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Solving Inverse Problems With Deep Neural
Networks — Robustness Included?

Martin Genzel

,Jan Macdonald

, and Maximilian Marz

Abstract—In the past five years, deep learning methods have become state-of-the-art in solving various inverse problems. Before such
approaches can find application in safety-critical fields, a verification of their reliability appears mandatory. Recent works have pointed out
instabilities of deep neural networks for several image reconstruction tasks. In analogy to adversarial attacks in classification, it was shown
that slight distortions in the input domain may cause severe artifacts. The present article sheds new light on this concern, by conducting an
extensive study of the robustness of deep-learning-based algorithms for solving underdetermined inverse problems. This covers
compressed sensing with Gaussian measurements as well as image recovery from Fourier and Radon measurements, including a real-
world scenario for magnetic resonance imaging (using the NYU-fastMRI dataset). Our main focus is on computing adversarial perturbations
of the measurements that maximize the reconstruction error. A distinctive feature of our approach is the quantitative and qualitative
comparison with total-variation minimization, which serves as a provably robust reference method. In contrast to previous findings, our
results reveal that standard end-to-end network architectures are not only resilient against statistical noise, but also against adversarial
perturbations. All considered networks are trained by common deep learning techniques, without sophisticated defense strategies.

Index Terms—Inverse problems, image reconstruction, deep neural networks, adversarial robustness, medical imaging

1 INTRODUCTION

SIGNAL reconstruction from indirect measurements plays a
central role in a variety of applications, including medi-
cal imaging [1], communication theory [2], astronomy [3],
and geophysics [4]. Such tasks are typically formulated as
an inverse problem, which in its prototypical, finite-dimen-
sional form reads as follows:

Given a linear forward operator A € R™N
and corrupted measurements y = Axy + e 1)

with |le|l, < n,reconstruct the signal xg.

The ubiquitous presence of noise makes it indispensable
that a reconstruction method has to be robust against addi-
tive perturbations e. Furthermore, the measurement process
is often costly and potentially harmful. Therefore, the
underdetermined regime where m < N has gained much
attention during the last two decades. This restriction turns
(1) into an ill-posed inverse problem, which does not possess a
unique solution.

Under the additional assumption of sparsity, the meth-
odology of compressed sensing has proven that accurate and
robust reconstruction from incomplete measurements is still
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possible [5]. This means that a solution map Rec : R™ — RY
for (1) satisfies an error bound of the form

[0 — Rec(y)ll, < -, )

where C' > 0 is a small constant. Although state-of-the-art
in various real-world applications, the practicability of the
associated algorithms is often limited by computational
costs, manual parameter tuning, and a mismatch between
sparsity models and data.

Building on the recent success of artificial intelligence in
computer vision [6], [7], [8], there has been a considerable
effort to solve the inverse problem (1) by means of deep
learning, e.g., see [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18] and [19] for a recent survey. This advance is primarily
based on fitting an artificial neural network (NN) model to a
large set of data points in a supervised training procedure.
It is fair to say that such data-driven approaches can signifi-
cantly outperform classical methods in terms of reconstruc-
tion accuracy and speed. On the other hand, one may argue
that the underlying mechanisms of NNs remain largely
unclear [20]. Hence, in the absence of theoretical guarantees
of the form (2), an empirical verification of their accuracy
and robustness against measurement noise is crucial.

While a number of works report a remarkable resilience
against noise [17], [21], [22], several alarming findings indi-
cate that deep-learning-based reconstruction schemes are
typically unstable [23], [24], [25], [26]. In particular, the recent
study of Antun et al. [24] suggests that deep learning for
inverse problems comes at the cost of instabilities, in the
sense that “[...] certain tiny, almost undetectable perturbations,
both in the image and sampling domain, may result in severe arti-
facts in the reconstruction [...]”. In machine learning research
on classification, such a sensitivity of NNs is a well-estab-
lished phenomenon. Initiated by Szegedy ef al. [27], a
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substantial body of literature is devoted to adversarial attacks
(and their defenses), i.e., the computation of a visually
imperceptible change to the input that fools the NN. Typi-
cally, an “attacker” exploits gradient-based information in
order to cross the discontinuous decision boundary of a clas-
sifier. This can be a serious issue for sensitive applications
where wrong predictions impose a security risk—imagine a
misclassified stop sign in autonomous driving [28], [29].

Despite these findings, it appears peculiar that solving
inverse problems by deep-learning-based schemes might
become unstable. Learning a reconstruction algorithm can be
seen as a regression task, where measurements are mapped to
a high-dimensional signal manifold (e.g., medical images). In
contrast, a NN classifier maps to a low-dimensional, discrete
output domain, resulting in a “vulnerable” decision bound-
ary. Moreover, it is well known that robust and accurate algo-
rithms exist for many inverse problems. Since these are often
used as templates for NN architectures, it seems surprising
that the latter should suffer from severe instabilities. Clearly,
the robustness against noise is quintessential for an applica-
tion of deep learning in practice, especially in sensitive fields
such as biomedical imaging. Therefore, we believe that a pro-
found study of this topic is indispensable.

1.1 Contributions

This article is dedicated to a comprehensive numerical
study of the robustness of NN-based methods for solving
underdetermined inverse problems. The primary objective
of our experiments is to analyze how much the reconstruc-
tion error grows with the noise level 1. We investigate this
relationship in terms of statistical and adversarial noise: the
former means that measurement noise is drawn from an
appropriate probability distribution, while the latter
explores worst-case perturbations that maximize the recon-
struction error for fixed 7. Similar to adversarial attacks in
classification, computing worst-case noise is based on a
non-convex formulation that is addressed by automatic dif-
ferentiation and a gradient descent scheme. In the absence
of an empirical certificate of robustness, a central and dis-
tinctive component of our analysis is the systematic com-
parison with a classical benchmark method with provable
guarantees, namely total-variation (TV) minimization. In
this case, evaluating the gradient is non-trivial and carried
out by unrolling the underlying optimization problem.

Our experiments consider several prototypical inverse
problems as use cases. This includes classical compressed
sensing with Gaussian measurements as well as the recon-
struction of phantom images from Radon and Fourier meas-
urements. Furthermore, a real-world scenario for magnetic
resonance imaging (MRI) is investigated, based on the
NYU-fastMRI dataset [30], [31]. We examine a representa-
tive selection of learned reconstruction architectures, reach-
ing from simple post-processing NN to iterative schemes.
In total, this work presents a robustness analysis of more
than 25 NNs, each of them trained in-house with publicly
available code.'

Our main findings may be summarized as follows:

1. Our Python implementation, based on the PyTorch package [32],
can be found under https://github.com/jmaces/robust-nets
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(i) In every considered scenario, we find deep-learning-
based methods that are at least as robust as TV mini-
mization with respect to adversarial noise. This does
not require sophisticated architectures or defense
strategies. However, none of the trained NNs are as
accurate as TV minimization for gradient-sparse
signals.

(i)  All trained NNs are remarkably robust against statis-
tical noise. Although TV minimization may yield
exact recovery for noiseless measurements, it is still
outperformed by learned methods in mid- to high-
noise regimes.

(iii) The reconstruction performance is affected by the
underlying NN architecture. For instance, promoting
data consistency in iterative schemes may improve
both accuracy and robustness.

(iv)  One should not commit the “inverse crime” of train-

ing a NN with noiseless data, which may cause an
unstable behavior for higher noise levels. We dem-
onstrate that simply adding white Gaussian noise to
the training measurements is an effective remedy—a
regularization technique that is commonly known as
jittering in machine learning research. This adaption
has a virtually imperceptible impact on the in-distri-
bution accuracy, but might affect out-of-distribution
features (see Section 5.2). This leads to interesting
trade-offs between stability and accuracy (cf. Fig. 14
bottom right panel).

Apart from these observations, our work is, to the best of
our knowledge, the first to empirically characterize the per-
formance gap between adversarial and statistical noise in the
context of (1). In particular, this gap is not exclusive to deep-
learning-based schemes but also appears for classical meth-
ods such as TV minimization. Our central conclusion is:

The existence of adversarial examples in classifica-
tion tasks does not always carry over to NN-based
solvers for inverse problems. Such reconstruction
schemes may achieve state-of-the-art accuracy and
can also, in certain cases, exhibit a similar degree of
robustness as classical methods. Moreover, there is
an observed trade-off between stability and accu-
racy for both NN-based and classical methods.

1.2 Scope and Implications

The goal of our study is to show that robust solutions to ill-
posed inverse problems can be obtained with data-driven
methods, i.e., small perturbations of the measurements do
not lead to large reconstruction errors. Clearly, the extent to
what this is possible depends on the forward model and the
data distribution of the underlying inverse problem. In par-
ticular, deep learning methods cannot be expected to over-
come fundamental theoretical limitations. As formalized in
[25], there are situations in which accuracy and stability
become mutually exclusive. If the inverse problem setup is
too ill-posed, i.e.,, well-separated signals are mapped to
almost identical measurements, then any accurate method
(whether learned or non-learned) must have a large local
Lipschitz constant and is therefore unstable. Although this
is an interesting avenue for future research, the purpose of
our work is not to balance out such a trade-off.
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Since our study as it is has required massive computa-
tional resources (>2 years of GPU computation time), some
other aspects have to remain unexplored, see Section 6 for a
discussion. In particular, given the sheer number of NN
architectures, we explicitly do not claim that every deep-
learning-based method is stable (cf. Section 5.1). Neverthe-
less, our findings suggest that fairly standard workflows
allow for surprisingly robust reconstruction schemes. This
offers an alternative and novel perspective on the reliability
of deep learning strategies in inverse problems. Therefore,
we believe that the present work takes an important step
towards their safe use in practice.

1.3 Organization of This Article

Section 2 is devoted to relevant previous works, followed by
a conceptual overview of our approach in Section 3. The lat-
ter introduces all considered reconstruction methods, the
associated NN architectures as well as our attack strategy to
analyze their adversarial robustness. The main results are
then presented in Section 4, complemented by several addi-
tional experiments in Section 5. We conclude with a general
discussion of our findings in Section 6.

2 RELATED WORK

Initiated by Szegedy et al. [27], the vulnerability of deep
NN to adversarial examples has been the subject of more
than 2500 publications [33]. We refer to [34], [35] for recent
surveys of the field and further references. The vast major-
ity of existing articles is concerned with classification and
related tasks, such as image segmentation [36]. On the
other hand, only few works have explicitly addressed the
adversarial robustness of learned solvers for inverse
problems.

To the best of our knowledge, Huang ef al. [23] have
made the first effort to transfer adversarial attacks to NN-
based reconstruction methods. They demonstrate that a dis-
tortion of the network’s input may result in the loss of small
image features. However, their initial findings are restricted
to the specific problem of limited angle computed tomogra-
phy, where the robust recovery of certain parts of the image
is provably impossible [37]. Moreover, the proposed pertur-
bation model is non-standard and does not correspond to
noise in the measurements.

More recently, the topic was brought to attention by the
inspiring article of Antun et al. [24]. Their numerical experi-
ments show instabilities of existing deep NNs with respect
to adversarial noise, out-of-distribution features, and
changes in the number of measurements. An important dif-
ference to our work is that adversarial noise is only com-
puted for learned schemes. We believe that a comparative
“attack” of a classical benchmark method is crucial for a fair
assessment of robustness. Furthermore, the results of [24]
are reported qualitatively by visualizing reconstructed
images, as it is common in adversarial machine learning.
We argue that the mathematical setup of the inverse prob-
lem (1) calls for a quantitative error analysis that is in line
with the bound of (2). Finally, the training stage of the net-
works in [24] does not seem to account for noise, which we
have identified as a potential source of instability, see Sec-
tion 5.1. Note that our studdy also analyzes the FBPConvNet
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Fig. 1. Schematic network reconstruction pipelines of UNet, TiraFL
(top), and ItNet (bottom).

architecture [13], a relative of AUTOMAP [17], and an itera-
tive scheme similar to DeepMRI [38]. Nevertheless, a one-
to-one comparison to [24] is subtle due to task-specific archi-
tectures and data processing. A follow-up work of [24]
presents a theoretical characterization of instabilities in
terms of the kernel of the forward operator [25]. Our results
provide empirical evidence that the considered deep-learn-
ing-based schemes could be kernel aware (cf. Section 5.4).

As a countermeasure to the outcome of [24], Raj et al. [26]
suggest a sophisticated defense strategy resulting in robust
networks. This work also addresses shortcomings of the
attack strategy in [24], see Section 3.4 for details. In line with
our findings, Kobler et al. [39] propose the data-driven total
deep wvariation regularizer and demonstrate its adversarial
robustness for image denoising.

Finally, in another line of research, [40] conducts a theo-
retical error analysis of a family of mappings (referred to as
RegNets) that post-process classical regularization methods.
Under the assumption of Lipschitz-continuous networks,
convergence rates in the spirit of (2) are derived for the limit
n — 0. However, due to their asymptotic nature, such
results do not directly address the adversarial perturbation
scenarios of the present work, where a whole range of noise
levels n is analyzed. Apart from that, the convergence rates
in [40] linearly depend on the global Lipschitz constants,
which are hard to compute and control in practice [27], [41],
[42]. Our simulations reveal that pointwise Lipschitz con-
stants for common reconstruction NNs are well-behaved,
regardless of possibly large global constants.

3 METHODS AND PRELIMINARIES

In this section, we briefly introduce the considered recon-
struction schemes for solving the inverse problem (1). This
includes a representative selection of NN-based methods
and total-variation minimization as a classical benchmark.
Furthermore, our attack strategy to analyze their adversarial
robustness is presented.

3.1 Neural Network Architectures

In the past five years, numerous deep-learning-based
approaches for solving inverse problems have been devel-
oped; see [19], [43] for overviews. The present work focuses
on a selection of widely used end-to-end network schemes that
define an explicit reconstruction map from R™ to RY, see
also Fig. 1.
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The first considered method is a post-processing network

UNet : R™ — RY, y— [ o AY(y).

It employs the U-Net architecture ¢/ : RY — R [44] as a
residual network [45] to enhance an initial, model-based
reconstruction A’(y). Here, A': R™ — R" is an approxi-
mate inversion of the forward operator A4, e.g., the filtered
back-projection for Radon measurements. Despite its sim-
plicity, it has been demonstrated in [13] that UNet is an
effective solution method for (1); see also [12], [15], [21],
[46], [47] for related approaches.

Our second reconstruction scheme is a fully-learned net-
work

TiraFL : R™ — RY, y— [T o L](y),

which is closely related to UNet, but differs in two aspects: It
is based on the Tiramisu architecture 7 : RY — R" [48] as a
residual network, which can be seen as a refinement of the
U-Net. While 7 shares the same multi-level structure, it is
built from fully-convolutional dense-blocks [49] instead of
standard convolutional blocks. More importantly, the fixed
inversion A’ is replaced by a learnable linear layer £ €
RV*™m g0 that TiraFL does not contain fixed model-based
components anymore. The approach of TiraFL is similar to
[17], [50], which makes use of a fully-learned reconstruction
map for MRI For the sake of completeness, we have also
conducted experiments for Tira, a Tiramisu-based post-
processing network, as well as for UNetFL, a U-Net-based
fully-learned network, see Sections S1- S3 in the supple-
mentary material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2022.3148324, for results.

Finally, we also analyze an iterative network

ItNet : R™ — RY, y+— [(Oﬁrzl[Dc)\k;ﬁy:A ouU])o Ai} (y),

where
DCyyu : RY = RY, gz — N A" (Az — ).

The scalar parameters ), are learnable and A" denotes the
adjoint of A. Mathematically, DC,, , 4 performs a gradient
step on the loss z — %k | Az — y||5, promoting data consistent
solutions. Therefore, the alternating cascade of ItNet can be
seen as a proximal gradient descent scheme, where the
proximal operator is replaced by a trainable enhancement
network. Here, the U-Net architecture is used again, due to
its omnipresence in image-to-image processing tasks.
Unrolled methods in the spirit of ItNet are frequently used
to solve inverse problems, e.g., see [9], [10], [14], [38], [51],
[52], [53], [54].

3.2 Neural Network Training

The learnable parameters of the networks are trained from
sample data pairs {(y’ = Az} + ¢, z})}}’, by minimizing an
empirical loss function. Depending on the use case, the sig-
nals z are either drawn from a fixed publicly available
training dataset or according to a synthetic probability dis-
tribution. If Net[] : R™ — R denotes a reconstruction net-
work with all learnable parameters collected in 6, then the
training amounts to (approximately) solving
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M
Irgn;aNet[O](yi),%) +u-[l6]3, (&)

for some cost function ¢:RY x RY — R, which is the
squared distance unless stated otherwise. Overfitting is
addressed by /;-regularization with a hyper-parameter
> 0.2 In order to solve (3), we utilize mini-batch stochastic
gradient descent and the Adam optimizer [55]. We found
that larger mini-batches were beneficial for the training per-
formance during later epochs. Technically, this is achieved
by gradient accumulation, i.e., the gradient is cumulatively
summed over several mini-batches before executing a
descent step. For each network, the hyper-parameters were
selected manually until satisfactory precision was achieved,
see Tables S9 and S10, available online.

Due to the ubiquitous presence of noise in inverse prob-
lems, it is natural to account for it in the training data. In
many applications, measurement noise is modeled as an
independent random variable, for instance, following a
Gaussian distribution. Therefore, the perturbation e’ is
treated as statistical noise during the training phase, i.e., a
fresh realization is randomly drawn in each epoch. This
technique is well known as jittering in machine learning
research, where it is primarily used to avoid overfitting [56],
[57], [58]; see also [59]. In Section 5.1, we relate jittering to
the phenomenon of inverse crimes and demonstrate its
importance for the robustness of learned reconstruction
schemes. Due to varying noise levels in the evaluation of
our models, we design e as a centered Gaussian vector
with random variance, such that its expected norm E||€||,]
is distributed uniformly in a range [0,7] for a fixed 7 > 0.
This means that a particular NN is trained via (3) to handle
multiple levels of (adversarial and statistical) noise at same
time.

3.3 Total-Variation Minimization

Dating back to the seminal work of Rudin et al. [60], total-
variation (TV) minimization has become a standard tool for
solving signal and image reconstruction tasks [61], [62]. We
apply it to the problem (1) in the following form:

TV[p] : R™ — RV,

y— argmin |Vz|, s.t.
zeRN

Az —yll, <n, 4

where V denotes a discrete gradient operator. Crucial to the
above optimization problem is the use of the /;-norm, which
is known to promote gradient-sparse solutions. Indeed,
under suitable assumptions on A, compressed sensing the-
ory suggests an error bound of the form (2) for a gradient-
sparse signal xy, and Rec = TV[y], e.g., see [63], [64], [65],
[66]. In other words, TV minimization is provably robust
with a near-optimal dependence on 7. This particularly jus-
tifies its use as a reference method, allowing us to empiri-
cally characterize the robustness of learned reconstruction
schemes.

2. This is often referred to as weight decay in deep learning, since the
{y-term corresponds to a shrinkage of the weights 6 by a constant factor
when performing the gradient update, e.g., see [8, Section 7.1.1].
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In our numerical simulations, the problem of (4) is solved
by the alternating direction method of multipliers (ADMM) [67],
[68]. For 1D signals, V € R** is chosen as a forward finite
difference operator with Neumann boundary conditions,
extended by a constant row vector to capture the mean of the
signal. For image signals, V € R**¥ corresponds to a for-
ward finite difference operator with periodic boundary con-
ditions. Due to the non-separability of ||V(-)||; in 2D, the
formulation of TV([y] in (4) becomes computationally infeasi-
ble for finding adversarial noise. In imaging scenarios, we
therefore solve the unconstrained version of TV[p] instead,
i.e., the objective function is changed to =z — - ||Vz|; +
| Az — yl|5. Note that this strategy is theoretically equivalent
[5 Appx. B] , but requires an appropriate choice of the regu-
larization parameter A > 0. A near-optimal selection with
respect to the relative ¢;-error is determined by grid searches
over the test set and a densely sampled range of noise levels
n. In contrast to the NNs, TV([n] is explicitly adapted to the
amount of perturbation of the measurements.

3.4 Adversarial Noise

In the setup of (1), adversarial noise for a given reconstruc-
tion method Rec : R™ — R can be computed by solving an
optimization problem: for a fixed signal z; € R" and noise
level n > 0, find an additive perturbation e,q, € R™ of the
noiseless measurements y, = Az, that maximizes the recon-
struction error, i.e.,

€adv = argmax ||R6C(y0 + 6) - w()”? s.t.
ecR™

llell, <n. )

Such an attack strategy is a straightforward adaption of a
common approach in adversarial machine learning [34]. In
contrast to [24], we consider a constrained optimization
problem that avoids shortcomings of an unconstrained for-
mulation; in particular, this allows for precise control over
the noise level. Moreover, (5) explores a natural perturba-
tion model, operating directly in the measurement domain,
cf. the discussion in [26].

In order to solve the problem (5), we use the projected
gradient descent algorithm in conjunction with the Adam
optimizer, which was found to be most effective (cf. [69]).
The non-convexity of (5) is accounted for by choosing the
worst perturbation out of multiple runs with random ini-
tialization. Assuming a whitebox model (i.e., Rec is fully
accessible), we use PyTorch’s automatic differentiation [32]
to compute gradients of the considered NN schemes.

A central aspect of our work is that the above perturbation
strategy is also applied to TV([p]. This is non-trivial, since the
gradient of the implicit map y — TV[n](y) has to be com-
puted. The large-scale nature of imaging problems prevents
us from using the recent concept of differentiable convex opti-
mization layers [70]. Instead, we calculate the gradient of the
unrolled ADMM scheme for TV minimization by automatic
differentiation. In general, a large number of iterations might
be required for the convergence of ADMM, which in turn
ensures an accurate gradient approximation for TV{y]. This
leads to numerical difficulties in automatic differentiation,
due to memory & time constraints and error accumulation.
We address this issue by decreasing the number of ADMM
iterations for the gradient computation (denoted by kgy.q). To
compensate for a loss of accuracy, we use a pre-initialization
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of the primal and dual variables by the output of a fully con-
verged ADMM scheme with input y,. Such a warm start is
beneficial, since the gradient is only evaluated in an n-ball
around y, during the attack. Note that the actual TV recon-
structions are always computed by a fully converged ADMM
algorithm (with ke > kgraq iterations).

4 MAIN RESULTS

This section studies the robustness of NN-based solution
methods for three different instances of the inverse prob-
lem (1). The goal of our experiments is to assess the loss of
reconstruction accuracy caused by noise. To that end, we
rely on two types of visualization:

e Noise-to-error curves are generated by plotting the rel-
ative noise level n/||.Ax||, against the relative recon-
struction error ||zg — Rec(Azg + €)||,/||zol|5-

o Individual reconstruction results are shown for differ-
ent relative noise levels and a randomly selected sig-
nal from the test set.

In both cases, the perturbation vector e is either of statisti-
cal or adversarial type. The former means that e is a random
vector such that E[||e||3] = %, whereas the latter is found by
(5). While noise-to-error curves are of quantitative nature,
individual reconstructions facilitate a qualitative judgment
of robustness. Note that the sensitivity to noise is different
in each considered scenario. Therefore, we have selected the
maximal level of adversarial noise such that the benchmark
of TV minimization does not yield a (subjectively) accept-
able performance anymore. A specification of all empiri-
cally selected hyper-parameters can be found in the
supplementary material (see Tables S9-S11), available
online.

4.1 Case Study A: Compressed Sensing With
Gaussian Measurements

Our first study is devoted to sparse recovery of 1D signals
from Gaussian measurements, which is a standard bench-
mark setup in the field of compressed sensing (CS) theory
[5]. This means that the entries of the forward operator A in
(1) are independent Gaussian random variables with zero
mean and variance 1/m. We consider two different scenar-
ios based on (approximately) gradient-sparse signals; note
that such a model is canonical for TV minimization and
compatible with the local connectivity of our convolutional
NN schemes.

Scenario A1. We draw z, from a synthetic distribution of
piecewise constant signals with zero boundaries and well-con-
trolled random jumps, see Fig. 3 for an example. In this sce-
nario, we choose m =100, N = 256, and use M = 200k
training samples.

Scenario A2. We sample z; € [0,1***® from the widely
used MNIST database [71] with M = 60k training images of
handwritten digits. In the context of (1), the images are
treated as 1D signals® of dimension N = 28> = 784. The
number of Gaussian measurements is m = 300.

3. We have decided for a vectorized data processing (i.e., TV[y] and
the NNs operate on vectorized images), since Scenario A2 is regarded
as a direct continuation of the idealistic situation in A1l. However, for
visual purposes, all reconstructions are displayed as images, see Fig. 5.
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Fig. 2. Scenario A1 — CS with 1D signals. (a) shows the adversarial
noise-to-error curve for the randomly selected signal of Fig. 3. (b) shows
the corresponding Gaussian noise-to-error curve, where the mean and
standard deviation are computed over 200 draws of e. (c) and (d) display
the respective curves averaged over 50 signals from the test set. For the
sake of clarity, we have omitted the standard deviations for UNet and
TiraFL, which behave similarly.

In both scenarios, we chose the model-based, linear
inversion layer of the networks as a generalized Tikhonov
matrix, ie., A' = (ATA+a-VIV) AT € RY*" with the
empirically chosen regularization parameter o = 0.02. We
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were not able to train the NNs to a comparable reconstruc-
tion accuracy with other natural choices, such as A" = A”.
The above matrix is also used to initialize the inversion
layer £ € RY*™ of the fully-learned schemes.

Fig. 2 shows the noise-to-error curves for Scenario A1 (CS
with 1D signals); see also Tables S1 and S2, available online.
The associated individual reconstructions for adversarial
noise are displayed in Fig. 3; see Fig. 52, available online, for
the corresponding results with Gaussian noise. Fig. S1 sup-
plements, available online, the simulation of Figs. 2b and 2d
by two additional types of random noise, drawn from the
uniform and Bernoulli distribution. Both exhibit results that
are virtually indistinguishable from the Gaussian case. Fig. 4
shows the noise-to-error curves for Scenario A2 (CS with
MNIST); see also Tables S3 and 5S4, available online. The
associated individual reconstructions for adversarial noise
are displayed in Fig. 5; see Fig. S3, available online, for two
additional digits and Fig. 54, available online, for the corre-
sponding results with Gaussian noise.

Conclusions. The above results confirm that the consid-
ered NN-based schemes are as least as robust to adversarial
perturbations as the benchmark of TV minimization.
Although TV([n] is perfectly tuned to each noise level 7, it is
clearly outperformed in the case of statistical noise. The gap
between statistical and adversarial perturbations is compa-
rable for all methods.

TV minimization is a perfect match for Scenario Al. In
particular, exact recovery from noiseless measurements is
guaranteed by CS theory [66], [72]. Although this cannot be

noiseless 0.5% rel. noise — adversarial 2% rel. noise — adversarial 6% rel. noise — adversarial
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Fig. 3. Scenario A1 — CS with 1D signals. Individual reconstructions of a randomly selected signal from the test set for different levels of adversarial

noise. The ground truth signal is visualized by a dashed line.
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Fig. 4. Scenario A2 — CS with MNIST. (a) shows the adversarial noise-to-
error curve for the randomly selected digit 3 of Fig. 5. (b) shows the cor-
responding Gaussian noise-to-error curve, where the mean and stan-
dard deviation are computed over 200 draws of e. (c) and (d) display the
respective curves averaged over 50 signals from the test set.

expected for NN-based solvers, they still come with an over-
all superior robustness against noise. The situation is even
more striking in Scenario A2. Here, TV minimization per-
forms worse, since the signals are only approximately gradi-
ent-sparse. In contrast, the NN-based reconstruction
schemes adapt well to the simple MNIST database, leading
to significantly better outcomes in every regard. Hence, the
increase in accuracy by learned methods does not necessar-
ily imply a loss of robustness.

The performance ranking of the considered deep NNs is as
one might expect: First, data consistency as encouraged by the
ItNet-architecture is beneficial. Furthermore, Tables S1-54,
available online, reveal that the Tiramisu architecture is supe-
rior to a simple U-Net, and that a learnable inversion layer
improves the recovery. The latter observation is not surpris-
ing, since Thikonov regularization is known to work poorly in
conjunction with subsampled Gaussian measurements.

4.2 Case Study B: Image Recovery
of Phantom Ellipses

Our second set of experiments concerns the recovery of
phantom ellipses from Fourier or Radon measurements.
These tasks correspond to popular simulation studies for
biomedical imaging, e.g., see [13], [18], [52], [73]. We sample
zo € 0,1)P%*C from a distribution of superimposed ran-
dom ellipses with mild linear intensity gradients and well-
controlled geometric properties, see Fig. 7 for an example.
The training is performed on M = 25k images. We consider
the following two measurement scenarios for (1), associated
with the problems of compressed sensing MRI [1] and low-
dose computed tomography (CT) [13], [74], respectively:

Scenario B1. The forward operator takes the form A=
PF e C™*N, where F € CV*V is the 2D discrete Fourier trans-
form and P € {0,1}"*" is a subsampling operator defined
by a golden-angle radial mask with 40 lines (m = 10941 and
N = 2567 = 65536). Note that the entire data processing is
complex-valued, while the actual reconstructions are com-

puted as real-valued magnitude images, as common in
Authorized licensed use limite
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MRI. We use the canonical inversion layer A= A" =
]:_IP* c (CNXT”.

Scenario B2. The forward operator A € R™*" is given by a
sparse-angle Radon transform with 60 views (m = 21780 and
N = 65536). The non-linear inversion layer A* : R™ — RV is
chosen as the filtered back-projection algorithm (FBP) with a
Hann filter.

In contrast to Case Study A, the aforementioned prob-
lems are of significantly higher dimensionality. Therefore,
fully-learned schemes are difficult to realize, since the size
of the inversion layer scales multiplicatively in the image
dimensions. In the Fourier case, the number of free parame-
ters can be reduced by enforcing a Kronecker product struc-
ture on £ € CV*™; this exploits the fact that F is a tensor
product of two 1D Fourier transforms, cf. [50].

Fig. 6 shows the noise-to-error curves for Scenario B1 (Four-
ier meas. with ellipses); see also Tables S5 and S6, available
online. The associated individual reconstructions for TV{n]
and ItNet with adversarial noise are displayed in Fig. 7; see
Fig. S5, available online, for the remaining networks and
Fig. S6, available online, for the corresponding results with
Gaussian noise. In the tables and individual reconstructions,
we have also reported the peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) [75]. In the case of
Scenario B2 (Radon meas. with ellipses), we only present individ-
ual reconstructions based on TV[y] and UNet; see Fig. 8 for
adversarial noise and Fig. 57, available online, for the common
Poisson noise model. This restriction is due to the more com-
plicated nature of the Radon transform, and in particular, the
need for automatic differentiation. The used implementation
[76] requires significantly more computational effort, com-
pared to the fast Fourier transform.

Conclusions. The main findings of Case Study A remain
valid: (i) the adversarial robustness of NN-based methods
and TV minimization is similar with respect to the ¢;-error;
(ii) NNs are more resilient against statistical perturbations
in mid- to high-noise regimes (see also the individual recon-
structions in Figs. S6 and S7, available online); (iii) there is
a clear gap between adversarial and statistical noise that is
comparable for model-based and learned schemes.

The individual reconstruction results in Figs. 7 and 8 allow
for further insights. First, the effect of adversarial noise for
TV[n] manifests itself in the well-known staircasing phenom-
enon, a considerable loss of resolution as well as point-like
artifacts (see the zoomed region in Fig. 7). In contrast, NN-
based methods always produce sharp images, with almost
imperceptible visual errors up to 3% relative noise in the case
of Fourier measurements (1% noise in the case of Radon
measurements). For the highest noise level, on the other
hand, they exhibit unnatural ellipsoidal artifacts.

At first sight, this observation might indicate a vulnera-
bility to adversarial noise. However, a simple transferability
test refutes this conclusion (cf. [77]): plugging the perturbed
measurements for ItNet into TV[5] leads to the same ellip-
soidal artifacts; see Figs. 7 and S8, available online. Further-
more, Fig. 8 reveals that the corresponding artifacts are
already present in the FBP inversion and are not caused by
the post-processing network. This shows that the learned
solvers do not suffer from undesired instabilities, but the
observed artifacts are due to actual features in the corrupted
measurements. Interestingly, adversarial perturbations
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Fig. 5. Scenario A2 — CS with MNIST. Individual reconstructions of two
randomly selected digits from the test set for different levels of adversar-
ial noise. The reconstructed digits and their error plots (with relative
{y-error) are displayed in the windows [0,1] and [0, 0.6], respectively. The
horizontal line artifacts in the TV[y]-solutions are due to the fact that the
MNIST images are treated as vectorized 1D signals. Remarkably,
although relying on 1D convolutional filters, the NN-based reconstruc-
tions do not suffer from these artifacts.

found for TV[n] do not transfer to NN-based methods, see
Fig. S8, available online. Overall, the attack strategy of (5)
has different qualitative effects on each reconstruction para-
digm: while known flaws of TV minimization are amplified,
the NNs are perturbed by adding “real” ellipsoidal features
to the measurements.

On a final note, we confirm the ranking of architectures
as pointed out in Case Study A. Nevertheless, there is no
clear superiority of the fully learned schemes as in case of
Gaussian measurements, since the inverse Fourier trans-
form appears to be a near-optimal choice of model-based
inversion layer.

4.3 Case Study C: MRI on Real-World Data (fastMRI)

The third case study of this article is devoted to a real-world
MRI scenario. To this end, we use the publicly available
fastMRI knee dataset, which consists of 1594 multi-coil diag-
nostic knee MRI scans.* Our experiments are based on the
subset of 796 coronal proton-density weighted scans

4. Data used in the preparation of this article were obtained from the
NYU fastMRI Initiative database [30], [31] (https://fastmri.med.nyu.
edu). As such, NYU fastMRI investigators provided data but did not
participate in analysis or writing of this article. The primary goal of
fastMRI is to test whether machine learning can aid in the reconstruc-
tion of medical images.
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Fig. 6. Scenario B1 — Fourier meas. with ellipses. (a) shows the adver-
sarial noise-to-error curve for the randomly selected image of Fig. 7.
(b) shows the corresponding Gaussian noise-to-error curve, where the
mean and (almost imperceptible) standard deviation are computed over
50 draws of e. (c) and (d) display the respective curves averaged over
50 images from the test set. For the sake of clarity, we have omitted the
standard deviations for UNet and TiraFL, which behave similarly.

without fat-suppression, resulting in M =~ 17k training
images. We draw magnitude images x, € R¥*"*320, obtained
from fully-sampled multi-coil® data, and consider sub-
sampled Fourier measurements as in Scenario Bl with 50
radial lines (m = 17178 and N = 3202 = 102400). As before,
the data processing is complex-valued, while the actual
reconstructions are computed as real-valued magnitude
images. The model-based and learned inversion layers are
realized as in Scenario B1. As common in the fastMRI chal-
lenge, we have trained all networks with a cost function
based on a combination of the ¢;- and SSIM-distance, see
also [78]. TV minimization is solved in the unconstrained
formulation, with the regularization parameter determined
by a grid search over a subset of the validation set.

Fig. 9 shows the noise-to-error curves; see also Tables 57
and S8, available online. The associated individual recon-
structions for TV[n] and TiraFL with adversarial noise are
displayed in Fig. 10; see Fig. S9, available online, for the
remaining networks and Fig. 510, available online, for the
corresponding results with Gaussian noise.

Conclusions. Our experimental results show that the main
findings of Case Study A and B carry over to real-world data.
The noise-to-error curves in Fig. 9 reveal a superior robust-
ness of the learned reconstruction schemes over TV minimi-
zation, even for noiseless measurements (cf. Scenario A2).
Fig. 10 underpins this observation from a qualitative

5. Note that our measurement model actually corresponds to the
simpler modality of subsampled single-coil MRI. While the fastMRI
challenge also provides single-coil data, it is based on retrospective
masking of emulated Fourier measurements. The subsampling is done
by omitting k-space lines in the phase-encoding direction, which we
found less suitable for our robustness analysis; see Section 5.4 for an
experiment with the original setup. Since emulating single-coil meas-
urements is unavoidable, we have decided to sample from the multi-
coil magnitude reconstructions in favor of higher image quality. This
was found to be particularly important to ensure that TV minimization
can serve as a competitive benchmark method, at least for noiseless
measurements.
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Fig. 7. Scenario B1 — Fourier meas. with ellipses. Individual reconstructions of a randomly selected image from the test set for different levels of
adversarial noise. The reconstructed images are displayed in the window [0,0.9], which is also used for the computation of the PSNR and SSIM. For
error plots and the results of UNet and TiraFL, we refer to Fig. S5, available online. The bottom right figure concerns the transferability of adversarial
noise: it shows the reconstruction TV[n|(y,q.), Where y, 4. is the perturbation found for ItNet with 8% noise; see Fig. S8, available online, for addi-
tional experiments. The ground truth image z, has been omitted, as it is visually indistinguishable from the noiseless reconstruction by TV ).

viewpoint: the model-based prior of TV([y] tends to blur fine
details in the reconstructed images—this “oil painting” effect
becomes stronger with larger perturbations. In contrast, the
NN-based reconstructions always yield high resolution
images. Despite adversarial noise, the central image region—
which is of main medical interest—remains largely unaf-
fected, whereas tiny vessel structures appear in the outside
(fat) region. Such an amplification of existing patterns is com-
parable to the ellipsoidal artifacts in Case Study B. We empha-
size that this phenomenon only occurs for large adversarial
perturbations, where the benchmark of TV minimization
already suffers from severe distortions. In particular, the per-
formance of the learned methods is not impaired by the same
amount of Gaussian noise (see Fig. 510, available online).

5 FURTHER ASPECTS OF ROBUSTNESS

This section presents several additional experiments that allow
for further insights into the robustness of learned methods.

5.1 Training Without Noise — An Inverse Crime?

In this section, the importance of jittering for the stability of
deep-learning-based reconstruction schemes is discussed
(see Section 3.2). We have found that this technique can be
beneficial for promoting adversarial robustness, in particu-
lar, for iterative architectures. The previous claim is verified
by an ablation study, comparing two versions of ItNet for

Scenario A2, one trained with jittering and the other with-
out. The resulting noise-to-error curves in Fig. 11 reveal that
noiseless training data can have drastic consequences.
Indeed, the relative recovery error blows up at ~15% adver-
sarial noise if jittering is not used. In a similar experiment,
we analyze the adversarial robustness of image recovery
from Radon measurements as in Scenario B2. The results of
Fig. 12 show a clear superiority of the UNet that was sub-
jected to noise during training (see also Fig. S7, available
online, for the effect of Poisson noise). Without jittering,
almost imperceptible distortions in the FBP inversions are
intensified by the post-processing network (see blue
arrows).

The above observations can be related to the notion of
inverse crimes in the literature on inverse problems, e.g., see
[79], [80]. This term is commonly used to explain the phe-
nomenon of exact, but highly unstable, recovery from noise-
less, simulated measurements. In a similar way, networks
seem to learn accurate, but unstable, reconstruction rules if
they are trained with noiseless data. We note that this does
not only concern simulated phantom data but also real-
world scenarios. Indeed, in medical imaging applications,
one often acquires fully sampled (noisy) reference scans
{7 }1 1» which are used to generate the ground truth train-
ing images =, = A;, ¥ The measurements are usually sub-
sampled retrospectively by y' = Py’, where P denotes an
appropriate selection operator. NN-based solution methods
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Fig. 8. Scenario B2 — Radon meas. with ellipses. Individual reconstructions of a randomly selected image from the test set for different levels of
adversarial noise. The reconstructed images are displayed in the window [0,1], which is also used for the computation of the PSNR and SSIM. The
bottom right figure shows the FBP inversion of the 2%-adversarial perturbation found for UNet. The ground truth image z, has been omitted, as it is

visually indistinguishable from the noiseless reconstruction by TV |n].

for the limited data problem (1) with A = PA¢y1: are then
obtained by training on {(y/, z})}"",. Importantly, such data
pairs also “commit” an inverse crime, since they follow the
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Fig. 9. Case Study C — fastMRI. (a) shows the adversarial noise-to-error
curve for the randomly selected image of Fig. 10. (b) shows the corre-
sponding Gaussian noise-to-error curve, where the mean and (almost
imperceptible) standard deviation are computed over 50 draws of e.
(c) and (d) display the respective curves averaged over 30 images from
the validation set. For the sake of clarity, we have omitted the standard
deviations for UNet and TiraFL, which behave similarly.

noiseless forward model Az = PAs1z) = 3. Hence, we
believe that simulating additional noise might be helpful in
the situation of real-world measurements as well. Jittering
is a simple and natural remedy in that regard that can addi-
tionally reduce overfitting [56]. The exploration of further
regularization techniques or more sophisticated ways of
injecting noise during training is left to future research.

5.2 Training With Noise — Losing Accuracy?
One might wonder whether the aforementioned robustifica-
tion via jittering has a detrimental effect on the resulting
reconstruction scheme for unperturbed inputs. Indeed, if a
method—not necessarily learned—is too insensitive to
small changes in the input, it might become incapable of
reconstructing fine details. In the context of our study, it is
useful to distinguish between the recovery accuracy with
respect to in-distribution and out-of-distribution (OOD) fea-
tures. The former simply corresponds to a task evaluation
on regular images from the test set. Regarding this aspect,
we have observed only a marginal impact of jittering: across
all considered scenarios, no significant performance loss
was found when training with noise (e.g., see left column of
Fig. 13), and occasionally, the accuracy even improved
slightly (e.g., see Fig. 11 and left column of Fig. S7, available
online).

The behavior might be different for OOD attributes.
Following [24], we address this situation by exposing an
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Fig. 10. Case Study C — fastMRI. Individual reconstructions of a central slice of a randomly selected volume from the validation set for different levels
of adversarial noise. The reconstructed images are displayed in the window [0.05,4.50], which is also used for the computation of the PSNR and
SSIM. For error plots and the results of UNet and ItNet, we refer to Fig. S9, available online. The ground truth image z is shown at the bottom right.

NN-based solver to structural details that do not belong
to the data distribution. Fig. 13 shows that inserted text
and a 3 x 3-square are recognizable with and without
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Fig. 11. Aninverse crime? A comparison between ItNet trained with and
without jittering. The above noise-to-error curves are generated for the
MNIST-digit 3 from Fig. 5 with (a) adversarial and (b) Gaussian noise.
Individual reconstructions for adversarial noise are shown below (the
intermediate steps performed by ItNet are visualized in Fig. S11, avail-
able online).

jittering. While the feature contrast is higher in the latter
case, no essential information was missed due to training
with noise.

Nevertheless, the OOD generalization of learned
methods is still poorly understood in general. Among
other factors, the outcome may also depend on the
“richness” of the training data. Fig. 14 presents a similar
experiment as in Fig. 13 with phantom ellipses (Case
Study B). In this case, the ItNet with jittering is not able
to recover the added text feature. We also give some evi-
dence that this limitation is a consequence of our naive
(non-adaptive) jittering strategy. In fact, a slightly modi-
fied training procedure provides a simple remedy.® On
the other hand, the noise-to-error curve in Fig. 14 indi-
cates a trade-off between robustness and accuracy, since
the modified ItNet exhibits a larger reconstruction error
for higher noise levels.

5.3 Adversarial Examples for Classification From
Compressed Measurements

In medical healthcare, image recovery is merely one compo-

nent of the entire data-processing chain. Indeed, machine

learning techniques are particularly suitable for automated

diagnosis or personalized treatment recommendations. As

argued in the introduction of this article, the study of

6. This modification consists in training the ItNet with jittering first
(as before) and then performing a second training phase with a much
lower jittering level.
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Fig. 12. An inverse crime? A comparison between UNet trained with and
without jittering for image recovery from sparse-angle Radon measure-
ments, see Fig. 8 in Scenario B2. The reconstructions are obtained for
1% adversarial noise. The bottom figures show the FBP inversions of the
found perturbations, respectively. The blue arrows highlight tiny distor-
tions that are amplified by the post-processing network.

adversarial examples for such classification tasks differs
from the robustness analysis of reconstruction methods. In
this section, we shed further light on this subject by analyz-
ing classification from compressed measurements—think of
detecting a tumor from a subsampled MRI scan.

To this end, we revisit the benchmark model of
Scenario A2, with the goal to predict MNIST digits from
their Gaussian measurements. This is realized by training a
basic convolutional NN classifier ConvNet : RV — [0,1]",
mapping images to class probabilities for each of the
10 digits. The concatenation with a reconstruction method
Rec : R™ — RY then yields the following classification map:

CC:R™ —[0,1]", y — [ConvNet o Rec|(y). (6)
The approach of CC can be seen as a simplified model for
the automated diagnosis from subsampled measurements;
see also [82] and the references therein for the related prob-
lem of compressed classification.

Inspired by [69], we adapt the attack strategy (5) to the
classification setting by (approximately) solving

eady = argmax max [CC(y, + e)];, — [CC(y, + €)l.,

lela<n  K7e

where c € {0,1,...,9} is the true class label of z,. Fig. 15
shows a noise-to-accuracy curve visualizing the relative
amount of correct classifications for different choices of Rec.
The corresponding image reconstructions Rec(y, + €aav) as
well as the predicted classes arg max;[CC(y, + €adv)]; for an
example digit are presented below.

All classifiers exhibit a transition behavior: the success
rate is almost perfect for small perturbations and then
drops to zero at some point. The associated images show
that we have found adversarial examples in the ordinary
sense of machine learning. Indeed, every visualized recon-
struction is still recognizable as the digit 9. In other words,
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added details

rel. £ -err: 9.23%
PSN
SSI

original
rel b-err: 8.99%

w/ o jittering

rel. b-err: 9.36%
PSNR: 30.54
SSIME 0.77 b

rel. €p-err: 9.10%
P :30.78

w/ jittering

Fig. 13. Losing accuracy? The left column compares the image of
Fig. 10, when reconstructed by TiraFL with and without jittering, respec-
tively. The right column displays analogous results after adding two out-
of-distribution features (text and a 3 x 3-square) to the ground truth;
note that the smallest letter ‘E’ has the lowest possible resolution. The
reconstructed images are displayed in the window [0.05,4.50], which is
also used for the computation of the PSNR and SSIM.

although being stable, each of the recovery methods is
capable of producing slightly perturbed images that fool
the ConvNet-part. Remarkably, this phenomenon occurs
independently of using a model-based or learned solver
for (1). We conclude that deep-learning-based data-proc-
essing pipelines (as in medical healthcare) remain vulnera-
ble to adversarial attacks, even if provably robust
reconstruction schemes are employed.

5.4 The Original fastMRI Challenge Setup
This section demonstrates that the original fastMRI chal-
lenge data for single-coil MRI is more susceptible to adver-
sarial noise. In contrast to Case Study C, the challenge
measurement setup is based on omitting k-space lines in the
phase-encoding direction (corresponding to 4-fold accelera-
tion), i.e., the subsampling mask is defined by vertical lines.
The resulting undersampling ratio of ~23% is higher than
in Case Study C (~17%). Fig. 16 shows individual image
reconstructions for TV[y] and Tira.” Compared to Fig. 10,
the outcomes indicate a loss of adversarial robustness, as
the reconstructed images exhibit undesired line-shaped arti-
facts (see blue box in Fig. 16). This phenomenon occurs
regardless of using a model-based (TV[y]) or learned
method (Tira). Nevertheless, a noteworthy pitfall is that
such defects are not easily detectable for learned schemes,
since they still produce realistic images.

The observed artifacts are a consequence of the underly-
ing measurement system: the anisotropic mask pattern
implies that vertical image features become more “aligned”

7. Since the fastMRI challenge setup does not rely on a fixed subsam-
pling mask, the fully-learned approach for Tiramisu is not available here.
Our Tira-net performs competitively in the fastMRI public leaderboard:
We have achieved an SSIM of 0.765, whereas the leading method has 0.783
(https:/ /fastmri.org/leaderboards/, teamname AnItalianDessert,
accessed on 2020-11-08).
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ItNet w/o jittering ItNet w/ mod. jittering 5

T =iy

30 == ItNet

ItNet w/o jit

259 == ItNetjit (mod.) -

rel. £2-error [%]

rel. (r-err: 1.46% rel. noise level [%] — adversarial

Fig. 14. Losing accuracy? The top row compares different methods when reconstructing the image of Fig. 7 with an added OOD text feature. As the
underlying signal is sufficiently gradient-sparse, TV|[y] provides a highly accurate result. The ItNet with jittering fails to recover the text, as opposed
to its non-jittering counterpart; see also [81, Fig. 5] for a similar experiment. A simple remedy is shown in the right column: a slight modification of the
jittering approach (training with jittering first, then with a much lower jittering level in later epochs) produces a network that is similarly robust to TV ]
for low- and mid-noise levels (see noise-to-error curve), while it successfully recovers the text. Remarkably, none of the networks has ever seen text
features in the training stage. We anticipate that further improvements are possible with a more advanced approach, for instance, by learning noise-
aware NNs for multiple values of 7. This is comparable to tuning TV 5] with respect to the given noise level. Moreover, it is notable that compared to
the other methods, ItNet does not achieve near-zero reconstruction error in the noiseless limit. The reconstructed images are displayed in the win-

dow [0,1], which is also used for the computation of the PSNR and SSIM.

with the kernel of the forward operator. Hence, clearly visi-
ble distortions may be caused by relatively small perturba-
tions of the measurements (cf. [25]). This confirms that the
design of sampling patterns does not only influence the
accuracy of a reconstruction method (e.g., see [83]), but also
its adversarial robustness.

6 DiscussION

In an extensive series of experiments, this work has analyzed
the robustness of deep-learning-based solution methods for
inverse problems. Central to our approach was to study the
effect of adversarial noise, i.e., worst-case perturbations of
the measurements that maximize the reconstruction error.

—e— TV[y]

UNet

=& TiraFL

=—o— [tNet
2
>
9]
<
-
5
1*)
o
5

\
N S

rel. noise level [%] — adversarial

5% 10% 15% 20%

TiraFL ~ UNet  TV[n]

ItNet

Fig. 15. Classification from compressed measurements. The above
curve plots the relative adversarial noise level against the prediction
accuracy of the classfier (6) for different recovery methods (averged
over 50 digits from the test set). The intermediate reconstructions of a
randomly selected digit are shown below for different noise levels. Their
predicted class labels are displayed in the bottom right corner.

A systematic comparison with a model-based reference
method has shown that standard deep NN schemes are
remarkably resilient against statistical and adversarial dis-
tortions. On the other hand, we have demonstrated that
instabilities might be caused by the “inverse crime” of train-
ing with noiseless data. A simple remedy in that regard is
jittering—a standard regularization and robustification tech-
nique in deep learning [8]. However, it is well known that
this does not cure the adversarial vulnerability of deep NN
classifiers, which requires more sophisticated defense strate-
gies [84]. While such defenses may also improve the robust-
ness in the context of image recovery [26], our results allow
for a surprising conclusion: Injecting Gaussian random noise
in the training phase seems sufficient to obtain solution
methods for inverse problems that are resistant to other
types of noise, including adversarial perturbations.

noiseless
rel. (>%err: 21.71%
NR: 22.96
% A SSIM: 0.41

2.5% rel. noise — adv.

TV[n]

rel. (>=err: 15.72%

R: 25.70
SIM: 0.54

Tira

Fig. 16. The original fastMRI challenge setup. Reconstructions of a ran-
domly selected image from the validation set. Compared to the analo-
gous experiment in Fig. 10, the Fourier subsampling operator is based
on vertical lines in the k-space instead of a radial mask. The recon-
structed images are displayed in the window [0.05,4.50], which is also
used for the computation of the PSNR and SSIM. Note that the data are
given as emulated single-coil (ESC) measurements, whereas the recon-
structions in Fig. 10 are based on multi-coil images. Hence, the signal-
to-noise ratios are not directly comparable.
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Admittedly, there are several aspects that go beyond the
scope of our study: (i) We are restricted to a selection of end-to-
end NN architectures, excluding other approaches, such as
generative models [16], the deep image prior [85], or learned
regularizers [86]. However, since these algorithms typically
involve more model-based components, we expect their
robustness to be comparable to the schemes considered in the
present work. (ii) Due to the non-convexity of (5), a theoretical
optimality certificate for our attack strategy is lacking. Never-
theless, our results provide empirical evidence that we have
solved the problem adequately: The gap between worst-case
and statistical perturbations appears consistent across all con-
sidered scenarios. More importantly, we have verified the abil-
ity to detect an error blowup caused by adversarial noise (see
Fig. 11). (iii) Our analysis takes a mathematical perspective on
robustness, thereby relying on standard similarity measures,
in particular, the euclidean norm. It is well known that such
quantitative metrics are insensitive to several types of visual
distortions. For example, a characteristic feature of data-driven
methods is that they tend to generate realistic images, even
when compromised (cf. Section 5.4). This can hinder the detec-
tion of failure modes and possibly lead to false-positives/neg-
atives [25]. (iv) The reliability of NN-based reconstructions
may suffer from other shortcomings that are not directly
linked to a lack of adversarial robustness. For instance, even
the winning networks of the 2019 fastMRI challenge were
occasionally unable to capture certain tiny pathological fea-
tures that rarely appear in the data [87]. This issue was specifi-
cally addressed in the 2020 fastMRI challenge, which focuses
on pathology depiction instead of an overall image quality
assessment [88]. However, this time, hallucinations were
noted, i.e., non-physical features created by the reconstruction
networks. An investigation of causes and remedies seems to
be a promising direction for future research, e.g., see [89].

The relevance of artificial intelligence for future health-
care is undeniable. Reliable reconstruction methods are
indispensable in this field, since errors caused by instabil-
ities can be fatal. In light of the threat of intentional manipu-
lations in medical imaging [90], it is reassuring to know the
limits of what could go wrong in principle. Of similar prac-
tical interest is the robustness against random perturba-
tions, which is the standard noise model for common
imaging modalities. We believe that our work makes prog-
ress in both regards, by showing optimistic results on the
use of deep NN for inverse problems in imaging.
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