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Abstract—Image captioning aims at automatically describing images by sentences. It often requires lots of paired image-sentence

data for training. However, trained captioning models can hardly be applied to new domains in which some novel words exist. In this

paper, we introduce the zero-shot novel object captioning task, where the machine generates descriptions about novel objects without

extra training sentences. To tackle the challenging task, we mimic the way that babies talk about something unknown, i.e., using the

word of a similar known object. Following this motivation, we build a key-value object memory by detection models, containing visual

information and corresponding words for objects in the image. For those novel objects, we use words of most similar seen objects as

proxy visual words to solve the out-of-vocabulary issue. We then propose a Switchable LSTM that incorporates knowledge from the

object memory into sentence generation. The model has two switchable working modes, i.e., 1) generating the sentences like standard

LSTMs and 2) retrieving proper nouns from the key-value memory. Thus our model is learned to fully disentangle language generation

from training objects, and requires zero training sentence in describing novel objects. Experiments on three large-scale datasets

demonstrate the ability of our method to describe novel concepts.

Index Terms—Image captioning, novel object captioning, zero-shot learning

Ç

1 INTRODUCTION

AS a classical task in vision and language research, image
captioning aims at automatically describing an image

using natural language sentences or phrases. Encoder-
decoder architectures prove to be a common framework for
the image captioning task [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], in which the Convolutional Neural Networks (CNN)
are often used as the image encoder, and the decoder is usu-
ally a Recurrent Neural Network (RNN) to sequentially pre-
dict the next word given the previous word.

As captaining models are trained on parallel data of
image-sentence pairs, they fail to caption words if these
words do not exist in the training sentences. In recent years,
a pivotal research direction in image captioning research is
to generalize captioning models to describe novel objects
that only occur at test time. For example, as illustrated in
Fig. 1, although the captioning model (LRCN [4]) is able to
correctly generate captions for the object “truck”, it fails for
a similar object “bus” merely because the training sentences
do not contain any word of bus.

A few works have been proposed to address this prob-
lem [11], [12], [13]. Generally, these methods attempt to
improve model generalization by incorporating external lin-
guistic knowledge about the new object. This is achieved by

either using pre-trained language models [11], [12] or addi-
tional unpaired training sentences of the novel objects. For
example, Henzdricks et al. [11] trained a captioning model
by leveraging a pre-trained image tagger and a pre-trained
language sequence model from external text corpora.

Existing works mitigate this problem by removing the
dependency to parallel training data of paired images and
sentences, which turns out to be very difficult to collect. The
precise definition of novel object in existing works is that the
object is unseen in the paralleled training sentences but still
needs to exist in the training data in the form of the unparal-
leled sentences. In other words, they all assume training sen-
tences of novel objects always exist during training. This
assumption, however, does not hold in many real-world sce-
narios. The descriptions are typically rare, in a timely man-
ner, for brand new products such as self-balancing scooters,
robot vacuums, drones. Moreover, perhaps more impor-
tantly, the language generation are learned closely coupled
with seen objects, and hence will inevitably introduce
language biases to the captioning model. For example, if
training sentences are all about the bass (a sea fish), the cap-
tioning model will never learn to caption the instrument
bass, and may generate awkward sentences like “A man is
eating a bass with a guitar amplifier.”

In this paper, we tackle the image captioning for novel
objects in which zero training sentences of novel objects are
needed. We call it zero-shot novel object captioning to distin-
guish it from the traditional problem setting in [11], [12],
[13], [14]. In the traditional setting, extra training sentences
of the novel object are provided in addition to the pre-trained
object detection model. In the zero-shot captioning setting,
there are zero training sentences about the novel object, i.e.,
there is no information about the object’s semantic meaning,
sense, or context. The only external knowledge in the pro-
posed setting is a pre-trained object detection model that can
detect the novel object, which is also required in the tradi-
tional problem setting.
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Since novel objects are completely unseen during train-
ing, zero-shot captioning presents a new challenge to disen-
tangle language generation from visual detection. To tackle
this challenge, we propose a solution mimicking the way of
babies talking. When describing an unseen object, a baby
tries her best to use similar objects that she has seen before.
For example, a baby might say ”a horse is standing in a
field” to actually describe a zebra. The sentence will be accu-
rate if we further replace the ambiguous word “horse” with
the exact word “zerba”.

Following this motivation, we propose a framework
called Switchable Novel Object Captioner (SNOC) that aims
at generating natural language sentences disentangled from
training object classes in order to describe novel objects at
test time. Unlike existing works, our model is learned to
fully disentangle language generation from training objects,
thus requiring zero training sentences for the novel object.
SNOC follows the standard encoder-decoder architecture
but with a novel decoder. At the decoding stage, we first
build a key-value object memory by a detection model, con-
taining the visual information and the corresponding word
for each object shown in the image. For those novel words,
we use the word of the most similar seen objects instead.
We call it proxy visual word. Then we propose a Switchable
LSTM that incorporates the object memory into the sentence
generation. The Switchable LSTM switches between two
working modes, i.e., 1) generating a sentence as a standard
LSTM [15] and 2) retrieving a proper noun from the key-
value memory, controlled by our newly designed indicator

in the LSTM cell. Finally, through the Switchable LSTM, we
first generate an inaccurate sentence only using the seen
words, and then replace the proxy visual word by the true
object label.

For example, in Fig. 1, the object “bus” is unseen in the
training stage. Our method describes the unseen object
“bus” in a coarse-to-fine manner. It first recalls its most sim-
ilar object from the training data, i.e., “truck” in this case.
Next, it generates an inaccurate sentence using known
knowledge of the proxy visual word “truck”, and finally
correct it by the exact word “bus” provided by the external
detection model.

The proposed model is based on our previous work
DNOC [3], in which we directly use a special token “<PL>”
to represent all unseen words. However, this strategy ignores
the visual appearance of novel objects as it is ambiguous to
use one token word (i.e., <PL>) to represent all the novel
objects. We made two important extensions to DNOC. First,
we replace the placeholder token by the proxy visual word,
which helps generate a better sentence by leveraging visual
similarities between novel objects and seen objects. We exten-
sive expand the experiments and analysis of the proposed
method. We additionally evaluate our methods on two large-
scaled datasets, ImageNet and nocaps. We also tried different
variants of our models, e.g., using different language models
anddifferent object detectionmodels.We also tested the Rein-
forcement Learning (RL) to directly train our model for opti-
mization on the languagemetrics (CIDer andMETEOR).

Experiments on three representative datasets show that
our method is effective for zero-shot novel object captioning.
Without extra training data, our model even significantly
outperforms state-of-the-art methods (with additional train-
ing sentences) on the F1-scoremetric.

In summary, the main contributions of this work are
listed as follows:

� We introduce the zero-shot novel object captioning
task, an important yet neglected research direction
of image captioning.

� To generate sentences with correct word orders, we
have made efforts from the following three aspects
We first design the switchable LSTM to figure out
where we should place the object words (by the
switch indicator).

� We then take the semantic information from the
LSTM hidden states to findwhich visual object should
be mentioned here from all the recognized object
memory.

� To ensure the consistency in sentences and alleviate
out-of-vocabulary issue, we design the proxy visual
words and avoid the unknown impact brought by the
imported novel object labels on LSTM.

2 RELATED WORK

2.1 Image Captioning

Automatic caption generation is the task of describing the
content of an image by a complete and natural sentence. This
is a fundamental problem in the multi-modal perception
field [1], [9], [16], [17], [18], [19], [20]. Some early works such
as template-based approaches [21], [22] and search-based

Fig. 1. An example of the novel object captioning. Suppose the novel
object “bus” is not present in the training data. Traditional image caption-
ing model LRCN [4] fails to describe the image with the novel object
“bus”. Our algorithm can generate precise captions, and more impor-
tantly, we do not need any training data containing bus. Specifically,
when seeing the unseen object, we recall the most similar object “truck”,
which is a seen object in training. Then our designed Switchable LSTM
is capable of incorporating the object name into sentence generating. It
first generates an inaccurate sentence using known knowledge (“A red
truck is on a street”), and then correct it by the exact word provided by
the external detection model.
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approaches [23], [24] generate captioning by the sentence
template and the sentence pool. Recently, inspired by deep
learning and sequence modeling in computer vision, lan-
guage-based models have achieved promising performance.
Most of them are based on the encoder-decoder architecture
to learn the probability distribution of both visual embed-
ding and textual embeddings [2], [4], [5], [6], [7], [8], [25],
[26], [27], [28], [29], [30]. In this architecture, the encoder is a
CNNmodel that processes and encodes the input image into
an embedding representation, while the decoder is an RNN
model that takes the CNN representation as the initial input
and sequentially predicts the next word given the previous
word. Among recent contributions, Kiros et al. [18] proposed
a multi-modal log-bilinear neural language model to jointly
learn word representations and image feature embeddings.
Vinyals et al. [8] proposed an end-to-end neural network con-
sisting of a vision CNN followed by a language generating
RNN. Xu et al. [9] improved [8] by incorporating the atten-
tion mechanism into captioning. The attention mechanism
focuses on the salient image regions when generating corre-
sponding words. In general, these methods are designed to
describe seen objects with lots of training examples. The
vocabulary of the decoder is fixed after training and can not
be further extended by external knowledge. Recently, in
SCST [31], all the objects and words are existing in training,
while the combination of them are unusual in testing (e.g., a
blue boat in front of a building). However, we focus on a
more challenging task that these objects and words do not
exist in training.

2.2 Novel Object Captioning

Novel object captioning is a challenging task where there is no
paired visual-sentence data for the novel object in training.
Only a few works have been proposed to address this caption-
ing problem. Henzdricks et al. [11] proposed the Deep Compo-
sitional Captioner (DCC), a pilot work to address the task of
generating descriptions of novel objects which are not present
in paired image-sentence datasets. Venugopalan et al. [12] dis-
cussed aNovel Object Captioner (NOC) to further improve the
DCC to an end-to-end systemby jointly training the visual clas-
sificationmodel, language sequencemodel, and the captioning
model. Anderson et al. [14] leveraged an approximate search
algorithm to forcibly guarantee the inclusion of selected words
during the evaluation stage of a caption generation model.
Yao et al. [13] exploited a mechanism to copy the detection
results to the output sentence with a pre-trained language
sequence model. Lu et al. [32] also proposed to generate a sen-
tence template with slot locations, which are then filled in by
visual concepts from object detectors.Wang et al. [33] proposed
a new zero-shot video captioning that aims at describing out-
of-domain videos by composing different experts based on dif-
ferent topic embeddings and implicitly transfer the knowledge
learned from seen activities to unseen ones. Feng et al. [34] pro-
posed a cascaded revision module to generate better sentences
by considering both visual similarity and semantic similarity
on uncentainty words. Agrawal et al. [35] collected a large-
scaled novel object captioning dataset, and extend existing
novel object captioning models to establish strong baselines.
Cao et al. [36] proposed to adapt the captioning model to the
novel object features detected via the auxiliary detection.

Note that all of the above methods have to use extra data
of the novel object to train their word embedding. Different
from existing methods, our method focuses on the zero-shot
novel object captioning task in which there are no additional
sentences or pre-trained models to learn such embeddings
for novel objects.

2.3 Zero-Shot Novel Object Captioning

Zero-shot learning aims to recognize objects whose instan-
ces may not have been seen during training [33], [37], [38],
[39], [40], [41]. Zero-shot learning bridge the gap between
the visual and the textual semantics by learning a dictionary
of concept detectors on external data sources [42]. Recently,
some works focus on the zero-shot novel object captioning
task, where there are no additional training sentences avail-
able in learning to caption novel objects. Wu et al. [3] pro-
posed a decoupled captioning framework DNOC to
generate a sentence template, which enables the model to
freely introduce the novel object labels into the generated
sentence template. DNOC simply uses a special token to
represent all the novel objects, leading to ambiguous cap-
tioning results. Differently, we propose to leverage visual
similarities between novel objects and seen objects to gener-
ate more accurate sentences. In addition, instead of the stan-
dard LSTM used in DNOC, we propose to improve the
LSTM cell with flexible working modes, enabling it to utilize
both existing and external knowledge.

3 THE PROPOSED METHOD

3.1 Preliminaries

Given an input image I, the goal is to generate an associated
natural language sentence s to describe the image. A sentence
s containing Nl words is denoted as s ¼ ðw1;w2; . . . ;wnlÞ,
where w represents a word. The length Nl usually varies for
different sentences. The training data is a set of image-senten-
ces pairs P ¼ fðI1; s1Þ; . . . ; ðInp ; snpÞg. The vocabulary of P is
Wp ¼ fw1;w2; . . . ;wNtg which contains all Nt unique words
in the training sentences.

We represent each word wi 2 f0; 1gNt as a one-hot vector
of Nt dimension and then embed it into a Dw-dimensional
real-valued vector xi ¼ fwðwiÞ 2 RDw . The embedding func-
tion fwð�Þ is a linear transformation xi ¼ Twwi, where Tw 2
RDw�Nt is the learnable embedding matrix. Our model fol-
lows the classical encoder-decoder architecture for image
captioning.

The Encoder. We obtain the representation for an input
image I by feðIÞ, where feð�Þ is the visual encoder function.
fe is implemented as an ImageNet pre-trained CNN model
with the classification layer removed. In our experiments,
we use a 16-layer VGG [43] pre-trained on the ImageNet
ILSVRC12 dataset [22] as the visual encoder fe.

The Decoder. The decoder is a word-by-word sequence
model that recurrently predicts the next word given the pre-
vious word and encoder features as input,

pðsjIÞ ¼Qnl
t¼1pðwtjw0; . . . ;wt�1;feðIÞÞ: (1)

The Long Short-Term Memory (LSTM) [15] is a classical
decoder in visual captioning and natural language process-
ing tasks [11], [13], [44]. Given the inputs xt and hidden
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states ht�1, we get the predicted output word ot by updating
the LSTM unit at time step t as follows:

ot;ht ¼ LSTMðxt;ht�1Þ: (2)

In training, we feed the ground-truth word as the model
input. In the evaluation stage, we take the previous output
ot�1 of the model as the input xt at the t-th step.

Zero-Shot Novel Object Captioning. We study the zero-shot
novel object captioning task, where the model needs to cap-
tion novel objects without additional training sentence data
about the object. The novel object words are shown neither
in the paired image-sentence training data P nor unpaired
sentence training data. A notable challenge for this task is to
deal with the out-of-vocabulary (OOV) words. The learned
word embedding function fw is unable to encode the
unseen words, since these words cannot simply be found in
the training vocabulary. As a result, these unseen words
cannot be fed into the decoder for caption generation. Previ-
ous works [11], [12], [13] circumvented this problem by
learning the word embeddings of unseen words using addi-
tional sentences that contain the words. However, in our
zero-shot novel object captioning task, we do not assume
the availability of additional training sentences of the novel
object.

3.2 Building the Key-Value Object Memory

To describe the image with novel objects, we use a pre-
trained object detection model as the external knowledge
source, which provides the object name information for
objects in the input image. Specifically, for the i-th detected
object obji, we extract its CNN feature f i 2 R1�Nf from the
ROI pooling layer of the detection model. Then the CNN
features f i and the predicted semantic class labels li 2
R1�ND are used to form a key-value pair, with the CNN fea-
ture as key and the label as value. ND is the number of
detection candidates.

We build a key-value object memory MM using these
detected key-value pairs, which associates the semantic
class labels (descriptions of the novel objects) with their
visual appearance. The maximummemory size is set to NM .
For those images with more than NM detect objects, we
select the topNM detected objects in an image into the mem-
ory, according to the object detection confidences. The
memoryMM is re-initialized for each input image. It contains
all the detected objects in the input image, including both
seen and zero-shot objects. During generating the caption-
ing sentence, the memoryMM is kept fixed during the recur-
rent words generation process.

There are two kinds of objects in the key-value object
memoryMM during the evaluation, i.e., the seen objects that
show up during training, and the novel objects that have
never seen in the memory before. For seen objects, we sim-
ply write the feature-name pairs into the memory by,

MM WRITEðMM; ðf i; liÞÞ; (3)

where WRITE operation is to insert the key-value pair into a
new slot of the existing memoryMM.

The Proxy Visual Words. For novel objects, we propose to
use the proxy visual word as instead to mitigate the out-of-

vocabulary issue. The main idea is to represent an unseen
object by some known objects that have a similar visual
appearance. Specifically, for each object that shows in the
training data, we extract the visual representation of the
image patch. Then these features are clustered according to
their object labels. By simply averaging the visual features
of objects that belong to the same class, we obtain the proto-
typical visual representation vo for each seen object cate-
gory, where o indicates the o-th object category. When
meeting a novel word, we take the visual feature f i of the
new image patch to find a most similar one within the pro-
totypical representation set fvog. Therefore, we have the
similarity between the novel object obji and the o-th class,

soi ¼ cosineðf i;voÞ; (4)

where cosineð�Þ denotes the cosine distance function. The
similarity soi is defined by the cosine distance between the
feature of a novel object and the prototypical feature of the
seen object class. By searching over the seen objects database,
we can find the most similar object category l̂i for the novel
object. We name it the proxy visual word to distinguish from
the accurate words for those seen objects. Therefore, for the
novel object obji, we insert the pair of the visual feature f i
and the proxy visual word l̂i to thememory,

MM  WRITEðMM; ðf i; l̂iÞÞ: (5)

3.3 Switchable LSTM

In the zero-shot novel object captioning task, the language
model is supposed to leverage both the existing knowledge
and external knowledge. Therefore, we propose a Switch-
able LSTM with two working modes to leverage both
knowledge sources. Different from the standard LSTM, our
Switchable LSTM operates switching between two modes,
i.e., 1) the Generating mode, in which the model gener-
ates a common word like a standard LSTM; and 2) the
Retrieving mode, in which retrieving a noun from the
key-value object memory MM. In the Generating mode,
we use the memory cell from the standard LSTM to gener-
ate the sentence based on the existing knowledge. While in
the Retrieving mode, instead of generating words, we
propose to apply content-based addressing on the object
memory to find a proper noun word with the external
knowledge. An indicator inside the LSTM cell switches the
two modes.

3.3.1 Standard LSTM Revisit

Given the hidden state ht the prediction pl
t of the LSTM cell

at t-th step is,

pl
t ¼Wpht þ bp: (6)

For the image captioning task, the hidden state h0 is initial-
ized to be the encoded image feature feðIÞ, and the initial
input x0 is a special token<GO>. Then the LSTM recurrently
outputs a word and takes this word as a new input for the
next step. The recurrent word generation process is termi-
nated if the model outputs a special token <EOS>. We name
the process of generating words based on via Eqn. (6) as the
Generatingmode.
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3.3.2 Retrieving Nouns From External Knowledge

The standard LSTM does not consider the external knowl-
edge information when generating a captioning. To address
this issue, we propose an attention-based operation to incor-
porate the knowledge from the object memoryMM into the
sentence generation. We name it as the Retrieving mode
to distinguish from the standard LSTM workflow. In the
Retrieving mode, we use the hidden state ht�1 as a
semantic query to search the object memoryMM. The query
retrieves a matched noun as the predicted word at this time
step. The overall Retrieving mode may be regarded as a
grounding operation that connects the semantic language
representation and the visual CNN feature.

Specifically, at the t-th time step, we define the query qqt
to be a linear transformation of previous hidden state ht�1,

qqt ¼Wqht�1; (7)

where ht�1 is the previous hidden state at ðt� 1Þ-th step
from the sequence model, andWq is a linear transformation
that converts the hidden state from language semantic space
to CNN visual feature space. With this query, we conduct
content-based addressing operations on the object memory
MM, aiming at finding related object information according
to the similarity metric. Formally, the content-based
addressing operation is defined as,

pprt ¼ ðqqtKKT ÞVV ; (8)

where KKT and VV are the vertical concatenations of all keys
and values in the memory, respectively. The output pprt 2
RND is a softened addressing on all semantic labels candi-
dates. In evaluation, we take the word with the max proba-
bility as the query result.

3.3.3 Modes Switching

We design a switch inside the memory cell to control the
two working modes of the Switchable LSTM. The compari-
son of our proposed Switchable LSTM and the traditional
LSTM is illustrated in Fig. 2.

The switch indicator at at the t-th step is based on the hid-
den state ht�1.

at ¼Waht þ bba; (9)

where Wa and bba are the trainable weight and bias, respec-
tively. The switch indicator is designed to estimate the prob-
ability of choosing the Retrieving mode at the current
time step. We then compare the switch indicator with the
prediction from the Generating mode. Denote the max
probability in pl

t as p
l
t, if p

l
t is greater than the switch indica-

tor at, we choose to predict the word based on Eqn. (6) (the
Generating mode); otherwise, we turn on the switch and
leverage the object memory to find a proper noun word
using Eqn. (8) (the Retrieving mode). Thus the output of
our Switchable LSTM at t-th step is,

pt ¼ pl
t if plt > at;

pr
t otherwise:

�
(10)

3.4 Framework Overview

With the design of the proxy visual words, regardless of the
existence of novel words, the word embedding function fw

is able to encode all the input tokens. We hence can generate
a naive sentence for novel objects using seen words via our
Switchable LSTM. Finally, we replace the proxy word by
the exact name of the novel object, which is provided by the
external object detection model. In this way, our model
does not require to see these novel words in training, and
addresses the critical limitation in prior works.

The following steps are used to generate a correct cap-
tioning sentence:

1) We utilize the external object detection model to
build a key-value object memory MM for the input
image. To circumvent the out-of-vocabulary prob-
lem, for an unseen object, we use the label of its most
similar seen object as the proxy visual word.

2) We then exploit the Switchable LSTM to generate a
captioning sentence. The model jointly operates in
two working modes to leverage both internal knowl-
edge and external knowledge. A switch indicator
inside the memory cell is used to control the two
modes. In the Retrieving mode, the predicted
word is generated by a soft content-based addressing
on the memoryMM.

3) Finally, we replace the placeholders of the sentence
by corresponding object descriptions.

Fig. 2. Comparison of the traditional LSTM (the left one) and our Switchable LSTM (the right one).
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Taking the input image in Fig. 3 as an example, suppose
the object “tennis racket” is the novel object.We first leverage
the object detection model and build the key-value object
memoryMM based on the detection results, which contains
both the visual information and the correspondingword (the
detection class label). For the unseen object “tennis racket”,
we find its most similar candidate from seen objects by calcu-
lating the distance between visual features, which is
“baseball bat” in this case.We then use the name of “baseball
bat” in building the memory. Next, our Switchable LSTM
takes advantage of both the global image feature and the
object memory as input. When predicting the second word
(“person”), the switch indicator insides the cell turns on the
Retrieving mode. Thus our model takes the hidden state
h1 as a query to locate the object memory MM. Our model
finds an accurate noun “person” for the referred object via
Eqn. (8). The LSTM recurrently takes the previous output as
the input for the next step. When the sentence generation is
finished, we replace the proxy visual word (“baseball bat”)
by its accurate label name (“tennis racket”).

3.5 Training

How to correctly integrate the object information in sen-
tence generating is the core of the zero-shot novel object
captioning problem. Towards this target, we propose to
simulate the mode switching by putting all object words
into the retrieving mode during during training. In other
words, we regard all the detected objects as “novel objects”
when optimizing the retrieving module.

To be specific,we take all thewords of detected objects into
the vocabulary of the retrieving mode, including those seen
objects such as “apple” and “cat”. When meeting an object
word in training, we train our model to activate the
retrieving mode via the switch indicator. Otherwise, we

optimize the model to activate the Generating mode for
those common words other than object words. In this way,
the model would learn to seek the external detection knowl-
edge for help if it wants to mention an object in the image.
This training strategy enables our method to activate the
retrievingmode evenwe don’t know the novel objects before.

4 EXPERIMENTS

4.1 Datasets

The Held-Out MSCOCO Dataset. MSCOCO is a large-scale
image captioning benchmark containing 123,287 images.
For each image in MSCOCO, there are five human-anno-
tated paired sentence descriptions. Following [11], [12], [13],
[14], we employ a subset of the MSCOCO dataset, namely
the held-out MSCOCO dataset [11], to evaluate the model’s
capability in describing the novel objects. The held-out
MSCOCO dataset excludes all images that contain at least
one of the eight MSCOCO objects. The eight objects are cho-
sen by clustering the word2vec embeddings over all the 80
objects in MSCOCO detection challenge. It results in the
final eight novel objects for evaluation, which are “bottle”,
“bus”, “couch”, “microwave”, “pizza”, “racket”, “suitcase”, and
“zebra”. These eight objects are held-out in the training split
and appear only in the test split. For a fair comparison, we
use the same training, validation, and test split as in [11].

Note that although there are no training sentences about
the novel object, visual information of the novel object may
exist in the training set. We have manually checked the train-
ing data and found there are a few images contain novel
objects but without annotated sentences in the training set.
These novel objects are not salient in these images since the
five human annotators did not mention it during annotating.
Specifically, we found only 15 images containing the zebra

Fig. 3. The overview of the proposed method. In the example, the object “tennis racket” is unseen during training. We first leverage the object detec-
tion model to build the key-value object memory. For the unseen object “tennis racket”, we find its most similar candidate from seen objects by calcu-
lating the visual feature distance. The most similar object is “baseball bat” in this case, which is used in building the memory. The Switchable LSTM
takes advantage of both the global image feature and the object memory as input. When predicting the second word (“person”), the indicator insides
the cell turns on the Retrieving mode. Thus the model takes the hidden state as a query to locate the object memory. When the sentence generation
is finished, we replace the proxy visual words by its accurate label name provided by the external detection model.
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among the 70,194 training images of COCO. In addition, the
novel object “zebra” in the 15 training images is inconspicu-
ous as shown in Fig. 4. The red box in the figure points out the
object zebra. Since the objects are too small, all the five human
annotators ignored them and did not mention “zebra” when
giving their language description. These examples indicates
that our model does not rely on the visual existence of these
novel objects in training.

Scaling to the ImageNet Dataset. Following [12], [13], we use
the same subset from ImageNet, which contains 646 objects
that are not present in the MSCOCO dataset. This results in
164,909 images from the ImageNet dataset for testing. Same
as previousmethods, we take the paired image-sentence sam-
ples in MSCOCO training set as the training data. We apply
the trainedmodel to generate captioning sentences for images
in the test subset of ImageNet. Since there is no paired image-
sentence data on the ImageNet dataset, we empirically evalu-
ate the ability of ourmethod to describe the novel objects.

The Nocaps Dataset. The nocaps dataset contains images
sourced from the Open Images validation and test sets. It is a
large-scale novel object captioning dataset containing 4,500
validation images and 10,600 test images. Each image is
annotated by 11 annotators. Totally, the nocaps dataset span
600 object classes. Following [35], the model is trained using
COCO training data, and directly tested on nocaps without
finetuning. The out-of-domain of nocaps covers many visu-
ally and linguistically similar concepts to COCO but rarely
described in COCO (e.g., seahorse, sewingmachine).

4.2 Experimental Settings

The Object Detection Model. We employ the publicly available
pre-trained object detection models to build the key-value
object memory. For experiments on the MSCOCO dataset,
we use Faster R-CNN [45] model with Inception-ResNet-V2
[46] to generate detection bounding boxes and scores. The
object detection model is pre-trained on all the MSCOCO
training images of 80 objects, including the eight novel
objects. We use the pre-trained models released by [47]
which are publicly available. As for experiments on the
ImageNet dataset, following [13], we use the same object
classifiers (a 16-layer VGG model) trained on the Imagenet
ILSVRC12 dataset.

EvaluationMetrics. To assess the quality of the generated cap-
tioning sentences, in our experiments, we use an effective
machine translationmetric,Metric for Evaluation of Translation

with Explicit Ordering (METEOR) [48]. We also use the F1-
score as an evaluation metric following [11], [12], [13]. F1-score
considers false positives, false negatives, and true positives,
indicating whether a generated sentence includes a new object.
For results on the ImageNet dataset, since there are no anno-
tated ground truth sentences, we follow [12], [13] and use
another two metrics for the novel object captioning task, i.e.,
describing novel objects (Novel) andAccuracy scores. As intro-
duced in [12], the Novel score is the percentage of all novel
objectsmentioned in predicted captioning sentences. TheAccu-
racy score is the percentage of images where the shown novel
object is correctly described by addressing the object in our gen-
erated captioning sentence.

Implementation Details. For fair comparisons, we use VGG-
16 pretrained on the ImageNet dataset [22] as the visual
encoder. The CNN encoder is fixed during model training.
The decoder is an LSTMwith cell size 1,024 and 15 sequence
steps. For each input image, we take the output of the fc7
layer from the pre-trained VGG-16 model with 4,096 dimen-
sions as the image representation. The representations are
processed by a fully-connected layer and then fed to the
decoder (Switchable LSTM) as the initial state. For the word
embedding, unlike [11], [13], we do not need the per-trained
word embeddings with additional knowledge data. Instead,
we learn the word embedding fw with 1,024 dimensions for
all words. We use TensorFlow [49] to implement our frame-
work. We optimize the model using the ADAM [50] opti-
mizer, with the learning rate of 1� 10�3. The weight decay is
set to 5� 10�5 to avoid overfitting. We train the model for 50
epochs. Themaximumobject memory sizeNM is set to four.

4.3 Comparison to the State-of-the-Art Results

Table 1 summarizes the F1 scores and METEOR scores of all
methods on the held-out MSCOCO dataset. All the baseline
methods, except LRCN, use additional semantic data con-
taining the words of the eight novel objects. Nevertheless,
without external sentence data, our method achieves com-
petitive performance to state of the art. Our model yields a
higher average F1-score than the previous state-of-the-art
result (60.08% versus 54.4%). The improvement is signifi-
cant, considering our model uses fewer training data. Our
METEOR score is slightly worse than the CBS [14]. The rea-
son is two-fold. On the one hand, CBS uses the beam search
strategy, which is known for improving sentence perfor-
mance. On the other hand, it uses many training sentences
containing the novel words in the training. Consequently, it
operates in a more advantageous setting than our zero-shot
setting inwhich there are zero training sentences of the novel
objects. Compared to the methods with additional sentence
data, our method generates better captions for the novel
objects without these data. In addition, compared to our pre-
vious work DNOC [3], which is also a zero-shot novel object
captioning method, the improved version (Switchable
LSTM) significantly and consistently outperforms the previ-
ous version (DNOC) on all evaluation metrics. These results
demonstrate the effectiveness of our SNOC framework and
its capability of utilizing both the external and internal
knowledge.

Describing in-Domain Objects. Besides the unseen (out-of-
domain) objects, we also validate the capability of describing

Fig. 4. Training examples containing the novel object “zebra”. Red boxes
indicate the location of zebras. Note although the novel objects are in
the training set, the captioning sentences does not contain the object
word.
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seen (in-domain) objects. The in-domain testing focuses on
describing the objects that present during training. Since the
proxy visual words are computed by the cosine distance
with training objects (Eqn.(4)), it would find the category
itself for an in-domain (training) object. Thus in this experi-
ment, the proxy visual words are indeed the objects them-
selves. Table 2 shows the comparison of our SNOC with
the baseline method LRCN [4] and our previous version
DNOC [3] in the held-out MSCOCO dataset. Our Switchable
LSTM achieves higher F1-scores on the known objects than
these methods. Our method significantly outperforms the
baseline LRCN [4] by 14.8 points on the averaged F1 scores.
The comparison results strongly support that our method
can better describe objects in images, even on the seen (in-
domain) objects.

Scaling to the ImageNet Dataset. Table 3 shows the results
on the ImageNet dataset. Note that LSTM-C uses huge
external unpaired text data (i.e., British National Corpus
and Wikipedia). It is surprising to see that without any
external data as used in the compared methods, our method

achieves higher performances on the ImageNet dataset. The
comparison demonstrates that our SNOC can correctly gen-
erate captioning for novel objects even when scaling into
ImageNet images with hundreds of novel objects.

Results on the Nocaps Dataset. To enable our model in cap-
tioning the novel objects in nocaps, we replaced our COCO
pre-trained detection model with the detection model pre-
trained on the Open Image dataset. Others are kept the same
with the COCO experiments, i.e., using image features from
the same pre-trained VGG-16 model and the vanilla LSTM
andword embeddingswith random initialization. The results
of the out-of-domain testing are shown in Table 4. Compared
to the strong baseline UpDown [10], our method significantly
outperforms it on both validation set and test set under out-
of-domain evaluation. The performance improvement is con-
siderable, since UpDown [10] exploits much better image fea-
tures (bottom-up features using a Faster-RCNN detector pre-
trained on Visual Genome) and GloVe word embeddings.
Note that NBT and CBS utilized additional GloVe word
embeddings and ELMo model, which are pretrained using
external large-scale corpus dataset. Thus their languagemod-
els have already seen sentences with the unseen objects. For a
fair comparison, we re-train NBT using the same pretrained
models and input features as ours (indicated by ? in Table 4).
Our model outperforms NBT by 7.2 points on the nocaps val
set in the zero-shot setting. Oscar [51] is first pre-trained on

TABLE 1
The comparison with the state-of-the-art methods on the eight novel objects in the held-out MSCOCO dataset. All the results are
reported using VGG-16 [43] feature and without beam search except CBS [14]. Note that we adopt the zero-shot novel object
captioning setting where no additional language data is used in training. All F1-score values are reported as percentage (%)

Settings Methods Fbottle Fbus Fcouch Fmicrowave Fpizza Fracket Fsuitcase Fzebra Faverage METEOR

With External
Semantic Data

DCC [11] 4.63 29.79 45.87 28.09 64.59 52.24 13.16 79.88 39.78 21
NOC [12]
–(One hot) 16.52 68.63 42.57 32.16 67.07 61.22 31.18 88.39 50.97 20.7
–(One hot
+Glove)

14.93 68.96 43.82 37.89 66.53 65.87 28.13 88.66 51.85 20.7

LSTM-C[13]
–(One hot) 29.07 64.38 26.01 26.04 75.57 66.54 55.54 92.03 54.40 22
CBS [14] 16.3 67.8 48.2 29.7 77.2 57.1 49.9 85.7 54.0 23.3
NBT+G [32] 7.1 73.7 34.4 61.9 59.9 20.2 42.3 88.5 48.5 22.8
CRN [34] 38.05 78.40 55.93 53.76 81.43 62.02 57.69 85.38 64.08 21.3
FDM-net [36] - - - - - - - - 64.7 25.7

Zero-shot LRCN [4] 0 0 0 0 0 0 0 0 0 19.33
DNOC [3] 32.18 75.88 49.25 51.28 76.85 30.68 58.32 82.60 57.13 21.19
Ours 31.60 76.82 52.87 54.55 78.13 43.74 59.3 83.69 60.08 21.88

TABLE 2
Comparison of some known objects in the

held-out MSCOCO dataset

Methods Fcat Fdog Felephant Fhorse Fmotorcycle Faverage

LRCN [4] 75.73 53.62 65.49 55.20 71.45 64.50
DNOC [3] 86.92 70.66 75.49 72.41 78.13 76.72
Ours 90.01 74.11 76.89 77.38 77.90 79.26

TABLE 3
Results on the ILSVRC ImageNet dataset

Model Novel Accuracy

DCC [11] 56.85 11.08
NOC (One hot+Glove) [12] 69.08 10.04
LSTM-C (One hot+Glove) [13] 72.08 16.39
Ours 95.82 36.21

TABLE 4
CIDEr Scores on the out-of-domain validation set and test set of
the nocaps dataset. ? indicates our re-implementation results

in the zero-shot novel object captioning setting

Settings Model Val Test

With External
Semantic Data

NBT [32] 54.0 48.7
NBT [32] + CBS [14] 63.7 58.5
Oscar [51] 45.1 -
Oscar [51]+SCST+CBS 80.3 -

Zero-shot UpDown [10] 31.3 30.1
NBT [32] ? 35.2 -
Ours 42.6 39.4
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external 6.5 million text-image pairs and then fine-tuned on
nocaps. Therefore, they are not fair comparisons to our
method. In contrast, we follow our zero-shot setting and use
the image features extracted by VGG-16 and randomly initial-
ized word embeddings. We also show some qualitative
results on the nocaps dataset in Fig. 6. Compared toUpDown,
our method generates more detailed and precise sentences
about the novel objects.

4.4 Ablation Studies

We design ablation studies to evaluate the effectiveness of
each component in our framework.

The Effectiveness of the Proxy Visual Word. We propose the
proxy visual word to present an unseen object by some
known objects that have similar visual appearance. Fig. 5
shows some examples of the generated proxy words for the
novel objects in the test set. We can see from this figure that
these proxy words are very close to the ground truth of

these novel objects, indicating that our proxy visual words
are capable of partially describing the unseen object given
the limited knowledge. For example, although there is no
“pizza” seen during the training, we can generate the proxy
visual word “sandwich” to represent it when completing a
naive sentence. The generated sentences are reasonable and
meaningful since the meaning and phrases templates are
similar for these two objects.

The Effectiveness of the Retrieving Mode. In the ablation
experiments, we validate the effectiveness of this module
by removing the whole Retrieving module. In this set-
ting, there is only the Generatingmode in the LSTM. As a
result, the LSTM cannot leverage the external knowledge
from the detection model and thus performs badly on these
novel words. It can be seen from Table 5 that the model
even cannot mention the unseen object (F1average = 0). The
results are far away from that of our full model.

The Effectiveness of the Content-Based Addressing Operation.
Our Switchable LSTM conducts content-based addressing
(Eqn (8)) on the object memory to select a correct noun word
to describe the unseen object. The addressing operation con-
nects the semantic language representation and the visual
CNN feature like a grounding operation. In Table 5, we also
validate the effectiveness of content-based addressing opera-
tion. “Ours w/o addressing” indicates that we replace the
content-based addressing operation by randomly selecting a
detected object as the retrieved noun word pprt . With the
addressing operation, our full model outperforms “Ours w/o
addressing” by 19.91% in F1-score and 1.91% in METEOR
score. The comparison indicates that the addressing operation
in the Retrieving mode can enhance the semantic under-
standing of the visual content and can easily find the object of
interest.

Analysis on Different Language Models. We experimented
different language model such as BERT and GRU. Since our
switching model design is based on the recurrent neural
network, we only take the pretrained BERT model as the ini-
tialization of the input embeddings. Table 6 shows BERT
improves our method from 21.88 to 22.41 in METEOR. This
indicates better language models would bring further per-
formance improvement of our method. We also replaced
our base LSTM model by the Gated Recurrent Unit (GRU).
We found in experiments GRU leads to similar F1-scores in
captioning novel objects, but worse METEOR scores. The
reason might be the less parameters of GRU compared to
that of LSTM.

Analysis on Different Object Detection Models. We tried dif-
ferent detection models in building our framework. WeFig. 6. Quilitative results on the nocaps [35] validation set.

Fig. 5. Examples of the proxy visual words. Left are detection results of
the novel objects during testing. Right are the retrieved corresponding
proxy visual words from seen objects in training. The numbers above
arrows indicate the cosine distance calculated via Eqn. (4).

TABLE 5
Ablation studies on the held-out MSCOCO dataset.
“Ours w/o Retrieving” indicates our SNOC frame-
work but without the activation of the Retrieving

mode. “Ours w/o addressing” indicates that we
remove the addressing operation (Eqn. (8))

Model F1average METEOR

Ours w/o
Retrieving

0 19.51

Ours w/o addressing 40.17 19.97
Ours 60.08 21.88
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compared three kinds of detection models in experiments,
i.e., FasterRCNN with Inception ResNet v2, Mask-RCNN
with Inception ResNet v2, SSD with ResNet50 FPN. The
results are shown in Table 7. We found the detection model
(FasterRCNN with Inception ResNet v2) achieves the high-
est performance among all the competitors.

Analysis of the Maximum Object Memory Size NMNM . NM indi-
cates the maximum slots in our object memory, i.e., the
number of object-label pairs for each image. If the memory
size is too small, there is little external knowledge consid-
ered in our SNOC. If we set the memory size to be very
large, it might introduce too many noisy candidates, and
thus limits the performance. We show the averaged F1-
scores and METEOR scores over different memory sizes in
Fig. 7. NM ¼ 0 means there is no detection output used in
the framework. We can see from the figure that the F1-
scores is relatively low when NM is less than three. The rea-
son is that the introduced external knowledge is not suffi-
cient since only very few detected objects are in the memory
as candidates. The performance curve becomes flatten as
NM increases more than three. We also observe a slight per-
formance drop (F1-scores drops from 60.1 to 59.8) when the
memory size is too large. The reason might be that too

many noisy candidate objects are written to the memory,
making the content-based addressing less reliable. The
results of different object memory sizes also validate the
effectiveness of our Retrieving mode. It can be seen that
by introducing sufficient external detection knowledge, our
SNOC is capable of describing the novel objects even with-
out any related training sentences.

Analysis of Reinforcement Learning (RL) Training. Recently,
RL training has been a standard way to improve the perfor-
mance for the image captioning task. We follow SCST [31]
and apply it to our model. We first train our model using
cross-entropy loss and then fine-tune the model using SCST
with a small learning rate (1� 10�5). We take the greedy
decoding as the baseline in RL. We tried two different
reward target metrics, i.e., CIDer and METEOR. The results
are shown in Table 8. We can see that the RL-based training
only improves the captioning metrics but not the F1 scores.
The reason might be that the optimization target is for better
evaluation scores (e.g., CIDer and METEOR), but not for the
novel object captioning (the switching mechanism and
memory retrieval).

4.5 Qualitative Results

We qualitatively show some examples from the test set of
the held-out MSCOCO dataset in Fig. 8. For each image, we
first build the object memory based on the detection results.
Since the words of novel objects do not exist in training, we
use our generated proxy visual words for each novel object
in building the memory. Then our Switchable LSTM pre-
dicts words by words to form a naive sentence. The words
in purple are generated in the Retrieving mode, while
other words are from the Generatingmode. It can be seen
that our Switchable LSTM successfully switches between
the two modes in generating sentences. The words from the
Retrieving mode are the nouns of detected objects. We
first finish a naive sentence with proxy visual words, and
then replace them with the accurate unseen words.

Take the image at the lower-left corner as an example.
The object microwave does not exist in training data. We
first find the proxy visual word “oven” for “microwave”
based on the visual similarity. Then We build the object
memory with two slots, containing the feature-label pairs
for “dog” and “oven”, respectively. Our Switchable LSTM
generates the words in two modes, with an inside switcher
controlling the two modes. The word “dog” and ”oven” in
the sentence are the retrieved results using Eqn. (8). Finally,
we replace the proxy visual word “oven” by its true name
“microwave”, which circumvents the out-of-vocabulary
issue. Without seeing any image and sentence that contain

TABLE 6
Analysis of different language models in terms of
Averaged F1-score and METEOR score on the

held-out MSCOCO dataset

Model F1average METEOR

Ours (LSTM) 60.08 21.87
Ours + BERT 60.81 22.41
Ours (GRU) 60.59 21.52

TABLE 7
Impact of different detection models in terms of Averaged F1-
score and METEOR score on the held-out MSCOCO dataset

Model F1average METEOR

Ours + Faster-RCNN (Inception-
ResNet)

60.08 21.87

Ours + SSD (ResNet-50 FPN) 58.98 21.32
Ours + Mask-RCNN (Inception-
ResNet)

60.22 21.71

Fig. 7. The performance curves over different memory sizeNM .

TABLE 8
Impact of Reinforcement Learning on the held-out

MSCOCO dataset

Model F1average METEOR

Ours 60.08 21.88
Ours + SCST[31] (CIDer) 59.79 22.39
Ours + SCST[31] (METEOR) 59.57 22.76
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microwave during training, our model improves the gener-
alization ability and successfully describes the image.

5 CONCLUSION

In this paper, we tackle the novel object captioning under a
challenging condition where zero sentences of the novel
object are available during training. We mimic the way that
babies talk about something unknown. When describing an
unseen object, a baby usually uses the word of its most simi-
lar object. For those novel objects that are never shown in
the training stage, we take words of most similar seen
objects as proxy visual words. Then we utilize an external
detection model to build a key-value object memory, con-
taining the visual information and the corresponding word
for each object. To introduce external knowledge into the
sentence generation, we propose a Switchable LSTM that
has two switchable working modes, i.e., 1) generating the
sentences like a standard LSTM and 2) retrieving a proper
noun from the key-value memory. We design a new indica-
tor in the LSTM cell to switch the two modes. Our Switch-
able LSTM is thus capable of leveraging both internal
knowledge and external knowledge. Our experiments vali-
date its effectiveness on both the held-out MSCOCO dataset
and the ImageNet dataset. Without any additional sentence
data, our method even outperforms the state-of-the-art
methods that use additional language data.
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