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Abstract—Motivated by scenarios where data is used for diverse prediction tasks, we study whether fair representation can be used to
guarantee fairness for unknown tasks and for multiple fairness notions. We consider seven group fairness notions that cover the
concepts of independence, separation, and calibration. Against the backdrop of the fairness impossibility results, we explore
approximate fairness. We prove that, although fair representation might not guarantee fairness for all prediction tasks, it does
guarantee fairness for an important subset of tasks—the tasks for which the representation is discriminative. Specifically, all seven
group fairness notions are linearly controlled by fairness and discriminativeness of the representation. When an incompatibility exists
between different fairness notions, fair and discriminative representation hits the sweet spot that approximately satisfies all notions.
Motivated by our theoretical findings, we propose to learn both fair and discriminative representations using pretext loss which
self-supervises learning, and Maximum Mean Discrepancy as a fair regularizer. Experiments on tabular, image, and face datasets
show that using the learned representation, downstream predictions that we are unaware of when learning the representation indeed
become fairer. The fairness guarantees computed from our theoretical results are all valid.

Index Terms—Fair Representation, Group Fairness, Fair Machine Learning
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1 INTRODUCTION

A S machine learning (ML) continues to be widely used
in various social contexts, fairness grows to be a

prominent concern. There is accumulating evidence that
ML systems institutionalize discrimination, for example in
healthcare [1], face recognition [2], and criminal justice [3].

In many scenarios, the collected dataset is shared as-is
with dataset users who then perform diverse prediction
tasks. Although the dataset owner has fairness concerns,
they might have no knowledge of what tasks are performed
using the dataset and the dataset users might bias certain
demographics as long as it maximizes their utility. For
example, digital footprint data is predictively useful for
various target attributes, such as loan default [4], sexual
orientation [5], and political ideology [6], [7]. When the
data owner sells a digital footprint dataset on data mar-
ketplaces, they1 neither knows what prediction tasks will
be performed nor trusts the dataset users. This results in
potential fairness violations.

A popular approach to achieve fair outcome is through
fair representation. The intuition is, by first mapping input
data to an intermediate representation that satisfies cer-
tain conditions, e.g., anonymizing the sensitive attribute,
downstream predictions based on the representation are
guaranteed to be fair. Besides the works [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18] that explicitly take this
approach, a large number of works in fact implicitly create
fair representations, for example in computer vision by
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collecting balanced datasets [2], [19] or generating synthetic
datasets [20], [21]; and in natural language processing by
de-biasing word/sentence embeddings [22], [23], [24], [25]
or using contrast sets to augment training corpora [26].

However, despite the popularity, the understanding of
which fairness notion can be guaranteed to what degree
is limited. It is known that downstream predictions’ Sta-
tistical Parity is upper bounded by the sensitive attribute’s
predictability [27], [28]. But for other fairness notions such
as Disparity of Opportunity, existing work [29] has required
the data owner to (1) know what are the downstream
prediction tasks, (2) have access to the target labels, and (3)
pose different constraints when learning the representation.
Consequently, the learned fair representation is tailored for
the known prediction task and the specific fairness notion.

Thus, this work is motivated to study whether the data
owner can learn a fair representation that guarantees vari-
ous potentially unknown prediction tasks are fair. Further-
more, we consider seven different group fairness notions
as defined in Table 1 and aim to (approximately) satisfy them
simultaneously. Statistical Parity (SP), Disparity of Oppor-
tunity (DOpp), Disparity of Regret (DR), and Disparity of
Odds (DOdds) are commonly used fairness notions [30],
[31], [32]. Disparity of Calibration (DC), Disparity of Positive
Calibration (DPC), and Disparity of Negative Calibration
(DNC) are proposed in this work as measures of uncali-
bratedness. These notions cover all three aspects of group
fairness, namely independence, separation, and calibration.
See Section 3.3 for a detailed discussion.

Satisfying multiple fairness notions simultaneously is
a natural desideratum. Fairness is a complex notion and
any concrete definition can only capture a limited view.
Although the impossibility results [33], [34], [35] state that
achieving different group fairness notions exactly is impos-
sible when the sensitive and target attributes are coupled,
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from a practical perspective, we are still very interested
in achieving them approximately. Our considered problem
encompasses and generalizes existing fair representation
literature [8], [9], [10], [11], [13], [14], [15], [16], [27], [28],
[29], [36], which study different fairness notions in isolation.
They also have not considered whether fair representation
can achieve calibration, i.e., DPC, DNC, and DC.

A common misunderstanding is, using a fair represen-
tation that does not contain any sensitive information, the
predictions will be fair for all fairness definitions, rendering
our research question trivial. The fact is, using a perfectly
fair representation, the downstream predictions can still be
maximally unfair w.r.t. DOpp, DR, and DOdds. The intu-
ition is, although fair representation ensures the sensitive
attribute is unpredictable at the population level, it might still
be exploited in the subgroups defined by the target attribute to
produce unfair outcomes.

The contribution of this work is a better understanding
of approximate fair representation. We define representation
fairness as the unpredictability of sensitive attribute and
leverage another discriminativeness assumption that says
the target attribute the user tries to predict (which equiv-
alently defines a prediction task) is predictable from the
representation. We show that, although fair representation
might not guarantee fairness for all prediction tasks, it does
guarantee (approximately) seven group fairness notions for
an important subset of tasks—the tasks for which the represen-
tation is discriminative. Thus, discriminativeness establishes
a dichotomy between the prediction tasks whose fairness
can be guaranteed, and those that cannot. By encouraging
fair representation to summarize more information about
the data, better fairness guarantees can be obtained for a
larger class of prediction tasks.

In light of the fairness impossibility results [33], [34], [35],
fair and discriminative representation hits the sweet spot
that approximately satisfies seven group fairness notions. It
provides a concrete way to navigate through the inherent
incompatibility and answers affirmatively to the question
raised in [35], which asks whether meaningful trade-off can
be achieved when different group fairness notions become
incompatible.

Our key contributions are summarized as follows.

• We consider seven group fairness notions that cover the
concepts of independence, separation, and calibration,
shown in Table 1. We prove a sharp characterization
that (1) perfectly fair and perfectly discriminative rep-
resentation guarantees them exactly and (2) approxi-
mately fair and approximately discriminative represen-
tation guarantees them approximately. All seven group
fairness notions are linearly controlled by fairness and
discriminativeness of the representation. Our theoreti-
cal results are summarized in Table 2.

• When the target and sensitive attributes are coupled,
we show that a trade-off arises between representa-
tion fairness and discriminativeness, and thus a per-
fectly fair and perfectly discriminative representation
is impossible. Nonetheless, an approximately fair and
approximately discriminative representation can still
be used to approximately satisfy seven group fairness
notions.

• Motivated by our theoretical findings, when data is
subject to unknown downstream tasks, we propose to
learn both fair and discriminative representations using
pretext loss, which self-supervises the representation to
summarize important semantics, and Maximum Mean
Discrepancy [37], which is used as a fair regularization.
We cast it as a constrained optimization problem and
solve it using a two-player game formulation.

• Experiments on tabular and image datasets verify that
(1) using the learned representation, downstream pre-
diction tasks that we are unaware of when learning the
representation indeed become fairer for seven group
fairness notions, and (2) the fairness guarantees com-
puted from our theoretical results are all valid. We
also demonstrate a real-world application on learning
gender-blind face representations, using which various
facial attributes’ predictions become fairer.2

The rest of the paper is structured as follows. Section 2
reviews related work. Section 3 introduces the problem and
necessary notions. Section 4 and 5 elaborate our main the-
oretical results. Section 6 presents discussions. Section 7 de-
lineates the proposed fair representation learning approach
and Section 8 reports the results. Section 9 is the conclusion.

2 RELATED WORK

Theoretical Understanding of Fair Representation Ex-
isting works [27], [28], [29], [36], [38] have shown that
representations can satisfy different constraints to achieve
different fairness notions individually. Feldman et al. [27]
shows that disparate impact can be bounded by the Bayes-
optimal Balanced Error Rate (BER). McNamara et al. [28]
and Zhao and Gordon [38] show that statistical parity can
also be bounded. Madras et al. [29] proposes adversarial
bounds on the Disparity of Opportunity, Regret, and Odds,
but requires using the target labels. Existing works study
different fairness notions in isolation and assume knowing
the downstream prediction task.

Learning Fair Representation Existing fair representation
learning methods can be categorized into Generative Ad-
versarial Network (GAN) based methods and Variational
Autoencoder (VAE) based methods. GAN-based methods
use adversarial learning: an encoder learns discriminative
representations and a critic tries to infer the sensitive at-
tribute from the representation. The critic can be configured
to directly predict the sensitive attribute [8], [9], [10], [29].
Kim and Cho [39] designs an information-theoretic critic.
Zhao et al. [11] posits two critics, one for each target group.
VAE-based methods enrich the objective of VAE [12] with
regularizers. Moyer et al. [13] and Song et al. [14] addition-
ally minimize variational upper bound(s) of mutual infor-
mation. Louizos et al. [15] adds a fastMMD [40] regularizer.
Creager et al. [16] additionally enforces disentanglement to
learn flexible fair representations that are fair w.r.t. multiple
sensitive attributes. Existing works assume knowing what
prediction task the representation will be used for and thus
use the target labels when learning fair representation.

2. All code associated with this work can be found at https://github.
com/XudongOliverShen/2021-fair-representation.

https://github.com/XudongOliverShen/2021-fair-representation
https://github.com/XudongOliverShen/2021-fair-representation
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Fairness Impossibilities and Trade-offs Impossibility re-
sults [33], [34], [35] have shown that achieving multiple
fairness notions exactly is impossible when the target and
sensitive attributes are coupled. Nonetheless, in practice we
are still very interested in approximately satisfying multiple
fairness notions. This work complements the impossibil-
ity results and studies how we can navigate through this
incompatibility. Trade-offs have also been shown between
fairness and utility [38], [41], [42], but for specific fairness
notions and/or in the general prediction setting. We provide
a characterization of the trade-off specific to fair representa-
tion and encompasses all seven group fairness notions. A
concurrent work [43] studies impossibility results for fair
representation. They show that using fair representation, SP
and DOdds can still be large if the data distribution can shift
arbitrarily. Our work complements their results and show
what can be achieved without distribution shift.

3 PRELIMINARY

3.1 Problem Formulation
Notation Let X ∈ R|X|, S ∈ {0, 1}, Y ∈ {0, 1} denote the
raw data, the sensitive attribute, and the target attribute,
respectively. We use f : R|X| → R|Z| to denote the (data
owner’s) encoding function that maps the raw data point X
to its representation Z . A dataset user is a randomized pre-
dictor h : R|Z| → [0, 1], with h(Z) denotes the probability
of positive prediction. The user’s deterministic prediction Ŷ
is sampled from a Bernoulli distribution Bern(h(Z)).

For ease of exposition, we define some population base
rates as 

r
.
= P (S = 1),

a
.
= P (Y = 1 | S = 0),

b
.
= P (Y = 1 | S = 1),

(1)

where r is the relative sensitive group size, and a and b are
the positive rates among different sensitive groups. Without
loss of generality, we assume r, a, b ∈ (0, 1).

We use curly letters to denote distributions, for example
Z is the distribution of Z . We additionally denote the
distributions of Z in different subpopulations as

Zs(Z)
.
= P (Z | S=s),

Zy(Z)
.
= P (Z | Y =y),

Zys (Z)
.
= P (Z | S=s, Y =y).

(2)

Problem Statement We assume the data owner has a dataset
(X,S). They computes a fair representation Z = f(X)
and shares only Z to the downstream users. The user is
interested in performing a specific prediction task, which is
equivalently defined by the target label Y , and produces
prediction Ŷ ∼ Bern(h(Z)). The problem is, the data
owner wishes to learn an encoding function f so that
predictions based on Z is guaranteed to be fair for any Y
and Ŷ .

Two comments are in order. First, the data owner can
use S to learn the encoding function f , but does not directly
input S to f so S is not needed at test time. Second, the
user does not necessarily need to have Y linked to every
Z . He only need to link part of the acquired dataset with
target label Y , using which to develop h. For example,

for digital footprint data and financial default prediction,
personal traits such as social security number (SSN), name,
and email can be used to link the record to the loan loss
databases.

For clarity, we present the theoretical results in a binary
setting. We show in the supplementary material that they
naturally extend to categorical variables.

3.2 Representation Fairness and Discriminativeness

We define fairness and discriminativeness of the representa-
tion using Total Variation distance (TVD) [44].

Definition 1 (Total Variation Distance). Let P,Q ∈ D(Ω)
be two distributions and D(Ω) denotes the set of all distribution
over sample space Ω. The Total Variation distance is

dTV (P,Q) =
1

2

∑
e∈Ω

∣∣∣P(e)−Q(e)
∣∣∣.

TVD takes values in [0, 1]. A small TVD means two
distributions are close and thus the information about which
group a sample comes from is anonymized (from a pop-
ulation sense). This motivates the following definition of
representation fairness.

Definition 2 (Representation Fairness). The representation Z
is said to be α-fair w.r.t. the sensitive attribute S if

dTV (Z0,Z1) ≤ α.

We call α the fairness coefficient.

In contrast, a large TVD means two distributions are dis-
tinguishable and thus, given a sample, we can predict which
group it comes from with high accuracy. This motivates the
following definition of representation discriminativeness.

Definition 3 (Representation Discriminativeness). The repre-
sentation Z is said to be β-discriminative w.r.t. the target attribute
Y if

1− dTV (Z0,Z1) ≤ β.

We call β the discriminativeness coefficient.

Both α and β take values in [0, 1]. Smaller α or β indi-
cates the representation is more fair or more discriminative.

Our definitions of representation fairness and discrim-
inativeness are natural and arguably the correct formaliza-
tions. Since TVD is equivalent to the Bayes-optimal balanced
accuracy, an alternative intepretation is that fairness requires
the sensitive attribute to be unpredictable and discrimina-
tiveness requires the target attribute to be predictable.

Definition 4 (Balanced Accuracy). Given the prediction Ŷ and
the target label Y , the balanced accuracy is

BA(Ŷ , Y ) = 0.5×
(
P (Ŷ = 0 | Y = 0) + P (Ŷ = 1 | Y = 1)

)
.

For a predictor h, we also write

BA(h, Y ) = EŶ∼Bern(h(Z))BA(Ŷ , Y ).

Proposition 1. A representation Z is α-fair is equivalent to

E(Z,S)∼ZBA(h∗(Z), S) ≤ 1

2
+

1

2
α,
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TABLE 1: Seven Group Fairness Notions Are Considered. They All Take Values In [0, 1]. 0 Means Absence of Discrimination
and 1 Means Maximum Discrimination.

Category Interpretation Fairness Measure Definition

Independence Ŷ ⊥ S Statistical Parity (SP) [30] SP(Ŷ , S) =
∣∣P (Ŷ = 1|S = 1)− P (Ŷ = 1|S = 0)

∣∣
Separation Ŷ ⊥ S | Y

Disparity of Opportunity (DOpp) [31] DOpp(Ŷ , Y, S) =
∣∣P (Ŷ = 1 | Y = 1, S = 1)− P (Ŷ = 1 | Y = 1, S = 0)

∣∣
Disparity of Regret (DR) [31] DR(Ŷ , Y, S) =

∣∣P (Ŷ = 1 | Y = 0, S = 1)− P (Ŷ = 1 | Y = 0, S = 0)
∣∣

Disparity of Odds (DOdds) [31] DOdds(Ŷ , Y, S) = 1
2
× (DOpp(Ŷ , Y, S) +DR(Ŷ , Y, S))

Calibration Y ⊥ S | Ŷ

Disparity of Positive Calibration (DPC) DPC(h, Y, S) = 1
2

∑
t∈[0,1]

∣∣P (Y = 1, h(Z) = t | S = 1)− P (Y = 1, h(Z) = t | S = 0)
∣∣

Disparity of Negative Calibration (DNC) DNC(h, Y, S) = 1
2

∑
t∈[0,1]

∣∣P (Y = 0, h(Z) = t | S = 1)− P (Y = 0, h(Z) = t | S = 0)
∣∣

Disparity of Calibration (DC) DC(h, Y, S) = 1
2
× (DPC(h, Y, S) +DNC(h, Y, S))

where Z is enriched to denote the joint ditribution of Z and S,
and h∗(Z) = arg maxh:R|Z|→{0,1}BA(h(Z), S) is the Bayes-
optimal predictor.

Proposition 2. A representation Z is β-discriminative is equiv-
alent to,

E(Z,Y )∼ZBA(h∗(Z), Y ) ≥ 1− 1

2
β,

where Z is enriched to denote the joint ditribution of Z and Y ,
and h∗(Z) = arg maxh:R|Z|→{0,1}BA(h(Z), Y ) is the Bayes-
optimal predictor.

Throughout the paper, we will measure prediction per-
formance using balanced accuracy because it takes a bal-
anced view between different sensitive groups.

3.3 Group Fairness

We adapt the taxonomy proposed in [35], [45] to divide
group fairness into three categories, namely independence,
separation, and calibration. Briefly, independence requires
the prediction to be independent of the sensitive attribute
(Ŷ ⊥ S). Separation allows such dependence as long as it
can be justified by the target (Ŷ ⊥ S | Y ). And calibration
indicates that after knowing the prediction, the sensitive
attribute should not give more information about the target
(Y ⊥ S | Ŷ ).

As listed in Table 1, we consider seven notions that cover
all three categories. SP, DOpp, DR, and DOdds are com-
monly used fairness notions [30], [31], [32]. They measure
different statistical disparities between sensitive groups.
DPC, DNC, and DC are further concerned with the distribu-
tion of the prediction score h(Z) and interpret uncalibrated-
ness as unfairness. These measures all take values in [0, 1].
0 means perfect fairness and 1 means maximally unfair. We
refer readers to [32], [35] for a review of different fairness
notions.

To explain the motivation for DPC, DNC, and DC, we
first consider maximum uncalibration (MUC) [35], which is
defined below.

Definition 5 (Maximum Uncalibration).

MUC(h, Y, S) = max
t∈[0,1]

∣∣P (Y = 1 | h(Z) = t, S = 1)

− P (Y = 1 | h(Z) = t, S = 0)
∣∣

Achieving small MUC is undoubtedly desirable. But we
show that MUC is too strong as a fairness notion that
cannot be guaranteed even with a perfectly fair and per-
fectly discriminative representation. The reason is that MUC

measures uncalibratedness at a score t but without consid-
ering the size of the population receiving the score t. Thus,
the score only need to be uncalibrated at one point with
infinitesimally small population to have MUC(h, Y, S) = 1.

Theorem 1. Even for a balanced dataset with a = b = 0.5
and arbitrary r ∈ (0, 1), there exists a representation Z that
is 0-fair and 0-discriminative, and an accurate predictor h with
BA(h, Y ) = 1, such that MUC(h, Y, S) = 1.

Thus, we are motivated to study DPC, DNC, and DC,
which are proposed as relaxations of MUC. DPC and DNC
measure the disparity of the event {Y = 1, h(Z) = t} and
{Y = 0, h(Z) = t}, instead of {Y = 1 | h(Z) = t} as
in MUC. They additionally take into account the population
size receiving the score t. DC is taken to be the mean of DPC
and DNC.

However, if the target label Y itself is uncalibrated, DPC,
DNC, and DC all bear an intrinsic lower bound because the
dataset user cannot modify Y .

Theorem 2. Consider sensitive attribute S and target attribute
Y with base rates a and b. For any predictor h,

DPC(h, Y, S),DNC(h, Y, S),DC(h, Y, S) ≥ 1

2
|a− b|.

Thus, our objective for DPC, DNC, and DC is not to
achieve 0 but to achieve 1

2 |a− b|. Intuitively, our prediction
should not be more uncalibrated than the target label Y .

Lastly, it is known in literature [28] that SP can be directly
upper bounded by the fairness coefficient α. The known
upper bounds on DOpp, DR, and DOdds [29] are invalid
in our setting because they require using the target labels,
which we assume unavailable.

4 GUARANTEEING PERFECT FAIRNESS

We first show that if the representation is 0-fair and 0-
discriminative, all considered group fairness notions are
guaranteed to be 0.

Theorem 3. Consider sensitive attribute S and target attribute
Y with base rates a, b, r. If the representation Z is 0-fair and
0-discriminative, for any Y and Ŷ (equivalently any h), we have

SP (Ŷ , S) = DOpp(Ŷ , Y, S) = DR(Ŷ , Y, S) = DOdds(Ŷ , Y, S)

=DPC(h, Y, S) = DNC(h, Y, S) = DC(h, Y, S) = 0.
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Proof of Theorem 3. The representation Z being 0-fair and 0-
discriminative implies the following,

a− b = 0,

dTV (Z0,Z1) = 0,

dTV (Zy0 ,Z
y
1 ) = 0, ∀y ∈ {0, 1},

dTV (Z0,Z1) = 1,

dTV (Z0
s ,Z1

s ) = 1, ∀s ∈ {0, 1}.

These conditions mean that (1) different sensitive groups
must have equal positive rate (a = b) and (2) 0-fair and 0-
discriminative representation anonymizes S not only at the
population level but also in the subgroups defined by Y .
They ensure that all considered group fairness notions are
0.

One thing to note is that Theorem 3 does not have con-
flict with Theorem 2 and the fairness impossibility results
in the literature [33], [35]. The twist is that 0-fair and 0-
discriminative representation is only possible when a = b,
where both Theorem 2 and the fairness impossibility result
become unrestrictive. We discuss further in Section 6.

Theorem 3 justifies the use of a fair and discriminative
representation: when achieved exactly, it guarantees perfect
fairness for all seven group fairness notions.

5 GUARANTEEING APPROXIMATE FAIRNESS

Next we proceed to show that α-fair and β-discriminative
representations guarantee all seven group fairness notions
approximately. Notably, it is known in literature [28] that
SP is tightly upper bounded by α. Thus, in the following
we only consider the other six fairness notions. Complete
proofs are deferred to the supplementary material.

5.1 Results on DOpp, DR, DOdds

We view the problem of guaranteeing approximate DOpp,
DR, or DOdds for a α-fair and β-discriminative representa-
tion as a constrained optimization problem. We maximize
DOpp, DR, or DOdds over all distributions of Z subject to
representation fairness and discriminativeness constraints,
and all predictor h, see Eq. (3). The solution to this problem
gives a tight upper bound on the respective fairness measure
for any prediction on any representation that is α-fair and
β-discriminative.

The original problem, which we shorthand asOP (OBJ)
with OBJ denote the maximand (DOpp, DR, or DOdds), is
as follows:

max
Z0

0 ,Z
1
0 ,Z

0
1 ,Z

1
1 ,h

OBJ(h;Z0
0 ,Z1

0 ,Z0
1 ,Z1

1 ), (3a)

s.t. Z0
0 ,Z1

0 ,Z0
1 ,Z1

1 ∈ D(R|Z|) (3b)

h : R|Z| → [0, 1] (3c)
dTV (Z0,Z1) ≤ α, (3d)

1− dTV (Z0,Z1) ≤ β, (3e)

where D(R|Z|) denotes the set of all distributions over
R|Z|, and α and β are the fairness and discriminativeness
coefficients. We make it explicit that the value of OBJ is
determinied by both the predictor h and the distributions

of Z in different subgroups, i.e., Z0
0 ,Z1

0 ,Z0
1 ,Z1

1 . Other dis-
tributions, such as Z0, Z1, Z0, and Z1, can be expressed as
follows,
Z0 = aZ1

0 + (1− a)Z0
0 ,

Z1 = bZ1
1 + (1− b)Z0

1 ,

Z0 = (1−b)r
(1−a)(1−r)+(1−b)rZ

0
1 +

(
1− (1−b)r

(1−a)(1−r)+(1−b)r

)
Z0

0 ,

Z1 = br
a(1−r)+brZ

1
1 +

(
1− br

a(1−r)+br

)
Z1

0 ,

(4)
where a, b, and r are the population base rates defined

in Eq. (1).
The way we solve OP (OBJ) is by considering another

problem, which we call the reduced problem and denote as
RP1(OBJ):

max
Z0

0 ,Z
1
0 ,Z

0
1 ,Z

1
1

OBJ(h;Z0
0 ,Z1

0 ,Z0
1 ,Z1

1 ), (5a)

s.t. Z0
0 ,Z1

0 ,Z0
1 ,Z1

1 ∈ D({0, 1}3), (5b)
h(i, j, k) = i, ∀i, j, k ∈ {0, 1}, (5c)
dTV (Z0,Z1) ≤ α, (5d)

1− dTV (Z0,Z1) ≤ β, (5e)

(−1)j+1(Z1(i, j, k)−Z0(i, j, k)) ≥ 0, ∀i, j, k ∈ {0, 1}, (5f)

(−1)k+1(Z1(i, j, k)−Z0(i, j, k)) ≥ 0, ∀i, j, k ∈ {0, 1}, (5g)

where we use (i, j, k) to denote a 3-dimension binary repre-
sentation. With a slight abuse of notation, we use Z0

1 (i, j, k)
as a shorthand for Z0

1 ((i, j, k)) = P (Z = (i, j, k) | S =
1, Y = 0), and similarly for other distributions. We also
write h(i, j, k) as a shorthand for h((i, j, k)).

The reduced problem differs from the original problem
in the following ways. First, instead of considering repre-
sentation Z from an infinite representation space R|Z|, we
only consider a finite representation space {0, 1}3 (Eq. (5b)),
i.e., 3-dimension binary representations. We denote such a
representation as (i, j, k). An important consequence is that
now each of Z0

0 , Z1
0 , Z0

1 , Z1
1 can be expressed as 23 = 8

non-negative variables that sum to 1. Second, instead of
considering randomized predictors, we consider determin-
istic and fixed predictors (Eq. (5c)). For any representation
(i, j, k), h is fixed to predict i, which is either 0 or 1.
Third, we additionally impose Eq. (5f) and (5g), which we
call the positivity constraints. These two constraints allow
us to convert dTV (Q1,Q0) and dTV (Q0,Q1) into linear
expressions.3

The following claim tells us that OP (OBJ) reduces to
RP1(OBJ) for OBJ = DOpp, DR, and DOdds. Thus, we
can solve RP1(OBJ) to obtain upper bounds on DOpp,
DR, and DOdds.

Claim 1. OP (OBJ) = RP1(OBJ) for OBJ = DOpp, DR,
and DOdds.

Proof. (sketch) We start with the observation that forOBJ =
DOpp, DR, and DOdds, for any Z0

0 ,Z1
0 ,Z0

1 ,Z1
1 , determin-

istic predictor h always maximize OBJ(h;Z0
0 ,Z1

0 ,Z0
1 ,Z1

1 ).
Thus, we only need to show the deterministic version of
OP (OBJ), which we denote as OP ′(OBJ), is equivalent
to RP1(OBJ).

3. Note that TVD is the sum of the absolute differences. The positivity
constraints determine the sign of the differences at every representation
(i, j, k), using which we can convert TVD into a linear expression.
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To prove OP ′(OBJ) = RP1(OBJ), we show both
OP ′(OBJ) ≥ RP1(OBJ) and OP ′(OBJ) ≤ RP1(OBJ).
The former is true because RP1(OBJ) is strictly more
restrictive than OP ′(OBJ): any feasible solution to
RP1(OBJ) is also feasible in OP ′(OBJ). The latter can be
shown by a construction that finds solutions of RP1(OBJ)
that achieves the same value of OBJ as solutions of
OP ′(OBJ).

The intuition behind our proof is, although RP1(OBJ)
is strictly more restrictive than OP (OBJ), it still contains
all extreme values of OBJ , for OBJ = DOpp, DR, and
DOdds.

Furthermore,RP1(OBJ) is a linear program forOBJ =
DOpp, DR, and DOdds, where all constraints are linear
and the objective function involves absolute values. Using
the standard linear reformulation that expresses absolute
values as multiple linear expressions, RP1(OBJ) can be
efficiently solved using simplex method [46] or interior-
point method [47].

Lemma 1. In RP1(OBJ), each of Z0
0 , Z1

0 , Z0
1 , Z1

1 can be
expressed as 23 = 8 non-negative variables that sum to 1. There
are in total 4 × 8 = 32 independent variables. For OBJ =
DOpp, DR, and DOdds, RP1(OBJ) is a linear program in
these variables with an objective function that involves absolute
values.

Proof of Lemma 1. The positivity constraints Eq. (5f) and
(5g) are inherently linear. Using Eq. (5f) and (5g), Eq. (5d)
and (5e) also become linear. The last step is to show
OBJ(h;Z0

0 ,Z1
0 ,Z0

1 ,Z1
1 ) is a linear function coupled with

absolute values. We show this for OBJ = DOpp,

DOpp(h;Z0
0 ,Z1

0 ,Z0
1 ,Z1

1 ) =|
∑

Z∈{0,1}3
h(Z)(Z1

1 (Z)−Z1
0 (Z))|

=|
∑

j,k∈{0,1}

(Z1
1 (1, j, k)−Z1

0 (1, j, k))|.

The same can be shown for DR and DOdds.

5.2 Results on DPC, PNC, DC
For DPC, DNC, and DC, we reduce OP (OBJ) to another
problem, which we denote as RP2(OBJ):

max
Z0

0 ,Z
1
0 ,Z

0
1 ,Z

1
1

sup
h:R|Z|→[0,1]

OBJ(h;Z0
0 ,Z1

0 ,Z0
1 ,Z1

1 ), (6a)

s.t. Z0
0 ,Z1

0 ,Z0
1 ,Z1

1 ∈ D({0, 1}4), (6b)
dTV (Z0,Z1) ≤ α, (6c)

1− dTV (Z0,Z1) ≤ β, (6d)

(−1)i+1(Z1(i, j, k, l)−Z0(i, j, k, l)) ≥ 0,

∀i, j, k, l ∈ {0, 1}, (6e)

(−1)j+1(Z1(i, j, k, l)−Z0(i, j, k, l)) ≥ 0,

∀i, j, k, l ∈ {0, 1}, (6f)

(−1)k+1((1− b)Z0
1 (i, j, k, l)− (1− a)Z0

0 (i, j, k, l)) ≥ 0,

∀i, j, k, l ∈ {0, 1}, (6g)

(−1)l+1(bZ1
1 (i, j, k, l)− aZ1

0 (i, j, k, l)) ≥ 0,

∀i, j, k, l ∈ {0, 1}, (6h)

In RP2(OBJ), we consider 4-dimension binary repre-
sentations, which we denote as (i, j, k, l). Instead of max-
imizing OBJ over Z0

0 ,Z1
0 ,Z0

1 ,Z1
1 , h, we maximize the

supremum of OBJ over Z0
0 ,Z1

0 ,Z0
1 ,Z1

1 . This is because
although DPC, DNC, DC themselves are difficult to analyze,
their supremum (over all h) can be easily computed. We
also additionally impose Eq. (6g) and (6h), using which
suph:R|Z|→[0,1]OBJ(h;Z0

0 ,Z1
0 ,Z0

1 ,Z1
1 ) can be linearized.

The supremum (over all h) for DPC, DNC, and DC has
the following expression.

Lemma 2. For any Z0
0 , Z1

0 , Z0
1 , Z1

1 ,

sup
h:R|Z|→[0,1]

DPC =
1

2

∑
Z

|bZ1
1 (Z)− aZ1

0 (Z)|,

sup
h:R|Z|→[0,1]

DNC =
1

2

∑
Z

|(1− b)Z0
1 (Z)− (1− a)Z0

0 (Z)|,

sup
h:R|Z|→[0,1]

DC =
1

2

∑
Z

|bZ1
1 (Z)− aZ1

0 (Z)|

+
1

2

∑
Z

|(1− b)Z0
1 (Z)− (1− a)Z0

0 (Z)|.

Furthermore, all supremum is achieved when h(Z) is different
for different Z .

Applying the same analysis from Claim 1 and Lemma 1
but with suph:R|Z|→[0,1]OBJ(h;Z0

0 ,Z1
0 ,Z0

1 ,Z1
1 ) as the max-

imand, OP (OBJ) also reduces to RP2(OBJ), which is a
linear program. Thus, we can efficiently solve RP2(OBJ)
to obtain tight upper bounds on DPC, DNC, and DC.

Claim 2. OP (OBJ) = RP2(OBJ) for OBJ = DPC,
DNC, and DC.

Lemma 3. In RP2(OBJ), each of Z0
0 , Z1

0 , Z0
1 , Z1

1 can be
expressed as 24 = 16 non-negative variables that sum to 1. There
are in total 4 × 16 = 64 independent variables. For OBJ =
DPC,DNC, andDC,RP2(OBJ) is a linear program in these
variables.

The results in this section provide another justification
for the use of a both fair and discriminative representa-
tion: when achieved approximately, i.e., with a α-fair and
β-discriminative representation, all seven group fairness
notions can be guaranteed approximately. Moreover, the
obtained upper bounds are tight because we prove equiv-
alence between OP (OBJ) and RP1(OBJ) / RP2(OBJ).
Finding these quantitative fairness guarantees simply re-
duces to solving linear programs.

6 DISCUSSIONS ON FAIR REPRESENTATION

6.1 Guaranteeing Group Fairness
We summarize our theoretical results in Table 2. Our find-
ings justify the use of fair representation (both in the ex-
act and approximate sense), for all prediction tasks that the
representation is discriminative for. For the other prediction
tasks for which the representation is undiscriminative, the
downstream predictions can still be unfair. But this is less
of a compromise. For these prediction tasks, the predictions
cannot be accurate in the first place and thus are unlikely to
be actually deployed. Thus, discriminativeness establishes
a dichotomy between the prediction tasks whose fairness
can be guaranteed using fair representation and those that
cannot.

An immediate corollary of our theoretical results is that
the downstream predictions’ fairness, for all seven group
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TABLE 2: Summarization of Our Theoretical Results.RP1(·)
and RP2(·) Are Linear Programs That Depend on α and β,
Defined In Eq. (5) and (6), Respectively.

Fairness Notion
Fairness Guarantee

Tight Referenceusing 0-fair and 0-
disc. representation

using α-fair and β-
disc. representation

SP(Ŷ , S) 0 α X [27], [28]

DOpp(Ŷ , Y, S) 0 RP1(DOpp) X This work

DR(Ŷ , Y, S) 0 RP1(DR) X This work

DOdds(Ŷ , Y, S) 0 RP1(DOdds) X This work

DPC(h, Y, S) 0 RP2(DPC) X This work

DNC(h, Y, S) 0 RP2(DNC) X This work

DC(h, Y, S) 0 RP2(DC) X This work

fairness notions, is linearly controlled by α and β. Thus, us-
ing an approximately fair and approximately discriminative
representation degrades the fairness guarantees gracefully.

Corollary 1. For any base rates a, b, r, and for OBJ =
SP,DOpp,DR,DOdds,DPC,DNC, or DC, using a repre-
sentation that is α-fair and β-discriminative, we have

OBJ ≤ C max(α, β),

where C is a constant that depends on a, b, r, and the concerned
fairness notion.

Proof. It directly follows from the fact that (1) 0-fair and 0-
discriminative representations guarantee seven group fair-
ness notions exactly and (2) α-fair and β-discriminative
representations guarantee seven group fairness notions via
linear programs.

Our theoretical results also indicate that representation
discriminativeness and downstream predictions’ fairness
are aligned. By encouraging fair representation to encode
more information about the data, better fairness guarantees
can be obtained for a larger class of prediction tasks.

6.2 Fairness Impossibility Theorem

A well-known result in fair machine learning is the fairness
impossibility theorem [33], [34], [35], which states that any
two fairness notions cannot both hold under mild condi-
tions.

Theorem 4 (Fairness Impossibility Theorem [35]). Consider
three kinds of fairness, independence (Ŷ ⊥ S), separation
(Ŷ ⊥ S | Y ), and sufficiency (Y ⊥ S | Ŷ ). When the base
rate differ (i.e., a 6= b), any two out of three cannot both hold.

Since we show that 0-fair and 0-discriminative represen-
tation guarantees multiple group fairness notions exactly, it
is natural to ask how it relates to the impossibility theorem.
We make two comments.

First, fair representation does not violate the impossi-
bility theorem. Since the impossibility theorem reveals the
inherent imcompatibility between different fairness notions,
achieving them using fair representation cannot do any
better. In fact, both 0-fair and 0-discriminative representa-
tion is feasible exactly when the impossibility theorem becomes
unrestrictive, i.e., when a = b.

Theorem 5 (Representation Fairness-Discriminativeness
Trade-off). For base rates a, b, r, and for any representation
that is α-fair and β-discriminative,

β ≥ |a− b|2

r
(
1− r

)(
a
r
+ b

1−r

)(
1−a
r

+ 1−b
1−r

)
− |a− b|
r
(
1− r

)(
a
r
+ b

1−r

)(
1−a
r

+ 1−b
1−r

)α. (7)

Theorem 5 shows that there is a linear trade-off between
α and β, depending on the base rates a, b, r. When the target
and sensitive attributes are coupled (a 6= b), the first term
in the RHS becomes positive and prohibits α and β to be
both zero. When a = b, the trade-off vanishes. Thus, in the
context of fair representation, the incompatibility between
different fairness notions manifests as a trade-off between
representation fairness and discriminatveness.

Theorem 5 should be interpreted positively because (1)
the incompatibility is inherent in the fairness notions rather
than specific to fair representation, and (2) fair representa-
tion is indeed able to achieve seven group fairness notions
exactly whenever unrestricted by the impossibility theorem.

Second, fair representation generalizes the impossi-
bility theorem. The impossibility theorem only states that,
when a 6= b, achieving multiple fairness notions exactly is
impossible. A natural question (raised in Barocas et al. [35])
is whether meaningful trade-off can be achieved for approx-
imate fairness notions. In the real-world, we are often more
interested in requiring approximate instead of exact fairness,
in order for important business goals to proceed. Our results
answer this question in the affirmative and can be seen
as a generalization of the impossibility theorem. Whenever
restricted by the impossibility theorem, fair representation
provides a concrete way to guarantees approximate fairness
for all notions.

7 LEARNING FAIR AND DISCRIMINATIVE REPRE-
SENTATION

7.1 Learning Discriminative Representation
Let’s first consider learning discriminative representations.
The difficulty in our setting is, since the data owner does not
know the downstream prediction tasks, they cannot directly
use the target labels to learn discriminative representations.
Thus, we rely on self-supervised representation learning.
We set up a pretext loss, such as reconstruction loss or
contrastive loss [48], to self-supervise the representation
learning process. Here, we do not overly emphasise the
performance of the pretext loss. Rather, we hope the pro-
cess of solving the pretext loss guide the representation to
summarize important semantics from the data.

We acknowledge that self-supervised representation
learning is itself an active research area and different data
typically requires different pretext loss. Thus, we do not
propose nor fix a pretext loss. We assume different pretext
loss will be used for different data, potentially advised by
domain experts.

7.2 Learning Fair Representation
To learn fair representations, the ultimate goal is to mini-
mize the Total Variation Distance (TVD). However, directly
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minimizing TVD is impractical because (1) the gradient is
0, i.e., uninformative, when two distributions have disjoint
support, and (2) TVD cannot be easily estimated from finite
samples. Our motivation is that TVD is an instance of the
Integral Probability Metrics (IPMs), with witness function
class FTV D = {f : ‖f‖∞ ≤ 1}.

Definition 6 (Integral Probability Metrics [49]). Let P,Q ∈
D(Ω) and F be a class of real-valued bounded measurable func-
tions on Ω. The integral probability metric with witness function
class F is defined as

IPMF (P,Q) = sup
f∈F

∣∣∣∣∫
Ω
fdP −

∫
Ω
fdQ

∣∣∣∣ .
By changing the witness function class to

FMMD = {f : ‖f‖H ≤ 1},

whereH is a reproducing kernel Hilbert space (RKHS) with
reproducing kernel k, we obtain an alternative for TVD, the
Maximum Mean Discrepancy (MMD).

Definition 7 (Maximum Mean Discrepancy [37]).

dMMD(P,Q) = IPMFMMD
(P,Q).

MMD is desirable for several reasons. First, MMD pro-
vides informative gradient even when two distributions
have disjoint support. Second, minimizing MMD is asymp-
totically equivalent to minimizing TVD because MMD at-
tains the minimum, 0, iff two distributions are equivalent
(provided that the RKHSH is universal) [50]. Third, MMD is
computationally cheap and enjoys a faster convergence rate
compared to other IPMs (see Corollary 3.5 in [51]). Using
the kernel trick, the squared MMD has an unbiased finite-
sample estimate.

Definition 8 (Unbiased Estimate of Squared MMD [37]).
Given m i.i.d. samples (x1, ..., xm) ∼ Pm and n i.i.d. samples
(y1, ..., yn) ∼ Qn, an unbiased estimate of the squared MMD
with kernel k is

d̃2MMD(P,Q) =
1

m(m− 1)

m∑
i=1

m∑
j 6=i

k(xi, xj)

+
1

n(n− 1)

n∑
i=1

n∑
j 6=i

k(yi, yj)−
2

mn

m∑
i=1

n∑
j=i

k(xi, yj).

Definition 9 (Gaussian/Rational Quadratic Kernel).

kG(x, y) = exp

(
− ‖x− y‖

2

2l2g

)
,

kRQ(x, y) =

(
1 +
‖x− y‖2

2αl2rq

)−α
.

Gaussian kernel is the kernel of choice in MMD [37].
However, setting the lengthscale lg requires heuristics [52].
In light of this, we use rational quadratic kernel, which
equals an infinite sum of the Gaussian kernels with the
inversed squared lengthscale 1/l2g following a Gamma dis-
tribution of shape parameter α and mean 1/l2rq [53]. The-
oretically, the rational quadratic kernel is less sensitive to
lengthscale selection compared to the Gaussian kernel.

Algorithm 1: Learning Fair & Disc. Representation

Input: pretext loss Lp, fair regularization d̃2
MMD,

representation function class F , # rounds T ,
tolerance ε

Data: {xi, si}ni=1

Initialize: λ = 1
1 for t = 1 : T do

/* Learner conducts regularized loss

minimization. */

2 ft = arg minf∈F Lp(f, {xi, si}ni=1) + λ×
d̃2
MMD(f, {xi, si}ni=1)

/* Regulator adjusts the weight. */

3 if d̃2
MMD(f, {xi, si}ni=1) > ε then

4 increase λ
5 else
6 decrease λ

Output: hT

7.3 Two-Player Game Formulation

Section 7.1 and 7.2 have explained the motivation of using
pretext loss and MMD to learn fair and discriminative
representations. We then cast learning as a constrained
optimization problem:

min
f∈F

Lp(f, {xi, si}ni=1),

s.t. d̃2
MMD(f, {xi, si}ni=1) ≤ ε,

(8)

where F is a class of encoding functions, Lp is the pretext
loss, d̃2

MMD is the MMD constraint, {xi, si}ni=1 is the finite
samples of (X,S), and ε is a small tolerance.

The equivalent Lagrangian dual problem is

min
f∈F

max
λ≥0

Lp(f, {xi, si}ni=1)

+ λ× (d̃2
MMD(f, {xi, si}ni=1)− ε),

(9)

where λ is a non-negative weight.
Motivated by the close connection between online

decision problem and game theory [54], [55], we pro-
pose to solve Eq. (9) using a two-player game, shown
in Algorithm 1. The game is formulated between a learner
and a regulator. At each round t, a non-negative weight λ
is maintained. The learner conducts regularized loss mini-
mization (RLM), where MMD is used as a fair regularizer.
The regulator increases λ if d̃2

MMD > ε and vice versa.
We make the following remark, where the learner plays

a simpler strategy, to justify the design of Algorithm 1.

Remark 1 (last-iterate convergence in convex-concave min-
imax optimization [56]). If both Lp and d̃2

MMD are convex
and smooth in the parameters of f (thus the objective of Eq. (9)
is convex-concave), the learner can play extragradient descent
and the regulator can play extragradient ascent to approximately
solve Eq. (9) in last-iterate.

However, in practice we typically instantiate f with a
neural network, resulting in a nonconvex-concave optimiza-
tion. Thus, we ask the learner to conduct RLM rather than
a one-step (extra)gradient update. In our implementation,
the regulator plays a coarse-to-fine line search strategy. We
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show in supplementary material that our formulation is
rather robust to λ and thus the simple line search strategy
works well. We set ε to 0 (note that d̃2MMD(f, {xi, si}ni=1) is
an unbiased estimate and can be negative).

8 EXPERIMENTS

We conduct experiments to investigate both our theoretical
results and the proposed fair representation learning ap-
proach.

8.1 Datasets
We experiment on five datasets, namely Adult, MPI3D,
VGGFace2, Labeled Faces in the Wild (LFW), and CelebA.
Sample images are shown in Fig. 1.

Adult [58] is a tabular dataset extracted from the U.S.
census data. It contains attributes such as age, gender, occu-
pation, and education. The prediction task is income (≥50K
or <50K) and the sensitive attribute is gender. We randomly
split data into training, validation, and test sets, which
contain 13,602, 13,602, and 13,603 instances, respectively.

MPI3D [59] contains images captured in a controlled
platform, where an object is mounted on the tip of a
manipulator. We preprocess the labels so that the four
attributes-of-interest become binary. They are object color∈
{white, red}, shape ∈ {cube,pyramid}, size ∈ {small, big},
and background color∈{purple, sea green}. Object color is
regarded as the sensitive attribute. We sample 10% of the
data, i.e., 7,680 images, each for training/validation/test set.

VGGFace2 [60] is a face image dataset with large inter-
and intra-identity variations. Gender is the sensitive at-
tribute. We follow the preprocessing in [61] to obtain nor-
malized face images. The training set contains 3,140,709
images of 8631 identities. We randomly sample 50 images
per identity (total of 500 identities) from the original test set
as our test set. LFW [62] is a benchmark face image dataset.
We use the same preprocessing to obtain normalized face
images. We only use the test set to evaluate on the face
verification task.

Since both VGGFace2 and LFW are without facial at-
tributes, we additionally evaluate on CelebA dataset [63],
where each image is labelled with 40 attributes including
gender. We apply the same preprocessing to normalize face
images. The training and evaluation set contains 162,770 and
19,867 images, respectively.

8.2 Evaluation
We simulate the dataset owner-user scenario in our ex-
periments. We first learn representation using pretext loss,
without knowing what prediction tasks the representation
will be used for. We then train predictors on top of the
learned representation without any fairness constraint. We
evaluate on four aspects: the fairness and discriminativeness
of the learned representation, the fairness of downstream
predictions, and the theoretical fairness guarantees.

The representation fairness is evaluated by posing an
adversary to predict the sensitive attribute. We directly
report the balanced accuracy, the lower the fairer, instead of
the fairness coefficient α. Since α is equivalent to the Bayes-
optimal balanced accuracy, stronger adversary will produce

Fig. 1: Sample images (from top to bottom) of MPI3D [59],
LFW [62], VGGFace2 [60], and CelebA [63].

a more accurate (and honest) evaluation. Our considered
adversary is a 7-layer fully-connected network (7-Net) with
width 8× the input dimension and skip-layer connections.
We validate in the supplementary material that 7-Net is con-
siderably stronger than the adversarial models considered
in the fair representation literature [10], [15], [27]. Deeper
and wider networks only have marginal improvements.

We use the same 7-Net as downstream predictors.
The representation discriminativeness is evaluated by the
downstream predictions’ balanced accuracy, which is an
estimate of the discriminativeness coefficient β. In order to
evaluate if the learned representation leads to fair outcomes,
we report the predictions’ fairness w.r.t. seven group fair-
ness notions (see Table 1). We also report the theoretical
fairness guarantees, which are obtained by solving linear
programs defined by the base rates a, b, r, and α, β.

8.3 Experiment on Adult

Experimental Settings We consider gender and income as the
sensitive and target attributes, respectively. Other attributes
are posed as the features. For representation learning, we
use the same 7-Net as the network architecture and recon-
struction as the pretext loss. The representation dimension is
16 and the final weight λ is 200. The shape parameter for the
rational quadratic kernel is 2 and the length scale is varied
from {2, 2

√
2}. We train the model with SGD optimizer for

110 epochs with batch size 256. The initial learning rate is 1
and is divided by 10 at 70th and 90th epochs.

Results Table 3 compares our proposed approach with the
baseline and existing fair representation methods. LFR [57]
is a clustering-based method. Beutel et al. [8] uses adver-
sarial training. VFAE [15] and FFVAE [16] are VAE-based
methods and derive information-theoretic regularizations.
They have been shown effective for learning fair represen-
tation when the downstream tasks are known (i.e., using the
target labels) and for specific fairness notions. We replace the
prediction task therein with the same pretext loss, i.e., recon-
struction loss, to adapt to our setting where target labels are
unavailable.

The baseline learns discriminative but unfair representa-
tions, and thus is unable to guarantee that downstream pre-
dictions are fair. The sensitive attribute is predictable with
84.6% balanced accuracy and the downstream predictions
are indeed shown to be unfair. Existing methods either fail
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TABLE 3: Our Approach on Adult Dataset Compared with the Baseline (i.e., Representations Learned with Only
Reconstruction) and Existing Fair Representation Learning Methods. Numbers in the Brackets (green) Are the Fairness
Guarantees Computed From Our Theoretical Results. ↑/↓Means Higher/Lower Is Better.

Methods Sen. Attr. (↓) Tar Attr. (↑) Fairness (↓)
BA BA SP DOpp DR DOdds DPC DNC DC

Reconstruction only .846±.003 .811±.002 .177±.011 (.692) .096±.025 (1.) .108±.010 (1.) .102±.017 (1.) .103±.002 (.219) .252±.019 (.781) .178±.010 (.5)

Beutel et al. [8] .827±.012 .800±.003 .187±.081 (.654) .172±.114 (1.) .118±.052 (1.) .145±.081 (1.) .099±.032 (.219) .246±.057 (.781) .173±.039 (.5)
LFR [57] .667±.167 .648±.148 .097±.080 (.334) .141±.059 (1.) .058±.054 (.740) .099±.007 (.870) .122±.021 (.219) .188±.058 (.553) .155±.019 (.386)
VFAE [15] .745±.124 .727±.114 .145±.015 (.490) .105±.029 (1.) .091±.010 (.917) .098±.016 (.959) .106±.007 (.219) .247±.025 (.709) .176±.015 (.464)
FFVAE [16] .628±.006 .610±.006 .044±.012 (.256) .055±.022 (1.) .026±.010 (.651) .040±.015 (.826) .100±.001 (.219) .124±.010 (.475) .112±.005 (.347)

Ours (lrq = 2) .611±.040 .733±.042 .056±.036 (.222) .035±.018 (1.) .021±.020 (.612) .028±.014 (.806) .101±.002 (.219) .119±.025 (.441) .110±.013 (.330)
Ours (lrq = 2

√
2) .573±.029 .681±.038 .029±.022 (.146) .038±.030 (1.) .010±.008 (.526) .024±.018 (.763) .100±.001 (.219) .104±.004 (.365) .102±.002 (.292)

TABLE 4: Our Approach on Uncorrelated MPI3D Dataset Compared with Representations Learned with Only Reconstruc-
tion and Existing Fair Representation Learning Methods. The Sens. Attr. is Color. Notations are Consistent with Table 3.

Methods Sen. Attr.’s
BA (↓) Tar. Attr. BA (↑) Fairness (↓)

SP DOpp DR DOdds DPC DNC DC

Reconstruction only .935±.021
Shape .804±.014 .053±.040 (.870) .064±.036 (1.) .056±.037 (1.) .060±.033 (1.) .081±.018 (.5) .074±.020 (.5) .077±.015 (.5)
Size .805±.018 .094±.042 (.870) .113±.053 (1.) .074±.034 (1.) .094±.042 (1.) .113±.053 (.5) .085±.035 (.5) .099±.043 (.5)
Bkgd color .986±.008 .018±.028 (.870) .047±.035 (1.) .034±.020 (1.) .040±.026 (.898) .059±.033 (.5) .040±.021 (.5) .049±.025 (.449)

Beutel et al. [8] .918±.057
Shape .732±.025 .077±.027 (.836) .052±.027 (1.) .107±.048 (1.) .080±.026 (1.) .109±.035 (.5) .142±.051 (.5) .126±.041 (.5)
Size .767±.025 .094±.039 (.836) .143±.066 (1.) .065±.033 (1.) .104±.042 (1.) .167±.074 (.5) .115±.041 (.5) .141±.055 (.5)
Bkgd color .936±.027 .013±.012 (.836) .089±.058 (1.) .070±.060 (1.) .079±.058 (.964) .102±.066 (.5) .090±.059 (.5) .096±.060 (.482)

LFR [57] .809±.102
Shape .726±.078 .087±.049 (.618) .084±.042 (1.) .096±.050 (1.) .090±.045 (1.) .083±.036 (.5) .105±.040 (.5) .094±.037 (.5)
Size .733±.071 .125±.068 (.618) .141±.074 (1.) .109±.064 (1.) .125±.068 (1.) .115±.050 (.5) .104±.047 (.5) .110±.048 (.5)
Bkgd color .909±.061 .005±.005 (.618) .052±.031 (1.) .045±.026 (1.) .049±.028 (.8) .052±.023 (.5) .050±.023 (.5) .051±.021 (.4)

VFAE [15] .836±.062
Shape .668±.059 .122±.027 (.672) .094±.024 (1.) .149±.039 (1.) .122±.027 (1.) .072±.009 (.5) .108±.023 (.5) .090±.014 (.5)
Size .715±.049 .160±.040 (.672) .204±.052 (1.) .116±.037 (1.) .160±.040 (1.) .085±.021 (.5) .076±.018 (.5) .081±.017 (.5)
Bkgd color .821±.034 .012±.008 (.672) .113±.058 (1.) .093±.074 (1.) .103±.066 (1.) .058±.028 (.5) .071±.046 (.5) .064±.037 (.5)

FFVAE [16] .958±.013
Shape .671±.024 .026±.020 (.916) .025±.017 (1.) .064±.025 (1.) .044±.014 (1.) .037±.007 (.5) .060±.014 (.5) .049±.009 (.5)
Size .684±.019 .022±.014 (.916) .026±.017 (1.) .029±.022 (1.) .027±.012 (1.) .037±.006 (.5) .039±.010 (.5) .038±.004 (.5)
Bkgd color .686±.027 .014±.010 (.916) .232±.060 (1.) .249±.053 (1.) .241±.055 (1.) .119±.026 (.5) .159±.038 (.5) .139±.031 (.5)

Ours .507±.012
Shape .846±.030 .006±.004 (.014) .007±.005 (.336) .008±.005 (.336) .007±.004 (.322) .037±.004 (.168) .037±.006 (.168) .037±.005 (.161)
Size .868±.034 .009±.007 (.014) .012±.008 (.292) .008±.006 (.292) .010±.007 (.278) .037±.009 (.146) .034±.008 (.146) .036±.008 (.139)
Bkgd color .961±.042 .002±.002 (.014) .004±.003 (.106) .003±.002 (.106) .004±.002 (.092) .019±.011 (.053) .018±.012 (.053) .019±.012 (.046)

to anonymize the sensitive attribute against the postulated
adversary or incur a large cost in discriminativeness. For
Beutel et al., LFR, and VFAE, the downstream predictions’
fairness is only slightly improved. FFVAE achieves the best
fairness among existing methods, but incurs a large reduc-
tion in the target attribute’s prediction accuracy.

Compared with existing fair representation learning ap-
proaches for unknown prediction tasks, our approach learns
fair representation with a smaller cost in discriminative-
ness.4 The sensitive attribute can only be predicted with
57.3% balanced accuracy, close to random guessing (50%).
The downstream predictions become fairer w.r.t. all fairness
notions except DPC, which remains at the same level. This
is in agreement with our theoretical results because DPC,
DNC, and DC are also lower bounded by 1

2 |a − b| = .098
(Theorem 2) and our approach indeed achieves this lower
bound. Compared with FFVAE, which achieves the best fair-
ness among existing methods, ours (lrq = 2

√
2) learns fairer

representations, incurs a smaller cost in discriminativeness,
and further improves downstream predictions’ fairness.

In Table 3, we also report the quantitative fairness guar-
antees computed from our theoretical results. These guar-
antees are all valid and are indicative of the downstream
predictions’ actual fairness. However, some of the worst-
case fairness guarantees (e.g., DOpp) aren’t very useful.5

4. This is unavoidable because gender and income are correlated. In
Adult dataset, |a−b| = |.316−.121| = .195 and, by Theorem 5, it incurs
a trade-off between representation fairness and discriminativeness.

5. By useful we mean comparable to the 80% rule recommended by
US EEOC [64] which says a selection rate for any group which is less
than 80% of that of the highest group is generally regarded as evidence
of disparate impact.

But for DOpp, we still observe an improvement on the
predictions’ actual fairness.

8.4 Experiment on MPI3D

Experimental Settings We consider object color as the
sensitive attribute, and object shape, size, and background
color as the target attributes. We use ResNet-34 [65] as the
network architecture and reconstruction as the pretext task.
Representation dimension is 32 and the final λ is 10. The
lengthscale and shape parameter for the rational quadratic
kernel are 1 and 4, respectively. We train the model with
SGD optimizer for 150 epochs with batch size 256. The initial
learning rate is 0.1 and is divided by 10 at 80th, 110th, and
130th epochs.

Uncorrelated MPI3D Table 4 shows results on uncorrelated
MPI3D dataset, where the attributes are mutually indepen-
dent. For existing methods, we similarly replace the predic-
tion task with reconstruction when learning representation.

Although the considered attributes are all mutually inde-
pendent, the baseline still produces slightly discriminative
predictions. This is because it does not anonymize the
sensitive attribute, which can be falsely picked up by down-
stream predictors. Existing methods, similar to the findings
on Adult dataset, either fail to anonymize the sensitive
attribute or incur a large reduction in the target attributes’
prediction accuracy. Consequently, they also do not improve
fairness for all seven fairness notions and for all three target
attributes. For example, FFVAE improves fairness for the
target attributes shape and size, but fails for background
color.
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TABLE 5: Our Approach on Face Datasets Compared with the Baseline and Existing Gender-blind Face Representation
Learning Methods. For Existing Methods, Their Gender Predictability Is Taken From the Respective Sources and Is Not
Directly Comparable Due to Different Evaluation Details (See Footnote).

Methods Face verification on LFW (%, ↑) Face identification on VGGFace2 (%, ↑)
TAR@1e-5 TAR@1e-4 TAR@1e-3 TAR@1e-2 Top-1 Top-10 Top-100 Top-1k

ArcFace only 82.8±4.0 82.7±3.8 94.4±1.3 99.0±0.2 49.9±0.3 66.4±0.2 81.5±0.1 92.8±0.1
Ours 69.2±3.5 69.4±3.4 86.8±2.4 96.2±0.5 34.3±1.3 50.5±1.3 68.1±1.2 85.4±0.6

Methods Gender prediction (%, ↓)
Logistic Regression Decision Tree Random Forest 5-Nearest Neighbors 7-Net (width 8×) 7-Net (width 16×) 12-Net SVM

ArcFace only∗ 96.9±0.05 94.9±0.2 96.8±0.08 96.8±0.09 97.0±0.04 97.0±0.02 97.3±0.06 97.3±0.06
Ours∗ 52.6±0.9 56.6±0.6 61.7±1.1 64.3±0.2 74.5±0.5 74.1±0.2 75.6±0.4 75.7±1.0
Mirjalili et al. [66]∗∗ 86.4 (G-COTS), 60.7 (IntraFace), 98.5 (Random Forest), 99.3 (Neural Network), 98.3 (SVM).
Dhar et al. [67]∗∗∗ 64.01 (Logistic Regression).
SensitiveNet [68]∗∗∗∗ 65.2 (Random Forest), 65.7 (Neural Network), 67.3 (SVM).
∗: For both the ArcFace only and ours entries: (1) all adversarial models are trained on full VGGFace2 training set (∼3,140K images) and tested on our VGGFace2 test set

(25K images); (2) reported in balanced accuracy.
∗∗: (1) G-COTS and IntraFace are off-the-shelf softwares and are untrained; their accuracies are from [66]. (2) Random Forest, Neural Network, and SVM are trained on CelebA

training set (∼157K images); their accuracies are from [68]. (3) The width, depth, and architecture of the Neutral Network are unknown. (4) All adversarial models are tested
on CelebA test set (∼19K images). (5) reported in accuracy.
∗∗∗: (1) The adversarial model is trained on 60K IJB-C face images. (2) Test on 20K IJB-C face images. (3) The reported accuracy is from [67].
∗∗∗∗: (1) The width, depth, and architecture of the Neutral Network are unknown. (2) All adversarial models are trained on CelebA training set (∼157K images) and tested

on CelebA test set (∼19K images). (3) The reported accuracies are from [68].
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Fig. 2: Our approach on correlated MPI3D dataset with
varying level of correlation. Color is the sensitive attribute.
Shape is the target attribute that correlates with color. Size
and bkgd color are independent target attributes.

When there is no correlation, our approach is able
to learn nearly 0-fair representation (i.e., the sensitive at-
tribute’s balanced accuracy is reduced to ∼50%), with al-
most no cost in discriminativeness. Using the learned rep-
resentation, all three target attributes’ predictions become
much fairer for all considered fairness notions, in agreement
with the theoretical fairness guarantees.

Correlated MPI3D In the real world, it is common that
the sensitive attribute correlates with some of the target
attributes. To investigate the efficacy of our approach on
such scenarios, we create data splits with controlled cor-
relation. Specifically, we let object shape correlate with the
sensitive attribute object color. Object size and background
color remain independent. Let{

p1
M
= P (object shape = pyramid | object color = white),

p2
M
= P (object shape = pyramid | object color = red).

Notably, |p1−p2| is a measure of correlation between object
shape and object color. We create correlated data splits by
varying |p1−p2| ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}while maintaining
p1 + p2 = 1.

As shown in Fig. 2, our method robustly learns fair
and discriminative representation in the presence of corre-
lation, although the sensitive attribute gradually becomes
more predictable with increasing correlation. The uncorre-
lated target attributes’ prediction accuracy is only slightly

affected. The correlated target attribute’s performance in-
evitably deteriorates because it increasingly correlates with
the sensitive attribute.

8.5 Experiment on Face Datasets

Experimental Settings Gender is the sensitive attribute.
We use SphereNet-20 [61] as the neural architecture and
additive Angular Margin Loss (ArcFace) [48] as the pretext
loss. The representation dimension is 32 and the final λ (after
line search) is 30. We train the model on VGGFace2 training
set for 200k iterations with Adam optimizer [69] and batch
size 256. The learning rate starts from 1e-4 and is divided by
10 at 140k and 180k iterations.

We first evaluate the learned representation on face
verification, face identification, and gender prediction.

For face verification, the objective is to predict whether a
given pair of face images is of the same identity. We evaluate
on the LFW test set, which contains 10 data splits, each
with 300 positive and 300 negative pairs. Cosine similarity is
computed and 10-fold cross validation is used to select the
threshold. We report the True Accept Rates (TAR) at 1e-5,
1e-4, 1e-3, and 1e-2 False Accept Rate (FAR).

Face Identification assumes a probe image and a gallery
set that contains only one target image of the same identity
and many other distractors. The task is, given a probe image,
to find the target image from the gallery set. Our VGGFace2
test set consists of 50 images per identity for 500 identities.
Each image is posed as the probe 49 times. Each time one
of the other 49 images of same identity is posed as the
target. All other images of different identities are used as
distractors. This results in total 1.25 million tests. Cosine
similarity is used as the similarity measure. We report the
top-K accuracy with K ∈ {1, 10, 100, 1000}.

For gender prediction, we pose various adversarial clas-
sifiers to predict gender using the learned representation.
They are trained on the full VGGFace2 training set. We
report the Balanced Accuracy on our VGGFace2 test set.

Results on Face Verification, Identification, and Gender
Prediction Table 5 reports the experimental results. Our ap-
proach learns gender-blind face representations, from which
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TABLE 6: The Learned Face Representation Evaluated on CelebA Dataset Compared with Representations Learned with
ArcFace Only (AO). We Report 10 Facial Attributes With Highest Balanced Accuracy (Complete Results Reported in
the Supplementary Material). CLB is short for Calibration Lower Bound, which lower bounds DPC, DNC, and DC,
see Theorem 2.

Attribute
Discriminativeness (↑) Fairness (↓) CLB

BA SP DOpp DR DOdds DPC DNC DC 1
2
|a− b|

AO Ours AO Ours AO Ours AO Ours AO Ours AO Ours AO Ours AO Ours
Bald .953± .001 .943±.002 .114±.001 .073±.001 .650±.073 .234±.062 .072±.001 .031±.001 .361±.037 .132±.031 .027±.0002 .027±.0002 .228±.003 .076±.002 .127±.001 .051±.001 .027
Gray hair .925± .002 .926±.001 .132±.001 .075±.0003 .243±.013 .076±.009 .072±.001 .017±.0004 .157±.006 .046±.005 .039±.0003 .038±.0004 .171±.016 .059±.0004 .105±.008 .049±.0003 .037
Sideburns .921± .001 .906±.005 .295±.004 .138±.003 .261±.096 .201±.103 .214±.004 .052±.002 .237±.047 .126±.052 .067±.0002 .067±.0002 .639±.013 .124±.004 .353±.006 .095±.002 .068
Goatee .919± .002 .906±.003 .330±.008 .159±.003 .314±.033 .163±.069 .243±.008 .062±.002 .278±.018 .112±.035 .075±.0003 .075±.0003 .731±.021 .139±.003 .403±.010 .107±.002 .075
Blond hair .918± .001 .912±.002 .298±.003 .188±.004 .330±.010 .176±.008 .136±.003 .021±.004 .233±.006 .098±.005 .112±.0002 .111±.0002 .226±.005 .128±.004 .169±.002 .119±.002 .109
Eyeglasses .916± .010 .940±.003 .133±.009 .098±.002 .240±.029 .086±.004 .051±.010 .017±.003 .146±.017 .051±.003 .051±.001 .050±.0002 .133±.024 .071±.007 .092±.012 .061±.004 .051
Mustache .905± .007 .901±.004 .270±.007 .115±.002 .476±.127 .483±.093 .219±.009 .053±.001 .348±.064 .268±.047 .049±.0001 .049±.0001 .655±.023 .122±.003 .352±.011 .085±.001 .050
Wearing lipstick .899± .001 .788±.003 .889±.002 .511±.006 .587±.019 .249±.016 .744±.005 .286±.006 .665±.011 .268±.011 .402±.001 .399±.0004 .542±.001 .418±.002 .472±.001 .408±.001 .400
5 o’clock shadow .883± .001 .867±.005 .574±.008 .289±.006 .205±.030 .142±.033 .482±.010 .166±.004 .344±.014 .154±.016 .133±.001 .133±.001 .815±.002 .265±.007 .474±.001 .199±.003 .133
Wearing hat .875± .010 .893±.006 .083±.009 .055±.003 .221±.014 .080±.010 .038±.010 .014±.004 .129±.008 .047±.007 .030±.0003 .029±.0002 .172±.036 .053±.011 .101±.018 .041±.005 .028

various classifiers cannot infer gender with high accuracy,
with minor cost in the performances of face verification and
identification.

Although we cannot directly compare the gender un-
predictability with existing methods due to difference in
evaluation (see footnote of Table 5), it is clear that our
approach is competitive. First, our approach readily trans-
forms a pretext loss—ArcFace here—for gender-blind face
representation learning and is much simpler compared to
specifically designed methods [66], [67], [68], [70]. Second,
we evaluate against a wide range of classifiers and allow
them to be trained on a much larger training set (52× larger
compared to [67] and 20× larger compared to [68]). Third,
we also test on a larger test set (25K compared to 20K
in [67] and 19K in [68]). Even under significantly stricter
evaluation, the achieved gender unpredictability is still on
par with existing work. This demonstrates the effectiveness
of our proposed approach for learning gender-blind face
representations.

Results on Facial Attribute Prediction Since both LFW
and VGGFace2 datasets are without facial attributes, we
evaluate the learned face representation for facial attribute
prediction on CelebA dataset instead. This results in a
generalization evaluation because the training and the test
datasets are no longer from the same distribution.

We report the results in Table 6. We report 10 facial
attributes with highest prediction accuracy for brevity, with
complete results reported in the supplementary material.
Interestingly, predictions using naively learned face repre-
sentations are often calibrated w.r.t. DPC (achieve the lower
bound) but uncalibrated w.r.t. DNC. Our approach main-
tains the same level of balanced accuracy for facial attribute
prediction and greatly improves their fairness for all seven
group fairness notions. The achieved values for DPC, DNC,
and DC are all close to their lower bounds. As the complete
result in the supplementary material demonstrates, fairness
is improved even for the predictions that are less accurate.

We note that we are unaware of these facial attributes
when learning face representation. Thus, Table 6 empiri-
cally demonstrates that using a both fair and discriminative
representation, we can indeed approximately achieve seven
group fairness notions for downstream unknown prediction
tasks.

9 CONCLUSION

In this work, we prove that fair representation guarantees
approximate seven group fairness notions for all prediction

tasks for which the representation is discriminative. With a
sharp characterization, we provide a better understanding
of what fair representation can and cannot guarantee. We
have considered a setting where the dataset users can be
adversarial. An intriguing open question is, what fair rep-
resentation can guarantee if we restrict to accuracy-driven
dataset users. Such knowledge allows the data owner to
guarantee better fairness when they are able to verify the
accuracy of downstream predictions.
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