRCL subnet. As shown in Fig. (D)} the best choice



ZSD results on PASCAL VOC

GZSD results on PASCAL VOC

Fig. 5. Some ZSD and GZSD detection results on the PASCAL VOC dataset. The region proposals of seen and unseen categories are marked as

red and green boxes respectively.

of B is 0.4 for ZSD and 0.6 for GZSD respectively over
the PASCAL VOC dataset. Larger or smaller values of
parameter § tend to degrade the detection performance. It
proves that the visual structure constraint in RRCL subnet
can effectively optimize the visual data distribution to be
more distinguishable with proper 3, allowing for better
visual-semantic alignment. Taking both ZSD and GZSD into
consideration, we set 3 to 0.5 in our experiments.

4.4 Qualitative Analysis

Visual Structure Optimization. To further demonstrate the
effectiveness of our model on visual structure optimization,
we utilize t-SNE [67] to visualize the visual features of
detected region proposals on the PASCAL VOC dataset. The
visual features produced by the baseline method ConSE-
ZSD are illustrated in Fig. [f(a)]and [A(c)} where most clusters
of the categories fail to have a clear frontier. For example,
the intra-class distance of the “horse” and “sheep” objects
in Fig. is sometimes even larger than their inter-class
distance, while the “car” and “train” class objects in Fig.
suffer from an extremely large overlap. In such scenarios,
the objects from different classes are extremely hard to
be distinguished, thereby significantly inhibiting the learn-
ing of embedding functions. By contrast, it can be clearly
observed from Fig. (b)) and [E(d)| that the visual features
learned by our model demonstrate higher intra-class com-
pactness, as well as a much larger inter-class margin on both
the seen and unseen categories of PASCAL VOC, exhibiting
more obvious clustering patterns. This phenomenon verifies
that our model is able to produce more discriminative visual
features for better visual-semantic alignment, which further
substantiates the above-mentioned quantitative improve-
ments.

Detection Results. For qualitative analysis of the detection
performance, we present some ZSD and GZSD results on
PASCAL VOC and MS COCO dataset in Fig. [f| and Fig. [f]
respectively. From the ZSD results on PASCAL VOC shown
in Fig. [p[a), we can figure out that our model is capable

of detecting unseen objects under different scenarios: (a)
a single object in an image, e.g., “car”, “train” and “sofa”;
(b) multiple objects from the same category, e.g., “car”
and “dog”; (c) multiple objects from different categories,
e.g., “sofa” and “dog’. Besides, we have also noted that
our model is capable of detecting objects from both seen
and unseen classes in the same image, as depicted in
Fig. Ekb). For example, {“car”, “person”}, {“sofa”, “chair”,
“tvmonitor”} and {“dog”, “pottedplant”, “tvmonitor”} are
detected in the same image respectively, where “car”, “sofa”
and “dog” are unseen objects. These examples confirm that
the proposed model can be applied successfully to both the
ZSD and GZSD tasks. For MS COCO, we show qualitative
comparison between our model and the baseline method
ConSE-ZSD, both of which are based on the Faster R-CNN
framework. From Fig. [} it’s interesting to see that ConSE-
ZSD can localize the bounding box for most of the objects
from either seen or unseen classes, although it did not use
any semantic information during training. We can attribute
this to the good generalization ability of the region proposal
network in Faster R-CNN that generates objects in an ob-
jectness manner. However, ConSE-ZSD fails to predict the
true class label for most of the unseen objects. For example,
ConSE-ZSD recognizes the “elephant” object as “cow” in
Fig. [f[a), and “airplane” object as “kite” in Fig. [6[b), etc.
By contrast, our method provides more accurate detection
results for either seen or unseen objects in the selected
images. Moreover, our model also successfully detects the
objects that have been missed by ConSE-ZSD, like the “tie”

object in Fig.[f[a) and “suitcase” object in Fig. [¢[b).

5 CONCLUSION

In this paper, we have made the first attempt to facilitate
the zero-shot object detection task with contrastive learning
mechanism, and developed a novel ContrastZSD frame-
work for ZSD. The proposed ContrastZSD incorporates two
contrastive learning subnets guided by semantics informa-
tion, i.e.,, RCCL and RRCL, in order to guarantee both the
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person, tie

ConSE-ZSD

sink

person, bus, skateboard

ContrastZSD

(a) Detection results on the 48/17 split of MS COCO

toilet

ConSE-ZSD

bed, chair, suitcase

train, t. light, person, car

ContrastZSD

(b) Detection results on the 65/15 split of MS COCO

Fig. 6. Some ZSD and GZSD detection results on two splits of the MS COCO dataset. For each split, the detection results in the first and second

row are produced by ConSE-ZSD and ContrastZSD respectively.

discriminative and transferable property. Specifically, the
RRCL subnet optimizes the visual data distribution in the
joint embedding space to be more distinguishable based on
class label information. The RCCL subnet enables explicit
knowledge transfer from seen classes to unseen classes,
thereby alleviating the model’s bias problem towards seen
classes. The quantitative and qualitative experimental re-
sults confirm that the proposed framework improves the
performance of both the ZSD and GZSD task.
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