2203.12514v1 [cs.CV] 23 Mar 2022

arxXiv

Refine-Net: Normal Refinement Neural Network

for Noisy Point Clouds

Haoran Zhou, Honghua Chen, Yingkui Zhang, Minggiang Wei, Senior Member, IEEE, Haoran Xie, Senior

Member, IEEE, Jun Wang, Tong Lu, Jing Qin, and Xiao-Ping Zhang, Fellow, IEEE

Abstract—Point normal, as an intrinsic geometric property of 3D objects, not only serves conventional geometric tasks such as
surface consolidation and reconstruction, but also facilitates cutting-edge learning-based techniques for shape analysis and
generation. In this paper, we propose a normal refinement network, called Refine-Net, to predict accurate normals for noisy point
clouds. Traditional normal estimation wisdom heavily depends on priors such as surface shapes or noise distributions, while
learning-based solutions settle for single types of hand-crafted features. Differently, our network is designed to refine the initial normal
of each point by extracting additional information from multiple feature representations. To this end, several feature modules are
developed and incorporated into Refine-Net by a novel connection module. Besides the overall network architecture of Refine-Net, we
propose a new multi-scale fitting patch selection scheme for the initial normal estimation, by absorbing geometry domain knowledge.
Also, Refine-Net is a generic normal estimation framework: 1) point normals obtained from other methods can be further refined, and
2) any feature module related to the surface geometric structures can be potentially integrated into the framework. Qualitative and
quantitative evaluations demonstrate the clear superiority of Refine-Net over the state-of-the-arts on both synthetic and real-scanned
datasets. Our code is available at https:/github.com/hrzhou2/refinenet.

Index Terms—Refine-Net, normal estimation, noisy point clouds, multi-scale and -feature modules, point cloud denoising

1 INTRODUCTION

oint cloud is a set of unstructured points to efficiently
Prepresent 3D surfaces/scenes. Each point in the point cloud
possesses a spatial position (z, y, z) and potentially a vector of at-
tributes, such as the normal, color or material reflection. Currently,
point clouds are routinely captured by laser/optical scanners and
depth cameras, e.g., Velodyne LiDAR Velabit, Intel RealSense,
LiDAR scanner of Apple iPad Pro, or Microsoft Kinect. As stan-
dard outputs of these 3D sensors, point clouds have been flexibly
used in various applications, ranging from 6-degree virtual reality
[1], [2], robotics [3] to autonomous driving [4], [5]. As known,
even the state-of-the-art 3D sensors all inevitably arise noise,
due to both the measurement and reconstruction errors. Noise
hinders existing normal estimation methods heavily, since surface
geometric properties are sensitive to such local perturbations.
Besides noise, the objects in real scans are even more complicated,
which introduce additional challenges in normal estimation.
For any noisy point cloud as input, normal estimation aims to
accurately predict the normal of each point; it is an indispensable
step for an input point cloud with different noise distributions,

H. Zhou and T. Lu are with the State Key Laboratory for Novel Software
Technology, Nanjing University, Nanjing, China (hrzhou98@ gmail.com; lu-
tong @nju.edu.cn).

H. Chen, J. Wang and M. Wei are with the School of Computer Science
and Technology, Nanjing University of Aeronautics and Astronautics, Nan-
jing, China, and also with the MIIT Key Laboratory of Pattern Analy-
sis and Machine Intelligence, Nanjing, China (chenhonghuacn@ gmail.com;
davis.wjun @ gmail.com; mingqiang.wei@gmail.com).

H. Xie is with the Department of Computing and Decision Sciences, Lingnan
University, Hong Kong SAR, China (hrxie2@ gmail.com).

Y. Zhang and J. Qin are with the School of Nursing, The Hong Kong
Polytechnic University, Hong Kong SAR, China (yingkui.zhang @ polyu.edu.hk;
harry.qin@polyu.edu.hk).

X.-P. Zhang is with the Department of Electrical, Computer and Biomedical
Engineering, Ryerson University, Toronto, Canada (xzhang @ee.ryerson.ca).
Corresponding authors: M. Wei and T. Lu.

Multi-feature

! ! l

Height-map

Patch points

il Refine {1

s $>

Multi-scale

Initial normals

Final normals

Fig. 1. An effective multi-scale and -feature scheme is leveraged in our
normal refinement paradigm. We explore different types of feature rep-
resentations from an input point cloud (black arrows), and incorporate
them into Refine-Net (blue arrows). The green arrow denotes the normal
estimation effort to obtain the initial normals which are further processed
by a multi-scale scheme in the refinement.

geometric characteristics and sampling rates. Accurate normals
will contribute to either fundamental geometric tasks, such as point
cloud consolidation [6], [7], [8], [9], surface reconstruction [10],
[11], [12] and segmentation [13], [14], or high-level shape analysis
neural networks [15], [16], [17]. Ideally, the normal field of a noisy
point cloud, which is formed by the calculated point normals,
should approach the normal field of its clean counterpart (i.e., the
underlying surface).

A good normal estimation solution will possess two merits
of 1) maintaining data fidelity by preserving geometric features,
and 2) adapting to noise with unknown distributions. However,
the fundamental difficulty of normal estimation exists in how to
differentiate surface features and noise, which are both of high
frequency and sometimes small in scale. Traditional estimation

methods often utilize several elaborately-designed regularities
(e.g., lp minimization, low rank) or noise distributions (e.g.,
Gaussian/impulsive noise) to preserve geometric features. These
prior-based approaches, though achieving notable successes in
certain surface types or noise models, may not generalize well to
resolve diverse inputs. In addition, they rely on parameters tuning
heavily, like the neighborhood scale for plane fitting [18], [19],
which tends to over-smooth or over-sharpen normal estimation
results.

Recent years have witnessed considerable research efforts of
learning-based normal estimation. Existing wisdom, either using
the convolutional neural network (CNN) architecture [20], [21], or
the PointNet architecture [22], attempts to design a complete form
of feature representation to predict point normals. However, two
core problems are adverse to accurate normal estimation. First,
while many methods [20], [21], [22], [23] exploit the multi-scale
neighborhood size, they may ignore the limited ability of networks
that are built on a single type of feature inputs. We exhibit in Fig. 1
that several kinds of features are explored from a noisy input,
such as the point coordinates of a local patch and the grid-like
structures describing height distances, etc. Previous methods [6],
[22] have proved that each of the extracted feature representations
can be independently modelled for the point geometric properties.
We validate that these features can mutually support each other,
from different perspectives, and can be jointly incorporated into
the estimation of point normals. This incorporation of multiple
features is an effort in this work. Besides, we still apply the
multi-scale scheme following [23] to promote learning robustness.
These are the two main schemes adopted in this work (see Fig. 1).
Second, for severely degraded data, it is open to recover sharp
features and fine details by a general mapping learned from deep
neural networks without any support of geometric information.
We refer the readers to Fig. 2(b) that small handles are blurred in
the red bounding box where the input domain is similar to planar
areas. Over-smoothed results that ignore sharp edges (in the black
bounding box of Fig. 2) are not allowed in the accuracy-required
tasks like robotic grasp and surface reconstruction.

Motivated by the aforementioned challenges, we propose a
normal refinement network, namely Refine-Net, which fuses im-
portant geometric information based on a multi-feature scheme.
Our main contributions are summarized as follows:

e The proposed Refine-Net is a normal-to-normal system,
designed to refine the initial normal of each point. We
introduce two additional feature representations into the
refinement steps in the context of neural networks.

e We present a novel connection module, which applies
a flexible transformation to integrate useful information
learned from additional features with the initial normal.

e We further extend Refine-Net into a normal refinement
framework, with the generalization ability of both feature
and normal modules.

e« We propose a geometric method, namely multi-scale fit-
ting patch selection (MFPS), for the initial normal es-
timation. It serves as our own initial normal estimator,
which is better at capturing geometric supports by using
an elaborately-designed patch selection scheme.

e A new point update algorithm is designed for the down-
stream construction tasks.

Difference from our conference paper. This work covers and
extends our conference version [24] as follows: (i) we exploit

-

(a) Depth image

(b) Nesti-Net [21]

(d) RGB image

(e) Nesti-Net [21] + Ours (f) Ours

Fig. 2. Visual comparison of estimated normal results, in which normals
are rendered to RGB colors. The proposed Refine-Net is better at recov-
ering details and sharp edges. (a) is the depth image (noisy input) with
high resolution zoom-ins. (d) is the original RGB image. (b) and (e) show
the normal estimation result of Nesti-Net [21] and the corresponding
refined result by our network. (c) is our initial normal result, and (f) is the
result of our full pipeline. Clear improvements can be observed from tiny
objects (in the red bounding box) and sharp feature regions (in the black
bounding box).

more feature modules in the system, making a breakthrough from
single-feature to a multi-feature refinement framework. Thus, our
previous work can be seen as part of the network (normals&HMPs
version in Sec. 6); (ii) we extend the connection module to three al-
ternative choices including the newly proposed one which is more
flexible in the high-dimensional space; (iii) the original geometric
method is further improved, by using a novel selection solution, to
determine normal directions in challenging regions of sharp edges;
(iv) we demonstrate that Refine-Net can also improve previous
normal estimation networks [21], [22], by directly taking their
results as input; (v) we conduct more experiments on the outdoor
scene dataset [25]; (vi) our results show clear improvements over
Zhou et al. [24] in terms of normal estimation accuracy and noise-
robustness.

2 RELATED WORK

Normal estimation for point clouds is a long-standing problem
in academic. We will review previous researches from traditional
normal estimators to recent prevalent learning-based techniques.

2.1 Traditional normal estimators

Traditional approaches mainly focus on exploiting low-level ge-
ometric priors. The most well-known one is the Principal Com-
ponent Analysis (PCA) [26], by analyzing covariance in a local
structure around a point and defining its normal as the eigenvector
corresponding to the smallest eigenvalue. Following this work, a
lot of improvements have been proposed [27], [28], [29] to in-
crease estimation precision. In particular, Mitra et al. [27] analyze
the effects of neighborhood size, curvature, sampling density, and
noise level for estimating normals. By carefully analyzing these
local information, this method can find a suitable neighborhood
size for each point. Another kind of normal estimation methods is
based on Voronoi cells [30], [31], [32], [33]. However, this kind
of methods cannot well estimate the normals of points near/on
sharp features. Some other works are based on the improvement
of a preliminary normal result. Typical approaches use adaptive

moving least squares [34] and robust local kernel regression [35]
to estimate normals as the gradient of an implicit surface which fits
the local points and their preliminary normals. Later, based on the
observation that neighbors belonging to different surface patches
often result in large fitting errors, recent works are dedicated to se-
lecting a plane approximating points from the same surface patch
to estimate normals [18], [36], [37]. Under the assumptions that: i)
surfaces are commonly composed of piecewise flat patches, and ii)
geometric features are sparsely distributed over the entire shape,
sparsity-based methods [38], [39], [40] show impressive results for
those CAD-like models, especially in sharp feature preservation.
Low-rank based methods [40], [41], [42], [43] explore the non-
local geometric similarity to generate better normal fields on 3D
surfaces. Some other methods, like Hough Transform [44], also
yield pleasing results.

Overall, the geometric methods often resolve the normal
estimation problem under certain assumptions or specific obser-
vations. Besides, these approaches contain a number of parame-
ters, which require careful trial-and-error tuning to obtain decent
results, especially for complex models.

2.2 Learning-based normal estimators

Recently, learning-based methods have gradually shown their
power in the task of normal estimation. We will review the related
prior works in two main types: CNN-based and PointNet-based
networks.

2.2.1 CNN-based methods

Boulch et al. [20] propose to project a discrete Hough space
representing normal directions onto a structure amenable to CNN-
based deep networks. Similarly, Roveri et al. [45] define a grid-
like regular input to learn ideal normal results. Ben-Shabat et al.
[21] propose to parameterize the local field using a multi-scale
3D modified Fisher vector which serves as the input to a deep 3D
CNN architecture. In addition, a scale manager module is designed
for selecting a suitable neighborhood size in a data-driven manner.
As we investigate above, how to map the unstructured point data
into a regular domain, is the key to these CNN-based methods.

2.2.2 PointNet-based methods

Another point cloud learning framework, namely PointNet [46],
becomes increasingly popular in 3D domains, thanks to its ability
to directly manipulate raw point cloud data. Inspired by this,
Guerrero et al. [22] apply the PointNet architecture in a patch-
based multi-scale form to predict normals. With a data-driven
manner, this method allows to replace the difficult and error-
prone manual tuning of parameters presented in the majority of
existing traditional techniques. More recently, Zhou et al. [47]
introduce an extra feature constraint mechanism and a multi-
scale neighborhood selection strategy to estimate normals for 3D
point clouds. Considering the typical problem that PointNet is not
suitable for encoding local structures of a point cloud, Hashimoto
et al. [48] propose a two-branch network that extracts both local
and spatial features required for learning. The aforementioned
learning-based deep networks try to directly regress point normals
from a large dataset. However, they have downsides in terms of
robustness to small input changes and interpretability. Contrary
to these methods, Lenssen et al. [49] propose to embed deep
learning in least-squares plane fitting, which leads to a fast and
accurate algorithm. Specifically, a graph neural network is utilized

3

to iteratively parameterize an adaptive anisotropic kernel that
produces point weights for least-squares plane fitting.

In general, the aforementioned learning-based methods have
two main drawbacks: 1) the weak ability of detail perceiving
in/near challenging feature regions; 2) an existing learning-based
method often exploits one single type of feature representation,
neglecting the useful information from multiple types of features
that can be combined together to co-support the normal estimation
task. In this work, we focus on deploying a multi-feature scheme
to explore different geometric supports in our normal refinement
system.

3 REFINE-NET

In this section, we first describe the overall architecture of Refine-
Net (Sec. 3.1), followed by detailed elaboration of the component
modules (Sec. 3.2-Sec. 3.5). Furthermore, we show that Refine-
Net can be well extended to a generic normal refinement frame-
work in Sec. 3.6.

3.1

The overall architecture of Refine-Net is shown in Fig. 3, which
is designed to refine the initial normals by introducing multiple
types of feature representations from an input point cloud. The
initial normal of each point (Sec. 4) serves as the main feature in
the network, and is processed by a two-step refinement for the final
normal. First, we use bilateral filtering to extend the initial normal
into a multi-scale version of normal vectors in order to expand the
receptive field of local points (Sec. 3.2). Then, the filtered normals
are fed into individual branches for a multi-feature refinement.
Based on the extracted information, an additional point feature is
introduced, which fuses with the normal in the connection module,
in order to apply a rough refinement (Sec. 3.3). Similarly, in the
second step, we use the height-map feature, which is generated
according to point positions, to further fine-tune the intermediate
result (Sec. 3.4). The connection modules which incorporate
different features into the refinement are discussed in Sec. 3.5.
Finally, Refine-Net collects outputs from all branches and obtains
the final normal. We show in Sec. 3.6 that our network is a generic
normal refinement framework, which can be potentially combined
with any other initial normal and feature module.

Architecture overview

3.2 Multi-scale normal filtering

The network starts from the initial normals N = {7;}}¥, of
noisy points P = {p;}2,, where IV is the number of points
in the input point cloud. We will discuss this preliminary normal
estimation later in Sec. 4. Previous attempts [23], [50], [51], [52],
[53] that apply deep neural networks in the normal field have
shown impressive results of recovering ground-truth normals from
the corresponding noisy inputs. We consider the initial normal of
each point as the main feature in the recovery, and extend it to
multiple scales using bilateral normal filtering.

Multi-scale bilateral filters. We first give a brief introduction to
the commonly-used bilateral filter [54]. Given the centered point
pi and its neighborhood A/ (i), we can calculate the filtered normal
as:

;=AY Willlps = piDWe(lls = a5lD7Rg), (D
P EN (i)

. N
I

’ © _ Height-map)

h I '
1 . i ""}':‘ ! X -
E - wp) v fy : Point Height-map
: e || : Module Module
""""""""""""" ’ \"'"""f"""""l @4---Transformalion T--->@
4 4
[T TUTTOTTTITTRCITTON enTTTon s 3. T N €4
BTN De--------- #=-- Normal set V; \ . Refinement 1 \ / Refinement 2 \ ”§ Ui
H E E Connection E E Connection E ary \\:“ /,
| n4(05,, 0r,) BE Module E | E Module A% B [/t
2 Lo N \ | | Output | | \ /2
3 : coe E E 000 E E cee E —| | Module £
2> £ o o i P F
X Query point K ! ' - ! ' - ' K
(/ { = (L Connection L Connection M (f
\ T M) T Module [L Mowe [T \

Initial normals

Final normals

Fig. 3. The overall architecture of Refine-Net. For a target point, its initial normal is first extended to a multi-scale version using bilateral filtering.
Then, in each branch, the normal feature is extracted and refined using a multi-feature scheme: 1) Point Module introduces the additional point
feature from a local patch to produce a new feature in the first refinement; 2) Height-map Module uses the constructed height-maps to further
improve the normal; 3) Connection Module is designed to combine the normal feature and the learned transformation 7" in each step of the
refinement. Finally, the outputs from all branches are collected to predict the final normal.

where A(x) is the vector normalization function, and W and W,
are Gaussian weight functions, i.e., W, (z) = exp(—xz2/(202)),
representing the spatial similarity and normal similarity respec-
tively between a pair of points. Here, standard deviations o
and o, are used. Instead of carefully tuning these parameters,
we apply a multi-scale filtering [23] and obtain filtered normals
from two designed parameter sets Py = {0s,,0s,,...} and P, =
{Or,,0ry, ...} by using every combination of the two parameters.
Thus, together with the initial one, we get a total of X normals
in the normal set of p;, denoted as N; = {nji,na,....,nx}.
Each filtered normal will be fed into an individual branch for the
following refinement operations.

Point-wise normal reorientation. Before diving into these
branches, we consider the point-wise normal reorientation in order
to lower the learning difficulty. To this end, we apply a global
rotation to the filtered normals to make them invariant to rigid
transformation. Specifically, we first compute the normal tensor of

point p;:
X

T, = an X an,nj € NZ 2)
j=1
T; fuses the normal characteristics of p;’s local neighbors and can
be decomposed as:

Tl— =)\1616%1 +)\2626%1 +)\3636;{, (3)

where A\; < Ay < A3 are the eigenvalues and ey, e, €3 are the
corresponding eigenvectors. Then, a rotation matrix I?; can be
constructed as [61, e, 63]. R; rotates all normals in V; to a local
frame near the Z-axis of the global frame. Furthermore, if they
are in the direction of negative Z-axis, we reverse them to the
positive one. The ground-truth normal is also applied by the same
rotation matrix to match the input. Such a pre-processing operation
explicitly reorients the normals of each point to the same direction
in order to tackle the inconsistency of global directions between
input samples.

Normal-based clustering. Before training, we partition the train-
ing samples into K. clusters via the k-means algorithm [23]. It

is performed on the filtered normals N’l to gather similar inputs
together in one group. For each cluster, we train a separate Refine-
Net to recover the ground-truth normals. In this way, the network
can focus on a specific kind of geometric features and intensively
refine this type of normals. In the runtime test stage, a single
point sample is distributed into one of these clusters in terms of
[|N; — Ci|| < ||N; — Ckl|, Vk. Here, Cj, is the center of the k-
th cluster. We evaluate the performance of this cluster scheme in
Sec. 6.

3.3 Point module

We introduce point features to prepare for the refinement. For a
target point p;, a local patch P; is defined as the neighboring point
set {p1, p2, ..., Pn } Which is centered at p;. We propose to extract
useful information from the patch points to refine the normal.
To simplify the input space, the patch IP; is translated to origin
and normalized by the patch radius. In order to match the filtered
normals obtained above, IP; is also applied by the corresponding
matrix R;, rotating the patch to the same direction. The rotation
constraint is nontrivial [22], and in this case we can use the global
directions extracted from the initial normals instead of computing
directly from raw points.

To process the point set, we use the PointNet architecture [46]
which is denoted as Point Module in Fig. 3. PointNet suggests to
apply a set of shared functions independently on each point and
collect the global feature using a symmetric function:

f(®;) = g(h(p1), ... h(pn)),)

where g() is a symmetric function, i.e., max-pooling or sum, and
h(*) denotes a multi-layer perceptron network (MLP). Here, the
input p; € R? only contains the (z,y, z) coordinates. Then, our
point module takes the global feature and processes it using several
fully-connected layers which output a d; dimensional feature
vector. The output dimension d; is determined according to the
design of connection module, and we will discuss several choices
later in Sec. 3.5.

3.4 Height-map module

The height-map (HMP) feature is constructed related to both the
point normals and coordinates which maps the local points onto a
grid-like structure. The point p; itself as well as one of its filtered
normals n; € N, defines a tangent plane, and the associated HMP
is built on this plane. Suppose that we build a matrix with m X
m bins that describes the local point positions, and the center
of the matrix is located at p;. Similar as [6], we fill each bin
by weightedly averaging the height distances of points in a ball
neighborhood Nyq;(b;) of bin center b;:

oy = Zpkej\/'ba”(bj)w(ijpk)H(T(piant)7pk) (5)
j Y

’ > pe (b, k)

where T'(p;,n:) is the tangent plane defined by p; and ng,
H(T(pi,nt),pr) returns the signed distance from py to the

plane and w(bj,pr) = exp(—”b’;%) is a spatial Gaus-
sian weight function in which o4 is the residual bandwidth.
Assembling all HMPs yields each point’s height-map features
{HMP;, HMP;, ..., HMPx }. Note that, for the defined planes
associated with HMPs, their Z-axes of local coordinate systems
are also rotated by the matrix R;. Thus, the directions of X-axes
and Y-axes are consistent among all samples.

The computed representation is fed into the height-map mod-
ule (refinement 2 in Fig. 3). The X HMPs are concatenated
and processed using several convolutional layers and max-pooling
layers, followed by fully-connected layers (see Tab. 6). Similarly,
the output of this module is a do dimensional vector prepared for
refinement.

3.5 Connection module

In the aforementioned cases, we introduce additional features to
refine the normal in each branch. The main discussion behind
is how to establish a connection, e.g., between the normal vector
V € R? and the point feature F' (connection module of refinement
1 in Fig. 3), since they belong to distinct data types. The key idea is
to use the point feature F' to learn an intermediate transformation
matrix T, which should match the size of V, and apply matrix
multiplication to obtain the higher-level feature Y = T'- V (a new
normal feature). Several choices to construct the transformation
target 1" are discussed below.

Rotation matrix. The simplest solution is to apply 3D rotation
to normal vectors for the refinement. In this way, we can learn a
rotation matrix from the input feature F' which parameterizes the
local points related to V. Thus, the vector V' can be rotated in
the guidance of the point feature. To be more specific, we use the
point module to learn a quaternion, which means d; = 4 is set
in the output dimension, and construct a 3 X 3 rotation matrix 7’
from the unit quaternion.

Transformation matrix. Another option that generates a trans-
formation matrix does not require a quaternion for rotating.
Intuitively, we set the output dimension as d; = 9 and simply
reshape it to a 3 X 3 matrix, which is a more direct solution.
Note that, this does not act the same as a rotation operator. This
construction can be seen as a common 3D transformation applied
to the input normal vector V' which is not designed strictly for
rotating.

Weight matrix. More generally, we construct a weight ma-
rix T = [t1,t9,...,tp)7 € RP*3, in which each t; =

Rotation
— to rotate v l 3x1
Quaternion —
—— 3x3
ransformation
Feamre reshape T Matrix
extraction iplicati
—. 3x3 Multiplication
Input —
Feature l
px3 Y
v l qx1
Weight
Featu}‘e reshape T Matrix
extraction Multiplication
pxq
network
Input Y l
Feature

Fig. 4. Structure of our connection module. Three alternative choices
(top) for constructing a transformation matrix 7" are provided when
inputting a normal vector V' € R3 (refinement 1). If the input is a normal
feature V' € R? (refinement 2), we propose to leverage the weight matrix
option (bottom).

[Wy,i, Wy i, W] T contains learned weights corresponding to the
3D coordinate of V. Thus, the transformation can be more flexible,
producing output features with arbitrary dimensions. Through ma-
trix multiplication, a weight matrix can extract more information
from the input feature compared with a single 3 X 3 matrix that is
applied within the limits of 3D space. We set d; = p X 3 in the
output dimension, and reshape it to a (p, 3) matrix 7. This is the
option that we adopt in this work.

To be more specific, in refinement 1 of Fig. 3, we set d; =
64 x 3 which converts the filtered normal into a new normal feature
of dimension 64 (see the top part of Fig. 4). Similarly, a second
refinement is applied by the height-map module with dy = 64 x64
(see the bottom part of Fig. 4). The two features together with their
filtered normal are stacked for the output.

By inference, the choices designed above can also provide a
solid connection in other tasks with similar inputs. The weight
matrix option receives two inputs with different sizes and can
produce a high-dimensional output. We find in our experiments
that the way of simply concatenating two distinct feature vectors
leads to an incompatible connection which may oppositely limit
the learning ability. The attempt to use matrix multiplication in
the connection module shows its advantages compared with other
learning schemes (see Sec. 6).

Output module and loss function. The refined features from
all branches are collected for the output. Refine-Net applies
several fully-connected layers and outputs the final predicted
normal N* = (N, N, N;). Batch normalization and ReLU are
included in each layer of this module.

We train the network by minimizing the MSE loss between the
output normal N* and its ground truth /V:

Loss = ||[A(N*) — N||> + AE,cg, (6)

where A(x) is the vector normalization function, and E,,4 is the
commonly-used Lo regularization to avoid overfitting, where A =
0.02 is used.

3.6 Normal refinement framework

Refine-Net uses two feature modules to refine the initial normal
(normal module). When extended to a general normal refinement
framework, these modules can be potentially replaced. That is,
the normals from other methods can be further refined, and other

Fig. 5. Three candidate patches around the target point (red point)
are shown. The patch centered at the target point (left) is unsuitable
for the estimation since it contains undesired points from other sides
of the edge. Instead, we propose to select a better neighboring patch
(right) which is more consistent for detecting the underlying surface. The
multi-scale scheme makes more choices available to further promote
estimation robustness.

feature modules can be developed and incorporated in the network.
They are included by the connection modules in order to obtain
the predicted results.

In this work, we introduce both point and height-map features
in the network. We show that a single feature module is already
enough for a promising result in Sec. 6. Further, more information
related to the point geometric details can be absorbed by append-
ing other feature modules in the branches.

The initial normal choice has a significant influence on the
recovery results. We choose to use a traditional estimator, namely
MFPS in Sec. 4, which can focus more on the geometric infor-
mation compared with learning-based techniques. It is designed to
preserve sharp features and fine details which are hard to recover
by learning a straightforward mapping. Refine-Net that is trained
on other typical initial normals can also produce a well-improved
normal result.

4 MULTI-SCALE FITTING PATCH SELECTION

As aforementioned, we choose to design a traditional geometric
estimator for the initial normal estimation. Before computing the
initial normal for each point, we first apply the local covariance
analysis (Sec. 4.2 in [19]), to classify all points into candidate
points (near sharp features) and smooth points (far from sharp
features). The normals of smooth points can be simply computed
by PCA.

To estimate the normals of candidate points, one common
strategy [18], [36] is to randomly select three non-collinear points
to construct a set of candidate planes and pick the one that best
describes the underlying surface patch. Typically, let’s define the
local patch Q? (the k-nearest points of the point p;) as the
neighborhood of p;. Then, the selected plane on this patch can
be determined by the following objective function:

Eq(6 = Qk > W, (pr.0), (7
prEQS
922;9 = arg;nax Eqs (9), ®)

where Wy, (pi,0) = exp(—r} »/07) is the Gaussian function in
which 7, ¢ denotes the distance from the point py, to the plane 6,
and o is the residual bandwidth of p;. Thus, 67 Q is the selected

plane, and the normal of this plane can be seen as the patch normal

of Qf

aru

P{Efr n';""
Q
V(T

(a) Ground truth (b) Anisotropic patch 1 (c) Anisotropic patch 2

Fig. 6. Selection for the best-fitting normal of the green point. (a)
represents the input points near a sharp edge and the ground truth
normal Ng. (b) and (c) describe two selected anisotropic normals and
the corresponding patch points. The black arrow denotes the signed
distance from p; to p;.e', which determines the better one (patch 2).

4.1 Multi-scale scheme

If p; lies in the neighborhood of an edge/intersection, the corre-
sponding patch Qf might be corrupted by points from other sides,
over-smoothing the resulting estimated normal of p; (see Fig. 5
left). Considering this, we propose to select a more consistent and
suitable neighborhood which can make it easier to determine the
normal. For each candidate point p;, our method tries to find the
best fitting patch that contains p;. Please note that normals of
smooth points are already computed by PCA.

First, the patch size is extended to a multi-scale parameter
set K' = {kq,ka,...,kq}. For each point p; in a point cloud,
every scale size k; € K defines a patch Q§ similarly as above,
and we compute the plane of this patch by Eq. 8. Then, for a
candidate point p;, we denote S; = {Q%|p; € Q%} as all patches
containing p;. We aim to search for, among all patches in S;, the
most isotropic one and to use the normal of the plane of this patch
as the estimated initial normal of p;. Fig. 5 (right) shows a better
neighboring patch to determine the normal on sharp edges, rather
than the one centered at the target point (Fig. 5 left). Moreover, the
multi-scale scheme provides more choices for complicated regions
where a single-scale size cannot fit in structures with varying
point densities (Fig. 5 middle). The scale parameter is set as
K = 50,100, 150 by default in our experiments. The consistency
of any patch Q§ can be measured as:

D(Q)) = Eqi (0g:)n(ke), ©)
ki — kmin
n(ke) =B+ (1- 5)ﬁ7 (10)

where Eq:(67,) comes from Eq. 7 and k; € K. The larger
Eq: (05:) is, the smaller the plane fitting error is, and (k)
is a trad%off parameter used to punish relatively small patches
because larger ones are preferred in noisy areas. We set 5 = 0.9
empirically. The measurement values are sorted, preparing for the
following patch selection.

4.2 Fitting patch selection

Since S; may contain patches sampled on different sides of
the intersection, a decision should be made to abandon un-
desired ones (Fig. 6(b)). To this end, we first select several
anisotropic patches from S; and pick the one that is fitting to
the candidate point p; (Fig. 6(c)). Specifically, starting from
the largest D(Q;) our method adds a new patch Q* € 5;
and its corresponding normal n* into the anisotropic patch set

Ai = {(;imanilml)v(;mangm)v'“}’ if D(n*an?‘ni) > U)t,Vj

TABLE 1
Normal estimation results on the synthetic PCPNet dataset [22], evaluated as angular RMS errors.

Category Noise § Density Average
None 0.00125 0.006 0.012 Gradient Stripes

PCA [26] 12.29 12.87 18.38 27.5 12.81 13.66 16.25
Jet [28] 12.23 12.84 18.33 27.68 13.39 13.13 16.29
HoughCNN-ss [20] 10.23 11.62 22.66 33.39 12.47 11.02 16.9
HoughCNN-ms [20] 10.02 11.51 23.36 36.7 10.67 11.95 17.37
PCPNet-ss [22] 9.68 11.46 18.26 22.8 11.74 13.42 14.56
PCPNet-ms [22] 9.62 11.37 18.87 23.28 11.7 11.16 14.34
Nesti-Net [21] 6.99 10.11 17.63 22.28 8.47 9.00 12.41
Lenssen et al. [49] 6.72 9.95 17.18 21.96 773 7.51 11.84
DeepFit [55] 6.51 9.21 16.72 23.12 7.31 7.92 11.8
MFPS 7.22 11.19 17.91 24.07 7.27 7.87 12.58
Our full pipeline 6.27 9.18 16.59 22.57 6.61 7.02 11.37

where the metric D is calculated as the angular error of two
normals. w; is an angular threshold, and we set w; to 60° in
our experiments.

The final step is to choose one patch from A;, which can best
describe the underlying surface of p;. Following [56], for each
Q]"»“i € A;, we find a reference point p;ef by projecting p; onto
its plane 92‘25;,,5 (see the black arrows in Fig. 6(b) and Fig. 6(c)).
Second, each normal n‘;“i is reoriented to the exterior of the
surface, which means that it must satisfy the following condition:

> o —pr) <0, (11)
pk€N7

ani ref

where N is the neighborhood of p;. The values {n3™ - (P}
pi)}(j = 1,2,...) are computed, and the minimum value corre-
sponds to the initial normal of the candidate point p;. Note that,
pzef is only used for patch selection, which is not a new point in the
point cloud. We refer the reader to [56] for a detailed explanation.
Although they may be sensitive to high-level noise, geometric
estimators are often more effective to predict point normals around
tiny details. Such initial normals which perform better in sharp
feature regions improve the final Refine-Net results significantly
by preserving geometric information that is difficult to recover
from learning. We give a better understanding of our geometric
method in Sec. 7, compared with those learning-based solutions.

5 EVALUATION

In this section, we evaluate our Refine-Net on both synthetic
and real-scanned datasets. Detailed network architectures and
comparisons are provided.

5.1 Experimental setup

Network architecture. The network architecture of Refine-Net
is illustrated in Fig. 3. In the first refinement, following [22],
the patch radius of input points is set related to the length of
the bounding box of the point cloud. The size is 0.05 and a
maximum of 300 points is used. For neighborhoods with more
than 300 points, we apply a random sampling, and for those
with fewer points, we pad the rest with zeros (the patch center).
Here, we use the PointNet architecture [46]. The T-Net module
in PointNet is not included since the input points are already
reoriented according to their initial normals. First, a shared MLP
(64,64,64,128,1024) is applied to get a 1024 dimensional fea-
ture per point. Then, a max-pooling layer is used to get the

global feature for the entire patch, after which fully-connected
layers (256,128) are applied for the output d; -dimensional vector.
Dropout with a keep probability of 0.3 is introduced in the last two
fully-connected layers. The output of the point module follows the
connection designs we discussed in Sec. 3.5.

In the second refinement, for the HMP construction, we use a
7 X 7 (m = T7) height-map grid, and the neighborhood size is the
same as the patch radius above. Then, we process these HMPs
using several convolutional layers followed by fully-connected
layers (see Tab. 6 left). In connection modules, we use the weight
matrix option, i.e., d; = 64 x 3 and do = 64 x 64 as discussed
in Sec. 3.5. Other connection choices will be evaluated later in
Sec. 6. As a consequence, two normal features (64) and the
original filtered normal, extended by FC (64,64), are concatenated
as the output of each branch. Finally, for the output module,
fully-connected layers (512,256,3) are used to obtain the predicted
normal. Dropout is included similarly in all fully-connected layers.
All layers use the batch normalization and ReLU.

Initial normal and filtering. The initial normal is computed for
each point (Sec. 4) before the refinement steps. The proposed
geometric normal estimation method plays an important role in
capturing detailed structures and sharp features. We will also
evaluate these normal results and demonstrate the effectiveness of
Refine-Net based on several different initial normals. In MFPS, the
multi-scale neighborhood size K is the most practical parameter
that could be tuned. We set K = 50,100, 150 empirically for
the synthetic models. The parameters used in bilateral filtering are
set as P, = {0.02504,0.0514} and P. = {0.1,0.2,0.35,0.5},
where [is the diagonal length of the bounding box. Thus, together
with the initial normal (non-filtered normal), Refine-Net contains
9 individual branches.

5.2 Experiments on the PCPNet dataset

Dataset. First, we compare our model with state-of-the-art deep
networks on the PCPNet [22] dataset. This dataset consists of 30
shapes from a mixture of figurines, man-made objects and differ-
entiable surfaces, with 8 shapes for training and 22 for testing.
All shapes are uniformly sampled with 100k points. We follow
the experimental settings of [21], [22]. Each shape is augmented
by Gaussian noise with standard deviations of 0.12%, 0.6% and
1.2% of the diagonal length of the bounding box. In addition, two
categories with different sampling densities (Gradient and Stripes)
are generated for each shape. For evaluation, we use the same

TABLE 2
Comparison of normal estimation errors on the synthetic dataset [23], evaluated as mean angular error (mean) and root mean square error (rmse).

Category BigNoise SharpFeature RichFeature SmoothSurface Average
mean rmse mean rmse mean rmse mean rmse mean rmse
PCA [26] 8.53 13.80 8.70 13.61 6.94 9.84 8.04 6.83 8.05 11.02
HF [44] 11.73 16.23 5.26 9.75 5.81 8.34 3.87 5.54 6.67 9.96
HoughCNNT1s [20] 8.76 15.68 5.40 11.20 6.00 9.05 5.05 7.44 6.30 10.84
HoughCNN3s [20] 8.61 15.16 5.52 11.23 5.61 8.49 5.89 8.55 6.41 10.86
HoughCNNS5s [20] 10.78 16.39 6.48 12.22 6.46 9.51 7.40 10.24 7.78 12.09
PCPNet-ss [22] 9.61 14.26 12.84 16.23 6.84 9.78 12.84 15.87 10.53 14.04
PCPNet-ms [22] 9.09 13.52 7.90 11.09 5.97 8.15 5.27 6.97 7.06 9.93
LRR [19] 5.77 12.08 4.39 8.37 4.86 7.18 4.66 8.22 492 8.96
PCV [18] 5.89 11.92 4.52 8.50 4.80 6.87 3.97 6.24 4.80 8.38
Nesti-Net [21] 5.10 10.86 428 7.89 4.62 6.37 4.20 5.76 4.55 7.72
MFPS 5.72 11.72 4.36 7.86 4.82 6.97 4.10 6.32 4.75 8.22
PCPNet-ms + Refine-Net 7.11 12.08 6.08 8.91 5.23 7.02 4.13 5.15 5.64 8.29
Nesti-Net + Refine-Net 4.79 10.63 3.76 6.93 425 5.74 3.64 4.78 4.11 7.02
Our full pipeline 4.74 10.73 3.37 6.39 4.07 5.65 3.28 4.56 3.87 6.83

TABLE 3

Comparison of normal estimation accuracy using PGP5 and PGP10 on the synthetic dataset [23]. Higher is better.

Category BigNoise SharpFeature RichFeature SmoothSurface Average
PGPS PGP10 PGP5 PGP10 PGP5 PGP10 PGP5 PGP10 PGP5 PGP10
PCA [26] 0.591 0.754 0.564 0.711 0.533 0.764 0.648 0.889 0.584 0.780
HF [44] 0.316 0.608 0.739 0.893 0.601 0.853 0.757 0.937 0.603 0.823
HoughCNNI1s [20] 0.624 0.782 0.774 0.882 0.618 0.828 0.682 0.875 0.675 0.842
HoughCNN3s [20] 0.610 0.784 0.756 0.868 0.637 0.847 0.634 0.825 0.659 0.831
HoughCNNSs [20] 0.468 0.691 0.695 0.835 0.576 0.806 0.530 0.748 0.567 0.770
PCPNet-ss [22] 0.473 0.732 0.381 0.620 0.527 0.791 0.261 0.537 0.410 0.670
PCPNet-ms [22] 0.464 0.737 0.508 0.772 0.564 0.840 0.613 0.887 0.537 0.809
LRR [19] 0.732 0.885 0.793 0.901 0.675 0.895 0.744 0.902 0.736 0.896
PCV [18] 0.725 0.882 0.767 0.919 0.672 0.895 0.765 0.930 0.732 0.906
Nesti-Net [21] 0.767 0.888 0.764 0.901 0.682 0.911 0.730 0.921 0.736 0.905
MFPS 0.732 0.884 0.779 0918 0.674 0.896 0.751 0.919 0.734 0.904
PCPNet-ms + Refine-Net 0.623 0.808 0.608 0.852 0.616 0.880 0.703 0.945 0.637 0.871
Nesti-Net + Refine-Net 0.783 0.895 0.796 0.923 0.709 0.927 0.763 0.948 0.763 0.923
Our full pipeline 0.788 0.903 0.842 0.948 0.722 0.931 0.802 0.959 0.788 0.935

subset of 5k points from each point cloud, following the protocol
of Guerrero et al. [22].

Training. We use the SGD optimizer with a learning rate of
0.0001, and we do not use the learning rate decay in all epochs.
The batch size is 512 for all training clusters and the momentum
for batch normalization is 0.9. We implement Refine-Net using
PyTorch and train it on a RTX 2080 Ti GPU.

Results. We report the root mean square error (rmse) in Tab. 1.
Here, we show both the initial normal estimation (MFPS) and
Refine-Net results with MFPS initial normals (our full pipeline).
Following [21], we give the single-scale (ss) and multi-scale (ms)
versions for HoughCNN [20] and PCPNet [22]. For traditional
PCA [26] and Jet [28], results for medium neighborhood sizes
are shown. It can be seen that our method achieves state-of-the-art
performances on most of the categories. For shapes with high-level
noise, general directions of point normals are predicted correctly,
while fine details can hardly be observed for all of the methods.
Also, we can see that our geometric method already performs
promisingly against other models on point clouds with varying
densities, thanks to the multi-scale scheme for patch selection.

5.3 Experiments on more synthetic data

Dataset. In order to conduct a more comprehensive evaluation
with both the traditional geometric and deep learning-based meth-
ods, we use another synthetic dataset from Wang et al. [23].
The training set contains 21 synthetic triangular mesh models
with varying sampling densities and is manually divided into
three categories: CAD-like models, smooth models and feature-
rich models. Each type is collected from shapes representing
typical challenging geometric features. We simply extract the
mesh vertices as point samples and the mesh normals as ground-
truth normals in order to preserve the original features for training.
To generate noisy inputs, we introduce Gaussian noise for each
point cloud with standard deviations of 0.1%, 0.2% and 0.3% of
the diagonal length of the bounding box. The final training dataset
contains 1.5M points from 63 noisy point clouds, in which 20%
of point samples are used for validation.

To test the normal results on synthetic data, we use the
test set from [18], [23]. Similarly, the test set includes 4 cate-
gories: SharpFeature, SmoothSurface, RichFeature and BigNoise,
in which there are 11, 8, 8 and 8 models respectively. For
data augmentation, each point cloud in the SharpFeature and
SmoothSurface categories is perturbed by Gaussian noise with
a standard deviation of 0.05%, 0.1% and 0.15% of the diagonal

(a) PCA

(c) PCV (d) Our MFPS

©

(e) PCPNet

Fig. 7. Visual comparison of estimated normals with other methods: PCA [26], HF [44], PCV [18], PCPNet [22] and Nesti-Net [21]. We also give
our MFPS and Refine-Net results. The 1-st and 3-rd rows denote the normal results rendered in RGB colors. The average normal angular errors
(mean) are: (1-st row) 4.34, 6.37, 1.63, 1.49, 5.37, 1.66, 0.88; (3-rd row) 8.14, 6.27, 5.60, 5.71, 6.22, 6.16, 4.99. The 2-nd and 4-th rows denote the
normal errors, mapped to a heatmap according to the color bar on the right. It can be seen that more errors occur near sharp edges (2-nd row) and
facial details (4-th row). Our method suffers the least from these challenges.

length of the bounding box. For the RichFeature category, 0.05%,
0.1%, 0.15% and 0.2% noise are introduced and 0.2%, 0.3%,
0.4% and 0.5% for the BigNoise category. Our test set contains
totally 121 point clouds with over 3M point samples.

Results. The evaluation metrics [21] for normal estimation are
mean angular error (mean), root mean square error (rmse) and
proportion of good points metric PGP« (percentage of points with
angular error below threshold «) where « € [5°,10°].

Tab. 2 and Tab. 3 show the results on the synthetic models. We
compare our method, including MFPS initial normal results and
the full pipeline, with several traditional and deep-learning state-
of-the-arts: PCA [26], HF [44], LRR [19], PCV [18], HoughCNN
[20], PCPNet [22] and Nesti-Net [21]. We retrain HoughCNN,
PCPNet and Nesti-Net on this dataset for a fair comparison. In
addition, HoughCNN has three versions with different scales and
PCPNet has the single-scale and multi-scale versions. We evaluate
all these versions. For the above methods, we set a same neigh-
borhood size K = 100 for the three categories: SharpFeature,
RichFeature and SmoothSurface. In particular, the HoughCNN3s
considers 3 scales, K = 50,100, 200, which is recommended
in their paper. For the BigNoise category, we double the neigh-
borhood size, i.e., K = 100,200,400 for HoughCNN3s, and
K = 200 for other single-scale methods. Besides, HoughCNNS5s
considers 5 scales, K = 32,64, 128,256,512, for all categories.
All other parameters are set using default values. From the above

TABLE 4
Comparison of normal estimation results on real-scanned dataset from
Wang et al. [23].
Error Accuracy
mean rmse PGP5 PGP10

PCA [26] 8.66 11.29 0.34 0.69
HF [44] 8.14 11.99 0.46 0.75
HoughCNN [20] 12.30 15.58 0.24 0.49
PCV [18] 8.03 11.36 0.42 0.75
PCPNet [22] 7.90 10.72 0.42 0.75
Nesti-Net [21] 6.93 9.68 0.50 0.79
MFPS 8.22 11.62 0.41 0.74
Our full pipeline 6.76 9.58 0.52 0.81

comparison, our method outperforms others in all categories,
especially on models with high-level noise.

For visual comparisons, we show normal results and cor-
responding angular errors (mapped to a heatmap) of different
methods in Fig. 7. For PCPNet, we display the best results out
of its two versions. We can see that Refine-Net produces more
accurate normals on sharp edges and facial details in the 1-st and
3-rd rows respectively.

Using other initial normals. On the other hand, Refine-Net is
able to refine the results of other deep networks. We show in Tab. 2

10

(a) Noisy Input (b) PCP (c) PCP+Ours

(d) Nesti

(e) Nesti+Ours

(f) Our full pipeline (g) GT

Fig. 8. Visual comparison of estimated normals on synthetic models. “PCP+Ours” indicates that Refine-Net takes PCPNet [22] results as initial
normals. “Nesti+Ours” indicates the Nesti-Net [21] results as initial normals. By applying our normal refinement system, the over-smoothed sharp
edge (1-st row) is recovered and tiny details on the wings of gargoyle (2-nd row) are clearer to observe.

(a) Depth image (b) HF [44] (c) Our MFPS

(d) PCPNet [22]

(e) Nesti-Net [21] (f) Our Refine-Net (g) RGB image

Fig. 9. Visual comparison of normal estimation results on the scanned point clouds from the NYU Depth V2 dataset [57]. We show the scanned
depth map (noisy input) in (a) and the corresponding RGB image in (g). PCPNet [22] and Nesti-Net [21] tend to smooth the captured small objects
and edges. Our method clearly produces better normal results with nice geometric details.

and Tab. 3 that normals predicted by PCPNet [22] and Nesti-Net
[21] can be improved significantly by replacing the initial normal
in our system. In this experiment, we train the networks sepa-
rately, and then Refine-Net takes the Nesti-Net/PCPNet outputs
as initial normals and generates the final predicted normals. It is
also practical to design an end-to-end network where, however,
the filtering for multi-scale normals in the refinement should be
abandoned since it requires complete normal results of the point
cloud. We prefer to keeping this multi-scale design in the network,
which considers different normal directions in the neighborhood
and performs better on sharp features. Moreover, Fig. 8 depicts
a visual comparison by using Nesti-Net/PCPNet normal results as
the initial normals in our framework. Clear improvements are seen
from regions of sharp features and details in the bounding box.

5.4 Experiments on real scans

Dataset. We extend our Refine-Net to recover truth surface
normals on scanned point clouds. In this task, the real-scanned
data reveals more challenges, such as the fluctuation on flat
surface, originated from the projection process of 3D sensors.
The non-Gaussian and discontinuous noise heavily interferes both
traditional and learning-based estimators against recovering the
underlying surface.

The training set comes from [23]. This dataset contains
scanned meshes of seven real models using Microsoft Kinect v1.
There are 71 scans in the training set and the total number of
samples is about 2.6M. Further, for each scan, they use another
high-resolution scanned surface to help building ground truth
normals. The benchmark test set of [23] contains 73 scans and

11

(a) PCA [26] (b) HF [44] (c) PCV [18]

(d) Our MFPS (e) PCPNet [22] (f) Nesti-Net [21] (g) Our Refine-Net

(h) GT

Fig. 10. Visual comparison of estimated normals on two real-scanned models. The average normal angular errors (mean) are: (1-st row) 8.3, 10.2,
8.7,8.7,7.9,7.8,7.0; (2-nd row) 10.0, 11.9, 10.0, 10.2, 10.2, 9.5, 8.6. Our Refine-Net is better at recovering facial details of the two models and is

able to remove noise on flat areas.

(b) PCPNet [22]

(a) Input

Y7 C
(c) Nesti-Net [21]

(d) Ours

Fig. 11. Visual comparison of normal estimation results on the large-scale outdoor scenes from Paris-rue-Madame [25] dataset. Our method
produces more faithful results on the vehicle. Details on the wall are clearly recovered.

930k samples with ground truth normals.

Moreover, we test our trained network on NYUD-V2 [57]
and Paris-rue-Madame [25] datasets. NYUD-V2 captures a variety
of indoor scenes recorded by both the RGB and depth cameras.
We extract 3D point clouds from the depth channel as the noisy
input. Missing pixels of raw depth maps are filled in using [58].
For large-scale outdoor scenes, we employ the Paris-rue-Madame
dataset [25].

Architecture. We use a similar Refine-Net architecture as in our
synthetic experiments. The filtering parameters are the same, but
the non-filtered normal branch is not included. Thus, 8 branches
are developed in the network. Since the real-scanned point cloud
tends to be dense and large, in the point module, the patch size
is set to be 0.03, and the maximum number of points is extended
to 500. The neighborhood in HMP construction is also resized

similarly and the height-map grid size is m = 7.

Results. Quantitative comparisons of normal estimation results
from [23] are shown in Tab. 4. Please note that we train all
networks on the same dataset for a fair comparison. Our method
outperforms the state-of-the-arts according to all the metrics.
Visual comparisons on two real models are illustrated in Fig. 10.
Refine-Net produces more faithful results on, e.g., the eyes and
nose of the boy and girl model respectively while removing
undesired noise on the model bases.

For the NYUD-V2 dataset, we show visual comparisons of
several real scans of indoor scenes in Fig. 9. Traditional geometric
estimators (HF and our MFPS) can preserve tiny details but with
the price of retaining noise (see Fig. 9(b) and Fig. 9(c)). Nesti-Net
and PCPNet can well smooth the noisy surface, but over-smooth
geometric features (see Fig. 9(e) and Fig. 9(d)). Our Refine-Net

TABLE 5
Comparison of complexity and execution times (1k points) of different
normal estimation networks. The reported time of our method includes
the initial normal estimation and Refine-Net forward time.

‘ Time, 1k p. Num. parameters
HoughCNN [20] 1.0s 9.7M
PCPNet [22] 4.8s 22M
Nesti-Net [21] 95s 179M
Ours 22s 10.4M
TABLE 6

Network architecture details of height-map modules for Refine-Net (left)
and ablation network (right).

Height-map module \ Height-map module (ablation)

Conv(3, 3, 64, P=1) + Relu
Conv(3, 3, 64, P=1) + Relu
Maxpool(3, 3, S=1)
Conv(3, 3, 128, P=1) + Relu
Conv(3, 3, 128, P=1) + Relu
Maxpool(3, 3, S=1)
Conv(3, 3, 128, P=1) + Relu

Conv(3, 3, 64, P=1) + Relu
Conv(3, 3, 64, P=1) + Relu
Maxpool(3, 3, S=1)
Conv(3, 3, 128, P=1) + Relu
Conv(3, 3, 128, P=1) + Relu
Maxpool(3, 3, S=1)
Conv(3, 3, 256, P=1) + Relu

FC(256) FC(512)
FC(128) FC(256)
FC(d) FC(d)

can well handle both challenges. For instance, the produced nor-
mal results of detailed objects are more faithful on, e.g., the toys
and bottles from the 3-rd and 4-th rows respectively. Meanwhile,
our method is able to remove the scanner noise on the flat surfaces.
Fig. 12 depicts more visual comparisons. It can be seen clearly
that better normal results can be recovered when the predicted
normals from other networks are refined in our framework. We
refer the reader to look closely at the drawers and handles in the
1-st and 2-nd rows respectively. Other methods tend to smooth
these details as their local regions are similar to planar areas.
Refine-Net, however, produces results with nice details which are
more faithful to the ground-truth surfaces. Our method can utilize
additional information extracted from two feature modules and
outperforms other networks on real-scanned point clouds.

Finally, we show more results on the Paris-rue-Madame [25]
dataset of large-scale scenes in Fig. 11. Compared with PCPNet
and Nesti-Net, our network produces better normal results on the
vehicle in a real-world environment. Also, the details on the wall
are clearly recovered, which are ignored by other methods.

5.5 Efficiency

We test our Refine-Net and other network models on a single RTX
2080 Ti GPU and report the execution times (per 1k points) and
model sizes in Tab. 5. The reported time of our method includes
the initial normal estimation and Refine-Net forward time (ag-
gregating all the clusters). The computing time of our geometric
method depends largely on the shape geometric structures, with
about 150s per shape on the PCPNet dataset (100k points for
each shape). It is run on the CPU and can be further sped up
by parallel computing. The forward pass time of Refine-Net is
0.8s (per 1k points), which is relatively fast among the related
normal estimation networks. This can be contributed to the smaller
network size and our efficient connection modules.

12

6 ABLATION STUDIES

In this section, we explain some of the architecture choices and
evaluate the effectiveness of several components in Refine-Net.

Feature modules. Compared with similar works [22], [23], we
introduce two additional feature modules into the Refine-Net
framework apart from the main normal feature. Since the local
points and HMPs are both generated related to the normal, Refine-
Net can utilize the extracted information and improve the initial
normal. To demonstrate the advantages of this combination (nor-
mals&points&HMPs), we design several ablations and evaluate
their performances on the synthetic dataset [23] as shown in Tab. 7:

e normals - We first consider using normals of each point
(from multi-scale bilateral filtering) to recover the ground-truth
normal. The filtered normals are concatenated and fed directly to
several fully-connected layers (256,128,3). The network setting
follows our output module.

e normals&points - This design solely uses point feature for
a refinement. That is, the second refinement is abandoned, and
the transformed feature after point module is exported from each
branch. The output dimensions are the same as in our Refine-Net.

e normals&HMPs - Similarly, we test the network which uses
normals and HMPs as input. The height-map module outputs a
64 x 3 transformation matrix 7" applied to the normal, which
uses the architecture in Tab. 6 (right). The first refinement (point
module) is not included.

Connection module choices. The key idea behind our approach
is to learn a transformation term 7" and to combine the two feature
inputs by matrix multiplication. Apart from the adopted choice
(weight matrix), we test another two options discussed (rotation
matrix and transformation matrix), which are also alternative in
other situations. Results are shown in Tab. 7. Further, we explore
other solutions to combine on two different data inputs:

e concat - The feature module outputs a vector T with the
same dimension as V. Then, in the connection module of each
refinement, the two different feature inputs are concatenated and
connected through fully-connected layers (64,64). The output
dimensions in each branch are identical to our Refine-Net.

e residual - We replace the matrix 7" by a single vector with
the same size as V' (1 x 3 normal), which learns the residual
(noise on point normal) between the input and the ground truth.
The intermediate feature Y is obtained by V' plus the residual.

Experimental results in Tab. 7 shows that the multi-feature
scheme significantly improves the normal estimation accuracy
compared with using single features as input. Note that, our
previous work [24] can be seen as the normals&HMPs version,
and Refine-Net clearly achieves better performance on top of this.
On the other hand, the practice that combines two features using
matrix multiplication shows its advantages over other learning
schemes. The weight matrix choice is better since it captures more
information in a high-dimensional vector.

Initial normals with fitting patch selection. For the initial normal
estimation, we propose a fitting patch selection method to choose
one from the multi-scale candidate patches. To quantitatively eval-
uate this method, we compute the initial normal results without
fitting patch selection (simple MFPS), as shown in Tab. 7. We
can see that the proposed MFPS clearly performs better in all
categories, especially on shapes with sharp edges. Without such a
selection scheme, it would simply choose the patch with highest
score within the neighborhood. However, the most consistent

13

(g) RGB image

Fig. 12. Visual comparison of normal estimation results on the scanned point clouds from the NYU Depth V2 dataset [57]. “PCP+Ours” indicates
that Refine-Net takes PCPNet [22] results as initial normals. “Nesti+Ours” indicates the Nesti-Net [21] results as initial normals.

TABLE 7
The normal estimation errors of ablation networks on the synthetic dataset [23].

Category BigNoise SharpFeature RichFeature SmoothSurface Average
mean rmse mean rmse mean rmse mean rmse mean rmse
MEFPS (initial normal) 5.72 11.72 4.36 7.86 4.82 6.97 4.10 6.32 4.75 8.22
simple MFPS 7.28 16.75 5.86 12.47 5.01 791 4.89 8.49 5.76 11.40
normals 5.51 12.53 3.86 7.46 4.52 6.55 3.72 5.64 4.40 8.04
normals&HMPs 5.50 12.48 3.74 7.26 4.40 6.32 3.61 5.38 431 7.86
normals&points 4.83 10.86 3.55 6.67 4.14 5.79 3.37 478 3.97 7.03
concat 4.83 10.98 3.61 6.91 4.23 5.99 3.48 5.06 4.04 7.23
residual 493 11.10 3.59 6.77 4.19 5.87 3.40 4.88 4.03 7.15
Refine-Net-Rot 4.84 11.03 3.56 6.78 4.19 5.90 3.43 4.93 4.00 7.16
Refine-Net-Trans 4.87 10.71 3.54 6.49 4.10 5.67 3.29 4.59 3.95 6.87
Refine-Net-Weight 4.74 10.73 3.37 6.39 4.07 5.65 3.28 4.56 3.87 6.83

&
by

ean)
s
s

my
&

Angular Error (

1 2 4 6 8
Cluster Number

(@) K.=2

Fig. 13. Left: The averaged angluar error (mean) improves when the
cluster number K. increases. We use K. = 4 by default and a larger
number improves the results very slightly. Right: We show points divided
into different clusters when using K. = 2 (a) and K. = 4 (b). In (b), the
4 clusters are visualized in two parts, in which the left part (with red and
blue colors) can capture points on geometric features. Color coding is
given on the right.

patch may reflect a normal directing the wrong side as illustrated
previously in Fig. 6.

L1 Loss vs L2 loss. The L1 loss is known to be less sensitive
to outliers and better at preserving sharp estimations. In this

experiment, we compare the training performances using L1 loss
and L2 loss in the task of normal estimation. We use the PCPNet
dataset which is categorized according to noise levels and report
the rms errors in Tab. 8. It shows that the L1 loss performs better
on the noise-free point clouds while it is more sensitive to high-
level noise. Furthermore, in Fig. 15, we show colormaps reflecting
the error distances where a specific color (blue: L1, red: L2) is
used to represent points which perform better with L1 or L2 on
shapes with different noise levels. The L2 loss performs clearly
better on sharp features and tiny details, especially at a lower
noise level. Therefore, we choose to use the L2 loss which is more
robust to noise and better at recovering normals in challenging
regions with suboptimal initial normals.

7 LEARNING TO REFINE NORMALS

To achieve a better understanding of Refine-Net, we provide two
insights exploring deeper into the proposed model.

Learning to refine normals. Refine-Net is a generic normal
refinement framework to “refine” initial normals. When inputting

(a) Nesti-Net (b) Nesti-Net + Refine (c) MFPS

14

0
(f) GT

(d) MFPS + points (e) Ours

Fig. 14. Visual comparison of normal results and error heatmaps between different methods. We show Nesti-Net and “Nesti-Net + Refine-Net”
results in (a) and (b) respectively. (c) denotes our initial normals computed by MFPS, (d) denotes the Refine-Net with only the point module, and

(e) is the result from our full pipeline. Zoom in to see clearer.

Fig. 15. Comparison of Refine-Net results using the L1 loss and the L2
loss on shapes with increasing noise levels. A point is colored blue (red)
when the corresponding angular error is smaller with the L1 (L2) loss.
We can see that the L2 loss performs clearly better on sharp edges and
tiny details as shown in the 1-st and 2-nd rows respectively.

TABLE 8
Comparison of the L1 and L2 losses on the PCPNet dataset [22],
evaluated as RMS errors.

Noise §
None 0.0012 0.006 0.012
L1 6.05 9.58 17.13 23.50
L2 6.27 9.18 16.59 22.57

better initial estimations, it is expected to also achieve better
final normal results. However, we find it is not always true. For
example, it shows in Tab. 2 and Tab. 3 that combining Refine-
Net with MFPS achieves better results than combining Refine-Net
with Nesti-Net, though Nesti-Net has better initial normals than
MEFPS in some of the categories.

In order to explain such phenomena, we explore deeper to see
how Refine-Net improves the geometric normals by means of deep
learning techniques. In this experiment, we train our full pipeline
(MFPS + Refine-Net) and Nesti-Net [21] on the synthetic dataset

from Wang et al. [23]. Then, the Nesti-Net normal results are fur-
ther refined by our Refine-Net (see Fig. 14(b)). By absorbing prior
geometric knowledge, initial normals computed by our MFPS can
be more effective for detecting sharp edges and details, while they
may also reflect discontinuity of the smooth surface caused by
high-level noise (see Fig. 14(c)). On the other hand, Nesti-Net
tends to produce piecewisely smooth normals, representing gen-
eral directions of the underlying surfaces. Refine-Net can polish
the initial normals from different methods while the improvements
can be better on the MFPS normals (see Fig. 14(e)), by recovering
the sharp edges (preserving details) and removing perturbations
in the flat areas (denoising). Further, we show another result of
refined normals using only point features in Fig. 14(d). We can
see that using a single feature module can already produce decent
denoised normals on noisy point clouds and Refine-Net with
multiple feature inputs has better performances on sharp features.

Cluster-based scheme. Inspired by [23], Refine-Net uses a
cluster-based scheme to promote its learning ability, which divides
input samples into K. clusters before training. In all our exper-
iments, including the variants of the proposed network, we set
K. = 4 by default. A larger number of clusters slightly improves
the performance but heavily expands the network (see Fig. 13
left). This clustering scheme can detect similar features among all
training samples especially for points on geometric features that
are hard to process (see Fig. 13 right). Thus, the network can focus
on a specific kind of input data.

8 APPLICATION

As known, well-estimated normals can boost the effect of many
point cloud processing tasks, like denoising and surface recon-
struction. To further verify the advantages of our method, we show
denoising results using the same point updating algorithm, yet
based on the normal results estimated by different methods.

Denote that \; is the ball neighborhood of p;, we here provide
an algorithm to update point positions under the guidance of

15

(b) PCA [26]

() HF [44] (D)
[20]

(a) Noisy input &
GT mesh

HoughCNN (e) PCPNet [22]

(f) PCV [18] (g) Nesti-Net [21] (h) Ours

Fig. 16. We prove that our method helps produce the best results in several applications. The 1-st and 3-rd rows show the comparison of point
cloud denoising results obtained by our update algorithm. The 2-nd and 4-th rows are the corresponding surface reconstruction results. Our method
produces the most faithful results on sharp edges as shown in the 1-st and 2-nd rows. And for the model with rich features, our method can better

recover geometric details to help produce the reconstruction result.

estimated normals, which is able to remove noise and recover
sharp features:

pi=pit+y Y, (b
ijNi

—pi)(we (i, nj)ndng +)\nfnj), (12)

where n; is the normal of p;, wy(n;,n;) = exp(—w)

is a weight function, A = 0.5 is a tradeoff parameter and -;
is the step size set to 3] N by default. To prevent points from
accumulating around edges, we keep the neighboring information
unchanged in all iterations [42]. The iteration number is set to 20
in our experiment.

We demonstrate the visual quality of denoising results and
their reconstruction results (see Fig. 16). Our normal results help
produce the most faithful denoising and reconstruction results.

9 CONCLUSION

In this work, we propose a normal refinement network (Refine-
Net) to estimate normals for noisy point clouds, by introducing
multiple important feature representations into the refinement
steps of the input initial normals. Our Refine-Net involves several
feature modules which can capture different geometric informa-
tion in order to jointly contribute to the normal recovery. By a
novel connection module, our method effectively handles features
from distinct domains and incorporates them into the produced

normal feature. In addition to the overall architecture of Refine-
Net, we propose a multi-scale fitting patch selection (MFPS)
scheme to estimate our own initial normals with better geometric
supports.

Refine-Net is a generic normal refinement framework. We
show that Refine-Net is able to repair the suboptimal estimations
of any initial normal input by recovering sharp edges (preserving
details) and removing perturbations (denoising); thus, it can be
applied to improve results from other state-of-the-art networks.
More feature modules, representing typical geometric properties
of the input point clouds, could be potentially developed to
further explore the network ability of our framework. Extensive
evaluations demonstrate the clear superiority of Refine-Net over
the state-of-the-arts on both synthetic and real-scanned datasets.
It also shows the promising prospect of applying our method to
several downstream geometric tasks in future researches, such as
surface reconstruction, consolidation, and semantic segmentation.

Acknowledgements. The authors thank the anonymous reviewers
for their careful reading and valuable comments. This work was
supported in part by the National Natural Science Foundation
of China (No. 62032011, No. 62172218, No. 61672273), in
part by the Free Exploration of Basic Research Project, Local
Science and Technology Development Fund Guided by the Cen-
tral Government of China (No. 2021Szvup060), in part by the
Key Program of Jiangsu Provincial Department of Culture and

Tourism (No. 20ZD06), in part by the Research Grants Council
of the Hong Kong Special Administrative Region, China (No.
15205919), and in part by the Innovation and Technology Fund
- Midstream Research Programme for Universities of Innovation
and Technology Commission (No. MRP/022/20X).

REFERENCES

(1]

(2]

(3]

(4]

[3]

(6]

(71

(8]

[91

[10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

Y. He, W. Sun, H. Huang, J. Liu, H. Fan, and J. Sun, “Pvn3d: A deep
point-wise 3d keypoints voting network for 6dof pose estimation,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2020, pp. 11632-11641.

S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao, “Pvnet: Pixel-
wise voting network for 6dof pose estimation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 4561-4570.

R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, “Towards
3d point cloud based object maps for household environments,” Robotics
and Autonomous Systems, vol. 56, no. 11, pp. 927-941, 2008.

M. Liang, B. Yang, S. Wang, and R. Urtasun, “Deep continuous fusion
for multi-sensor 3d object detection,” in Proceedings of the European
Conference on Computer Vision, 2018, pp. 641-656.

S. Wang, S. Suo, W.-C. Ma, A. Pokrovsky, and R. Urtasun, “Deep
parametric continuous convolutional neural networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 2589-2597.

H. Chen, M. Wei, Y. Sun, X. Xie, and J. Wang, “Multi-patch collaborative
point cloud denoising via low-rank recovery with graph constraint,” IEEE
Trans. Vis. Comput. Graph., vol. 26, no. 11, pp. 3255-3270, 2020.

C. Dinesh, G. Cheung, and I. V. Baji¢, “Point cloud denoising via feature
graph laplacian regularization,” IEEE Transactions on Image Processing,
vol. 29, pp. 4143-4158, 2020.

W. Hu, X. Gao, G. Cheung, and Z. Guo, “Feature graph learning for 3d
point cloud denoising,” IEEE Transactions on Signal Processing, vol. 68,
pp. 2841-2856, 2020.

P. Hermosilla, T. Ritschel, and T. Ropinski, “Total denoising: Unsu-
pervised learning of 3d point cloud cleaning,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp. 52—
60.

S. Fleishman, D. Cohen-Or, and C. T. Silva, “Robust moving least-
squares fitting with sharp features,” ACM Trans. Graph., vol. 24, no. 3,
pp. 544-552, 2005.

W. Xie, M. Wang, M. Wei, J. Jiang, and J. Qin, “Surface reconstruction
from normals: A robust dgp-based discontinuity preservation approach,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 5328-5336.

H. Chen, Y. Huang, Q. Xie, Y. Liu, Y. Zhang, M. Wei, and J. Wang,
“Multiscale feature line extraction from raw point clouds based on local
surface variation and anisotropic contraction,” IEEE Transactions on
Automation Science and Engineering, 2021.

E. Che and M. J. Olsen, “Multi-scan segmentation of terrestrial laser
scanning data based on normal variation analysis,” ISPRS journal of
photogrammetry and remote sensing, vol. 143, pp. 233-248, 2018.

Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” ACM
Transactions On Graphics, vol. 38, no. 5, pp. 1-12, 2019.

J. Li, B. M. Chen, and G. H. Lee, “So-net: Self-organizing network
for point cloud analysis,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 9397-9406.

G. Te, W. Hu, A. Zheng, and Z. Guo, “Rgcnn: Regularized graph cnn for
point cloud segmentation,” in Proceedings of the 26th ACM international
conference on Multimedia, 2018, pp. 746-754.

Y. Qian, J. Hou, S. Kwong, and Y. He, “Pugeo-net: A geometry-centric
network for 3d point cloud upsampling,” in European Conference on
Computer Vision. Springer, 2020, pp. 752-769.

J. Zhang, J. Cao, X. Liu, H. Chen, B. Li, and L. Liu, “Multi-normal es-
timation via pair consistency voting,” IEEE transactions on visualization
and computer graphics, vol. 25, no. 4, pp. 1693-1706, 2018.

J. Zhang, J. Cao, X. Liu, J. Wang, J. Liu, and X. Shi, “Point cloud normal
estimation via low-rank subspace clustering,” Computers & Graphics,
vol. 37, no. 6, pp. 697-706, 2013.

A. Boulch and R. Marlet, “Deep learning for robust normal estimation in
unstructured point clouds,” in Computer Graphics Forum, vol. 35, no. 5,
2016, pp. 281-290.

[21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

(29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

16

Y. Ben-Shabat, M. Lindenbaum, and A. Fischer, “Nesti-net: Normal
estimation for unstructured 3d point clouds using convolutional neural
networks,” in IEEE Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 10 112-10 120.

P. Guerrero, Y. Kleiman, M. Ovsjanikov, and N. J. Mitra, “PCPNet:
Learning local shape properties from raw point clouds,” Computer
Graphics Forum, vol. 37, no. 2, pp. 75-85, 2018.

P.-S. Wang, Y. Liu, and X. Tong, “Mesh denoising via cascaded normal
regression.” ACM Trans. Graph., vol. 35, no. 6, pp. 232—1, 2016.

H. Zhou, H. Chen, Y. Feng, Q. Wang, J. Qin, H. Xie, F. L. Wang, M. Wei,
and J. Wang, “Geometry and learning co-supported normal estimation for
unstructured point cloud,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 13 238-13247.
A. Serna, B. Marcotegui, F. Goulette, and J.-E. Deschaud, “Paris-rue-
Madame database: a 3D mobile laser scanner dataset for benchmarking
urban detection, segmentation and classification methods,” in 4th Inter-
national Conference on Pattern Recognition, Applications and Methods
ICPRAM 2014, 2014.

H. Hoppe, T. DeRose, T. Duchamp, J. A. McDonald, and W. Stuetzle,
“Surface reconstruction from unorganized points,” in Proceedings of
the 19th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 1992, 1992, pp. 71-78.

N. J. Mitra and A. T. Nguyen, “Estimating surface normals in noisy
point cloud data,” in Proceedings of the 19th ACM Symposium on
Computational Geometry, 2003, pp. 322-328.

F. Cazals and M. Pouget, “Estimating differential quantities using poly-
nomial fitting of osculating jets,” Computer Aided Geometric Design,
vol. 22, no. 2, pp. 121-146, 2005.

G. Guennebaud and M. H. Gross, “Algebraic point set surfaces,” ACM
Trans. Graph., vol. 26, no. 3, p. 23, 2007.

N. Amenta and M. Bern, “Surface reconstruction by voronoi filtering,”
Discrete & Computational Geometry, vol. 22, no. 4, pp. 481-504, 1999.
T. K. Dey and S. Goswami, “Provable surface reconstruction from noisy
samples,” Computational Geometry, vol. 35, no. 1-2, pp. 124-141, 2006.
P. Alliez, D. Cohen-Steiner, Y. Tong, and M. Desbrun, “Voronoi-based
variational reconstruction of unoriented point sets,” in Proceedings of
the Fifth Eurographics Symposium on Geometry Processing, 2007, pp.
39-48.

Q. Meérigot, M. Ovsjanikov, and L. J. Guibas, “Voronoi-based curvature
and feature estimation from point clouds,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 17, no. 6, pp. 743-756, 2010.

M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva,
“Point set surfaces,” in Proceedings Visualization, 2001, pp. 21-29.

A. C. Oztireli, G. Guennebaud, and M. Gross, “Feature preserving point
set surfaces based on non-linear kernel regression,” vol. 28, no. 2, pp.
493-501, 2009.

B. Li, R. Schnabel, R. Klein, Z. Cheng, G. Dang, and S. Jin, “Robust
normal estimation for point clouds with sharp features,” Computers &
Graphics, vol. 34, no. 2, pp. 94-106, 2010.

Y. Wang, H.-Y. Feng, F-E. Delorme, and S. Engin, “An adaptive
normal estimation method for scanned point clouds with sharp features,”
Computer-Aided Design, vol. 45, no. 11, pp. 1333-1348, 2013.

H. Avron, A. Sharf, C. Greif, and D. Cohen-Or, “L1-sparse reconstruction
of sharp point set surfaces,” ACM Transactions on Graphics, vol. 29,
no. 5, p. 135, 2010.

Y. Sun, S. Schaefer, and W. Wang, “Denoising point sets via 10 mini-
mization,” Computer Aided Geometric Design, vol. 35, pp. 215, 2015.
H. Chen, J. Huang, O. Remil, H. Xie, J. Qin, Y. Guo, M. Wei, and
J. Wang, “Structure-guided shape-preserving mesh texture smoothing via
joint low-rank matrix recovery,” Computer-Aided Design, vol. 115, pp.
122-134, 2019.

M. Wei, J. Huang, X. Xie, L. Liu, J. Wang, and J. Qin, “Mesh denoising
guided by patch normal co-filtering via kernel low-rank recovery,” IEEE
transactions on visualization and computer graphics, vol. 25, no. 10, pp.
2910-2926, 2018.

X. Lu, S. Schaefer, J. Luo, L. Ma, and Y. He, “Low rank matrix approx-
imation for 3d geometry filtering,” IEEE Transactions on Visualization
and Computer Graphics, 2020.

Z. Li, Y. Zhang, Y. Feng, X. Xie, Q. Wang, M. Wei, and P. Heng,
“Normalf-net: Normal filtering neural network for feature-preserving
mesh denoising,” Comput. Aided Des., vol. 127, p. 102861, 2020.

A. Boulch and R. Marlet, “Fast and robust normal estimation for point
clouds with sharp features,” in Computer graphics forum, vol. 31, no. 5,
2012, pp. 1765-1774.

R. Roveri, A. C. Oztireli, 1. Pandele, and M. H. Gross, “Pointpronets:
Consolidation of point clouds with convolutional neural networks,”
Comput. Graph. Forum, vol. 37, no. 2, pp. 87-99, 2018.

[46]

(471

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in 20/7 IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 77—
85.

J. Zhou, H. Huang, B. Liu, and X. Liu, “Normal estimation for 3d point
clouds via local plane constraint and multi-scale selection,” Computer-
Aided Design, vol. 129, p. 102916, 2020.

T. Hashimoto and M. Saito, “Normal estimation for accurate 3d mesh
reconstruction with point cloud model incorporating spatial structure,”
in IEEE Conference on Computer Vision and Pattern Recognition Work-
shops, 2019, pp. 54-63.

J. E. Lenssen, C. Osendorfer, and J. Masci, “Deep iterative surface normal
estimation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 11247-11256.

J. Wang, J. Huang, F. L. Wang, M. Wei, H. Xie, and J. Qin, “Data-driven
geometry-recovering mesh denoising,” Comput. Aided Des., vol. 114, pp.
133-142, 2019.

M. Wei, X. Guo, J. Huang, H. Xie, H. Zong, R. Kwan, F. L. Wang,
and J. Qin, “Mesh defiltering via cascaded geometry recovery,” Comput.
Graph. Forum, vol. 38, no. 7, pp. 591-605, 2019.

X. Li, R. Li, L. Zhu, C.-W. Fu, and P-A. Heng, “Dnf-net: a deep
normal filtering network for mesh denoising,” IEEE Transactions on
Visualization and Computer Graphics, 2020.

J. Cao, H. Zhu, Y. Bai, J. Zhou, J. Pan, and Z. Su, “Latent tangent space
representation for normal estimation,” IEEE Transactions on Industrial
Electronics.

T. R. Jones, F. Durand, and M. Zwicker, “Normal improvement for point
rendering,” IEEE Computer Graphics and Applications, vol. 24, no. 4,
pp- 53-56, 2004.

Y. Ben-Shabat and S. Gould, “Deepfit: 3d surface fitting via neural
network weighted least squares,” in European Conference on Computer
Vision. ~ Springer, 2020, pp. 20-34.

J. Sanchez, F. Denis, D. Coeurjolly, F. Dupont, L. Trassoudaine, and
P. Checchin, “Robust normal vector estimation in 3d point clouds through
iterative principal component analysis,” ISPRS Journal of Photogramme-
try and Remote Sensing, vol. 163, pp. 18-35, 2020.

N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation
and support inference from rgbd images,” in European Conference on
Computer Vision, 2012, pp. 746-760.

A. Levin, D. Lischinski, and Y. Weiss, “Colorization using optimization,”
in ACM SIGGRAPH, 2004, pp. 689-694.

Haoran Zhou is a Ph.D. candidate at Nanjing
University (NJU). He received his B.Sc. degree
from Nanjing University of Aeronautics and As-
tronautics in 2020. His research interests include
computer vision and learning-based geometry
processing.

Honghua Chen is a Ph.D. candidate at Nan-
jing University of Aeronautics and Astronautics
(NUAA), China. He earned his masters degree
from Nanjing Normal University in 2017. His re-
search interest is learning-based geometry pro-
cessing.

17

Yingkui Zhang is currently a Research As-
sistant at The Hong Kong Polytechnic Univer-
sity. He received his M.S. degree from Shen-
zhen Institutes of Advanced Technology, Chi-
nese Academy of Sciences in 2021. His re-
search interests include point cloud processing
and 3D vision.

Mingqgiang Wei (Senior Member, IEEE) re-
ceived his Ph.D degree (2014) in Computer Sci-
ence and Engineering from the Chinese Univer-
sity of Hong Kong (CUHK). He is a Professor
at the School of Computer Science and Tech-
nology, Nanjing University of Aeronautics and
Astronautics (NUAA). Before joining NUAA, he
served as an assistant professor at Hefei Uni-
versity of Technology, and a postdoctoral fellow
at CUHK. He was a recipient of the CUHK Young
Scholar Thesis Awards in 2014. He is now an
Associate Editor for the Visual Computer Journal, Journal of Electronic
Imaging, and a Guest Editor for IEEE Transactions on Multimedia. His
research interests focus on 3D vision, computer graphics, and deep
learning. Prof. Wei is the co-corresponding author.

Haoran Xie is an Associate Professor at the De-
partment of Computing and Decision Sciences,
Lingnan University, Hong Kong. He received his
Ph.D. in Computer Science from the City Univer-
sity of Hong Kong. His research interest includes
artificial intelligence, big data, and educational
technology. He has published 240 research pub-
lications, including 114 journal articles. Among
all 114 journal articles, there are 89 SCI/SSCI
indexed and 12 SCOPUS indexed. He has ob-
tained 14 research awards, including five best
paper awards from WI 2020, ICBL 2020, DASFAA 2017, ICBL 2016 and
SECOP 2015, the Golden Medal and the special award from Interna-
tional Invention Innovation Competition in Canada and so on. Prof. Xie
is the Editor-in-Chief of Computers & Education: Artificial Intelligence,
Associate Editors of Array Journal, Australasian Journal of Educational
Technology, Advances in Computational Intelligence, and International
Journal of Mobile Learning and Organisation. He has successfully ob-
tained more than 50 research grants; the total amount of these grants is
more than HK $27 million. He is the Senior Member of IEEE and ACM,
and the Life Member of AAAL.

Jun Wang is currently a professor at Nan-
jing University of Aeronautics and Astronautics
(NUAA), China. He received his Bachelor and
PhD degrees in Computer-Aided Design from
NUAA in 2002 and 2007 respectively. From 2008
to 2009, he conducted research as a post-
doctoral scholar at the University of California,
Davis. Subsequently, he worked as a research
associate at the University of Wisconsin, Milwau-
kee for one year. From 2010 to 2013, he worked
as a senior research engineer at Leica Geosys-
tems Inc., USA. In 2013, he paid an academic visit to the Department
of Mathematics at Harvard University. His research interests include
geometry processing and geometric modeling, especially large-scale
LiDAR point data capturing, management, processing and analysis.

Tong Lu received the Ph.D. degree in computer
science from Nanjing University in 2005. He re-
ceived his B.Sc. degree from the same univer-
sity in 1997. He served as Associate Professor
and Assistant Professor in the Department of
Computer Science and Technology at Nanjing
University from 2007 and 2005. He is now a full
Professor at the same university. He also has
served as Visiting Scholar at National Univer-
sity of Singapore and Department of Computer
Science and Engineering, Hong Kong University

of Science and Technology, respectively. He is also a member of the
National Key Laboratory of Novel Software Technology in China. He has
published over 130 papers and authored 2 books in his area of interest,
and issued more than 20 international or Chinese invention patents. His
current interests are in the areas of multimedia, computer vision and
pattern recognition algorithms/systems. Prof. Lu is the co-corresponding
author.

Jing Qin is currently an associate professor in
School of Nursing, The Hong Kong Polytechnic
University and is a key member in the Centre for
Smart Health. His research focuses on creatively
leveraging advanced virtual reality (VR) and ar-
tificial intelligence (Al) techniques in healthcare
and medicine applications and his achievements
in relevant areas has been well recognized by
the academic community. He won the Hong
Kong Medical and Health Device Industries As-
sociation Student Research Award for his PhD
study on VR-based simulation systems for surgical training and plan-
ning. He won 3 best paper awards for his research on Al-driven medical
image analysis and computer-assisted surgery, including one of the
most prestigious awards in this field: MIA-MICCAI best paper award in
2017. He served as a local organization chair for MICCAI 2019, technical
program committee (TPC) members for many academic conferences,
speakers for many invited talks, and referees for many prestigious
journals in relevant fields.

18

Xiao-Ping Zhang received B.S. and Ph.D. de-
grees from Tsinghua University, in 1992 and
1996, respectively, both in Electronic Engineer-
ing. He holds an MBA in Finance, Economics
and Entrepreneurship with Honors from the Uni-
versity of Chicago Booth School of Business,
Chicago, IL.

Since Fall 2000, he has been with the De-
partment of Electrical, Computer and Biomedical
Engineering, Ryerson University, Toronto, ON,
Canada, where he is currently a Professor and
the Director of the Communication and Signal Processing Applications
Laboratory. He has served as the Program Director of Graduate Studies.
He is cross-appointed to the Finance Department at the Ted Rogers
School of Management, Ryerson University. He was a Visiting Scientist
with the Research Laboratory of Electronics, Massachusetts Institute of
Technology, Cambridge, MA, USA, in 2015 and 2017. He is a frequent
consultant for biotech companies and investment firms. His research
interests include sensor networks and loT, machine learning, statistical
signal processing, image and multimedia content analysis, and applica-
tions in big data, finance, and marketing.

Dr. Zhang is Fellow of the Canadian Academy of Engineering, Fel-
low of the Engineering Institute of Canada, Fellow of the IEEE, a
registered Professional Engineer in Ontario, Canada, and a member
of Beta Gamma Sigma Honor Society. He is the general Co-Chair
for the IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing, 2021. He is the general co-chair for 2017 GlobalSIP
Symposium on Signal and Information Processing for Finance and
Business, and the general co-chair for 2019 GlobalSIP Symposium
on Signal, Information Processing and Al for Finance and Business.
He was an elected Member of the ICME steering committee. He is
the General Chair for the IEEE International Workshop on Multimedia
Signal Processing, 2015. He is the Publicity Chair for the International
Conference on Multimedia and Expo 2006, and the Program Chair for
International Conference on Intelligent Computing in 2005 and 2010.
He served as a Guest Editor for Multimedia Tools and Applications
and the International Journal of Semantic Computing. He was a tutorial
speaker at the 2011 ACM International Conference on Multimedia, the
2013 IEEE International Symposium on Circuits and Systems, the 2013
IEEE International Conference on Image Processing, the 2014 |IEEE
International Conference on Acoustics, Speech, and Signal Processing,
the 2017 International Joint Conference on Neural Networks and the
2019 IEEE International Symposium on Circuits and Systems. He is
Editor-in-Chief for the IEEE JOURNAL OF SELECTED TOPICS IN
SIGNAL PROCESSING. He is Senior Area Editor for the IEEE TRANS-
ACTIONS ON IMAGE PROCESSING. He served as Senior Area Editor
the IEEE TRANSACTIONS ON SIGNAL PROCESSING and Associate
Editor for the IEEE TRANSACTIONS ON IMAGE PROCESSING, the
IEEE TRANSACTIONS ON MULTIMEDIA, the IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, the IEEE
TRANSACTIONS ON SIGNAL PROCESSING, and the IEEE SIGNAL
PROCESSING LETTERS. He received 2020 Sarwan Sahota Ryerson
Distinguished Scholar Award — the Ryerson University highest honor for
scholarly, research and creative achievements. He is selected as IEEE
Distinguished Lecturer by the IEEE Signal Processing Society for the
term 2020 to 2021, and by the IEEE Circuits and Systems Society for
the term 2021 to 2022.

