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Berrut Approximated Coded Computing: Straggler
Resistance Beyond Polynomial Computing

Tayyebeh Jahani-Nezhad, Mohammad Ali Maddah-Ali

Abstract

One of the major challenges in using distributed learning to train complicated models with large data sets is to deal with
stragglers effect. As a solution, coded computation has been recently proposed to efficiently add redundancy to the computation
tasks. In this technique, coding is used across data sets, and computation is done over coded data, such that the results of an
arbitrary subset of worker nodes with a certain size are enough to recover the final results. The major drawbacks with those
approaches are (1) they are limited to polynomial functions, (2) the number of servers that we need to wait for grows with the
degree of the model, (3) they are not numerically stable for computation over real numbers. In this paper, we propose Berrut
Approximated Coded Computing (BACC), as an alternative approach, as a numerically stable solution, which works beyond
polynomial functions computation and with any number of servers. The accuracy of the approximation is established theoretically
and verified by simulation. In particular, BACC is used to train a deep neural network on a cluster of servers, which outperforms
alternative uncoded solutions in terms of the rate of convergence.

I. INTRODUCTION

Distributed machine learning is known as an inevitable solution to overcome the challenge of training complicated models
such as deep learning with large data sets [1]–[3]. In this solution, the data set or the model parameters are distributed among
several servers and the tasks of training/evaluating are performed distributedly by those servers, in coordination with each
other. In one scenario, for example, the parameters are maintained in a master node, while the data set is shared among some
worker nodes. The worker nodes process data set locally and send the results to the master node to update the parameters.
Distributed machine learning raises a list of challenges related to convergence rate, communication load, privacy, existence of
faulty nodes, etc. One of the major challenges here is dealing with stragglers, or slow servers. Indeed, in those systems, the
speed of computing is dominated by the speed of the slowest servers, as the master node needs to wait for all the worker nodes
to complete their tasks [4]. One approach, proposed to deal with stragglers, is known as coded computing. In this approach,
the computation is done over coded data, rather than raw data. Coding is used to efficiently add redundancy to the computing,
such that from the results of a subset of servers, the final result can be calculated. This means that the master node does not
have to wait for the results of stragglers to complete his task. It is shown that coded computing can be effective in the context
of distributed machine learning and can be applied in different problems such as coded distributed matrix multiplication
and polynomial computations. In [5], [6], one or both matrices are coded separately using MDS codes to compute matrix
multiplication. In [7], polynomial codes, and in [8], the extended version of these codes called entangled polynomial codes, are
proposed to code each matrix with the desired partitioning, such that the number of unwanted computations is minimized. The
general version of entangled polynomial codes is proposed in [9] to multiply more than two matrices. In [10], CodedSketch as a
straggler-resistant coded scheme is introduced to compute the approximation of matrix multiplication where the exact result of
the multiplication is not required. Lagrange codes [11] provide a novel strategy to compute an arbitrary polynomial function,
without waiting for stragglers, and communication across worker nodes. Also, the privacy guarantees in secure multi-party
computations are satisfied in this coded computing. As an application of Lagrange codes in distributed learning, a secure
training process called CodedPrivateML is proposed in [12], which uses Lagrange codes to guarantee the privacy of data and
the resulting logistic regression model. Since Lagrange coding technique is limited to computations with polynomial evaluation
forms, CodedPrivateML uses the polynomial approximations of non-linearities of the model. Coding techniques can also be
used to reduce the communication load in distributed learning problems in the presence of the stragglers [13]–[16]. Existing
coded computation approaches have some major challenges, which are a potential bottleneck in several important problems
such as distributed learning:

1) They are limited to a specific class of functions such as matrix multiplications or polynomial functions, and a wide class
of functions has not been considered.

2) To calculate polynomial functions, the total number of servers needed is proportional to the degree of the polynomial
times the size of the data set which can be prohibitively large.
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3) They are often designed for computations over finite fields. For computations over real numbers, those approaches face the
serious problems in terms of computation instability. The reason is that they rely on Reed-Solomon decoding/Lagrange
interpolation which are not suitable for real numbers.

The main reason for the third challenge is that the decoding methods of those coded computation approaches are based on
solving a system of linear equations with a Vandermonde matrix which is a matrix of coefficients. Real n× n Vandermonde
matrices are ill-conditioned. More specifically, their condition number grows exponentially with n [17]. There are some
studies to overcome this issue. For example in [18], instead of monomial basis, Chebyshev polynomials are used to develop a
numerically stable approach for polynomially coded computing such as matrix multiplication and Lagrange coded computing.
Also, the condition number of the resulting decoding matrix is calculated in [18], which is bounded polynomially in the number
of nodes provided that the number of stragglers is a constant. In [19], a convolutional coding approach is proposed to compute
distributed matrix multiplications. Also, a computable upper bound on the worst-case condition number is provided over all
resulting decoding matrices. In [20], the structured matrices such as circulant permutation matrices and rotation matrices are
used as evaluation points of polynomials in coded distributed matrix computation problems. If the number of stragglers is a
constant, then the worst-case condition numbers in this scheme grow polynomially in the number of nodes. Recently in [21],
analog Lagrange coded computing (ALCC) is proposed as an extension of Lagrange coded computing for the analog domain,
where the operations in ALCC are done over the complex plane to evaluate polynomial functions. ALCC still faces the first
two major challenges. On the other hand, computing over real-valued data sets in the complex domain have greater required
computations compared to the real domain.

In this paper, we propose Berrut Approximated Coded Computing (BACC) to mitigate major challenges of existing coded
computation approaches. BACC is a numerically stable coded scheme to approximately compute arbitrary functions, not
necessarily polynomials, in a distributed setting consisting of a master node and some worker nodes. In this approach, the
outcomes of any arbitrary subsets of available worker nodes are sufficient to calculate the approximated result, of course the
more outcomes are received, the more accurate the final result will be. The error of this approximation is theoretically proven
to be bounded. In addition, BACC is numerically stable with low computational complexity. This is also verified by simulation
results. In particular, BACC is used to train a deep learning model, in which each worker node computes the gradients of
desired functions based on specific combinations of some mini-batches of the data set. Having received computed gradients
from a subset of available worker nodes, the master node can approximately decode the gradients in a numerically stable
manner. The next iteration will be run after updating the parameters of the network. Implementation results show that the
proposed scheme outperforms repetitive computations in terms of the rate of convergence.

The rest of this paper is organized as follows: In Section II some preliminaries are reviewed. The proposed scheme is
introduced in section III, and we detail the analytical guarantees in Section IV. Section V describes our simulation results and
Section VI represents the application of the proposed scheme in deep learning. Section VII shows the experiment results.

A. Notation

In this paper matrices and vectors are denoted by upper boldface letters and lower boldface letters respectively. C[a, b] denotes
the space of all continuous functions on [a, b], where [a, b] is a closed interval. For n1, n2 ∈ Z the notation [n1 : n2] represents
the set {n1, . . . n2}. Also, [n] denotes the set {0, . . . , n} for n ∈ Z. Furthermore, the cardinality of a set S is denoted by |S|.
‖f‖ denotes the maximum norm of function f(x) over x domain, i.e., ‖f‖ = maxx∈[a,b] |f(x)|. The ith element of a vector
v, is denoted by [v]i and the (i, j)-th entry of a matrix A is denoted by [A]i,j .

II. PRELIMINARIES

In this subsection, we review some preliminaries which are needed in the following sections.

Definition 1 (Lagrange Polynomial Interpolation [11]). Consider a set of n + 1 distinct interpolation points Xn = {xi}ni=0,
where a ≤ x0 < x1 < · · · < xn ≤ b, for some real numbers a, b. In addition, assume that fi = f(xi), i ∈ [n], as the samples
of a function f ∈ C[a, b] are given. Lagrange polynomial interpolation finds a polynomial pLag ∈ Πn which interpolates f at
xi i.e., pLag(xi) = fi, where Πn is the set of all polynomials of degree at most n with real coefficients. In this method, pLag(x)
can be uniquely written as

pLag(x) =

n∑
i=0

fi`i,Lag(x) = L(x)

n∑
i=0

wifi
x− xi

, (1)

where L(x) ,
∏n
k=0 (x− xk), and `j,Lag(x) for j ∈ [n] are the Lagrange basis functions defined as

`j,Lag(x) ,

∏n
k=0,k 6=j (x− xk)∏n
k=0,k 6=j (xj − xk)

, j ∈ [n]. (2)



3

The weights wi corresponding to xi are calculated as

wi =
1∏n

k=0,k 6=j (xi − xk)
, i ∈ [n]. (3)

Remark 1: According to Definition 1, Lagrange polynomial interpolation needs O(n2) floating point operations to evaluate
pLag(x) at some x ∈ R.

The representation of Lagrange interpolation in (1) can be modified in such a way that it needs O(n) floating point operations
to be evaluated. Assume the Lagrange interpolation of a constant function g(x) = 1. So, according to (1) we have

1 =

n∑
i=0

`i,Lag(x) = L(x)

n∑
i=0

wi
x− xi

. (4)

The new representation for Lagrange polynomial interpolation is obtained after dividing (1) by (4) and canceling the factor
L(x) which is a common factor in the numerator and denominator.

Definition 2 (Barycentric Polynomial Interpolation [22]). Another representation of Lagrange interpolation formula is called
Barycentric polynomial interpolation which is expressed as

pBary(x) =

n∑
i=0

wi
(x−xi)∑n
j=0

wj
(x−xj)

fi, (5)

where wi, i ∈ [n] is still defined by (3).

Remark 2: Since the weights wi appear in both numerator and denominator of (5), any constant common factors in the
weights can be factored out and canceled out without affecting the value of pBary(x). It is one of the advantages of barycentric
formula which avoids overflows and underflows in the weights computation.

Remark 3: Only O(n) operations are required for each evaluation of pBary(x) in barycentric interpolation formula. Also, (5)
allows us to include additional interpolation points more easily and is more stable than the Lagrangian interpolation formula
for a given point set [22].

Remark 4: There exist several explicit formulas for wi, i ∈ [n] for some particular sets of nodes. For example, assume the
set of interpolation points are chosen from Chebyshev points of the first kind as

xj = cos
(2j + 1)π

2n+ 2
, j = [n]. (6)

In [23], it is shown that after eliminating the constant factors independent of j, the weights are computed as

wj = (−1)j sin
(2j + 1)π

2n+ 2
, j = [n]. (7)

Another choice for the interpolation points is the Chebyshev points of the second kind as

xj = cos
jπ

n
, j = [n]. (8)

In [24], it is shown

wj = (−1)
j
δj , δj =

{
1
2 , if j = 0 or j = n,

1, otherwise;
(9)

Also, if the equidistant nodes on the interval [−1, 1] are chosen as the interpolation points then the weights will be calculated
by wj = (−1)

j(n
j

)
which is exponential by n [23]. Thus, equidistant nodes are improper nodes for large values of n. That

means polynomial interpolation in equidistant nodes is ill-conditioned.

Remark 5: If those interpolation points are chosen in the interval [a, b] instead of [−1, 1], the original formula for the weights
are only multiplied by the constant factor 2n(b− a)

−n which can be dropped in barycentric formula according to Remark 2.

Remark 6: It is well known in the approximation theory that any other interpolation points, clustered at the endpoints of the
interval [−1, 1] and distributed asymptotically with density 1√

1−x2
(as n → ∞), can be proper. Thus, the calculated weights

wi in (3) corresponds to these interpolation points do not grow exponentially by n [22].

It has been known that rational functions can also be used for interpolation to overcome some of the deficiencies of polynomial
interpolation. Since rational interpolation uses rational functions, and thus includes polynomial interpolation as a special case,
thus the resulting approximations would outperform polynomial interpolations. [25], [26].
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Definition 3 (Rational Interpolant [27]). Let the set of n+ 1 distinct interpolation points Xn = {xi}ni=0 be given with samples
of a real value function f ∈ C[a, b] at these nodes, i.e., fi = f(xi), i ∈ [n]. The basic rational interpolant is defined as

r(x) =
pm̃(x)

qñ(x)
∈ Rm̃,ñ, (10)

where r(xi) = fi for i ∈ [n]. Also, Rm̃,ñ is the set of all rational functions with numerator and denominator degrees of at
most m̃ and ñ respectively. Since there are m̃+ ñ+ 1 unknown coefficients for r(x), we must have m̃+ ñ+ 1 = n+ 1.

In the following the barycentric rational interpolant is defined as a specific representation for the rational interpolant.

Definition 4 (Barycentric Rational Interpolation [22], [28]–[30]). The barycentric interpolant formula in (5) can be applied
with an arbitrary set of non-zero weights ui, i ∈ [n]. The resulting interpolant is a rational interpolant called Barycentric
Rational Interpolation and defined as

rBary(x) =

n∑
i=0

ui
(x−xi)∑n
j=0

uj
(x−xj)

fi ∈ Rn,n, (11)

for all ui 6= 0 and bounded fi = f(xi). Note that this interpolation has no restriction on calculating the weights ui by the
distribution of points.

Remark 7: Any rational interpolation of function f using fi = f(xi) for i ∈ [n] can be expressed in barycentric rational
form with some weights ui, i ∈ [n] [25].

Definition 5 (Berrut’s Rational Interpolant [31]). According to Definition 4, the following rational function

rBerrut(x) =

n∑
i=0

(−1)i

(x−xi)∑n
j=0

(−1)j

(x−xj)

fi, (12)

is called Berrut’s Rational Interpolant which interpolates fk at xk, k ∈ [n]. The basis functions of this interpolant is denoted
by

`i,Berrut =

(−1)i

(x−xi)∑n
j=0

(−1)j

(x−xj)

, i ∈ [n]. (13)

Lemma 1. Let the set of n + 1 distinct interpolation points Xn = {xi}ni=0 be given such that x0 < x1 < · · · < xn, and
L(x) =

∏n
k=0 (x− xk). Then the polynomial q(x) = L(x)

∑n
j=0

(−1)j

x−xj has no real root [31].

Remark 8: In rational interpolations, it is difficult to control the occurrence of poles in the interval of interpolation. According
to Lemma 1, r Berrut(x) has no pole in the real line for any distribution of the interpolation points.

Remark 9: An interpolation point xj is called unattainable if the interpolation condition is not satisfied, i.e., p(xj)q(xj)
6= f(xj)

in (10). Occurring unattainable points is one of the major flaws of traditional rational interpolants which is not occurred in
Berrut’s rational interpolant.

The error of an interpolation, and its numerically stability are two important factors which are discussed later after reviewing
some definitions such as Lebesgue constant which is one of the best criteria to determine which interpolation point sets are
good.

Definition 6 (Lebesgue Constant [28], [32]). Let Xn = {xj}nj=0 be a set of distinct interpolation points in the interval [a, b]
and Bn = {`i}ni=0 be a set of basis functions of an interpolant. Assume L(Xn,Bn) is a linear projection, which associates to any
continuous function f ∈ C[a, b] the unique rational (polynomial) function, i.e., L(Xn,Bn)f = pn

qn
∈ Rn,n. Thus, the Lebesgue

constant is defined as

Λn , ‖L(Xn,Bn)‖ = sup
f∈C[a,b]

‖L(Xn,Bn)f‖
‖f‖

, (14)

where ‖.‖ denotes the maximum norm.

Lemma 2 ( [28]). Considering the basis functions Bn = {`i}ni=0, (14) can be expressed as

Λn = max
x∈[a,b]

n∑
i=0

|`i(x)|, (15)

where Λn(x) ,
∑n
i=0 |`i(x)| is called Lebesgue function.
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According to the definition, the best choices of interpolation points are the ones that have a small Lebesgue constant for an
interpolant [33].

Theorem 3 (Lebesgue Theorem [28], [34]). Suppose there is a set of basis functions of an interpolant Bn = {`i}ni=0, and a
set of interpolation points Xn = {xi}ni=0 in the interval [a, b]. Then, the error of the approximation of any function f ∈ C[a, b]
using the rational interpolant, i.e., L(Xn,Bn)f = pn

qn
∈ Rn,n is bounded from above as

‖f − L(Xn,Bn)f‖ ≤ (1 + Λn) min
r∈Q
‖f − r‖, (16)

where Q is defined as the set of all rational functions in Rn,n passing through the interpolation points, with denominator qn.

According to Theorem 3, for a particular interpolant, if we have properly distributed interpolation points that cause the
smaller Lebesgue constant, then we will have a better interpolation of f .

Now, consider Berrut’s interpolation as a rational interpolant of fk at xk, k ∈ [n]. There are several results based on
the Lebesgue constant computation of Berrut’s interpolant in different sets of interpolation points, which prove that Berrut’s
interpolation is extremely well-conditioned [35], [36]. In the following, we review an important result in this context.

Definition 7 (Well-Spaced Points [35]). Let Xn = {xi}ni=0 be a set of ordered distinct interpolation points. Consider a family
of sets, i.e., X = (Xn)n∈N, if there exist constants C,R ≥ 1 such that the following conditions

(1)
xk+1 − xk
xk+1 − xj

≤ C

k + 1− j
, forj = [k], k = [n− 1],

(2)
xk+1 − xk
xj − xk

≤ C

j − k
forj = [k + 1 : n], k = [n− 1],

(3)
1

R
≤ xk+1 − xk
xk − xk−1

≤ R, fork = [1 : n− 1],

are satisfied, then X = (Xn)n∈N is called a family of well-spaced points. Note that R and C must be independent of n.

Theorem 4 ( [35]). Suppose we have a family of well-spaced points X = (Xn)n∈N,n≥2, with constant parameters R,C ≥ 1,
where Xn = {xi}ni=0 is the set of interpolation points in the interval [a, b]. If Berrut’s interpolant in (12) is used to interpolate
function f ∈ C[a, b] at the points Xn, then the Lebesgue constant under these assumption is bounded as

Λn ≤ (R+ 1)(1 + 2C lnn). (17)

Next we explain about the approximation error and convergence rate of the Berrut’s rational interpolant.

Theorem 5 ( [37]). Assume Berrut’s rational interpolant rBerrut in (12) as the interpolation formula for a continuous function
f ∈ C[a, b] with second derivative (i.e., f ∈ C2[a, b]). Then, we have

‖rBerrut(x)− f(x)‖ ≤ h(1 + λ)(b− a)
‖f ′′(x)‖

2
,

if n is odd, and

‖rBerrut(x)− f(x)‖ ≤ h(1 + λ)

(
(b− a)

‖f ′′(x)‖
2

+ ‖f ′(x)‖
)
,

if n is even. In these inequalities, h , max0≤i≤n−1(xi+1 − xi) for ordered interpolation points. In addition, λ is defined as

λ , max
1≤i≤n−2

min{xi+1 − xi
xi − xi−1

,
xi+1 − xi
xi+2 − xi+1

},

and is referred as local mesh ratio.

Thus rBerrut(x) converges to f(x) at the rate of O(h) under the assumption that f ∈ C2[a, b], and provided that the local
mesh ratio λ is bounded as h→ 0 which depends on the distribution of interpolation points.

The error caused by floating-point arithmetic is really significant in interpolation problems. Numerical stability of an algorithm
is a measure to determine the sensitivity of its output caused by small changes in the input data.

Definition 8. Assume f̃ is an interpolant which interpolates function f . If for some small backward error δ1 > 0, and for any
x ∈ R, there exist some |δx| ≤ δ1 such that f̃(x) = f(x+ δx), then, this interpolant is called δ1-backward stable. In addition,
if for some small forward error δ2 > 0, we have ‖f̃−f‖‖f‖ = δ2, then, this interpolation is called δ2-forward stable.

In other words, a backward stable interpolant gives the right value of f at the approximately right value of x, and a forward
stable interpolant provides an output that is close enough to the right result.
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Remark 10: In [38], it is shown that (5) is forward stable for any set of interpolating nodes as long as the Lebesgue constant
is not too large. Also, in [39], it is shown that (5) and (11) are backward stable as well when the constant Λn remains small.

A. An overview of Lagrange Coded Computing

Lagrange coded computing (LCC) [11] is designed to calculate an arbitrary polynomial function p(X) for K inputs
X0, . . . , XK−1, over a cluster of N + 1 servers. It is based on the following three steps:

1) The master node forms polynomial u(z), such that u(αk) = Xk, using Lagrange interpolation, for some distinct values
of αk, k ∈ [K − 1].

2) The master node calculates u(βn), and sends to worker node n to calculate p(u(βn)), n ∈ [N ], for some distinct values
of βn, n ∈ [N ].

3) The master node recovers g(z) = p(u(z)), upon receiving deg(g(z)) + 1 = (K − 1) deg(p(X)) + 1 answers from the
workers nodes. Then it calculates p(Xk) as g(αk) = p(u(αk)), k ∈ [K − 1].

The advantage of this approach is that having the results of any arbitrary subsets of the workers nodes of size (K −
1) deg(p(X)) + 1, the master node can calculate p(X0), . . . , p(XK−1). Thus it can tolerate up to N − (K − 1) deg(p(X))
stragglers. Lagrange coded computing suffers from several problems, when it is used for computing over real numbers.

1) Its application is limited to polynomial computations.
2) In Lagrange coded computing, the total number of worker nodes that the master node needs to wait for to recover the

final result is proportional to the degree of the polynomial times the size of the input data set, which can be prohibitively
large. In other words, if the number of non-straggling worker nodes is less than (K − 1) deg f + 1, the final results can
not be computed.

3) It is originally designed for computations over the finite field. This approach is not proper for computation over real
numbers and faces serious problems in terms of computation instability.

III. THE PROPOSED SCHEME

As explained, existing coded computing approaches have some major challenges in distributed computing. To overcome
these challenges, we propose Berrut Approximated Coded Computing to approximately evaluate any arbitrary function using a
distributed system when the data and all operations are in the field of real numbers. This scheme is numerically stable with low
computational complexity, which can be used in problems such as distributed learning. In this scheme, we propose a different
encoding and decoding method. We also suggest particular points for encoding the input data set and assigning the tasks to
the worker nodes. The accuracy of the approximation established theoretically and verified by simulation results in different
settings, such as distributed learning problems.
The objective is to approximately evaluate “an arbitrary function” f : V→ U over an input data set X = (X0, ...,XK−1) in
a numerically stable manner with bounded errors, where V and U are the set of the real matrices. A distributed system with
one master node and N + 1 worker nodes W0, . . .WN is utilized to approximately compute the evaluation of f over data set
X, i.e., Ỹi ≈ f(Xi) for i ∈ [K − 1]. Also, assume that in the distributed system there may be some straggling worker nodes.
The proposed straggler resistant scheme is based on the following steps:
Step 1. The master node creates the coded data X̂i = Ei(X) and assigns it to ith worker node, where Ei is an encoding
function that maps the raw data (X0, ...,XK−1) to the coded matrix X̂i for ith worker node. More precisely, the master node
forms the following rational function u : R→ V

u(z) =

K−1∑
i=0

(−1)i

(z−αi)∑K−1
j=0

(−1)j

(z−αj)

Xi, (18)

for some distinct values α0, . . . αK−1 ∈ R. One can verify that u(αj) = Xj , for all j ∈ [K − 1].
In this scheme, we suggest to choose αj , j ∈ [K − 1], as Chebyshev points of the first kind as

αj = cos(
(2j + 1)π

2K
), j ∈ [K − 1]. (19)

Step 2. The master node assigns X̂i = u(zi) to ith worker node to apply f on X̂i and send the result back. In the proposed
scheme, we suggest to choose zi, i ∈ [N ], as Chebeshev points of the second kind, i.e.,

zi = cos
iπ

N
, i ∈ [N ]. (20)

Having received X̂i from the master node, the ith worker node computes Ŷi = f(X̂i). Then it returns the result to the master
node.
Step 3. The master node waits for the results from the set of fastest worker nodes, denoted by F . Then it approximately
calculates f(Xi), i ∈ [K − 1], from

{
Ŷj

}
j∈F , using the decoding function D

({
Ŷj

}
j∈F ,F

)
. The decoding function is based
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on Berrut’s rational interpolant, with computational complexity of O(|F|).
In other words, the master node, after receiving outcomes of non-straggling worker nodes, creates a rational function which
approximately interpolates f(u(z)) as

rBerrut,F (z) =

n∑
i=0

(−1)i

(z−z̃i)∑
j

(−1)j

(z−z̃j)

f(u(z̃i)), (21)

where z̃i ∈ S, i ∈ [n] are the interpolation points, where S = {cos jπN , j ∈ F}, and n , |F| − 1. Now the master node then
approximately computes f(Xi) ≈ r Berrut,F (αi), i ∈ [K − 1].

Remark 11: In this scheme, there is no strict notion of recovery threshold or the minimum number of required computation
results from worker nodes. The master node uses the available results of the computations sent by non-straggling worker nodes
and computes the final results. The more the number of results is, the more accurate the final result will be.

Remark 12: The application of BACC is not limited to polynimial functions, and this scheme can be used to approximately
evaluate any arbitrary functions.

Remark 13: In this scheme, we suggest to choose αj , j ∈ [K − 1], as Chebyshev points of the first kind, and we suggest
to choose zi, i ∈ [N ], as Chebyshev points of the second kind. In Theorem 7, we will prove that the Lebesgue constant for
Berrut’s rational interpolant grows logarithmically in the size of a subset of Chebyshev points.

Remark 14: In BACC, we suggest using Berrut’s rational interpolant rather than barycentric interpolant for the decoding
step. Because of the stragglers, the master node faces a subset of Chebyshev points as the interpolation points rather than the
entire set. If we had the entire set, calculating wi would have a well-behaved explicit formula as (9). However, when we have
a subset of them, we need to use the general formula (3) to calculate wi. Using (3) itself is not numerically stable in practice.
The reason is that, according to Remark 6, any subset of Chebyshev points is not necessarily a set of properly distributed
interpolation points for polynomial interpolants. Thus, we use Berrut’s rational interpolant.

Remark 15: In the polynomial interpolation, the errors caused by floating-point arithmetic are significant, and the barycentric
formula has a good performance in this respect. However, the barycentric representation is not well-conditioned for some
distribution of the interpolation points. In particular, even barycentric interpolation in equidistant points faces strange behavior
called Runge phenomenon [40], which is a problem of large oscillations near the endpoints. In such cases, no matter what
formulation is used, polynomial interpolation is not recommended for interpolation. Thus, for Lagrange coded computing, in the
encoding step, we recommend to use barycentric interpolation. In addition, the popular equidistant points are not recommended.

IV. ANALYTICAL GUARANTEES

In order to guarantee that the proposed interpolation points and the approximation result are acceptable, we establish the
following theorems.

Lemma 6. Assume Xn = {xj}nj=0 is a subset of X̃N = {x̃k}Nk=0 with n+ 1 elements such that x0 > x1 > · · · > xn, where
n = N − s, and x̃k, k ∈ [N ] are the Chebyshev points of the second kind, i.e., x̃k = cos kπN , k ∈ [N ], and s is a constant
number independent of N . The Lebesgue function associated with Berrut’s interpolant in Xn = {xj}nj=0 attains its maximum
if there exist k̄ such that xj = x̃j = cos jπN for j ∈ [k̄] and xj = x̃j+s+1 = cos (j+s+1)π

N for j ∈ [k̄ + 1 : N − s], i.e., that all
s elements not included in Xn are ordered consecutively in X̃N .

Proof. Lemma 6 expresses that the worst case in the interpolation step of the proposed scheme is occurred when s straggling
worker nodes correspond to the consecutive elements of X̃N = {x̃k}Nk=0. The proof of Lemma 6 can be found in supplementary
materials.

Theorem 7. Let Xn = {xj}nj=0 be a subset of X̃N = {x̃k}Nk=0 with n + 1 elements such that x0 > x1 > · · · > xn, where
n = N − s, s is a constant number independent of N , and x̃k, k ∈ [N ], are the Chebyshev points of the second kind. Then,
X = (Xn)n∈N is a family of well-spaced points with C = π2(s+1)

2 and R = (s+1)(s+3)π2

4 for s < N − 2. In addition, the
Lebesgue constant for Berrut’s rational interpolant in Xn is upper bounded as

Λn ≤
( (s+ 1)(s+ 3)π2

4
+ 1
)(

1 + π2(s+ 1) ln(N − s)
)
.

Proof. This proof is based on Definition 7 and Theorem 4, and shows that the Lebesgue constant for the proposed scheme is
bounded above by c ln (N − s) for some constant c > 0. The formal proof can be found in supplementary materials.

As an example, Lebesgue function for Berrut’s rational interpolant in the proposed scheme with different values for parameters
N and s is demonstrated in Fig. 1. Note that the Lebesgue constant is not a function of the evaluation points or the function
f . One way to bound the approximation error of the proposed method is to use the Lebesgue constant as follows.
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Fig. 1: The value of Lebesgue function versus x ∈ [−1, 1] in Berrut’s rational interpolant with different parameters value N
and s.

Corollary 8. Consider a distributed setting, consisting of N + 1 worker nodes with up to n+ 1 = N + 1− s non-straggling
worker nodes with corresponding zj , j ∈ [n], interpolation points. Then, the error of the approximately evaluation of any
arbitrary function f using the proposed scheme is upper bounded as

‖rBerrut,F (z)− g(z)‖ ≤
(
1 + Λn

)
min
r(z)∈Q

‖g(z)− r(z)‖, (22)

where g(z) , f(u(z)) and u(z) is defined in (18). Q is defined as the set of all rational functions in the form of r(z) =

p(z)/q(z), where r(zj) = g(zj), j ∈ [n], p(z) is a polynomial function of degree n, and q(z) = L(z)
∑n
j=0

(−1)j

z−zj . Also, ‖.‖
denotes the maximum norm, i.e., ‖f‖ = maxx |f(x)|.

Proof. Inequality (22) is derived using Theorem 3, Theorem 4 and Theorem 7.

Note that bound (22) is not tight, and further analysis is required to derive better upper bounds.
In the proposed approach, the outcomes of any arbitrary subsets of available worker nodes are sufficient to calculate the
approximated result of g(z) with bounded approximation error introduced in (22). According to (22), the more outcomes are
received from worker nodes, the more accurate the approximation will be.

Theorem 9. Let rBerrut,F (z) be defined by (21) and g(z) = f(u(z)) have a continuous second derivative on [−1, 1]. In a
system with N + 1 worker nodes and s stragglers, where s < N −2, the approximation error of this interpolation using BACC
is upper bounded as

‖rBerrut,F (z)− g(z)‖ ≤ 2(1 +R) sin
( (s+ 1)π

2N

)
‖g′′(z)‖,

if N − s is odd, and

‖rBerrut,F (z)− g(z)‖≤2(1+R) sin(
(s+1)π

2N
)

(
‖g′′(z)‖+‖g′(z)‖

)
,

if N − s is even, where R = (s+1)(s+3)π2

4 .

Proof. The proof can be found in supplementary materials.

Remark 16: Theorem 9 shows that in the proposed scheme, for a fixed total number of worker nodes N , the fewer stragglers
exist, the more accurate the final result will be.
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Fig. 2: Expectation of the relative error of the 100 polynomial functions f of degree deg f using the proposed scheme. Note
that in many cases, the number of non-straggling worker nodes is less than (K− 1) deg f + 1, and still the error is reasonable.

V. SIMULATION RESULTS

As mentioned before, the proposed scheme can be used to approximately evaluate arbitrary real functions at the desired data
points. In this section, we demonstrate the performance of the proposed scheme through some simulation results.
Case 1: f : Rm×m → Rm×m is a polynomial function of degree deg f and the goal is to evaluate f over a data set
X = (X0, . . . ,XK−1), where Xi ∈ Rm×m for i ∈ [K]. Note that in this case N is not necessarily greater than (K−1) deg f+1.
Indeed, N can be very smaller than (K − 1) deg f + 1.

Recall that if we use Lagrange coded computing, in this case, we need at least (K − 1) deg f + 1 worker nodes; otherwise,
the scheme does not work. Even if the number of worker nodes is greater than (K − 1) deg f + 1, LCC is not numerically
stable. The reason is that Lagrange coded computing relays on Vandermonde matrices for decoding, and a real-valued n× n
Vandermonde matrix is ill-conditioned, specially when n becomes large. On the other hand, in Lagrange coded computing, if
the evaluation of a high degree polynomial function over a small data set is considered, the number of required servers becomes
prohibitively large. In many applications, having an approximated results of evaluation f over the data set is enough as long as
it is numerically stable, and the computational complexity is low. Thus, proposed BACC scheme can be used to approximately
evaluate the function over the desired data set without those challenges. In this simulation, for each value of (N, k,deg f),
we generate 100 different polynomial functions f : R → R, where the coefficients of each polynomial function are chosen
uniformly at random on the interval [−10, 10]. The input data points X1 . . . XK−1 ∈ R are chosen uniformly at random
on the interval [−1, 1] for each function. We consider scenarios where s of N worker nodes are stragglers. Since there are
many different subsets of size s from N , we generate 1000 cases chosen uniformly at random for each polynomial function.
In particular, in Fig. 2 we consider four cases: (N,K,deg f) = (500, 20, 25), (700, 20, 35), (700, 30, 35), (500, 30, 25). For
each number of stragglers, the shadow area in Fig. 2 represents the relative error of all functions averaged over all choices
of stragglers. Also, the solid line represents the overall average of these errors. Figure 2 shows that the number of required
non-straggling worker nodes is not necessarily equal or greater than (K − 1) deg f + 1 to approximately evaluate function f
over the input data set. As mentioned before, Lagrange coded computing does not work with less than (K − 1) deg f + 1
worker nodes. Also, the more results are available from the worker nodes, the more accurate is the final results.

Another choice for the interpolation points is the equidistant points. Figure 3 compares the impact of using BACC with
Chebyshev points and using BACC with the equidistant points in the expectation of relative error results over a set of 100
different polynomial functions. In this simulation, we consider (N,K, deg f) = (500, 20, 25). Figure 3 shows that, as compared
to equidistant points, using BACC with Chebyshev points can reduce the expectation of the relative error by an order of
magnitude, where f is a polynomial function.
Case 2: f : Rm×m → Rm×m is not a polynomial function. Note that the existing coded computing schemes are limited
to polynomial functions, and they do not work in this case. Here, we use BACC to approximately evaluate non-polynomial
function f over the input data set X0, . . .XK−1. We consider f = x sinx and the input points are Xi = −12 + 24i

19 , for
i = 0, . . . , 19. The performance of the proposed scheme is shown in Fig. 4, where N = 60 and s = 20.

Figure 5 shows the expectation of the relative error of the approximation of the function f = x sinx using the proposed
scheme versus the number of stragglers. In this figure, two different values for the total number of worker nodes N = 250, 300
and the number of input data points K = 20, 30 are considered. Note that the stragglers are chosen uniformly at random over
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Fig. 3: Comparison between the impact of using the proposed scheme and using the equidistant points in the expectation of
the relative error of a set of 100 polynomial functions f of degree deg f = 25, where N = 500 and K = 20.
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Fig. 4: Approximation of the function f = x sinx in the input data set using BACC, where K = 20, N = 60 and s = 20.

N worker nodes in 1000 iterations. Also, the input data points are chosen uniformly at random in the interval [−1, 1]. As
shown in Fig. 5, the proposed scheme exhibits a very good performance for this function.

VI. APPLICATION OF THE PROPOSED SCHEME IN DEEP LEARNING

Deep neural networks face the challenge of training complicated models with large data sets. Distributed machine learning
can be used as an inevitable solution to overcome this challenge. In this scenario, the data set is divided among worker nodes,
and the stochastic gradient descent algorithm is used to train the model. In each iteration of the training process, partial
gradients are computed in each worker node based on the local data samples and are returned to the master node, where the
model parameters are updated using these gradients. The updated parameters are then reported to the master node. In this
section, BACC as a coding scheme, is used to overcome some challenges of distributed learning such as stragglers effect, and
also some major challenges of coded computation approaches in distributed learning such as numerical instability, limiting to
a specific class of function like polynomial functions, and the increase of the number of needed servers in proportion to the
degree of the polynomial and the size of data set.

In our scheme, worker nodes compute the partial gradient on their assigned coded data set. Having aggregated the results
of fastest worker nodes, the master node is capable of approximately evaluating the full gradient even if there are s stragglers
in the distributed system. In brief, BACC is a numerically stable scheme in which the full gradient vectors are approximately
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Fig. 5: Expectation of the relative error of the approximation of the function f = x sinx for x ∈ [−1, 1] using the proposed
scheme, for different values of N and K.

computed with low computational complexity. Also, in BACC, the number of required worker nodes is decreased by sacrificing
a small amount of accuracy such that the approximated result has a bounded error.

Assume a deep neural network (DNN) with L layers consisting of L parameter matrices W` (weights) for ` = 1, . . . L,
which have to be updated in each iteration during the training process. Each iteration of training process has three steps called
feedforward, back-propagation, and updating step. Now we explain briefly about these steps which are needed to explain our
scheme. Suppose the `th layer of DNN has M` neurons, and let w`(m) ∈ RM`−1 be the weight vector of mth neuron of the
`th layer where m = 1, . . .M` and ` = 1, . . . L. Thus, the output of the mth neuron of the `th layer at the tth iteration is
computed as

s
(t)
` (m) = fa

(
(w

(t)
` (m))T s

(t)
`−1

)
∈ R, (23)

where fa(.) is an activation function which can be Sigmoid, ReLU, tanh or other non-linear common activation functions.
Note that for the first layer we have s

(t)
0 = x(t), where x(t) ∈ Rd is the training data sample with d features used for the

tth iteration of training. Now consider a supervised machine learning problem. Given a training data set D = {(xi, yi)}ni=1,
where xi ∈ Rd is the input sample with d features, and yi ∈ R is the corresponding label. We represent the input samples as
a matrix X ∈ Rn×d, where xTi is the ith row of X. In many supervised machine learning problems, the goal is to learn the
parameters W` ∈ RM`×M`−1 for ` = 1 . . . L by minimizing the following empirical loss function

J(D;W1, . . .WL) =
1

|D|
∑

(x,y)∈D

J(x, y;W1, . . .WL).

Common loss functions J(x, y;W1, . . .WL) in machine learning problems are mean squared error loss, hinge loss, logistic
loss and cross-entropy loss, which are chosen according to some factors such as the type of machine learning algorithm, the
type of data set and complexity of this minimization problem. One approach to solve this optimization problem is gradient
descent algorithm, which starts with some initial value for W`, and then in each iteration t updates this parameters as

w
(t+1)
` (m) = w

(t)
` (m)− η∇

w
(t)
` (m)

J(D;W
(t)
1 , . . .W

(t)
L ),

where η ∈ R is the learning rate, w(t)
` (m) ∈ RM`−1 is the weight of mth neuron of the `th layer at the tth iteration, and

∇
w

(t)
` (m)

J(D;W
(t)
1 , . . .W

(t)
L ) is the gradient of the loss function at the current parameters. The gradient is computed as

∇
w

(t)
` (m)

J(D;W
(t)
1 , . . .W

(t)
L ) =

1

|D|

n∑
i=1

∂J(xi, yi;W
(t)
1:L)

∂w
(t)
` (m)

,

where the partial gradient operates on each scalar element of the vector w
(t)
` (m). According to partial gradients of the loss
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Fig. 6: A simple comparison among three distributed learning settings (a) Berrut Coded Computing, (b) the scheme without
data redundancy, and (c) the data replication scheme, all with N = 3, K = 3, where each x̃i is a particular linear combination
of xj , j ∈ [1 : 3] as mentioned in the proposed scheme. The number of straggling worker nodes in all settings is 1.

function, we have

w
(t+1)
` (m) = w

(t)
` (m)− η

|D|

n∑
i=1

δ
(t,i)
` (m)s

(t,i)
`−1 , (24)

where δ
(t,i)
` (m) is the back-propagation error of neuron m of `th layer corresponding to the data sample i which can be

computed as a function of back-propagation error vector of ` + 1th layer. Now in a distributed learning approach consider
a distributed system with one master node and N + 1 worker nodes W0, . . .WN which aim to collaboratively compute the
gradient assuming that s nodes are straggler. Due to the limited computing power of each worker node, the training dataset
D is partitioned into K non-overlapping equal-size subsets D = {D0, . . .DK−1}, where Dj = (Xj ,yj) for j ∈ [K − 1] is a
subset of dataset with size |Dj | = B, for some integer B. Thus, the update rule for the weights of layer ` is given by

W
(t+1)
` = W

(t)
` −

η

|D|

K−1∑
j=0

∆
(t,j)
` (S

(t,j)
`−1 )T , (25)

where ∆
(t,j)
` ∈ RM`×B is the back-propagation error matrix corresponding to the jth subset of dataset whose (m, b)-th

entry is defined as δ(t,bj)
` (m) (bj denotes the index of data sample in the subset j of dataset), and S

(t,j)
`−1 ∈ RM`−1×B is

the output of layer ` − 1 corresponding to the jth subset of dataset whose (m, b)-th entry is s(t,bj)
`−1 (m). Assume function

g(X, `;W
(t)
1 , . . .W

(t)
L ) ,

∑K−1
j=0 ∆

(t,j)
` (S

(t,j)
`−1 )T for given values ` and {W(t)

` }L`=1. It is clear that function g is a non-linear
function of X. For simplicity of presentation, we denote g(X, `;W

(t)
1 , . . .W

(t)
L ) by g(X).

According to (25), we can apply the proposed scheme in Section III to approximately compute the value of the updated
weights. In the following, we briefly describe our method in the distributed learning setting.
1) First, the master node encodes the subsets of the data samples, i.e., Xi, i ∈ [K − 1] using (18), and generates the rational
function u(z). Then the master node selects zr = cos jπN and sends X̂r , u(zr) to the rth worker node for r ∈ [N ]. At each
iteration t of the training, the master node needs to send the current estimated parameters {W(t)

` }L`=1 to each worker node.
2) Each worker node stores a linear combination of all subsets of data set. So, worker nodes compute the gradient based on
the shared parameter matrix {W(t)

` }L`=1 with their local data samples X̂r, r ∈ [N ] in parallel, and then send the results back
to the master node.
3) The announced result of worker node r is an evaluation of the function g(u(z)) at z = zr. Having received the results from
a set of non-straggling worker nodes F , the master node can approximately recover g(u(z)) with O(|F|) of computational
complexity as

ĝ(u(z)) =

n∑
i=0

(−1)i

(z−z̃i)∑
j

(−1)j

(z−z̃j)

g(u(z̃i)), (26)

where z̃i ∈ S, i ∈ [n] are the interpolation points, where S = {cos jπN , j ∈ F}, and n , |F| − 1.
4) The approximated value of g(Xj) is achieved by computing ĝ(u(αj)) for j ∈ [K − 1], and the master node can update the
model parameter using (25).

VII. EXPERIMENTS

In this section, we demonstrate the impact of BACC in distributed learning problem. The proposed scheme is evaluated for
MNIST [41], Fashion-MNIST [42], and Cifar-10 [43] data sets. For this experiment, we use a LeNet [44] architecture, which
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Fig. 7: Comparison of the test accuracy of BACC, data replication scheme, and the scheme without data redundancy on (a)
MNIST, (b) Fashion-MNIST, and (c) Cifar-10 on LeNet architecture, in a distributed system with (I) N = 3, s = 1 and (II)
N = 5, s = 2.

consists of two convolutional layers, followed by two fully-connected layers. In BACC, each worker node only computes
gradients sampled from its coded data, which is the combination of K mini-batches. More precisely, for computing the loss
function, we consider our method as a multi-label classification problem in which the training set is composed of samples each
associated with a set of labels. In BACC, each worker node needs known coded labels for its training coded data set. For example,

the ith coded label of the rth worker node can be considered as the normalized form of vector ycoded
i,r ,

∣∣∣∣∑K−1
j=0 yj,rµj,r

∣∣∣∣,
where yj,r for j ∈ [K− 1] are K one-hot labels of the samples which are combined with specific coefficients in the ith coded
data sample. Thus, µj,r = (−1)j

(zr−αj)/
∑K−1
i=0

(−1)i

(zr−αi) . Note that the coded labels show that which classes are combined in the
coded sample by considering their coefficients. Then, each worker node uses Sigmoid Cross-Entropy loss function to compute
the loss and start the back-propagation algorithm. Having computed the coded gradient vectors of the layers, each worker node
sends their coded gradient vectors to the master node. The master node then decodes all desired gradients and updates the
model.

For comparison, we implement two other methods. One of them is a data replication-based approach, in which each mini-
batch is replicated on s+1 worker nodes with a specific pattern such that the resulting distributed system tolerates the presence
of s stragglers. Another method is a distributed approach without data redundancy. Thus, it can not tolerate the presence of
stragglers and can be considered as an approximated scheme. As a simple example, Fig. 6 (a) shows the proposed scheme, Fig.
6 (b) shows the distributed scheme without data redundancy, and Fig. 6 (c) shows the distributed setting of the data replication
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approach, where N = 3, K = 3, and up to the s = 1 of these worker nodes can be straggler. According to these configurations,
in BACC, each worker node processes one coded data and sends the result back to the master node, but in the data replication
approach, each worker node processes two raw data and completes its task by sending the results to the master node. Thus,
the communication load needed in this approach for each worker node is two times greater compared to the proposed scheme.
In other words, in BACC the computation and communication load per worker node is less compared to the data replication
approach, but due to the proposed coding and decoding steps, the approximated results are computed in the proposed scheme.
In the following, we implement the proposed scheme and two other approaches in a practical distributed learning problem.
We implement the experiments in PyTorch [45] using the MPI4Py [46], which is a Python package that provides the Message
Passing Interface (MPI) standard for the Python programming language. All the experiments are implemented on a high
performance computing system with Intel Xeon CPU E5-2699A v4 and up to 512GB RAM. We implement two scenarios
in which the number of worker nodes and the stragglers are set to (N, s) = (3, 1) and (N, s) = (5, 2). Figure 7 shows
how the testing accuracy varies with wall-clock run-time of training. Note that for all configurations, tests are performed on
the raw test data set in the master node after each epoch. These curves show that the proposed BACC scheme achieves a
certain test accuracy faster than the data replication scheme. Of course, later the data replication-based approach achieves the
same accuracy and it slightly surpasses the proposed coded scheme but it is just slower. The scheme without data redundancy
converges fast but it can not achieve the final test accuracy of the data replication scheme and the proposed BACC scheme.
The reason is that there are some stragglers in the distributed system, thus in the scheme without data redundancy some parts
of the training data set have not been used in the training process.
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VIII. SUPPLEMENTARY MATERIALS

A. Proof of Lemma 6

Proof. According to (12), Berrut’s rational interpolation has basis functions as follows

`i,Berrut(x) =

(−1)i

(x−xi)∑n
j=0

(−1)j

(x−xj)

. (S.27)

Thus, the Lebesgue constant for Berrut’s rational interpolant can be calculated as follows

Λn = max
k∈[n−1]

max
xk+1<x<xk

n∑
i=0

|`i,Berrut(x)|. (S.28)

Fallowing the approach in [47], we define two functions for k ∈ [n− 1] as follows

Nk(x) , (xk − x)(x− xk+1)

n∑
i=0

1

|x− xi|
, (S.29)

and

Dk(x) , (xk − x)(x− xk+1)

∣∣∣∣ n∑
j=0

(−1)
j

(x− xj)

∣∣∣∣. (S.30)

To find an upper bound for the Lebesgue constant it is enough to bound Nk(x) from above and Dk(x) from below. For each
x, there exist k such that xk > x > xk+1, so we have

Nk(x) = (xk − x)(x− xk+1)

n∑
i=0

1

|x− xi|
(S.31)

= (xk − xk+1) + (xk − x)(x− xk+1)

( k−1∑
i=0

1

xi − x
+

n∑
i=k+2

1

x− xi

)
(S.32)

= (xk − xk+1) + (x− xk+1)

k−1∑
i=0

xk − x
xi − x

+ (xk − x)

n∑
i=k+2

x− xk+1

x− xi
(S.33)

≤ (xk − xk+1)

(
1 +

k−1∑
i=0

xk − xk+1

xi − xk+1
+

n∑
i=k+2

xk − xk+1

xk − xi

)
. (S.34)

One can verify that (S.34) attains its maximum value if there exist k = k̄ such that xk and xk+1 have the maximum possible
distance between in Xn. This happens if xk̄ = cos k̄π

n+s and xk̄+1 = cos (k̄+s+1)π
n+s . That means all s elements not included in

Xn are ordered consecutively.
On the other hand, if k is an even integer then we have

Dk(x) = (xk − x)(x− xk+1)

∣∣∣∣ n∑
j=0

(−1)
j

(x− xj)

∣∣∣∣ (S.35)

= (xk − x)(x− xk+1)

∣∣∣∣( 1

x− x0
− 1

x− x1
) + · · ·+ (

1

x− xk−2
− 1

x− xk−1
) + (

1

x− xk
− 1

x− xk+1
)

+ (
1

xk+3 − x
− 1

xk+2 − x
) + . . .

∣∣∣∣.
All paired terms except ( 1

x−xk −
1

x−xk+1
) are positive for xk > x > xk+1. So, Dk(x) is bounded from below as follows

Dk(x) ≥
∣∣∣∣D̄(x) + (xk − x)(x− xk+1)(

1

x− xk
− 1

x− xk+1
)

∣∣∣∣ ≥ ∣∣∣∣D̄(x)− (xk − xk+1)

∣∣∣∣, (S.36)
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Where D̄(x) is a positive number for x ∈ [xk+1, xk]. Now if k is an odd integer. So, we have

Dk(x) = (xk − x)(x− xk+1)

∣∣∣∣( 1

x− x0
− 1

x− x1
) · · ·+ (

1

x− xk−1
− 1

x− xk
) + (

1

xk+2 − x
− 1

xk+1 − x
) + . . .

∣∣∣∣
≥
∣∣∣∣(xk − x)(x− xk+1)

(
(

1

x− xk−1
− 1

x− xk
) + (

1

xk+2 − x
− 1

xk+1 − x
)

)∣∣∣∣
=

∣∣∣∣(xk − x)(x− xk+1)

(
1

x− xk−1
+

1

xk+2 − x

)
− (xk − xk+1)

∣∣∣∣ =

∣∣∣∣D̃(x)− (xk − xk+1)

∣∣∣∣, (S.37)

where D̃(x) has positive values for x ∈ [xk+1, xk]. Therefor, according to (S.36) and (S.37), Dk(x) is minimized if there exist
k = k̄ such that xk and xk+1 have the maximum possible distance in Xn. That means xk̄ = cos k̄π

n+s and xk̄+1 = cos (k̄+s+1)π
n+s .

Note that the value of n has no effect on the above expressions.

B. Proof of Theorem 7

Proof. According to definition 7, it is sufficient to find some constant parameters C,R ≥ 1 such that the three conditions in
Definition 7 hold for each xi ∈ Xn, i ∈ [n].
Finding C ≥ 1: We check the first condition. Let N = n + s, and assume that for each k ∈ [n − 1], there exists αk ≥ k
such that xk = x̃αk = cos αkπN , where αk ∈ [N − 1]. Note that the nodes are ordered, i.e., x0 < x1 < · · · < xn hence
x̃α0 < · · · < x̃αk . So, we have

xk+1 − xk
xk+1 − xj

=
− cos αk+1π

N + cos αkπN
− cos αk+1π

N + cos
αjπ
N

=
sin (αk+1+αk)π

2N sin (αk+1−αk)π
2N

sin
(αk+1+αj)π

2N sin
(αk+1−αj)π

2N

, (S.38)

where αj ≤ αk. Now assume that there exists 1 ≤ β ≤ s+ 1 such that αk+1 = αk + β. So, we can rewrite (S.38) as follows

xk+1 − xk
xk+1 − xj

=
sin (2αk+β)π

2N sin βπ
2N

sin
(αk+β+αj)π

2N sin
(αk+β−αj)π

2N

. (S.39)

According to the range of k, j and β, we know that βπ
2N ≤

π
2 and (αk+β−αj)π

2N ≤ π
2 . Now we have two cases

1) if (2αk+β)π
2N ≤ π

2 : Since 2αk + β ≥ αk + β + αj then (αk+β+αj)π
2N ≤ π

2 . So, we have

xk+1 − xk
xk+1 − xj

≤
(2αk+β)π

2N
βπ
2N

2(αk+β+αj)π
π2N

2(αk+β−αj)π
π2N

=
π2β(2αk + β)

4(αk + β + αj)(αk + β − αj)
(S.40)

Note that in (S.40) we use Jordan’s inequality 2θ
π ≤ sin θ ≤ θ for θ ∈ [0, π/2]. One can verify that (2αk+β)

(αk+β+αj)
≤ 2.

Therefore,

xk+1 − xk
xk+1 − xj

≤ π2(s+ 1)

2

1

αk + β − αj
. (S.41)

According to definitions, we know that αk − αj ≥ k − j for k ≥ j. Hence,

xk+1 − xk
xk+1 − xj

≤ π2(s+ 1)

2

1

k + 1− j
. (S.42)

2) if (2αk+β)π
2N ≥ π

2 : According to (S.39) in this case we have

xk+1 − xk
xk+1 − xj

≤
sin (2αk+β)π

2N
βπ
2N

sin
(αk+β+αj)π

2N
2(αk+β−αj)π

π2N

. (S.43)

Because 2αk + β ≥ αk + β + αj if (αk+β+αj)π
2N ≥ π

2 , then sin
(2αk+β)π

2N

sin
(αk+β+αj)π

2N

≤ 1. So,

xk+1 − xk
xk+1 − xj

≤ π(s+ 1)

2

1

k + 1− j
. (S.44)

On the other hand if (αk+β+αj)π
2N ≤ π

2 then by using the inequality sin θ ≤ 2θ
π for θ ∈ [π/2, π], we have

xk+1 − xk
xk+1 − xj

≤
2(2αk+β)π

π2N
βπ
2N

2(αk+β+αj)π
π2N

2(αk+β−αj)π
π2N

≤ π(s+ 1)
1

k + 1− j
. (S.45)
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According to (S.42), (S.44), and (S.45), the first condition of Definition 7 holds with C = π2(s+1)
2 . Note that s is independent

of N . With the same argument one can proof the second condition of Definition 7 as well.
Finding R ≥ 1: We find a constant R ≥ 1 such that the third condition of Definition 7 holds, i.e., 1

R ≤
xk+1−xk
xk−xk−1

≤ R.

According to Lemma 6, in the worst case, there exists k̄ such that xi = x̃i = cos iπN for i ∈ [k̄], and xi = x̃i+s = cos (i+s)π
N

for i ∈ [k̄ + 1, n]. Now we consider three cases as follows
Case 1: if k = k̄: we observe that

xk̄+1 − xk̄
xk̄ − xk̄−1

=
cos (k̄+s+1)π

N − cos k̄πN

cos k̄πN − cos (k̄−1)π
N

=
sin (2k̄+s+1)π

2N sin (s+1)π
2N

sin (2k̄−1)π
2N sin π

2N

, (S.46)

We define θ = (2k̄−1)π
2N . Furthermore, we know that θ ∈ [ π2N , π −

(2s+5)π
2N ]. It is clear that π

2N ,
(s+1)π

2N ≤ π
2 . Thus,

xk̄+1 − xk̄
xk̄ − xk̄−1

≤
(s+1)π

2N sin (θ + (s+2)π
2N )

1
N sin θ

=
(s+ 1)π

2

sin θ cos (s+2)π
2N + cos θ sin (s+2)π

2N

sin θ
(S.47)

=
(s+ 1)π

2

(
cos (

(s+ 2)π

2N
) + sin (

(s+ 2)π

2N
) cot θ

)
. (S.48)

According to the range of θ, we know cot θ ≤ cot π
2N . Therefore,

xk̄+1 − xk̄
xk̄ − xk̄−1

≤ (s+ 1)π

2

(
cos

(s+ 2)π

2N
+ sin

(s+ 2)π

2N
cot

π

2N

)
(S.49)

=
(s+ 1)π

2

( sin (s+3)π
2N

sin π
2N

)
≤ (s+ 1)(s+ 3)π2

4
(S.50)

On the other hand,

xk̄+1 − xk̄
xk̄ − xk̄−1

≥ 2(s+ 1)

π

(
cos (

(s+ 2)π

2N
) + sin (

(s+ 2)π

2N
) cot θ

)
(S.51)

≥ 2(s+ 1)

π

(
cos (

(s+ 2)π

2N
) + sin (

(s+ 2)π

2N
) cot (π − (2s+ 5)π

2N
)
)

(S.52)

=
2(s+ 1)

π

sin (s+3)π
2N

sin (2s+5)π
2N

≥ 2(s+ 1)

π

sin (s+3)π
2N

sin (2s+6)π
2N

≥ (s+ 1)

π
, (S.53)

if (s+3)π
N ≤ π/2. On the other hand, if (s+3)π

N > π/2 then π
4 <

(s+3)π
2N ≤ π

2 + π
2N . Thus

xk̄+1 − xk̄
xk̄ − xk̄−1

≥ 2(s+ 1)

π

sin (s+3)π
2N

sin (2s+5)π
2N

≥ 2(s+ 1)

π

sin π
4

1
=

√
2(s+ 1)

π
, (S.54)

if s < N−2. According to (S.50), (S.53) and (S.54), in this case, the third condition of definition 7 holds with R = (s+1)(s+3)π2

4 .
Case 2: if k = k̄ + s+ 1, then we have

xk̄+s+2 − xk̄+s+1

xk̄+s+1 − xk̄
=

cos (k̄+s+2)π
N − cos (k̄+s+1)π

N

cos (k̄+s+1)π
N − cos k̄πN

=
sin (2k̄+2s+3)π

2N sin π
2N

sin (2k̄+s+1)π
2N sin (s+1)π

2N

≤ π

2(s+ 1)

sin(θ̃ + (s+2)π
2N )

sin θ̃
, (S.55)

where θ̃ , (2k̄+s+1)π
2N . According to the range of θ̃ ∈ [ (s+3)π

2N , π − (s+3)π
2N ], (S.55) is bounded as follows

xk̄+s+2 − xk̄+s+1

xk̄+s+1 − xk̄
≤ 2π

2(s+ 1)
cos

(s+ 2)π

2N
≤ π

s+ 1
. (S.56)

On the other hand,

xk̄+s+2 − xk̄+s+1

xk̄+s+1 − xk̄
≥ 2

π(s+ 1)

sin π
2N

sin (s+3)π
2N

≥ 4

π2(s+ 1)(s+ 3)
. (S.57)

Case 3: if k < k̄ or k > k̄ + s+ 1, one can verify that

2

3π
≤ xk+1 − xk
xk − xk−1

=
cos (k+1)π

N − cos kπN

cos kπN − cos (k−1)π
N

≤ 3π

2
. (S.58)

According to these cases, the third condition of definition 7 holds with R = (s+1)(s+3)π2

4 for s < N − 2.
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C. Proof of Theorem 9

Proof. From Theorem 5 we know

‖rBerrut,F (z)− g(z)‖ ≤ h(1 + λ)‖g′′(z)‖, (S.59)

if n is odd, and

‖rBerrut,F (z)− g(z)‖ ≤ h(1 + λ)
(
‖g′′(z)‖+ ‖g′(z)‖

)
, (S.60)

if n is even. Let X = {xk}nk=0 be a set of ordered distinct interpolation points which is a subset of Chebyshev points of second
kind, i.e., X ⊂ X̃ = {x̃α}Nα=0, where xk = x̃αk = − cos αkπN and N = n+ s, αk ≥ k. We define function h(k) = xk+1− xk.
So, there exist 1 ≤ β ≤ s+ 1 such that h(k) = − cos (αk+β)π

N + cos αkπN . One can show that h(k) attains its maximum when
αkπ
N = π

2 −
βπ
2N . Therefore, we have

h = max
0≤k≤n

(xk+1 − xk) = 2 sin
βπ

2N
≤ 2 sin

(s+ 1)π

2N
, (S.61)

because sin(x) is increasing in [0, π/2]. On the other hands, according to Max-min inequality, the local mesh ratio is bounded
as follows

λ ≤ min{ max
1≤i≤n−2

xi+1 − xi
xi − xi−1

, max
1≤i≤n−2

xi+1 − xi
xi+2 − xi+1

}. (S.62)

According to Appendix VIII-B, we know that xi+1−xi
xi−xi−1

≤ R and similarly one can prove that xi+1−xi
xi+2−xi+1

≤ R as well, where

R = (s+1)(s+3)π2

4 and i = [1 : n− 2]. Therefore the mesh ratio is bounded and we have λ ≤ R.
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