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Abstract—In this work, we design a fully complex-valued neural network for the task of iris recognition. Unlike the problem of general

object recognition, where real-valued neural networks can be used to extract pertinent features, iris recognition depends on the

extraction of both phase and magnitude information from the input iris texture in order to better represent its biometric content. This

necessitates the extraction and processing of phase information that cannot be effectively handled by a real-valued neural network.

In this regard, we design a fully complex-valued neural network that can better capture themulti-scale,multi-resolution, andmulti-orientation

phase and amplitude features of the iris texture. We show a strong correspondence of the proposed complex-valued iris recognition

network with Gabor wavelets that are used to generate the classical IrisCode; however, the proposed method enables a new

capability of automatic complex-valued feature learning that is tailored for iris recognition. We conduct experiments on three

benchmark datasets - ND-CrossSensor-2013, CASIA-Iris-Thousand and UBIRIS.v2 - and show the benefit of the proposed network

for the task of iris recognition. We exploit visualization schemes to convey how the complex-valued network, when compared to

standard real-valued networks, extracts fundamentally different features from the iris texture.

Index Terms—Automatic complex-valued iris feature learning, data-driven iris recognition, complex-valued networks
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1 INTRODUCTION

THE human iris is a powerful biometric pattern that has
the potential to deliver high recognition accuracy at low

false match rates. This is due to (i) the complex textural pat-
tern of the iris that is believed to be unique to each eye, and
(ii) the limited genetic penetrance of the iris texture [8], [29],
[40]. The success of iris recognition - besides its attractive
physical characteristics - is rooted in the development of
efficient feature descriptors, especially the IrisCode intro-
duced in Daugman’s pioneering work [6], [8], [11] and
many other descriptors that have subsequently evolved
[20], [22], [26], [35], [46], [48].

The last few years have seen a transition in the iris recogni-
tion community to deep neural networks to take advantage of
their automatic feature learning capability [24], [31], [52], [55].
This provides us with an alternative approach in feature
design by automatically learning and discovering feature rep-
resentations directly from data, eliminating some of the pit-
falls in developing handcrafted features [1]. Despite the
promise and a number of initial efforts in this direction, deep
neural networks have not been exactly revolutionary in iris
recognition. This could be because existing deep iris recogni-
tion networks in the literature are directly derived from

general deep learning theory for natural images. These
approaches do not take into account some of the unique prop-
erties of the iris texture. Compared to the statistics of natural
images as defined in [14], the iris texture itself is stochastic
[10]without consistent shapes, edges, or stromalmorphology.
This makes it significantly different from non-stochastic and
structured patterns occurring in object-based natural images.
The intrinsic differences between iris texture images and object-
based natural images requires automatic feature learning to be
tailored with domain-specific knowledge in order for it to
reach its full potential in the iris recognition setting.

The contribution of this paper stems from our investiga-
tion of the classical IrisCode. Technically speaking, we can
split the encoding process of the IrisCode into two steps: (i)
representing the iris texture image in the complex space by
applying Gabor wavelets, and (ii) quantizing the phase of
the complex representation to generate the final descriptor.
While the first step emphasizes the importance of the com-
plex-valued representation, the second accentuates the
importance of phase information. The importance of both
complex-valued representation and phase information has
been reinforced in many other handcrafted approaches. For
example, Kong et al. represented the iris texture image in
the Gabor complex space and employed precise phase to
encode the iris [22]. Monro et al. [27] and Miyazawa et al.
[26] represented the iris texture image in the Cosine and
Fourier spaces and then used the phase to encode the iris.

All existing deep networks proposed for iris recognition
in the literature have not been able to incorporate this
domain knowledge. First, they all operate in the real-valued
space with real-valued operations and feature maps. Com-
pared to a complex-valued representation, existing real-val-
ued iris recognition networks may be limited in the space in
which they can learn feature representations. The fact that
they completely ignore the complex-valued nature of the iris
feature representation may discard many of the benefits of
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the complex-valued representation. Second, all existing
deep iris recognition networks have no mechanism to
explicitly retain the phase along the network pipeline.
Explicitly modeling and processing phase information in
the automatic feature learning process is expected to better
deal with the unique properties of the iris texture.

Motivated by these insights, we propose to shift from
standard automatic real-valued feature learning as in cur-
rent deep iris networks to automatic complex-valued feature
learning. On the one hand, the shift from a real-valued space
to a complex-valued space will enrich the search space for
the feature learning process. On the other hand, the space
shift allows us to incorporate domain knowledge of iris rec-
ognition to tailor modern deep learning to take into account
the unique properties of the iris texture.

Applying complex-valued networks in the iris recogni-
tion setting is not obvious, since the iris images themselves
are real numbers, which explains why all existing deep iris
networks have been designed and operated only in the real
domain. We re-purpose the complex response of Gabor
wavelets as the complex input to be further processed by a
fully complex-valued network. This enables us to retain the
complex-valued nature of the feature representation through
the entire pipeline. When the complex-valued nature of the
feature representation is retained, it is trivial to recover the
phase information from the real and imaginary components.
Compared to the classical IrisCode and its phase-based
derivatives, the proposed fully complex-valued iris recogni-
tion network retains the benefits of operating in the complex
space, but learns a feature representation in a data-driven
manner as opposed to being human-designed. This is illus-
trated in Fig. 1.

The core contributions of this work can be divided into
three parts.

� We propose to shift processing of the iris texture to
the complex-valued space in deep neural networks.
To the best of our knowledge, this is the first attempt

of its kind. The complex-valued concepts allow the
network to better cater to the unique properties of
iris features, explicitly retaining the phase informa-
tion in the feature representation. However, it also
requires fundamental changes to the network design
and training process.

� We propose a novel fully complex-valued network
to enable this shift. It enables, for the first time, auto-
matic complex-valued feature learning in the iris rec-
ognition setting. Compared to standard automatic
feature learning in standard real-valued networks,
automatic complex-valued feature learning discov-
ers more discriminative representations for the iris
texture.

� We provide an insight that fully complex-valued net-
works have a solid mathematical and theoretical
foundation to better suit iris recognition than stan-
dard real-valued networks. In addition, complex-
valued networks show a strong correspondence with
the classic IrisCode and its phase-based derivatives.
This allows us to validate the optimality of the exist-
ing handcrafted feature representations.

The remainder of the paper is organized in 5 sections. Sec-
tion 2 discusses the evolution of representation in iris recog-
nition, from classical handcrafted approaches to modern
deep learning and the need for tailored deep learning for iris
recognition. Section 3 justifies why complex-valued net-
works better suit iris recognition than standard real-valued
networks. Section 4 presents our proposed complex-valued
iris recognition network. Section 5 describes our experimen-
tal results and the paper is concluded in Section 6.

2 REPRESENTATION EVOLUTION IN IRIS
RECOGNITION

Over the last 20 years, representation of the iris texture for
iris recognition has evolved from classic handcrafted fea-
tures tomodern representation learning using deep learning.

Fig. 1. The classic IrisCode depends on the complex-valuedGabor response followed by phase quantization, which is not learned from the data. Exist-
ing deep iris recognition networks perform automatic feature learning in the real-valued domain, which cannot adequately capture and retain phase
information along the pipeline. This paper proposes to shift processing of the iris texture to a fully complex-valued space, which has a richer representa-
tion capacity, better leverages the unique characteristics of the iris texture, and has a strong correspondence with complex Gabor wavelets.
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Classic Handcrafted Features. The richness and stochastic-
ity of the iris texture lends itself to the application of
Gabor wavelets with Hamming distance for comparing
iris images [8]. Complex-valued Gabor responses capture
the rich details of the iris texture in terms of both spectral
and spatially localized properties [7]. Both coarsely-quan-
tized phase [11] and precise phase [22] of the Gabor
response can create stable bit streams for a given eye,
which are, nevertheless, sufficiently different across dif-
ferent eyes. The efficiency of phase encoding in a com-
plex-valued space is reinforced through many other
descriptors that have subsequently evolved [20], [22],
[26], [27], [48]. Miyazawa et al. and Monro et al. encoded
phase components in 2D Discrete Fourier Transforms
(DFTs) and 2D Discrete Cosine Transforms (DCTs) to
extract a phase code for representing iris information [26],
[27]. Similarly, Tan et al. encoded Zernike moments-based
phase features which are computed from partially over-
lapping regions to more effectively accommodate local
pixel region variations in the normalized iris images [48].
Departing from the complex-valued phase-based encod-
ing, some notable works harness ordinal measures [46],
compressive sensing theory [35] and deformation field
[37] to represent irises.

The use of handcrafted features has certain advantages.
One of the biggest advantages is the use of domain knowl-
edge gained over a period of time to focus on the biological
and physical processes constituting iris recognition. For
example, algorithms such as IrisCode [5] are based on a
deep understanding of the iris structure. Modern represen-
tation learning approaches using deep networks provide
another perspective in designing iris features by automati-
cally learning representations directly from data [3].

Modern Representation Learning. Deep networks have been
employed to learn feature representations for iris images
automatically and directly from data. There are two catego-
ries of deep networks proposed for iris recognition: classifi-
cation networks and similarity networks. Classification iris
networks employ deep architectures with a softmax loss to
classify an input iris image into a list of known identities.
Typical examples of these networks are [13], [30]. The main
requirement of the softmax-based networks is that the test
image has to belong to one of the classes in the training set,
which means the networks will have to be re-trained when-
ever a new class is added. In contrast, similarity iris net-
works employ deep architectures with a pairwise loss to
learn a metric representing how similar or dissimilar two
iris images are without knowing their identities. Zhao et al.
argued that classification networks may not be optimal for
iris recognition since the iris texture is inherently stochastic
and does not exhibit structural information or meaningful
hierarchies [55]. Compared to the classification networks,
similarity iris networks directly reflect what we want to
achieve, i.e., to train the representation to correspond to iris
(dis)similarity. This results in irises of the same subject hav-
ing small distances and irises of different subjects having
larger distances. Typical examples of these networks are
[24], [31], [52], [55].

To fully exploit the capacity of deep learning in the iris rec-
ognition setting, it is required to tailor networks to suit the
domain specific properties of the iris texture and for iris

recognition. This paper will propose a tailored deep learning
approach for iris recognition using complex-valued networks.

3 WHY COMPLEX-VALUED NETWORKS FOR IRIS
RECOGNITION?

Complex-valued networks originated in application domains
where the input is complex-valued such as remote sensing
[2], [54] and MRI fingerprinting [50]. Compared to standard
real-valued networks, complex-valued networks offer three
key distinctive advantages for iris recognition that can not be
directly achieved by their standard real-valued counterparts.

Richer Representational Capacity for Automatic Feature
Learning. One key advantage of neural networks is auto-
matic feature learning, which employs hierarchical multi-
layer networks to learn a feature representation directly
from data [1]. The complex-valued space of complex-valued
networks allows the learning algorithm to explore a richer
and more versatile search space than the real-valued space
of real-valued networks, potentially leading to the capabil-
ity to learn more discriminative and informative representa-
tions for iris recognition.

Better Leverage the Unique Characteristics of the Iris Texture.
Standard real-valued networks are designed to learn the
appearance of objects through consistent shapes, edges, or
other semantic structures [53]. However, the fact that the
iris texture is stochastic [10] with no consistent shapes,
edges or stromal morphology would make real-valued net-
works struggle to learn any meaningful semantic structures
from the iris texture and unable to realize the full potential
of automatic feature learning.

From a mathematical perspective, there are two key dis-
tinctive properties of complex-valued networks that are
highly desirable in iris recognition.

� Sensitive to phase: Complex-valued networks retain
and process complex-valued features, hence they are
able to retain and recover phase information. This
make them sensitive to phase structure [17]. In iris
recognition, phase is more important than magni-
tude [8]. Phase encoding has been the key to many
classical handcrafted features [11], [22], [26], [27],
[48]; however, standard real-valued networks have
no direct mechanism to retain this. Complex-valued
networks, in contrast, naturally allow us to directly
and explicitly retain phase components due to its
operation in a complex space.

� Locally stationary stochastic processes: The authors
of [49] have provided a solid mathematical frame-
work to prove that complex-valued networks learn
representations that are invariant to scale, resolution
and orientation variations. All three properties, i.e.,
invariant to multi-scale, multi-resolution and multi-
orientation, are highly desirable to deal with varia-
tions in the iris texture.

Correspondence With Gabor Wavelets. In [49], the authors
have provided a mathematical framework to prove that com-
plex-valued networks can be viewed as data-driven nonlinear
multiwavelet packets. Gabor wavelets, as the core of the Iris-
Code, can be easily approximated by a complex-valued net-
work. As depicted in Fig. 1, the automatic complex feature
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learning block in the proposed complex-valued network can
converge to the handcrafted features in the IrisCode and
shrink a complex-valued network to the IrisCode or its other
phase-based derivatives. This generalization capability, inter-
estingly, allows us to validate the optimality of the hand-
crafted IrisCode. During the training process, the network
weights are learned to best represent the iris features. If the
IrisCode features are truly the best representation for the iris
problem, the training should converge the proposed network
to emulate those features and we should achieve accuracy on
par with the IrisCode.However, aswill be shown in Section 4,
the better recognition results of the proposed network prove
that handcrafted IrisCode representations are not always the
optimal answer and a new discriminative and more informa-
tive feature representation can be deduced directly from the
data by the proposed network. Standard real-valued net-
works do not obviously exhibit the same exact correspon-
dence with data-driven wavelets [49], making them less
effective in the iris feature learning.

In summary, our contribution to develop complex-valued
networks for iris recognition is driven by multiple factors.
First, our approach will provide a richer representational
capacity through a complex representation which is data
driven through automatic feature learning. Second, our
approach is driven by the biological characteristics of the iris
texture, which is stochastic in nature and lacking in consis-
tent shapes, edges or semantic structures. Through provision
of a network which is able to retain and recover phase infor-
mation in the iris textural features, we can better exploit its
intrinsic features for greater accuracy while making it invari-
ant to scale, resolution and orientation variations. Third, by
explicitly encoding phase information, we can directly com-
pare our approach with both phase-based handcrafted
approaches (such as the IrisCode) along with standard real-
valued networks to validate their optimality for the iris rec-
ognition setting.

4 THE PROPOSED FULLY COMPLEX-VALUED IRIS
RECOGNITION NETWORK

We propose ComplexIrisNet - a densely-connected fully-
convolutional and complex-valued network architecture -
for the iris recognition task. The proposed network is illus-
trated in Fig. 2. There are three major characteristics to high-
light for the proposed network:

� Fully complex-valued: All network operations and
feature maps are complex-valued. This brings it in
line with the nature of the iris feature representation
since the interaction between real and imaginary

components, such as phase, has long been acknowl-
edged as important.

� Fully convolutional: The fully-connected layers at
the end of a deep neural network typically do not
preserve the spatial adjacency information present in
the input image, unlike the earlier convolutional
layers [44]. Therefore, we do not employ fully-con-
nected layers in our network architecture.

� Densely connected: Each layer takes all preceding
feature-maps as input. The compelling benefits of
the densely connected mechanism are: it alleviates
the vanishing-gradient problem, strengthens feature
propagation, encourages feature re-use and substan-
tially reduces the number of parameters [21]. This
architecture is the state-of-the-art in large-scale
ImageNet visual challenges, with the dual benefit of
multiple skip connections of the ResNet architecture
[16] and network-in-network connections of the
inception architecture [47].

The architecture of the proposed network and complex-
valued operations are discussed in Sections 4.1 and 4.2. Sec-
tion 4.3 discusses the changes required to train and infer a
complex-valued network.

4.1 Network Architecture

A normalized iris image is the input for the proposed net-
work. The input is first fed into a Gabor Block, which
embeds the input iris images into the complex space. The
complex representations are subsequently processed by
multiple Dense Blocks, which are densely connected and
fully convolutional. Each Dense Block is followed by a Tran-
sition Block, which further encourages interaction within
the representation and promotes compactness of the feature
map. Output from the last CONV layer is used as a feature
representation for the input iris.

Stage 1: Input. A normalized iris image with a size of 64�
256 is used as input for the network. This normalized iris
image is generated in the pre-processing step. The pre-proc-
essing step is described in Section 5.2.

Stage 2: Gabor Block. Consists of a group of complex-val-
ued convolutional filters. We explicitly initialize these filters
with Gabor-like complex kernels to simulate a family of
Gabor wavelet transform in iris recognition

gðx; y;�; u;c; d; gÞ ¼ exp �x02 þ g2y02

2d2

� �
exp

�
i

�
2p

x0

�
þ c

��
;

(1)

where x0 ¼ x cos ðuÞ þ y sin ðuÞ and y0 ¼ �x sin ðuÞ þ y cos ðuÞ.
Here, u is the orientation of the normal to the parallel stripes

Fig. 2. ComplexIrisNet architecture. The normalized iris texture image is first fed through a Gabor Block, which generates the complex response to be
subsequently processed by complex-valued operations. The following Dense Blocks and Transition Blocks are equipped with fully complex-valued
operations, allowing them to process iris features in the complex-valued domain. The feature maps of the last CONV layer in the last Transition layer
are used for feature representation.
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of a Gabor function, � is the wavelength of the sinusoidal
factor, d is the sigma/standard deviation of the Gaussian
envelop and g is the spatial aspect ratio and specifies the
ellipticity of the support of the Gabor function [11], [12].
The filters in this layer are initialized with different values
of these five parameters to cover the family of the Gabor
wavelet transform [8], [11]. With M filters, the output will
be H �W � ð2MÞ with M real and M imaginary compo-
nents. These M Gabor-like filters will transform the input
iris image into the complex space.

Some researchers have also tried to combine Gabor filters
with CNNs. For example, Kwolek[23] extracted intrinsic
facial Gabor features to feed to the subsequent CNNs.
Sawar et al. replaced a number of certain weight kernels of a
CNN with Gabor filters to reduce the number of parameters
and the model complexity [41]. Luan et al. modulated con-
volutional filters via Gabor filter banks to improve the
robustness to geometric transformation of CNNs [25]. Com-
pared to [23], [25], [41], we take a different approach by
employing the entirety of the complex-valued outputs after
applying the Gabor filters instead of merely the real-valued
components. More importantly, the complex-valued Gabor
response is subsequently processed by a fully complex-val-
ued network to retain the complex-valued nature of the
representation through the entire network.

This Gabor Block has several interesting characteristics
worth mentioning. Visualization of deep learning networks
has shown that most networks learn edge detectors like the
effect of Gabor filters in the first layer [1]. Interestingly,
Gabor filters have also been very effective in the early stages
of the pipeline for encoding the iris textures before other
encoding operations such as the phase-quadrant quantiza-
tion are engaged in the generation of IrisCode [6]. Hence,
this block, besides its main purpose to embed the input into
the complex domain for further processing, also models the
prior in the classic handcrafted features. Even though the
network may be arguably able to learn the first layer itself,
explicitly steering the network architecture with a Gabor
Block not only benefits in naturally embedding the input
into the complex domain, but it also reduces the number of
parameters to learn, which subsequently results in reducing
the required amount of training data.

Stage 3: Dense Block. Consists of a number of complex-val-
ued convolutional layers with dense connectivity. The
dense connectivity within layers in these blocks enables the
modeling of complicated relationships within the complex-
valued feature maps. The real-valued dense blocks have
been shown to be very effective in encoding visual details in
the large-scale visual tasks [21]. Our dense blocks are specif-
ically equipped with the complex-valued operations which
will be discussed in Section 4.2.

A dense block is illustrated in Fig. 3. There areN layers in
each dense block. Each layer xi is fed through a combination
of network operations as a function, Hiþ1, to generate the
next layer xiþ1. Six network operations are performed
between layers: BN�ReLU�CONV ð1� 1Þ�BN �ReLU�
CONV ð3� 3Þ; where, BN stands for complex-valued Batch
Normalization, ReLU stands for complex-valued Rectified
Linear Unit, and CONV stands for complex-valued Convo-
lution. These operations will be discussed in Section 4.2. The
dense connectivity is shown as the lth layer receives the

feature maps of all preceding layers, x0; . . . ; xl�1, as
input, i.e.,

xl ¼ Hlð½x0; x1; . . . ; xl�1�Þ: (2)

The key benefit of the dense connectivity is allowing the sig-
nal to flow smoothly and mitigating the gradient vanishing
and exploding effect, encouraging feature re-use, substan-
tially reducing the number of parameters and thus enabling
a deep visual representation [21].

Each Dense Block is followed by a Transition Block. A
Transition Block contains one BN layer, one CONV layer, one
ReLU layer and one 2� 2 Pooling layer. The purpose of the
Transition Blocks is to improve the compactness of the feature
maps and to encourage interactionwithin the representation.

Stage 4: Output. The feature maps from the last CONV
layer of the last Transition Block are used as the feature
representation for the input iris. Depending on the number
of Dense Blocks, the size of the output will vary. One exam-
ple of the architecture of the proposed complex-valued
deep iris network, ComplexIrisNet, with three Dense Blocks
and three Transition Blocks is presented in Table 1.

4.2 Complex-Valued Network Operations

The complex-valued network can be considered a generali-
zation of its real-valued counterparts. While many concepts
from real-valued networks can be generalized trivially, the
lack of ordering of the complex field makes generalization
of some concepts tricky [15]. Without total ordering, two
general complex numbers are not comparable; specifically,
themin andmax operations are not defined. The ReLU layer,
max pooling layer and the optimization problem itself all
rely on these operators. This section discusses these non-
trivial changes.

A complex number, z 2 C, consisting of a real compo-
nent, x 2 R, and an imaginary component, y 2 R, is defined
as follows:

z ¼ xþ iy 2 C; where
ffiffiffiffiffiffiffi
�1

p
¼ i: (3)

Fig. 3. Dense Block architecture. Each layer (xl) in the block receives the
feature maps of all preceding layers (x0; . . . ; xl�1) as inputs. Six com-
plex-valued network operations, BN �ReLU � CONV ð1� 1Þ �BN �
ReLU � CONV ð3� 3Þ, are performed between two successive layers.
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The complex number can also be represented with a magni-
tude, r 2 R, and a phase, u 2 R, as z ¼ reiu. A complex func-
tion is defined as

f : C ! C (4)

fðzÞ ¼ uðzÞ þ ivðzÞ; where u; v : R2 ! R: (5)

Complex CONV. A convolution operation of a feature map,
W , with a convolutional filter, k, is presented as W � k,
where � stands for the convolution operation. A complex-
valued convolution operation of a complex-valued feature
map, W ¼ Aþ iB, with a complex-valued convolutional fil-
ter, k ¼ xþ iy, is also a complex-valued feature map, W �
k ¼ ðAþ iBÞ � ðxþ iyÞ ¼ ðA � x�B � yÞ þ iðB � xþA � yÞ,
since the convolution is distributive.

Mathematically, for one complex-valued convolutional
layer l, the complex-valued input, IðlÞ, which is the feature
map output from the previous layer, is convolved with a set
of complex-valued kernels, KðlÞ, to generate a complex-val-
ued output, OðlÞ.

� Input : IðlÞ 2 CW1�H1�ð2C1Þ

� Complex-valued convolutional kernels:
KðlÞ 2 CW3�H3�ð2C1Þ�ð2C2Þ

� Output: OðlÞ ¼ IðlÞ �KðlÞ 2 CW2�H2�ð2C2Þ

The kernel set hasC2 complex-valued kernels, eachwith a
size of W3 �H3 � ð2C1Þ. The convolution of the input with
one kernel is illustrated in Fig. 5. The output from convolving
the input with C2 kernels are concatenated to generate the
final outputOðlÞ. There are two more parameters in convolu-
tion, stride, S, and zero-padding size, P . These parameters
are similar to their real-valued counterpart.

Complex Activation. Rectified Linear Unit (ReLU) is the
most common activation function used. We generalize it to
the complex domain as follows:

ReLUðzÞ ¼ z; if argðzÞ 2 ½0; p2�;
0; otherwise:

�
(6)

Complex Pooling. Spectral Pooling is the best candidate in
comparison with others (Average Pooling, Max Pooling)
since it can handle complex numbers [39]. In addition, the
pooling is performed by truncating the representation in the
frequency domain. This approach preserves considerably
more information per parameter than other pooling strate-
gies and enables flexibility in the choice of dimensionality
of the pooling output. This representation also enables a
new form of stochastic regularization by randomized
modification of resolution. This has been shown to achieve

competitive results on classification and approximation
tasks, without using any dropout or max-pooling [39].

Complex BN. Batch Normalization of a complex-valued
input, z, is calculated as

BNðzÞ ¼ g~zþ b; (7)

where ~z is the normalization of z

~z ¼ ðV Þ�1=2ðz� E½z�Þ: (8)

V is the covariance matrix, E is the mean of the input z.

4.3 Training and Inference in a Complex-Valued
Network

The designed network is first trained to learn the weights
that best encode the input image. Once trained, it can func-
tion as a feature extractor, which infers the feature represen-
tation from the normalized iris input image by performing a
forward pass. This section highlights how the complex-val-
ued domain shift changes the inference and training process.

Inference. The shift to the complex-valued domain
requires to store both real-valued and imaginary-valued
components in the featuremaps.

� A conventional real-valued layer performs a real-val-
ued operation (i.e., real-valued conv, pooling, activa-
tion, etc.), to transform an input feature map of size
W1 �H1 � C1 to an output feature map of size W2 �
H2 � C2.

� A complex-valued layer performs a complex-valued
operation (i.e., complex-valued conv, pooling, acti-
vation, etc. as discussed in Section 4.2) to transform
an input feature map of size W1 �H1 � ð2C1Þ to an
output feature map of size W2 �H2 � ð2C2Þ. Half of
the complex-valued input feature map, W1 �H1 �
ðC1Þ, stores the real components and the other half,
W1 �H1 � ðC1Þ, stores the imaginary components.

Operations performed on each layer decide the relation-
ship between the input and output featuremaps as discussed
in Section 4.2. Visualization of the feature map difference is
illustrated in Fig. 4.

TABLE 1
Layer Configuration of the ComplexIrisNet

Blocks Kernel Size Output Size #Layers #Parameters

Input 64 x 256 x 1
Gabor Block (7x7) x 40 32 x 128 x 40 4 1,960
Dense Block1 1x1 3x3 32 x 128 x 168 36 205,824
Transition Block1 (1x1) x 32 16 x 64 x 32 4 5,376
Dense Block2 1x1 3x3 16 x 64 x 160 36 204,800
Transition Block2 (1x1) x 70 8 x 32 x 20 4 3,200
Total 84 421,160

Fig. 4. Real-valued versus Complex-valued operators and feature maps.
Orange and green blocks denote real-valued and complex-valued fea-
ture maps, respectively. Pink and light blue arrows denote real- and com-
plex-valued operations, respectively. While the volumetric shapes of the
real- and complex-valued featuremaps look similar, the ways by which
they are interpreted and calculated differ in nature.
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Training. The common way to train a network, i.e., to
minimize the loss function, is by using an iterative steepest
gradient descent algorithm (SGD). The SGD algorithm mini-
mizes the loss function by iteratively updating the weights
by moving step-wise in the direction of the loss function’s
steepest descent, which is opposite to its gradient. It itera-
tively performs: (1) a forward pass using the currently esti-
mated weights to calculate the loss, then subsequently (2) a
backward pass to update the weights based on how well
the current weights have performed as assessed by the cur-
rent loss value. The forward pass in the complex-valued
domain has been discussed in the previous paragraph. The
backward pass is the process to back-propagate the gra-
dients of the loss function, C, through the network layers
and using the chain rule to update the weights.

In the conventional real-valued layers, the gradient is
back-propagated from the layer liþ1 to the layer li as

@C

@li
¼ @C

@liþ1

@liþ1

@li
; (9)

where, li is real-valued the feature map input at layer ith and
liþ1 is real-valued the featuremap input at layer ðiþ 1Þth.

In the complex-valued layers, the gradient of the loss at
the layer ðiþ 1Þth is calculated as

rCðliþ1Þ ¼ @C

@<liþ1
þ i

@C

@=liþ1
; (10)

where, <li and =li are the real and imaginary components
of the complex-valued feature map at layer i. The chain rule
is slightly different from the real-valued counterpart as

rCðliÞ ¼ @C

@<li þ i
@C

@=li (11)

¼
�

@C

@<liþ1

@<liþ1

@<li þ @C

@=liþ1

@=liþ1

@<li

�
(12)

þ i

�
@C

@<liþ1

@<liþ1

@=li þ @C

@=liþ1

@=liþ1

@=li

�

¼ @C

@<liþ1

�
@<liþ1

@<li þ i
@<liþ1

@=li

�
(13)

þ @C

@=liþ1

�
@=liþ1

@<li þ i
@=liþ1

@=li

�

¼ <ðrCðliþ1ÞÞ
�
@<liþ1

@<li þ i
@<liþ1

@=li

�

þ =ðrCðliþ1ÞÞ
�
@=liþ1

@<li þ i
@=liþ1

@=li

�
: (14)

This chain rule allows the gradient of the loss to be back-
propagated from the last layer through each layer in the net-
work. The weights are updated accordingly.

Loss Function. There are two types of loss functions to train
a network: classification losses and pairwise losses. The
majority of previous iris recognition approaches based on
deep networks use classification losses trained over a set of
known iris identities and then utilize the intermediate bottle-
neck layer as a representation scheme that extends beyond
the set of identities used in training. The downsides of this
approach are its indirectness and inefficiency [42] while rely-
ing on the assumption of the generalizability of the bottle-
neck representation to new irises. Compared to classification
losses, pairwise losses directly reflect what we want to achieve,
i.e., train the representation to correspond to iris similarity:
images of the same iris have small distances and images of
different irises have larger distances. We leverage the recent
success of a pairwise loss function called Extended Triplet
loss as investigated in [55] to train the proposed network.
Compared to [55] and [42], there is a fundamental change in
optimizing the loss function due to shifting the weights from
the real domain to the complex domain.

To form a triplet, we need an anchor image, a positive image
and a negative image. The positive image belongs to the same
class with the anchorwhile the negative image belongs to a dif-
ferent class. Denoting the output vector of the network as f (in
our setting this would be the last convolutional layer), we can
represent the output features for a particular triplet i as
fai ; f

p
i ; f

n
i , denoting the output features for the anchor, positive

and negative images, respectively. The goal of a triplet loss
function is tomake the distance between fai and fn

i (i.e., images
from different classes) larger than the distance between fa

i and
fpi (i.e., images from the same class) by a minimum margin a.
The extended triple loss function is defined as

ETL ¼ 1

N

XN
i¼1

DðfA
i ; f

P
i Þ �DðfA

i ; f
N
i Þ þ a

� �
; (15)

where,D is the distance between two vectors. In the iris recog-
nition case, D between two feature maps, f1 and f2, has been
designed todealwith eye rotations and segmentationmasks as

Dðf1; f2Þ ¼ min
�B�b�B

FDðf1b ; f2Þ
� 	

; (16)

where, b denotes that the feature map has been shifted hori-
zontally by b pixels; B is the maximum of the shift allowed,
i.e., 4 pixels in this work; and FD is the Fractional Distance
which takes the masks into consideration

FDðf1; f2Þ ¼ 1

jMj
X

ðx;yÞ2M
f1
x;y � f2

x;y


 �2
: (17)

5 EXPERIMENTAL RESULTS

We conducted our experiments on three public datasets:

� ND-CrossSensor-Iris-2013 dataset1: is the largest
publicly available iris dataset in the literature in terms
of the number of images [34]. It contains 116,564
iris images captured by the LG2200 iris camera from

Fig. 5. Complex-valued convolution: the complex-valued input IðlÞ is con-
volved with a complex-valued kernel kðlÞ to output a complex-valued out-
put oðlÞ. For each convolutional layer, multiple kernels,KðlÞ, are employed
to generate the final outputOðlÞ.

1. https://sites.google.com/a/nd.edu/public-cvrl/data-sets
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676 subjects. This is a super set of the ND-IRIS-0405
dataset with double the number of images (116,564
versus 64,980) and the number of subjects (676 versus
356). The number of images for each subject in the test
set is between 11 and 312. After removing some
falsely segmented samples, the test set contains
57,253 images in total, with 3,838,981 genuine pairs
and 3,270,285,300 impostor pairs.

� CASIA-Iris-Thousand dataset2: contains 20,000 iris
images from 1,000 subjects, which were collected
using the IKEMB-100 camera from IrisKing [33]. The
test set, after removing some falsely segmented sam-
ples, contains 81,799 genuine pairs and 76,530,208
impostor pairs.

� UBIRIS.v2 iris dataset3: contains 11,102 iris images
from 261 subjects with 10 images each subject. The
images were captured under unconstrained condi-
tions (at-a-distance, on-the-move and in the visible
wavelength), with corresponding more realistic
noise factors [36]. The test set, after removing some
falsely segmented samples, contains 9,629 genuine
pairs and 4,317,548 impostor pairs.

Experiments with these three datasets allow us to vali-
date the performance of the ComplexIrisNet in diverse iris
recognition scenarios, ranging from close-up distances in
ND-CrossSensor-Iris-2013 and CASIA-Iris-Thousand to
long distances in UBIRIS.v2; and from conventional near-
infrared imaging in ND-CrossSensor-Iris-2013 and CASIA-
Iris-Thousand to visible spectrum imaging in UBIRIS.v2.
Sample images and statistics of the three datasets are
depicted in Fig. 6 and summarized in Table 2.

5.1 Performance Metrics

To report the performance of iris recognition approaches,
we rely on Decision Error Trade-off (DET) curves and False
Rejection Rates (FRRs). The DET curve is a graphical plot
that illustrates the diagnostic ability of a classifier by calcu-
lating False Rejection Rate (FRR) against False Acceptance
Rate (FAR) at various threshold settings. In this work, FRRs
at FAR = 0:1% are reported due to its popular adoption in

the field. Equal Error Rate (EER) is the operating point
where FAR is equal to FRR.

Due to the differences in the number of images, the ND-
CrossSensor-Iris-2013 dataset is chosen for our intra-dataset
experiments and the other two (CASIA and UBIRIS) are
used for cross-dataset experiments.

Intra-Dataset Performance. Similar to [55], we train and test
on disjoint identities. We use 80% of the left eye images for
training, 20% of the left eye images for validation and all
right eye images for testing. This guarantees that none of
the classes in the test subset is in the train subset to avoid
experimental bias. The training subset is used to train the
ComplexIrisNet in an end-to-end manner to find the best
weights. The validation subset is used to tune hyperpara-
meters for the ablation study. The testing subset is used to
report the intra-dataset performance.

Cross-Dataset Performance. The proposed network is fur-
ther investigated for generalization capability through train-
ing in one dataset and transferring the learned model to
others. The pre-trained ComplexIrisNet, which has been
pre-trained on the ND-CrossSensor-Iris-2013 dataset in the
intra-dataset experiments, is subsequently cross-validated
on two other datasets, CASIA-Iris-Thousand and UBIRIS.
v2. We investigate two cross-dataset configurations: with
and without fine-tuning. With fine-tuning, the pre-trained
ComplexIrisNet is fine-tuned using all left eye images and
is tested using all right eye images on the two datasets.
Without fine-tuning, the pre-trained ComplexIrisNet is
applied directly to all right eye images in the two datasets.

5.2 Experimental Setup

We first pre-process the iris images via segmentation and
normalization. The iris image is first segmented using two
circles for the inner and outer boundaries of the iris region
corresponding to the pupillary and limbus boundaries,
respectively. We adopt a deep multi-task learning frame-
work for joint iris segmentation and localization as in [51].
The iris region from the raw Cartesian coordinates is then
re-mapped to a dimensionless pseudo-polar coordinate,
where the iris region is normalized to a fixed and rectangu-
lar size of 64� 256 pixels [6]. The corresponding noise mask
is also normalized to facilitate matching in the later stages.

It has to be stressed here that all algorithms discussed in
the experiments were performed on the same test sets. As
the preprocessing step may affect the overall performance,
we ran the handcrafted, the state of the art and the proposed
complex-valued algorithms on the same test sets for a fair
comparison.

The ComplexIrisNet is trained using the back-propaga-
tion algorithm with Stochastic Gradient Descent and with
the Nesterov momentum set at 0.9. The norm of gradients is
clipped to 1. The learning rate is initialized at 0.01 for the first
10 epochs, then set to 0.1 from epoch 10 to 100, and then
annealed by a factor of 10 at epochs 130 and 160. The training
error of the ComplexIrisNet is summarized in Fig. 7.

5.3 Ablation Study

5.3.1 Impact of Dense Architecture Variants

We first investigate how the architecture in terms of the
number of dense blocks affects the performance. We vary

Fig. 6. Sample images from the ND-CrossSensor-2013 (first row),
CASIA-Iris-Thousand (second row) and UBIRIS.v2 datasets (last row).

2. http://biometrics.idealtest.org
3. http://iris.di.ubi.pt/ubiris2.html
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this number from 1 to 3, since in the natural image classifica-
tion setting, 3 dense blocks have shown to achieve state-of-
the-art performance [21]. Each dense block is followed by a
transition block as explained in Section 4.1. Considering that
the iris images are not as diverse as the natural images, a
smaller-sized network may be able to achieve good results
and avoid overfitting. Our experimental results show that a
networkwith two dense blocks achieves the best performance
during validation with a 1:31% FRR (False Reject Rate) at a
FAR (False Accept Rate) of 0:1% on the ND-CrossSensor-Iris-
2013 validation subset as shown in Fig. 8. Even a network
with one dense block exhibits very good performance - 2:84%
FRR at FAR = 0:1% - proving the high modeling capacity of
the proposed complex-valued architecture in the iris recogni-
tion setting. From this point on, two dense blocks were used
in our ComplexIrisNet unless otherwise indicated.

5.3.2 Impact of Modeling Complex-Valued Feature

Maps

We further investigate the benefits of performing complex-
valued operations within a deep network by comparing
with variants of real-valued counterparts. We consider four
real-valued representations. As shown in Equation (3), z ¼
xþ iy ¼ reju 2 C; where x; y; r; u 2 R are the real part, the
imaginary part, the magnitude and the phase of z, respec-
tively. Four real-valued baselines are:

� 1. r - Pure real network: Treat the input image purely
with a real-valued network, there is no Gabor Block
to generate the complex-valued response. This is
similar to all other deep iris recognition networks in
the literature.

� 2. ðx; yÞ - Double-channel real network: Treat the
complex-valued Gabor response as one real-valued
network.

� 3. ðxÞ; ðyÞ - 2 separate networks (Real and Imagi-
nary): Treat the complex-valued Gabor response as

two real-valued networks: one processes the real
response x, and the other processes the imaginary
response y.

� 4. ðrÞ; ðuÞ - 2 separate networks (Magnitude and
Phase): Treat the complex-valued Gabor response as
two real-valued networks: one processes the magni-
tude response r, and the other processes the phase
response u.

Fig. 9 explains the architectural difference between the
four real-valued baselines and the proposed complex-val-
ued iris network. It is clear that the real-valued networks,
even with the same configurations (the number of layers,
the number of filters per layer and the size of feature maps),
would struggle to capture the phase and the intrinsic geom-
etry of complex-valued data. This has been reinforced in
terms of performance in Fig. 10.

The comparison illustrates the benefit of shifting the net-
work operations to the complex domain. We hypothesize
that the standard real-valued networks fail to fully capture
the intrinsic geometric property of complex-valued data.
Real-valued operations discard some of the geometric
details and do not necessarily maintain the phase and spec-
tral information of the data as it moves through the net-
work. The complex-valued operations in our complex-
valued network better capture the geometry and explicitly
retain the phase information, which justifies its superior
accuracy compared to the real-valued counterparts.

Visualization. We visualize and analyze the network’s
predictions to understand the learning process underlying
the complex network. GradCAM [43] and CNN Fixation
[28] are two popular methods to visualize CNNs; however,
they are not designed for such pairwise networks as our
ComplexIrisNet. The work in [45], [57] have proposed to
decompose the last convolution activation to highlight the
image regions that contribute the most to the overall match-
ing score. We employ these frameworks to visualize and

TABLE 2
Statistics of Three Datasets, ND-CrossSensor-2013, CASIA-Iris-Thousand and UBIRIS.v2, Used in This Research

# Subjects # Images Distance Imager Image Resolution Iris Diameter Wavelength Subject Cooperation

ND-CrossSensor-2013 676 111,564 Close-up LG2200 640x480 200 NIR Highly
CASIA-Iris-Thousand 1,000 20,000 Close-up IKEMB-100 640x480 180 NIR Highly
UBIRIS.v2 261 11,102 4-8 meters CanonEOS 5D 800x600 180-80 Visible Less

Fig. 7. Training losses of the ComplexIrisNet on the ND-CrossSensor-
Iris-2013 training subset.

Fig. 8. Performance comparison of different layers of the ComplexIrisNet
in terms of False Rejection Rate at 0:1% False Acceptance Rate on the
ND-CrossSensor-Iris-2013 validation subset.
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compare the last convolution activation of both complex-
valued and real-valued iris networks.

Fig. 11 visualizes the activation decomposition of three
genuine pairs and one impostor pair for the subject ID
02463 from the ND-CrossSensor-2013 dataset. The first two
columns, respectively, depict the gallery and probe image
pairs. The third and fourth columns, respectively, illustrate
the heatmap overlays from the complex iris network and
the real iris network. The heatmap overlays show the rela-
tive spatial contribution of each image region to the overall
matching score. Hot colors denote high similarity while
cold colors denote lower similarity. There are two observa-
tions from this figure to reflect on:

� For real-valued iris network: The real networks tend to
focus on the regions where the texture shows signifi-
cant intensity change, which is demonstrated when
many hot color regions in the real heatmap overlays

are located in the crypts of the iris texture. In object
detection and classification, real-valued deep net-
works are known for their capability to learn object
structure via a hierarchical approach where earlier
layers detect the basic edges and corners while later
layers progressively detect more complex shapes [1].
Unfortunately, this capability is not significant in the
iris recognition setting due to the stochastic nature of
the iris texture [10]. The fact that the iris texture in iris
recognition has no consistent shapes, edges, or struc-
ture unlike in classical object detection and classifica-
tion, causes real-valued networks to struggle to learn
any meaningful semantics from the iris texture and is
unable to realize the full potential of automatic feature
learning in the iris recognition setting.

� For the complex iris network: The complex net-
works tend to have a more diverse coverage across
the entire iris image, not just the regions with sig-
nificant intensity change. They also focus on plainer
texture regions, which visually seem to exhibit less
spatial change. The observation of this property in
the network’s activations demonstrates the richer
capacity of the complex network to capture both
spatial and phase details compared to its real net-
work counterpart. In contrast to the spatial focus of
the real iris networks, the complex iris networks
also focus on phase information embedded within
the image, making them more suitable for the iris
recognition task. This highlights the fundamental
value of the proposed complex-valued iris net-
works compared to the real-valued iris networks
which is their ability to capture richer information
(spatial and phase versus spatial only). This ability
allows complex iris networks to: (1) perform better
genuine pair matching: better focus on the texture
regions with less intensity value changes to recognize
whether they are identical versus real networks
which only focus on significant intensity change
regions; and (2) perform better impostor pair rejec-
tion: through an increased focus on both phase and
spatial information to provide more clues to differen-
tiate regions as shown in Fig. 11.

Fig. 9. Architecture comparison of four real-valued baselines and the
complex-valued iris network. The complex-valued iris network enables
complex-valued feature maps and complex-valued operations through
the whole network.

Fig. 10. Performance comparison of four real-valued network baselines
and the proposed ComplexIrisNet on the ND-CrossSensor-Iris-2013 val-
idation subset. This illustrates the benefits of performing complex-valued
operations, which better capture the geometry and explicitly retain the
phase information, which justifies its superior accuracy compared to the
real-valued counterparts.

Fig. 11. Visualization of the activation decomposition of three genuine
iris image pairs and one impostor iris image pair from the ND-CrossSen-
sor-2013 dataset. The real iris networks tend to focus more on highly
textured regions with significant spatial change, such as crypts. In con-
trast, the complex iris networks have a more diverse coverage, not just
the regions with significant intensity change but also plainer texture
regions, which exhibit less spatial change. The observation of this prop-
erty in the network’s activations demonstrates the richer capacity of the
complex network to capture both spatial and phase details compared to
the real network counterparts.
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5.3.3 Impact of Backbone Architecture Choices

We now study how the choice of this backbone architecture
compared to other architectures in the complex-valued
domain. We retain the Gabor Block and swap the following
dense blocks with one landmark architecture in general deep
learning, viz., ResNet architecture [16], and one landmark
architecture in iris deep learning, viz., FeatNet architecture
[55]. The FeatNet architecture is the state-of-the-art architec-
ture in applying deep learning to iris recognition. FeatNet has
three blocks of CONV � TANH � POOL. The feature maps
from the TANH activation layers are upsampled and stacked
together before a fourth CONV is applied. The ResNet archi-
tecture is the state-of-the-art (and among the most popular)
architecture in general deep learning. Compared to architec-
tures such as Inception [47], MobileNet [18] and SENet [19],
ResNet is chosen due to its notable generalization capacity
together with the simplicity and consistency of its architec-
ture. Details of FeatNet andResNet architectures can be found
in [16], [55]. We apply these two backbone architectures (Feat-
Net and ResNet) with the complex-valued operations as
shown in Section 4.2.

The effectiveness of the proposed architecture based on
the dense blocks is validated by the performance on the val-
idation subset as shown in Fig. 12, achieving a FRR = 1:31%
compared to 1:68% and 1:72% at FAR = 0:1% of ResNet and
FeatNet, respectively.

5.4 Comparison With Handcrafted Features

We next compare the proposed method with handcrafted
approaches. The major advantage of handcrafted features

compared to deep learning features is fast computation and
no requirement for training, which is beneficial for mobile
and embedded applications. However, for applications
such as large-scale identification systems running on high-
end computing infrastructure, the recognition accuracy
may be of more interest than the computation cost. The
experiments in this section are designed to investigate how
much performance can be leveraged by the proposed com-
plex-valued data-driven features.

We compare with the classic IrisCode, its phase-based
derivatives (DCT-based [27] and DFT-based [26]), and a
state-of-the-art non-phase-based Ordinal features [46]. As
reviewed in Section 2, the IrisCode algorithm relied on non-
linear encoding of the phase information extracted from the
Gabor complex domain using a binarization scheme [6],
[11]. We implemented the algorithm based on Daugman’s
original papers [6], [11], and used recent papers [55], [56] to
optimize the parameters for the highest potential perfor-
mance and comparable experimental settings. We employ a
bank of M ¼ 40 Gabor filters with 5 wavelengths and 8 ori-
entations. For a fair comparison, similar to [46], [55], we
employ 72 ordinal filters. Other parameters are fine-tuned
by a grid search for the best performance on the experimen-
tal datasets.

For intra-dataset comparison, experiments are performed
on the ND-CrossSensor-2013 dataset. The proposed com-
plex iris networks with different backbones are first trained
to learn a feature representation using the train set. Once
the deep networks have been trained, they are employed to
perform recognition on the test set. Since the handcrafted
approaches do not require training, they are directly
employed to perform recognition on the test set. The perfor-
mance of the handcrafted features and complex iris net-
works with various backbones on the test set is illustrated
in Fig. 13a and the intra-dataset column of Table 3. Com-
pared to an EER of 1:67% for the classic IrisCode, the best
complex iris network achieves an EER of 0:66%, which
translates to a reduction in EER of 60%.

For cross-dataset comparison, the complex iris networks,
which have been trained in the intra-dataset experiments,
are employed to perform recognition, with and without
fine-tuning on the train sets of the CASIA-Iris-Thousand
and UBIRIS.v2 datasets. Since the handcrafted approaches
do not require training, these are again directly employed
to perform recognition on the test sets. On the CASIA-Iris-

Fig. 12. Performance comparison of different backbone architecture
choices for the complex-valued architecture on the ND-CrossSensor-
Iris-2013 validation subset.

Fig. 13. DET curves for comparison of the proposed complex-valued data-driven features with other classic handcrafted feature representations on
the test sets of three datasets. Best viewed in color.
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Thousand dataset, the best complex iris network achieves
EERs of 1:62% and 1:64% with and without fine-tuning,
respectively. Compared to an EER of 3:37% for the IrisCode,
the complex iris network reduces EERs by 52% and 50%
with and without fine-tuning, respectively. On the UBIRIS
dataset, the best complex iris network achieves EERs of
6:01% and 6:15%with and without fine-tuning, respectively.
Compared to an EER of 8:30% for the IrisCode, the complex
iris network reduces EERs by 26% and 25% with and with-
out fine-tuning, respectively. Compared to the cross-dataset
performance on the CASIA dataset, the performance gained
from no-finetuning to finetuning on the UBIRIS dataset is
less due to the domain shift from NIR to Visible in the latter.

The data shows that the features learned from the pro-
posed ComplexIrisNets achieve consistently higher perfor-
mance on all three datasets, reducing EERs by 25% to 60%
in comparison with the traditional IrisCode. Similar perfor-
mance gains over the other three handcrafted approaches
are also observed. This not only shows that the feature
representation automatically discovered by the ComplexIr-
isNet is highly discriminative achieving higher competitive
performance, but it also illustrates the generalization capa-
bility of the discovered feature representation when tested
on other datasets, both NIR (CASIA-Iris-Thousand) and
Visible (UBIRIS.v2).

We note that the choice of a FAR at 0.1% is to be consistent
with the literature. This value has been widely used in deep
learning papers for iris recognition such as [24], [55], [56].
Using this value enables us to directly compare our perfor-
mance with theirs. We acknowledge that, as discussed in [9],
iris recognition has a large entropy and the IrisCode can gener-
ate very flat DET curves, i.e., the FAR can be reduced bymany
orders ofmagnitude, even by factors of 10,000 to 100,000, while
only paying a price of roughly doubling the FRR. This point
has been confirmed in National Institute of Standards and
Technology (NIST) reports [32], [38]. This is one of the advan-
tages of iris recognition thatmakes IrisCode very successful.

VeriEye. We also compare our method with the commer-
cial product VeriEye SDK4 from NeuroTechnology. In 2020,

Neurotechnology’s iris recognition algorithm was judged
byNIST as the secondmost accurate among the IREX 10 par-
ticipants.We obtained a copy of the VeriEye SDK and experi-
mented on the ND dataset. We randomly selected different
100 irises, each having 10 images. There are a number of
irises with less than 10 images in the dataset, for which we
simply used all available images. In total, there are 973
images, generating 4,293 genuine image pairs and 468,585
impostor image pairs. We ran the VeriEye SDK, our home-
brewed IrisCode and the ComplexIrisNet to computematch-
ing scores. The results are presented in Table 4. The VeriEye
SDK achieved a better EER compared to the home-brewed
implementation of IrisCode. However, the ComplexIrisNet
performs much better than VeriEye, thereby conveying the
efficacy of the proposedmethod.

5.5 Comparison With Deep Learning Features

Wenext compare with other deep-learning-based approaches
in the literature. The state of the art of deep iris networks is
based on pairwise losseswith three state of the art approaches
- DeepIris [24], FeatNet [55] and DRFNet [52]. It is noteworthy
that [56] uses the same FeatNet as the backbone network to
extract its iris feature representation. Since the source codes of
these two approaches are not available, we re-implemented
and optimized them to a comparable level of performance
with those reported in the original papers.

We implemented DeepIris with 9 layers including one
pairwise filter layer, one convolutional layer, two pooling
layers, two normalization layers, two local layers and one
fully connected layer [24]. This network uses the normalized
iris imageswith a size of 100� 100 pixels; hence, in this exper-
iment, we chose this output size for the segmentation process.

We implemented the FeatNet with 4 convolutional layers,
each followed by an activation layer (Tanh) and an average

TABLE 3
Performance Comparison With State-of-the-Art Handcrafted and Deep Learning Iris Recognition Approaches in Terms of False

Rejection Rate at 0:1% False Acceptance Rate and Equal Error Rate on the Test Sets of Three Datasets

Intra-dataset Cross-dataset

ND-CrossSensor-2013

CASIA-Iris-Thousand UBIRIS.v2

Fine-tuning No fine-tuning Fine-tuning No fine-tuning

FRR EER FRR EER FRR EER FRR EER FRR EER

IrisCode 3.43% 1.67% - - 5.33% 3.37% - - 14.26% 8.30%

DCT [27] 3.21% 1.56% - - 5.18% 3.29% - - 14.25% 8.26%

DFT [26] 3.18% 1.53% - - 5.19% 3.30% - - 14.22% 8.23%

Ordinal [46] 3.17% 1.52% - - 5.01% 3.21% - - 14.17% 8.07%

DeepIris [24] 2.60% 1.29% 4.22% 2.15% 4.39% 2.25% 13.21% 7.13% 13.67% 7.56%

FeatNet [55], [56] 1.79% 0.99% 3.96% 1.92% 4.01% 2.03% 12.92% 6.68% 13.24% 7.03%

DRFNet [52] 1.77% 0.92% 3.91% 1.89% 4.05% 2.00% 12.62% 6.74% 13.20% 6.88%

Complex (FeatNet backbone) 1.45% 0.76% 3.66% 1.75% 3.72% 1.81% 12.11% 6.22% 12.32% 6.14%

Complex (ResNet backbone) 1.41% 0.75% 3.67% 1.76% 3.70% 1.79% 12.03% 6.17% 12.33% 6.18%

ComplexIrisNet 1.31% 0.66% 3.25% 1.62% 3.31% 1.64% 11.56% 6.01% 11.98% 6.15%

TABLE 4
Comparison With the Commercial VeriEye SDK

EER

Our IrisCode 1.66%
VeriEye 0.99%
ComplexIrisNet 0.66%

4. https://www.neurotechnology.com/verieye.html
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pooling layer as detailed in [55]. We implemented the
Extended Triple Loss incorporating bit-shifting and masking
[55]. This network is trained using the same pairwise loss
scheme as the proposed ComplexIrisNet. One major differ-
ence is the architecture and the capacity to deal with complex-
valuedweights and feature maps. To purely compare the fea-
ture representation power, we used our own segmentation
approach rather than their segmentation approach (Mas-
kNet). Our implementation achieved comparable results to
those reported in the paper (FRRs of 1:79% versus 1:78% and
same EER of 0:99%); the slight difference in performance may
be due to the differences in the segmentation approach and
dataset splitting scheme. We also implemented the improved
version of FeatNet called DRFNet with dilated convolution
and residual connections [52]. DRFNet achieves slightly better
performance in comparison with its plain version in FeatNet
with FRR of 1:77% and EER of 0:92%.

It is noteworthy that the other two deep iris networks in
the literature [13], [30] use cross-entropy losses, which limits
the applicability of the iris networks because the joint identi-
ties between the training and testing are required. The out-
put of the intermediate layers from these networks can be
extracted for use as feature vectors and some classifiers
such as the euclidean distance can be used to measure the
(dis)similarity. However, their performance is inferior to
the pairwise networks and are not included here.

We also include the complex-valued networks with two
different backbone architectures (FeatNet and ResNet) for
comparison.

For the intra-dataset scenario, experiments are performed
on the ND-CrossSensor-2013 dataset. The proposed complex
iris networks with various backbones and state of the art
deep iris networks (DeepIris, FeatNet, DRFNet) are first
trained on the same train set of the ND dataset. Once the net-
works have been trained, they are employed to perform rec-
ognition on the same test set of the ND dataset. Their
performance is illustrated in Fig. 14 and the intra-dataset col-
umn of Table 3. The data shows that complex iris networks
outperform all state of the art deep (real-valued) iris networks
by large margins. The best complex iris network reduces the
EER by 28% - from 0:92% for the best state of the art DRFNet
[52] to 0:66% for the ComplexIrisNet.

For the cross-dataset scenario, the proposed complex iris
networks and all state of the art deep (real-valued) iris net-
works, which have been pre-trained on the ND train set in
the intra-dataset experiments, are employed to perform rec-
ognition, with and without fine-tuning, on the CASIA and
UBIRIS datasets. The experimental results are shown in
Fig. 14 and the bottom half of Table 3. The proposed Com-
plexIrisNet significantly reduces the EER by 18% from
2:00% to 1:64% on the CASIA no fine-tuning experiments.
Similar improvements have been shown in the UBIRIS data-
set where the EER reduces from 6:88% to 6:15%. This dem-
onstrates the effectiveness of processing the weights and
feature maps in the complex domain.

We also provide a complexity analysis and comparison
as shown in Table 5. Three representative methods - DeepI-
ris [24], FeaNet [55] and DRFNet [52] - are compared to our
method on the same machine. Our machine configuration is
Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz with 32GB
DDR4 RAM, and NVIDIA GeForce RTX 2080 card with 8GB
memory. It can be seen that the computational time of Com-
plexIrisNet is longer but acceptable (approximately 50 fps).

6 DISCUSSION AND CONCLUSIONS

It is clear the iris stromal texture in iris recognition has no con-
sistent shapes, edges, or structure unlike in classical object
detection and classification task. This would make standard
real-valued networks struggle to learn any meaningful
semantic shapes from the iris texture during automatic fea-
ture learning and thereby not realizing the full potential of
automatic feature learning in the iris recognition setting.

Complex-valued networks have a solid mathematical
and theoretical foundation that make them more suitable
for iris recognition when compared to real-valued networks.

� Complex-valued networks explicitly model and
retain phase information through the whole net-
work. Phase is very important in iris encoding as it
has been shown in the success of many handcrafted
features.

� Complex-valued networks are better at capturing
features at multiple scales, multiple frequencies and
multiple orientations [49], which have the capacity
to approximate such non-linear multiwavelet pack-
ets as Gabor wavelets in the classic IrisCode.

� Complex-valued networks allow automatic com-
plex-valued feature learning, which combines the
strength of modern deep learning (automatic feature
learning) and domain specific knowledge of the iris
recognition field (complex filters). Compared to
automatic real-valued feature learning in real-valued

Fig. 14. DETcurves for comparison with other deep learning feature rep-
resentations on the test set of the ND-CrossSensor-2013 dataset. Best
viewed in color.

TABLE 5
Complexity Analysis

Approach #Parameters Model Size
(Byte)

Feature
Extraction

DeepIris [24] 55,420.0 K 289.0 M 12.70 ms
FeatNet [55] 129.9 K 1.5 M 8.93 ms
DRFNet [52] 125.3 K 1.3 M 8.12 ms
ComplexIrisNet 421.2 K 20.5 M 21.08 ms
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networks, automatic complex feature learning better
suits the stochastic nature of the iris texture, leading
to better feature learning.

� Complex-valued networks can be considered as a
generalization of the classic IrisCode due to their cor-
respondence with Gabor wavelets. This allows us to
understand the optimality of the classic IrisCode,
since if it is optimal, the complex-valued networks
will converge to its architecture and performance.

Despite these benefits, complex-valued networks have
not been explored in the iris recognition literature. The key
reason is due to the fact that the iris images themselves are
not complex-valued, and so all existing deep iris networks
operate on the real-valued intensity of iris images.

We re-purpose the complex-valued response ofGabor filters
to enable the development of new complex-valued networks to
directly operate on iris images to translate all the above benefits
to iris recognition. We also upgrade the dense connection
and fully convolutional architecture to the complex-valued
domain,which enables the proposed fully complex-valued net-
work architecture to effectively and automatically learn a com-
plex-valued feature representation for iris recognition. The
proposed complex-valued iris network interestingly is a gener-
alization of both the classic IrisCode and many state of the art
deep iris networks. We show in our ablation study that com-
plex-valued iris networks actually outperform their real-valued
counterparts.More importantly, throughvisualizing the activa-
tion maps at the last convolutional layer, we show that while
real-valued networks focus on capturing spatial detail, com-
plex-valued networks are more sensitive to phase and are
much better at capturing both spatial and phase information.
The fundamental value of complex-valued networks compared
to real-valued networks for iris recognition is the ability to cap-
ture richer detail (phase and spatial versus spatial only) for bet-
ter genuine pairmatching and better impostor pair rejection.

Through comprehensive comparison with handcrafted
features and modern deep iris networks, we have shown
that the feature representation discovered through the auto-
matic complex feature learning process of the proposed
method is more discriminative and informative than the
feature representation discovered by the real-valued net-
works. The accuracy of the proposed complex-valued iris
network surpasses the accuracy of the classic IrisCode (as
implemented by us, judiciously guessing its parameter val-
ues), its phase-based derivatives and other state-of-the-art
deep learning approaches by significant margins. The effec-
tiveness and generalization capacity of the discovered fea-
ture representation has been demonstrated across three iris
datasets under a variety of settings: near-infrared and visi-
ble spectral bands, near and far stand-off distances, and in
strict and less cooperative scenarios.

Interestingly, in one of his original papers [4], Daugman
actually showed that IrisCode could be expressed as a two-
layer CNN. The introduction of more layers and complex-
valued operations, in theory, will lead to models with
increased modeling capacity than classical approaches. The
experiments conducted across multiple datasets have also,
empirically, confirmed this observation.

This paper has presented another major step in the
representation evolution in iris recognition, from classical
handcrafted features to current deep learning with standard

real-valued networks to tailored deep learningwith complex-
valued networks. With many benefits highly suitable for iris
recognition, complex-valued networks deserve more atten-
tion and investigation from the iris recognition community to
fully take advantage of automatic complex-valued feature
learning. This work has taken the first step in this direction,
and opens other opportunities for explicitly processing phase
information in other domains where complex filters are rou-
tinely used for texturemodeling.
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