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Dataset Bias in Few-shot Image Recognition
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Abstract—The goal of few-shot image recognition (FSIR) is to identify novel categories with a small number of annotated samples by
exploiting transferable knowledge from training data (base categories). Most current studies assume that the transferable knowledge
can be well used to identify novel categories. However, such transferable capability may be impacted by the dataset bias, and this
problem has rarely been investigated before. Besides, most of few-shot learning methods are biased to different datasets, which is also
an important issue that needs to be investigated deeply. In this paper, we first investigate the impact of transferable capabilities learned
from base categories. Specifically, we use the relevance to measure relationships between base categories and novel categories.
Distributions of base categories are depicted via the instance density and category diversity. The FSIR model learns better transferable
knowledge from relevant training data. In the relevant data, dense instances or diverse categories can further enrich the learned
knowledge. Experimental results on different sub-datasets of ImageNet demonstrate category relevance, instance density and category
diversity can depict transferable bias from distributions of base categories. Second, we investigate performance differences on different
datasets from the aspects of dataset structures and different few-shot learning methods. Specifically, we introduce image complexity,
intra-concept visual consistency, and inter-concept visual similarity to quantify characteristics of dataset structures. We use these
quantitative characteristics and eight few-shot learning methods to analyze performance differences on five different datasets (i.e.,
MiniCharacter, MinilmageNet, MiniPlaces, MiniFlower, MiniFood). Based on the experimental analysis, some insightful observations are
obtained from the perspective of both dataset structures and few-shot learning methods. We hope these observations are useful to guide
future few-shot learning research on new datasets or tasks. Our data is available at http://123.57.42.89/dataset-bias/dataset-bias.html,

Index Terms—Few-shot image recognition, meta-learning, knowledge transfer, dataset bias
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1 INTRODUCTION

EARNING from few examples and generalizing to dif-

ferent situations are capabilities of human visual intel-
ligence. During the past years, significant progress has been
made on image recognition [1f], [2], [3] with the assistance of
deep learning techniques [4] and large scale labelled dataset
[5], [6]. However, this kind of human visual intelligence
is yet to be matched by leading machine learning models.
Humans can easily learn to recognize a novel object category
after glancing at only one or a few examples [7]. This
cognitive ability can be explained by the "learning to learn"
mechanism in the brain [8], which means that human can
make inference so that their previously acquired knowledge
on related tasks can be flexibly adapted to a new task. In-
spired by this human ability, the few-shot image recognition
(FSIR) is proposed to learn novel concepts from a few, or
even a single example.

The task of FSIR establishes a new recognition setup
to transfer the knowledge of training tasks sampled from
training (base) categories to the new task with one or very
few samples. Instead of learning one single recognition task,
most FSIR models learn plenty of recognition tasks. Each
task contains a support set (training samples) and a target
set (test samples). The support set consists of a few available
labelled data, which is exploited to learn a task-specific
model. Then the learned model is evaluated on the target
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set. Each task in these two sets shares the same concepts.
But concepts of testing tasks come from novel categories,
which are different from those of training tasks.

Current studies of FSIR [9], [10]], [111, [12], [13], [14], [15]
achieve transferable knowledge by learning training tasks or
base categories. These studies mostly focus on transferable
knowledge between datasets or tasks by exploiting given
base categories. The majority of current works assume the
transferable knowledge globally shared across all tasks, and
consider that the leaned knowledge can be well adapted
to novel categories. However, transferable knowledge is
highly dependent on the distributions of base categories.
FSIR models can acquire biased transferable capabilities if
distributions of base categories and novel categories are
very different. Furthermore, current studies rarely explore
the characteristics of dataset structures, which include not
only an amount of information in the image but also se-
mantic gaps between original images and concepts. Current
works do not deeply dig differences in dataset structures.
Therefore, current few-shot learning methods may be biased
to different datasets.

Two problems arise based on the above analysis: i) What
factors can describe transferable bias from distributions of
base categories? ii) What characteristics can depict bias of
few-shot learning methods on different datasests? In this
paper, we focus on studying these two problems system-
atically, which have rarely been explored before. Fig. [I| (a)
illustrates the investigation of the first problem, and Fig.
(c) illustrates the investigation of the second problem.

For the first problem, we aim to obtain transferable
knowledge from base categories, which can be better
adapted to novel categories. The FSIR model can learn
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Fig. 1. The two investigations for FSIR from the dataset. (a): illustrations of dataset diversity. (b): illustrations of the few-shot learning tasks sampled
from datasets and the few-shot learning method. (c): illustrations of dataset structures.

more accurate knowledge from dense instances, more com-
prehensive knowledge from diverse categories, especially,
transferable capabilities from relative categories. Therefore,
we introduce the dataset diversity to depict distributions of
base categories and the relevance to measure relationships
between base categories and novel categories. The dataset
diversity contains instance density and category diversity.
We conduct experiments on eight few-shot learning meth-
ods, which contains four classic methods such as Proto-
typical Net [9], MAML [13], and four recent methods. We
measure relevance of categories contained in ImageNet [16]
both qualitatively and quantitatively to obtain different sub-
datasets which contain dense instances and diverse cate-
gories. Under the settings of different relevance, instance
density and category diversity are explored respectively.
Besides, we further compare instance density and category
diversity with the fixed number of total samples.

For the second problem, we aim to analyze differences
in performance on different datasets from characteristics
of dataset structures and different few-shot learning meth-
ods (e.g., metric-based methods and meta-learning methods
shown in Fig. [1| (b)). We introduce image complexity, intra-
concept visual consistency, and inter-concept visual similar-
ity to quantify characteristics of dataset structures. To con-
duct comprehensive evaluations on multiple datasets, we
introduce five datasets, including simple character images
(i.e., MiniCharacter), images with different number of ob-
jects (i.e., Minilmagenet, MiniPlaces), and two fine-grained
datasets (i.e., MiniFlower and MiniFood). We use five kinds
of features to calculate intra-concept visual consistency and
inter-concept visual similarity, and measure image com-
plexity in two manners. These quantitative characteristics
are used to analyze differences in performance on different
datasets. In addition, we give analysis on differences in
performance of these few-shot learning methods.

In summary, our main contributions are as follows: i)
We systematically investigate the influence of knowledge
learned from base categories. ii) We systematically investi-
gate differences in performance on different datasets with
three characteristics of dataset structures and two types of
few-shot learning methods. iii) Based on the above investi-
gates, we can obtain following key conclusions:

The FSIR model can obtain better performance with
knowledge learned on relevant base categories rather

than irrelevant ones.

The FSIR model can obtain improvement with
knowledge learned on more dense instances or di-
verse categories without reducing the relevance.

The FSIR model can obtain more improvements with
knowledge learned on diverse categories than that
learned on dense instances without reducing the
relevance, when there are enough instances for each
category.

The FSIR model obtains different performance on
different datasets, which can be depicted with im-
age complexity, intra-concept visual consistency, and
inter-concept visual similarity.

Different FSIR models have diverse performance on
different datasets, which is relevant to both dataset
structures and the method ability. The method ability
is closely related to characteristics of dataset struc-
tures.

The remainder of this paper is constructed as follows.
Sect. 2| provides the related work, including FSIR, domain
adaptation, and few-shot domain adaptation. Sect. 3| gives
formulation of FSIR and reviews two types of classic few-
shot learning methods. Sect. ] presents evaluations of the
dataset diversity in detail. Sec presents evaluations of the
dataset structure and experimental analysis in detail. Sect.
[6| provides some perspectives and future directions. Finally,
the paper closes with conclusions in Sect. 7]

2 RELATED WORK
2.1

The goal of FSIR is to identify novel categories with a few
annotated examples and knowledge obtained from base
categories. In early attempts, Fei-Fei etal. [17] propose a
variational bayesian framework for one-shot image classifi-
cation, and Lake etal. [18] propose hierarchical bayesian
program learning on the few-shot alphabet recognition
tasks. Inspired by architectures with augmented memory
capacities such as Neural Turing Machines (NTMs), Santoro
etal. [19] propose a meta-learning method with memory-
augmented neural networks. Afterwards, there are three
kinds of methods to deal with the FSIR problem. The
first one is metric-based method (i.e., learning to compare),

Few-shot Image Recognition
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which learns a transferable embedding network or function.
This function transforms the original images into the em-
bedding space such that these images can be recognized
with a nearest neighbor [20], [21], a linear classifier [9],
[22], [23] or a deep nonlinear metric [10]. The second one is
meta-learning method [12], [24], [25] (i.e., learning to learn),
whose learning occurs at two levels: task-level learning and
take-specific adaption. The task-level learning is usually
implemented by an additional meta-learner [14], [26] or
a sensitive initialization shared with task-specific learners
[13], [27], which can provide meta-level information for
the take-specific adaption. The third method is generative
or augmentation-based method (i.e., learning to generate
or augment), which learns a generative model to synthe-
size more samples and then trains a robust classifier. This
generative model uses semantic information [28], [29] (e.g.,
attribute), or base categories for analogy or hallucination
[30], [31].

Recently, some works study FSIR from the view of
self-supervised approaches [32], [33] and semi-supervised
approaches [34], [35]. Yu etal. [36] propose a two-stage
approach which explores knowledge from both annotated
examples of base categories and un-annotated ones of novel
categories. The above works focus on learning transferable
knowledge with given datasets. However, we investigate
the performance of FSIR from dataset diversity with change-
able base categories and different characteristics of dataset
structures. A more related work is [37]], which shows that
increasing relevant categories in close or far semantic dis-
tances can boost the performance of FSIR. In addition, our
work also considers increasing irrelevant categories, and ex-
perimental results illustrate that more irrelevant categories
cannot improve the performance, suggesting that it’s not the
more categories the better performance. Furthermore, we
investigate differences in performance on different datasets
from the dataset structure and different few-shot learning
methods, which is not explored by [37].

2.2 Domain Adaptation

Domain adaptation utilizes labeled data in one or more rele-
vant source domains to execute new tasks in a target domain
with scarce annotated data. It aims to solve the domain gap
and transfer knowledge learned on the source domain to
the target domain [38], [39], [40], [41]. As many approaches
are based on deep neural networks, Li et al. [42] construct
source and target datasets with various distances to analyze
factors that affect the effectiveness of using prior knowledge
from a pre-trained model with a fixed network architec-
ture. Azizpour et al. [43] investigate factors (e.g., network
architectures, parameters of feature extraction) affecting the
transferability of feature representations in generic convo-
lutional networks. To learn domain invariant features Min-
imizing the domain discrepancy, Long et al. [44] propose
a deep network architecture that can jointly learn adaptive
classifiers and transferable features from labeled data in the
source domain and unlabeled data in the target domain.
Meanwhile, with significant advances made in image syn-
thesis by generative adversarial networks, many methods
focus on learning domain-independent features and synthe-
sizing examples in the new domain [45]], [46]. Hoffman et al.
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[47] propose adversarial learning method that utilizes both
generative image space alignment and latent representation
space alignment. Zhang et al. [48] propose an adversarial
learning method with two-level domain confusion losses.
Cui et al. [49] propose gradually vanishing bridge mech-
anism to learn more domain-invariant representations. To
tackle predictive domain adaptation, Mancini etal. [50]
leverage meta data information to build a graph and design
novel domain-alignment layers based on the graph for do-
main adaption. These works have the same classes among
different domains. However, we address the problem in
FSIR, where the classes in target domain are disjoint with
ones in source domains. Meanwhile, the training examples
in the target domain are limited or rare.

2.3 Few-shot Domain Adaptation

Few-shot domain adaptation aims to recognize novel cate-
gories with a few annotated data in the target domain and
sufficient data in the source domains. Some works [51]], [52]
assume that the target domain contains the same classes as
the source domain. Recently, some efforts attempt to address
a more flexible and challenging few-shot domain adapta-
tion, where the target domain and source domains have
disjoint classes, called cross-domain few-shot learning. Chen
etal. [11] evaluate current models and proposed baselines
on cross-domain few-shot protocols (from Minilmagnet [22]
to cub [53]). Tseng etal. [54] propose a learned feature-
wise transformation to stimulate feature distributions cross
domains with a small number of samples. Guo et al. [55]
introduce a more realistic cross-domain few-shot learning,
where the source domain consists of common images from
Imagenet [16], and the target domains contain rare images
such as satellite images and radiological images. Besides,
Vuorio et al. [56] propose the multi-domain few-shot learn-
ing, and use a task-aware modulation to promote the learn-
ing of meta-learner. Yao et al. [57] propose a hierarchically
structured meta-learning algorithm to promote knowledge
customization on different domains but simultaneously pre-
serve knowledge generalization in related domains. Tri-
antafillou et al. [27] introduce a meta-dataset that consists
of 10 datasets in different domains and present experimental
evaluation of current models and proposed baselines. These
works only use given source domains without selections,
in contrast, we selectively use source domains (i.e., base
categories) and systematically investigate different target
domains from characteristics of dataset structures and dif-
ferent few-shot learning methods.

3 PRELIMINARIES
3.1 Few-shot Image Recognition Formulation

In the regular machine learning setting, a classification
problem is defined on instances Z,,) ~ p(Z), where x
is a sample and y is the corresponding label. But most
FSIR models learn task instances 7 ~ p(7). Sampling
from training and test data, we form training tasks 7 %"
and testing tasks 7', respectively. According to existing
settings, the training and test data are made of base and
novel categories, respectively, and each category has plenty
of samples. For example, in MinilmageNet [22], the number
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Fig. 2. The training and test tasks are formed by randomly sampling from
the base and novel categories, respectively.

of base and novel categories are 64 and 20 respectively,
where each category has 600 samples.

In training tasks 7" or testing tasks 7'!, each
task is defined as 7; = {D7; 5, D7, v}, where Dt 5 is
a support set (training samples) and D7, r is a target set
(test samples). The support set Dy, s = {(zF,y}) | ¢ =

2,..,C0;k = 1,2,..., K} and the target set D7, 7 consist
of C categories randomly sampled from the total categories,
and each sampled category contains K labeled samples in
the support and some samples in the target set. And this task
is called C-way K-shot task. Test tasks 7'** and training
tasks 7t have the same form but with disjoint label space
since they have different categories. Fig. Q] illustrates the 5-
way 1-shot training and test tasks, which are sampled from
base and novel categories, respectively.

3.2 Few-shot Learning Methods

Metric-based methods and meta-learning methods are em-
ployed to explore the dataset bias. These two kinds of
methods do not use additional information and are easy
to be implemented with less options, compared with gener-
ative or augmentation-based methods. In the following, we
introduce the typical works in these two kinds of methods.

3.2.1 Metric-based Methods

This kind of method contains two parts: an embedding
network or function G() and a metric function M(). A key
assumption is that G() learns domain-general information
as an inductive bias [58] to generalize novel categories. In
addition, the learning target or the loss function £() affects
G() learning (or M () learning, when M() is parameterized).
Hence, we review the following metric-based few-shot lean-
ing methods from £() and M().

Prototypical Net (PN) [9]. In this method, the M) is the
Euclidean distance function. The £() is the cross entropy
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loss, and the probability of each sample in Dr is defined as
(omitting the index of task):

-M(G@), X I{y:m'g(w))
o e @wens
P(ylz,Ds) = “MG@), > Hv=valo) 1)
Za:?e (z,y)€EDg K
a=
where C' is the number of way, K is the number of shot and
(z,7) € Dr.

Relation Network (RN) [10]. This method learns a
parameterized M(), which is implemented by a neural
network. The £() is mean square error, defined as:

LO= > > (@zDs)-Hy=7})> @

(lvy)EDT (z,y)€Ds

where 77|z, Ds) = M(G(7), pooling({G(x) | (z,y) €
Ds,y =7}), and the pooling() is maxpooling in [10].

Deep Subspace Networks (DSN) [23]. In this method,
the M() is implemented with task-adaptive subspace met-
rics, ie., {M,, (%)}2=¢. The L() is the cross entropy loss,
and the probability of each sample in Dy is defined as:

e_Mﬁ(f)
50=C My, (@)

a=1 ©
where M, (z) | (= P, PIYG() - u,) |2
P, is a matrix with orthogonal basis for the linear sub-
space spanning X, = {G(z) | ¥ = Ya (z,y) € D},
Uy, = £, x. (), and (z.7) € Dy

DEMD |[21]. In this method, the Earth Mover’s Distance
(EMD) is to obtain optimal matching flows M () between
each two feature maps (G()). Thus the similarity metric
between two maps is M() = Cos()M(), where Cos() is
cosine similarity of two vectors in the maps. The £() is the
cross entropy loss, and the probability of each sample in D
is defined as:

P(ylz, Ds) = ©)

-M(G(@), %3 Ky=y}G(x))

(z,y)eDg

i — &
P(ylz, Ds) = o ME@, ¥ Ty=v.39() )

a= (z,y)€EDg
Za:l €

where (Z,7) € Dr.

3.2.2 Meta-learning Methods

This kind of method usually contains two parts: an initial
model F(;6) and an adaptation strategy S(;J), where 0
are parameters of F(), and J are parameters of S(). The
processes of this kind of method are: i) computing the
gradient (or loss) information on support set: grad,, /p =
Va,/6L(F(Ds(x);0), Ds(y)), where L(,) is the loss func-
tion, a; is the t** neurons of F (); ii) transforming the gradi-
ent information into adaptive information: I = S(grad;9d);
iii) leveraging the adaptive information to obtain an up-
dated model: B(F(;0),]). Similarly, we review the following
meta-leaning methods from the S(). Generally speaking, the
final learning target or the loss function calculated on the
target set has the same formulation as £(,) mentioned in
the ii) process.

Model-Agnostic Meta-Learning (MAML) [13]. This
method is inspired by fine-tuning. It computes gradient of
the whole parameter 6, and then directly uses the gradient
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on original parameters with one or a few gradient steps to
obtain the updated model: B(F(;0),])= F(;60 —r-I), where
I = grady, r is updating learning rate.

Proto-MAML [27]. As a variant of MAML, this
method also updates the whole parameter 6 for adap-
tation. Different from MAML, the classifier weight of
Proto-MAML is initialized with the prototype of classes
[9]. The classifier weight initialization can be formed as
0. := F(Dg(x);0.), where 0. and 0. are parameters of
the classifier and the embedding network, respectively.
The gradient on support set is achieved via grady =
VoL(F(Dg(x);{be,0.}), Ds(y)), where 8 = {0.,6.}. Thus
the updated model is B(F(;0),I)= F(;0 — r - grady), where
r is updating learning rate.

adaCNN [14]. This method computes gradient of neu-
rons grad; = Vu,L(F(Ds(z);0),Ds(y)), and transforms
the gradient into conditional shift vectors B;,, = It =
S(grady, ;) (m is the m'™ instance in the support set) that
are saved in a memory. The updated model is as follows:

o(F(as0)) + o (Br)
softmaz(F(as;0) + B)

t£T

iop ©

where T is the final layer, o() is a nonlinear function, and
softmax() is the Softmax function. The layer-wise shifts are
recalled from memory via a soft attention to obtain 3; (8; =
> wWmBt,m, W, is calculated by a key function), which is

used for adjusting the output of initial model.

MetaOpt [12]. This method learns an adaptive classifier
for adaptation. The classifier is implemented with SVM,
which can be solved by optimizing a convex objective
function. The weight of the adaptive classifier is achieved
via 0% = argminL(F(Dg(z);{0.,0.}), Ds(y)), where 6%

0

and 0. are pal?ameters of the adaptive classifier and the
embedding network, respectively. Thus the updated model
is B(F(;0),I)= F(;{0e, 0)).

3.2.3 Summary

Metric-based methods do not need task-specific adaptation.
They require data with a high relevance between base
categories and novel categories especially for a learnable
metric. Metric-based methods focus on designing an ef-
fective metric. For the above four metric-based methods,
two of them are classic, anther two are up to date. In the
two classic method, PN uses a predefined metric, and RN
utilizes a parametric network as the metric. In the two recent
works, DSN adopts task-adaptive subspace metrics, and
DEMD measures each two images with the Earth Mover’s
Distance. Therefore, the four metric-based methods have
their characteristics in the metric function.

Compared with metric-based methods, meta-learning
methods update their models via task-specific adaptation,
such that these methods are less dependent on the rele-
vance. For the above four meta-learning methods, MAML
is the classic one, which updates the whole weights of the
initial network for adaption. Different from the MAML,
adaCNN updates activations for adaption. Proto-MAML is
a variant of MAML, and initializes classifier weight with the
prototype of classes. For adaption, the three meta-learning
methods update the whole weight or some activations of
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network. In contrast, MetaOpt only updates task-sensitive
classifier. Therefore, the four meta-learning methods have
their characteristics in the model initialization or the design-
ing of adaptation strategy.

We use the eight representative few-shot learning meth-
ods (i.e., four metric-based methods and four meta-learning
methods) to carry out experiments on diverse datasets to
analyze dataset bias of FSIR in the following sections.

4 EVALUATION OF DATASET DIVERSITY

The FSIR model aims to recognize novel categories with a
small amount of samples by exploiting learnable generic
knowledge. This kind of knowledge is learned from sulffi-
cient base categories, whose diversity can explicitly affect
the quality of the learned knowledge. In this section, we
study dataset diversity of base categories to explore FSIR.
First, we introduce some key factors of dataset diversity.
Second, we present evaluated datasets and settings. Next,
we explore these factors independently and compare them.
Finally, we give some discussions.
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The dataset diversity can be reflected in two aspects in-
cluding instance density and category diversity. On one
hand, dense instances can provide each concept with lots
of variations in pose, scale, illumination, distortion, back-
ground, etc. Thus the FSIR model can learn more accurate
knowledge from dense instances. On the other hand, diverse
categories can provide plenty of concepts with larger visual
difference. Thus the FSIR model can learn more comprehen-
sive knowledge from diverse categories.

Factors of Dataset Diversity

4.2 Datasets and Settings

As ImageNet [16] is a well-known large dataset which has
been widely used for both visual recognition and FSIR
(e.g., MinilmageNet [22]), we construct different subsets
which contain dense instances and diverse categories for
FSIR. We use the ImageNet (ILSVRC2012) dataset with 1000
categories and 1.28 million images. Each category corre-
sponds to one synset in WordNet [59]. We find its parent
synsets recursively until reaching the node of entity which
is the root of the WordNet, according to their hierarchical
semantic relations. In this manner, we can obtain the entire
tree structure of the 1000 categories, which are divided into
different branches with different relevance.

The branches of the 1000 categories are illustrated in Fig.
All categories belong to the entity branch, as the entity
node is the root of the tree structure. And they are divided
into two branches according to whether they are man-made
or nature. More precisely, as shown in Fig. [3| the first
one is living thing branch which contains 451 categories,
and the second one is artifact branch which contains 549
categories. The living thing branch is further divided into
the dog branch (which contains various dogs, denoted as
DOG) and the LTED (which is the short for Living Thing
Except Dog) branch which is the rest of the living thing
branch except the categories in the dog branch. Meanwhile,
the artifact branch is divided into the ARIN (which is short
for ARtifact INstrument) branch which is the super class of
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Fig. 3. The hierarchical display of the 1000 categories in ImageNet.
The integer in the parenthesis indicates the number of the categories
that the branch contains. The number in the beginning of the node is
the corresponding WordNet ID. The LTED, ARIN and AROT are three
branches, which are sampled to form original (additional) base and novel
categories.

instrumentality and the AROT (which is short for ARtifact
Other Thing) branch which is the rest of the artifact branch.

To qualitatively measure the relevance between different
categories, we utilize the approaches used in [42], [60] to
estimate their relevance, according to the tree structure of
ImageNet. The categories in the same branch are more rele-
vant than the ones in other different branches. For example,
as the categories in the LTED branch contain animals such
as cat, sheep, kangaroo, while categories in the ARIN branch
contain many traffic instruments, the base networks trained
on some categories belonging to LTED have features which
will help classify some other categories in LTED branch. So
the categories in the LTED branch are more relevant to each
other compared to the categorizes in the other branches.

Meanwhile, measuring the relevance between different
datasets quantitatively is complementary to the qualitative
analysis, and it can distinguish different datasets more
clearly and accurately. So we utilize Word Mover’s Distance
(WMD) [61], [62] and Shortest Path Length (SPL) [59], [63]],
[64] to measure their relevance quantitatively. Specifically, a
small distance means a great relevance.

e WMD: the WMD distance originally measures the
dissimilarity between two text documents as the
minimum amount of distance that the embedded
words of one document need to travel to reach the
embedded words of another document. Recently, it
has been proposed for distributional metric matching
and applied to cross-domain alignment. In the same
spirit of the approach used in [62], we use WMD to
measure the relevance between two sets of entities.
Let D, and D, represent two sets of categories (i.e.,
entities) from two different datasets. As each cate-
gory in the data corresponds to one synset in Word-
Net, we utilize the corresponding text to represent
each category. In this way, D, and D, are denoted as

= {#Z ), and Y = {3}, respectlvely, where n
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TABLE 1
Distances between different datasets which are obtained with the
metric of WMD.
DOG LTED ARIN | AROT
DOG 0 3.1981 | 3.5829 | 3.5438
LTED 3.1981 0 3.5102 | 3.4782
ARIN | 35829 | 3.5102 0 3.3787
AROT | 3.5438 | 3.4782 | 3.3787 0
TABLE 2

Distances between different datasets which are obtained by the metric
of SPL according to the tree structure of WordNet.

DOG | LTED | ARIN | AROT
DOG 0 13.39 19.60 18.97
LTED | 13.39 0 16.12 15.40
ARIN | 19.60 | 16.12 0 10.80
AROT | 1897 | 15.40 10.80 0

and m are the number of categories in each dataset
and Z; and §; are the corresponding words. The dis-
tance between I, and D, is obtained by computing
the dissimilarity between X and Y with the WMD
metric, denoted as Dyma(Ds, D) = WMD(X,Y).
Here we utilize the word2vec [65] embedding to
represent each word in XandY.

e SPL: the main idea of path-based measures is that
the similarity between two concepts is a function of
the length of the path linking the concepts and the
position of the concepts in the taxonomy. The SPL
distance which is a variant of the distance methods
of [64], [66] has been widely used to measure the
semantic similarities of different concepts in Word-
Net [59]. As the SPL based on WordNet has shown
its talents and attracted great concern, we also use
SPL to measure the relevance between two sets of
concepts. Depending on the structure of WordNet,
generally the result obtained from hypernym relation
is regarded as the similarity between concepts. Let us
define the length of the shortest path from synset ¢;
to synset ¢; in WordNet as len(c;, ¢;), then len(c;, ¢;)
is counted as the actual path length between c¢; and
c;. For example, if ¢; and c; are not the same node,
but ¢; is the parent of c;, we assign the semantic
length between them to 1, i.e., len(c;, ¢j) = 1. In this
way, for one category c,; in the dataset D, its SPL
dlstance to the dataset D, is denoted as d(c¢y;,Dy) =

MZ - len( cm,cw) where M is the number of
categories in D,. Finally, the SPL distance between

. 1 N
D, and Dy is Dgp (D, Dy) = ﬁzz:l d(cgi, Dy),
where N is the number of categories in .

For the WMD distance, the results are shown in Table
We utilize the approach [61] under the setting where the
words are represented with the word2vec [65] embedding
vectors. The WMD distance between two categories is a
specific case where each set only contains one entity. For
example, the WMD distance between the entity “basset”
(i.e., n02088238) and the entity “beagle” (i.e., n02088364)
which both belong to the DOG branch is 3.0119. The WMD
distance between the entity “"basset” and the entity “flattop”
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(i.e., n02687172) is 4.0327, which is much bigger as the entity
"flattop” belongs to the ARIN branch. It is illustrated that
"basset” is close to “beagle” while “basset” is far away from
“flattop”. As these categories are special entities selected
from different divided branches of ImageNet, the distance
between two sets of categories will be within these ranges.
So it is can be concluded that the WMD distance between
two sets roughly varies from 3 to 5. For a holistic view, the
WMD distances among the DOG, LTED, ARIN, and AROT
branches are shown in Table[ll The results demonstrate that
the categories in the some branch have bigger relevance.
As the results show, the WMD distance between DOG
and LTED, denoted as Dymq(DOG,LTED), is 3.1981.
However, Dymi(DOG, ARIN) and Dyna(DOG, AROT)
are 3.5829 and 3.5438 respectively, which are much
bigger compared with Dymqi(DOG, LTED). Because
DOG and LTED are corresponded to the living thing
branch, they are more relevant with each other,
compared to ARIN and AROT which are covered by
the artifact branch. Meanwhile, D,mi(ARIN, AROT)
is 33787, while Dyme(ARIN,LTED) is 3.5102.
Because Dymi(ARIN,LTED) is much bigger than
Duwmd(ARIN, AROT), it is demonstrated that ARIN is
more relevant with AROT, rather than LTED.

The results based on the SPL metric are shown in
Table 2| The SPL distance between the entity “basset”
(i.e., n02088238) and the entity “beagle” (i.e., n02088364)
is 2. Note that the entity “hound” (i.e., n02087551) is
the parent node of both ”“basset” and “beagle”. The
SPL distance between the entity “basset” and the entity
"flattop” (i.e., n02687172) is 22, as the entity “flattop”
belongs to the ARIN branch. From these cases, it also can be
concluded that the SPL distance between two sets roughly
varies from 2 to 22. The SPL distances among the DOG,
LTED, ARIN, and AROT branches are shown in Table
The SPL distance between DOG and LTED, denoted as
Dspi(DOG, LTED) is 13.39. However, D, (DOG, ARIN)
and D,y (DOG, AROT) are 16.12 and 15.40 respectively,
which are much bigger than D,y (DOG,LTED,).
Meanwhile, D;,(ARIN,AROT) is 10.80, while
Dspi(ARIN,LTED) and Dsp(AROT,LTED) are 16.12
and 15.40 respectively. Both of them are much bigger than
Dspi(ARIN, AROT). The trend is the same with the one
under the measure of WMD, as shown in Table

All the results under two metrics illustrate that the
datasets covered by the same branch have smaller distances,
demonstrating that the categories in the some branch have
bigger relevance. Furthermore, the quantitative results are
consistent with the qualitative results. WMD measures the
relevances among different datasets or branches based on
the semantic embedding vectors of the composed entities,
while SPL measures the relevance of them depending on
how close of the entities are in the taxonomy. They depict the
relevance among different datasets complementarily, and
they offer and establish baseline distributional metrics for
comparing sets of concepts in computer vision tasks.

Base and novel categories are sampled from the LTED,
ARIN, and AROT branches to explore the dataset diversity
for FSIR. In this section, we do not use the DOG branch
since this branch lacks of diversities of images. The few-
shot learning model would suffer from handling a sequence

Accuracy (%)

| ! ]
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Fig. 4. 5-way 1-shot accuracy of SG-(L;L) and SG-(L;Al).

of training tasks originated from different distributions if
the novel categories are irrelevant to the base categories. In
the following sub-sections, we carry out various groups of
experiments, based on different base and novel categories.
A group of experiments includes original or with additional
base categories and novel categories, as illustrated in Fig
Each group of experiments is conducted 5 times with eight
few-shot learning methods (e.g., PN [9], RN [10], DSN [23],
DEMD [21], MAML [13], adaCNN [14], Proto-MAML [27],
MetaOpt [12]) to obtain stable and reliable performance. The
eight methods use a 4 convolutional layers as the meta-
learner (backbone) with the different number of filters per
layer. We adopt the architectures of corresponding methods
without modification for our experiments. Without loss of
generality, we analyze the factors of dataset diversity on
1-shot models. To evaluate each model, 400 test tasks are
randomly sampled from 20 novel categories. And each test
task has 5 classes, each of which has 1 image in the support
set and 15 images in the target set. These test settings
have been widely used in the few-shot evaluation [9], [10],
[13], [14], [22], [26], and the results are reported with mean
accuracy.

4.3

This subsection studies the problem of whether increasing
the instance density can bring better performance on test
tasks. Different from the study of the impact of the shot
number [67], this subsection aims to investigate the impact
of performance as the number of samples per base category
increases. We conduct two groups of experiments with the
samples growth (SG) per base category, and each of them
uses 64 base categories with the number of samples per
category ranging from 10 to 1,200. One group uses base
and novel categories sampled from LTED branch, denoted
as SG-(L;L). Another group uses the same base categories,
but it employs novel categories sampled from ARIN branch,
denoted as SG-(L;Al). Each novel category in SG-(L;L) has
more relevant base categories than that in SG-(L;Al). In
other words, SG-(L;L) uses relevant base categories while
SG-(L;Al) employs irrelevant ones.

Fig. [ displays the performance of two groups. It can be
observed that: i) The performance of SG-(L;L) exceeds SG-
(L;Al) by a wide margin with the same methods, especially

Instance Density
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Fig. 5. 5-way 1-shot accuracy of CG-(L,L;L) (a) and CG-(L,AO;L) (b).

as the number of samples per base category increases. ii)
In SG-(L;L), more instances lead to better performance, and
the performance improvement is fast when the number of
samples per base category ranges from 10 to 200, while
it gets slow when starting from 200. iii) In SG-(L;AI), the
performance is improved at the beginning of the number
of instances increasing (from 10 to 100), after which the
performance is not significantly improved.
The following suggestions can be obtained.

e It is very important to use plenty of instances from
relevant base categories to train the FSIR model.

o If the relevant base categories are not available, there
is no need to use too many instances of each category.

4.4 Category Diversity

This subsection studies whether increasing the category
diversity can bring better performance on test tasks. Since
the number of base categories is changed, we divide base
categories into original and additional ones. We set up two
groups of experiments with category growth (CG), and
each of them uses 64 original base categories and varying
additional ones. One group employs original, additional
base categories and novel categories all sampled from LTED
branch, denoted as CG-(L,L;L). Another group exploits the
same original base and novel categories, but it uses addi-
tional base categories sampled from AROT branch, denoted
as CG-(L,AO;L). It is obvious that CG-(L,L;L) uses rele-
vant additional base categories while CG-(L,AO;L) employs
irrelevant ones. The number of samples per original or
additional base category is 600. The samples of original base
categories are fixed in the same group, and the number of
additional base categories ranges from 0 to 64.

Experimental results of CG-(L,L;L) and CG-(L,AO;L) on
eight methods are illustrated in Fig. 5| (a) and (b), respec-
tively. It can be observed that: i) When additional base
categories are relevant to novel categories, more additional
categories lead to better performance (see Fig. 5| (a)). ii)
When additional base categories and novel categories are
irrelevant, the performance may be improved when the
number of categories increases at the beginning, after which
the performance drops (see Fig. || (b)).

TABLE 3
Sampled categories of different groups.

Groups Base categories Novel categories
Original | Additional

SG-(L;L) LTED - LTED
SG-(L,AI) LTED - ARIN
CG-(L,L;L) LTED LTED LTED
CG-(L,AO;L) LTED AROT LTED
CG-(L,L;AI) LTED LTED ARIN
CG-(L,AG;AI) LTED AROT ARIN
CGS-(L,L;L) LTED LTED LTED
CGS-(L,L;AI) LTED LTED ARIN
CGS+(L,AOL) LTED AROT LTED
CGS-(LLAG;AI) LTED AROT ARIN
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Fig. 6. 5-way 1-shot accuracy of CG-(L,L;Al) (a) and CG-(L,AQ;Al) (b).

On the other hand, we set another two groups of experi-
ments denoted as CG-(L,L;AlI) and CG-(L,AO;Al). Different
from the above two groups, novel categories of them are
sampled from ARIN branch, as illustrated in Table 3| Obvi-
ously, CG-(L,L;Al) uses irrelevant additional base categories
while CG-(L,AO;Al) employs relevant ones.

Experimental results of CG-(L,L;Al) and CG-(L,AO;Al)
on eight methods are illustrated in Fig. E] (a) and (b), re-
spectively. It can be observed that: i) The performance of
CG-(L,AG;Al) is obviously superior to CG-(L,L;Al) as the
number of additional base categories increases. The main
reason is that CG-(L,AO;Al) uses relevant additional base
categories while CG-(L,L;Al) uses irrelevant ones. ii) The
performance of two groups is improved as the number of
additional base categories increases. In addition, comparing
CG-(LL,L) and CG-(L,AG;AI) (or CG-(L,LAO;L) and CG-
(L,L;AI)), relevant original base categories provide better
initial performance than irrelevant ones.

The following suggestions can be obtained.

o It is very important to use plenty of relevant base
categories to learn the FSIR model.

o If original base categories are not relevant to novel
categories, we can use some additional base cate-
gories without constraints.

4.5 Instance Density v.s. Category Diversity

From the above experiments, the FSIR performance would
be improved by increasing relevant instances or relevant
categories of base categories. To further explore which factor
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Fig. 7. 5-way 1-shot accuracy of CGS-(L,L;L) (a) and CGS-(L,L;Al) (b).

is more effective to boost the performance, we make com-
parisons by fixing the number of total samples while vary-
ing the number of categories and the number of samples in
each category. In this case, the number of samples in each
category will be decreased to guarantee the same total num-
ber of samples, as the number of base categories increases.
Since the relevance of base and novel categories would
affect the performance, we set up two groups of experi-
ments with the same relevance of original and additional
base categories, and each of them includes 32 original base
categories and varying additional ones. One group employs
categories all sampled from LTED branch, denoted as CGS-
(LLL;L) (Category Growth under the Same total samples).
Another group exploits the same original and additional
base categories, but it uses novel categories sampled from
ARIN branch, denoted as CGS-(L,L;Al). Thus CGS-(L,L;L)
uses relevant base categories while CGS-(L,L;Al) employs
irrelevant ones. Original base categories are fixed in the
same group of experiments, and the number of additional
base categories ranges from 0 to 64. The total number of
samples of base categories is 38,400 (equal to the number of
total training samples in MinilmageNet), where each base
category contains equal number of samples. Since the total
number of samples of base categories is fixed, each original
base category would have less samples with the growth of
the number of additional base categories. For example, each
original base category contains 1,200 samples without addi-
tional base categories (the total number is 1200*32=38,400),
and the number of samples of each original base category
would reduce to 800 when 16 additional base categories
with 800 samples per category are used (the total number
is 800*(32+16)=38,400).

Experimental results of CGS-(L,L;L) and CGS-(L,L;Al)
on eight methods are illustrated in Fig. [?] (@) and (b),
respectively. It can be observed that increasing base cat-
egories is more effective than increasing their samples to
boost the FSIR performance, when original and additional
base categories are relevant. That is to say, it is better for
the FSIR model to use more relevant base categories than
more samples per relevant base category (obtained from
Fig. [ﬂ (a)), and it is better for the FSIR model to use more
irrelevant base categories than more samples per irrelevant
base category (obtained from Fig. [7] (b)). This phenomenon

. L . . . 6 . . " . .
0 16 32 48 64 2 0 16 32 48 64
#increased irrelevant categories #increased relevant categories
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PN - MAML Proto-MAML DSN MetaOpt ¢~ DEMD |

Fig. 8. 5-way 1-shot accuracy of CGS-(L,AO;L) (a) and CGS-(L,AQ;Al)
(b).

explains that additional base categories provide more bonus
for the FSIR model than learned categories with additional
samples, since the model has already learned accurate
knowledge from hundreds of samples per base category.

Moreover, we set another two groups of experiments
with irrelevance of original and additional base categories.
The two groups are denoted as CGS-(L,AO;L) and CGS-
(L,AG;Al), which are different from the above two groups
since they use additional base categories sampled from
AROT branch, as illustrated in Table 3l Obviously, CGS-
(LLAO;L) uses irrelevant additional base categories while
CGS-(L,AO;AI) employs relevant additional ones, and CGS-
(LLAO;L) uses relevant original base categories while CGS-
(L,AG;AI) employs irrelevant original ones.

Experimental results of CGS-(L,AO;L) and CGS-
(L,AG;Al) on eight methods are illustrated in Fig. (8] (a) and
(b), respectively. From Fig. [§] (a), it is better for the FSIR
model to use more samples per relevant base category than
more irrelevant base categories. From Fig. [§| (b), it is better
for the FSIR model to use more relevant base categories
than more samples per irrelevant base category. These two
observations can explain that relevance is a more important
factor than more base categories or more sample per base
category.

The following suggestions can be obtained.

o It is better for the FSIR model to use more base
categories than more samples per category, when
original and additional base categories are relevant.

e Relevance is a more important factor than transfor-
mations in sample forms (i.e., more categories or
more sample per category).

According to the above two points, we can further infer
that the FSIR performance goes down in order of more
relevant base categories, more samples per relevant base
category, more irrelevant base categories, and more samples
per irrelevant base category.

4.6 Tremendous Number of Categories

When the number of total base samples is fixed,whether
increasing the number of base categories will improve per-
formance? To explore this problem, we conduct experiments
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on a dataset of a larger number of categories. This dataset
contains 10,020 categories, sampled from ImageNet . In
this case, we set the total number of samples as 20,000, and
the number of base categories ranges from 100 to 10,000.
Thus each category contains samples ranging from 200
to 2. For each setting (indexed with the number of base
categories), the evaluations are also conducted 5 times with
eight few-shot learning methods. For the evaluation of each
model, we use the same architecture of few-shot learning
methods, the same number of test tasks or novel categories,
and evaluation index as the above experiments.

Experimental results on eight methods are illustrated
in Fig. 0] With the fixed number of total samples, as the
number of base categories increases, the FSIR performance
decreases. When the number of per base category is 1,000,
namely each base category contains 20 samples, more sam-
ples per base category become more important than more
base categories. In this case, additional samples per base
category provide more bonus for the FSIR model than ad-
ditional base categories, since the FSIR model can not learn
accurate knowledge well from a small amount of samples
per category.

4.7 Discussion

The main factors about base categories affecting the perfor-
mance of FSIR are presented as follows:

o The more categories are not always the better. Rel-
evance is the key factor, and increasing relevant
categories can benefit FSIR, otherwise, including ir-
relevant categories may not be helpful.

o Data diversity is also an important factor to FSIR, and
large diversity in categories or density in instances
can result in better results, enhancing the generaliza-
tion capability of the FSIR model.

e When enough instances are in each category, cate-
gory diversity is more sensitive than instance density,
which may coarsely broaden the diversity of the
whole dataset.

5 EVALUATION OF DATASET STRUCTURE

In early studies, FSIR methods attempt to recognize the
alphabet images or the object images with simple

10
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Fig. 10. Example illustrations of different levels of image complexity.

K

background. Afterwards, FSIR methods focus on more real-

istic images, such as general object images [9], [10], [22], [30],
fine-grained object images [22], [68], scene images [28], [31].

However, different type of images have intrinsic properties
and data structures, which may lead to significant perfor-
mance differences. In this section, we study the dataset
structure through the view of FSIR. First, we present various
factors of dataset structures with quantitative representa-
tions. Second, we introduce several datasets under few-shot
settings. Finally, we make analysis on different datasets from
the dataset structure and few-shot learning methods.

5.1 Factors of Dataset Structure

Dataset structure can be reflected with image complexity,
intra-concept visual consistency and inter-concept visual
similarity. Image complexity can depict visual contents of
original images. If original images include complex back-
ground information, it could be difficult to accurately iden-
tify their concepts. As illustrated in Fig.[10} the apple image
is more complex than the letter “L” image, and the scene
image with cluster background is more complex than the ap-
ple image. Both intra-concept visual consistency and inter-
concept visual similarity can depict semantic gaps between
low-level visual features (i.e., computational representations
of images from hand-crafted algorithms) and high-level
image concepts (i.e., semantic interpretations of images from
human beings) [69]. Intra-concept visual consistency de-
scribes the aggregations of single concept in the visual fea-
ture space, and a big intra-concept visual consistency may
result in low semantic gaps. In contrast, inter-concept visual
similarity describes correlations between different concepts
in the visual feature space, and a small inter-concept visual
similarity may result in low semantic gaps. When consider-
ing intra-concept visual consistency and inter-concept visual
similarity simultaneously, we obtain that a larger difference
value between them means a smaller semantic gap.
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We quantify image complexity with the following ways:
i) Complex images often have complex structures, and
structural attributes can be preserved by edges. We use
percentage of edge points Pgrp as a metric, defined as:
Pop — #(edge piiielb) ©)
#(image pixels)
where #(image pixels) and #(edge pixels) are the number
of pixels and edges in the image, respectively. Edge pixels
can be detected with the Canny edge detection method
[70]. ii) We utilize the 2D entropy Esp [71] to measure the
underlying spatial structure and pixel co-occurrence. Given
an N x M pixel image f(n,m), E2p is defined as:

Imaax Imax

= > > piglogapi @)

1=Imin J=Jmin

Esp =

where p; ; NoiT Somet Somet O g (mam) 05 gy (m), O 19
the Kronecker delta formulation, f, and f, are the two
derivative components of the gradient field, I and J record
all gradient values in two gradient directions.

Intra-concept visual consistency and inter-concept visual
similarity are quantified according to [69]. Intra-concept
Visual consistency of category C; is defined as: ¢;nq(C)) =
AT (eAED) \Cz|* Zlc’l Z‘C'Hl k(acl,acl) where |C)| is the num-

ber of images in Cj, 2} and ] are the feature representations

of images in Cy. k(z},z]) = ¢/ Y124, where cis a

scalar, k(xj, ;) is inversely proportional to the Euclidean

distance o L% (4 and o are the mean and

standard deviation of all
normalization of all z), and can be used as the similarity of
them. The overall intra-concept visual consistency Cjj, of
all categories in D is defined as:

|D]
'Lna = |D| Zczna CVl (8)

where |D| is the number of categories in D. Inter-
concept visual similarity between C; and Cj, is defined
as: sinr (Cl, Ck) = et Sietd L4 ki, ), where |C)|
and |Cy| are the number of images of C; and C}, respec-
tively, zj and 7, are the feature representations of images in
C; and Cj. The overall inter-concept visual similarity Sy,
of each two categories in D is defined as:

9 |D| |D]
Sin'r‘ = sznr C 70 (9)
BB =1 2,2, (e )

We use three types of classical features (i.e., GIST: used in
[72], HOG: Histograms of Oriented Gradients [73], LBP:
Local Binary Patterns [74].) to calculate Cj,, and Siyr,
and set ¢ = 1.0. We believe that classical descriptors can
somewhat convey the internal structure of datasets from
multiple aspects. In addition to the classical descriptors,
we also include convolutional neural network (CNN) and
bag-of-word (BoW) features for comparison, which may
be biased to the training data. In our case CNN model is
pretrained on ImageNet, codebook of BoW is learned within
each dataset. As illustrated in Table [7} the trends of the
statistical results on different datasets are almost the same

11

TABLE 4
The image complexity in different datasets.

Datasets Pgp Esp
MiniCharacter | 0.048 | 2.190
Minilmagenet | 0.225 | 7.045
MiniPlaces 0.254 | 7.411
MiniFlower 0.325 | 8.012
MiniFood 0.259 | 7.407

in most cases, making the analysis be more comprehensive.
It can be observed that in all cases (using different types
of features in different datasets), the intra-concept similarity
is larger than inter-concept similarity. HOG and LBP de-
scriptors focus more on local details, which are sensitive to
the content of dataset, resulting in larger deviation among
different datasets. In contrast, GIST, BoW, and CNN focus
more on global information, where more consistent results
are obtained in different datasets.

5.2 Datasets and Settings

We construct several datasets with different structures,
which range from simple character images to the images
with one or more objects. In addition to the above images,
facing vertical fields, some fine-grained datasets (i.e., food
and flower datasets) are also used in our evaluations. To
balance the diversity of different datasets, we refer to Mini-
Imagenet, and organize the datasets with the same number
of categories and the same number of samplers per category
as Minilmagenet. These datasets are collected as follows. i)
MiniCharacter is handwritten character dataset, which is
generated and annotated by 15 volunteers. MiniCharacter
includes various characters such as English letters, numbers,
mathematical symbols. The total number of categories is 84,
and each of category has 100 images. The 64 and 20 cate-
gories are used as base and novel categories, respectively.
ii) Minilmagenet [22] uses 64 and 20 categories as base and
novel categories, respectively, where each category contains
600 images. iii) MiniPlaces is a subset of Places365 [6]. It
uses 64 and 20 categories as base and novel categories,
respectively, where each category contains 600 images. iv)
MiniFlower is sampled from flower dataset [75] provided
from 2018 FGCVxFlower Classification Challenge. It uses 64,
20 categories as base, novel categories, respectively, where
each category contains 600 images. v) MiniFood is sampled
from Food101 [76]. It uses 64 and 20 categories as base and
novel categories, respectively, where each category contains
600 images. Experiments are conducted with eight few-
shot learning methods (i.e., PN, RN, DSN, DEMD, MAML,
adaCNN, Proto-MAML, MetaOpt). Evaluating each model,
we use the same number of test tasks, evaluation index
and the same architecture of few-shot learning methods (
denoted as CNN-4), as Sect. E} Besides, we also use a deeper
architecture ResNet-12, which has been widely adopted in
recent works [12], [14], [21], [23], [77].

5.3 Analysis on Dataset Structure

Our goal is to analyze the performance of different dataset
from their structures. Table [4] illustrates the image com-
plexity of different datasets. which is measured with Pgp
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TABLE 5
5-way 1-shot accuracy (%) on different datasets with CNN-4.

Datasets Metric-based methods Meta-learning methods

PN RN [ DSN [ DEMD | MAML | adaCNN [ Proto-MAML [ MetaOpt
MiniCharacter | 86.17 | 91.83 | 87.21 88.43 85.45 83.91 88.00 88.80
Minilmagenet | 4942 | 51.38 | 51.03 | 52.46 48.70 48.26 48.41 51.67
MiniPlaces 49.00 | 50.62 | 51.89 | 53.96 48.49 50.05 50.44 55.74
MiniFlower 48.73 | 50.73 | 51.07 | 5524 49.32 48.56 50.60 51.95
MiniFood 4141 | 45.68 | 4486 | 50.70 43.55 44.94 43.63 45.73

TABLE 6

5-way 1-shot accuracy (%) on different datasets with ResNet-12.
Datasets Metric-based methods Meta-learning methods

PN RN DSN | DEMD | MAML | adaCNN | Proto-MAML | MetaOpt
MiniCharacter | 92.87 | 92.15 | 92.70 | 93.49 85.65 89.26 94.24 93.10
Minilmagenet | 58.47 | 53.08 | 58.67 | 60.46 54.90 57.13 57.37 59.73
MiniPlaces 60.55 | 58.01 | 61.30 | 60.47 58.25 56.35 60.4 63.12
MiniFlower 55.63 | 55.36 | 55.26 | 61.62 54.15 58.10 55.13 58.53
MiniFood 5135 | 49.29 | 51.58 | 54.76 49.44 52.15 50.63 52.30

and Fsp. Table B and Table [f] show the results of dif-
ferent methods on different datasets. It can be observed
that the image complexity in MiniCharacter is the lowest.
Each character image contains only one character with clear
background. Table[f]also demonstrates that the performance
on MiniCharacter is significantly higher than the one on
the other datasets. From this special case of MiniCharacter,
we can find that image complexity plays an important
role in FSIR, where lower complexity often leads to higher
performance. However, character images are very different
with most real-world images, such as object, scene and
food images. In the rest evaluations, we mainly focus on
comparisons and discussions of the other four datasets.

As illustrated in Table @] MiniFlower is the highest in
image complexity. However, the FSIR performance on Mini-
Flower is not the lowest (see Table [f] and Table [f), which
is higher than MiniFood and comparable with Minilma-
genet. This may be explained from the following reasons: i)
MiniFlower is a special kind of fine-grained image dataset,
where images in the same category are very similar. As

shown in Fig. although image complexity is very high
in the aspects of clustered edges and detailed component
information, the visual texture and structural patterns of im-
ages in the same category are still very similar. MiniFlower
has the highest intra-concept visual consistency Cjpq, as
illustrated in Table [7] This may present that the task of
flower recognition is relatively easier, even for the case of
FSIR. ii) As categories in MiniFlower all belong to flower
and they are biological relatives, it is intuitive that visual
patterns of different flower categories are also similar to
some extent, as shown in Fig. Thus base categories
and novel categories in miniFlower present some relevance,
which enables learned FSIR models to better recognize novel
categories.

Except for the very simple dataset MiniCharacter, most
methods obtain the highest performance on MiniPlaces (see
Table [f] and Table [6). MiniFlower is more complex than
MiniPlaces (see Table [), which seems to be the reason that
most methods obtain lower performances on MiniFlower
than that on MiniPlaces. MiniPlaces has comparable image
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complexity to the MiniFood, however, the average gains
of all methods on MiniPlaces (over MiniFood) are close to
6.8% in Table Bl and 7.8% in Table [6l In alternative to the
absolute complexity, such difference in accuracy may be
caused by the difference value between intra-concept visual
consistency and inter-concept visual similarity with CNN
features in Table [/} where MiniPlaces dataset has a larger
difference value. Similarly, Minilmagenet has a smaller
difference value than MiniPlaces, thus, most methods still
obtain higher performances on MiniPlaces compared to
Minilmagenet.

The FSIR performance on Minilmagenet is higher than
MiniFood and comparable with MiniFlower. The main rea-
son is that image complexity in Mininlmagenet is lower
than the one in the two datasets. However, the advantage
of performance on Minilmagenet is faint or not obvious
when considering its image complexity is obviously lower
than that of MiniFlower. This phenomenon can be attributed
to less relevance of base categories and novel categories
in Minilmagenet, which is reflected in the following two
aspects. i) Category labels in MinilmageNet are sampled
from a larger semantic space which brings greater diver-
sities of semantic concepts, compared with MiniFlower.
This leads to less probabilities of sampling relevant base
and novel categories in Minilmagenet, when the number
of base categories or novel categories are the same in all
datasets (i.e., all datasets include 64 base categories and
20 novel categories). ii) Images in Minilmagenet focus on
single object, and different categories differ greatly in visual
content, in contrast, different categories in MiniFlower are
similar, as shown in Fig. |11} Thus base categories and novel
categories in Minilmagenet present less relevance than that
in MiniFlower.

The FSIR performance from all methods on MiniFood
is the worst. The reasons can be explained as follows. i)
As shown in Table {4] the image complexity of MiniFood
is much higher than the one of Minilmagenet and com-
parable with MiniPlaces. Besides, compared with the two
datasets, the inter-concept visual similarity S;,, of Mini-
Food is higher (see Table [/). Therefore, the performance
on MiniFood is worse than the one on Minilmagenet and
MiniPlaces. ii) Although MiniFlower and MiniFood both
belong to fine-grained datasets, there are fixed semantic
patterns in MiniFlower. For example, the flower consists of
some semantic parts, such as petals and calyx. However,
such semantic patterns do not exist in minFood [78], and
minFood thus has a lower intra-concept visual consistency
Cina than MiniFlower (see Table[7). Therefore, the FSIR per-
formance on MiniFood is worse than the one on MiniFlower.

5.4 Analysis on Few-shot Learning Methods

As shown in Fig. (a), for all methods, with a deeper
backbone ResNet-12, PN obtains the largest performance
gain averaged on the five datasets (8.83%). The probable
reason is that a deeper network makes PN learn better pro-
totypical representation compared with shallow networks.
In contrast, the averaged gain from all datasets is the lowest
(3.53%) for RN. RN can obtain powerful features from the
deep backbone ResNet-12. In this case, a simple metric
is enough for effective few-shot learning. However, RN
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adopts a more complex metric implemented by convolu-
tional transformation, leading to the limited generalization
ability. Both PN and RN belong to metric-based methods,
while among different meta-learning methods, MAML ob-
tains the smallest averaged gain from the backbone of CNN-
4 to ReNet-12. Compared to adaCNN and MetaOpt, MAML
needs to learn the same initialization, from which different
tasks can achieve effective adaptation with gradient descent.
However, compared to the shallow backbone (CNN-4), it’s
more difficult to obtain better initialization on the deeper
backbone (ResNet-12), due to the larger parameter space for
initialization. In contrast, Proto-MAML initializes the classi-
fier with the class prototype, achieving a good initialization
when using the backbone ResNet-12. Thus the gain of Proto-
MAML is much higher than MAML, and comparable to
adaCNN and MetaOpt. As shown in Fig.[12|(b), All methods
obtain the performance gain from one shallow backbone
(CNN-4) to a deeper backbone (ResNet-12). Particularly, the
average gain of all methods on MiniCharacter is the smallest
(4.21%), which is intuitive, as images in MiniCharcter is
very simple. The average gain on MiniPlaces is the biggest
(8.53%). The reason is that images in MiniPlaces usually
contain multiple objects, using deeper architectures with
more convolutional and pooling operations can progres-
sively generate more abstract feature representations for this
kind of images.

In metric-base methods, DSN and DEMD outperform
classical metric-based methods PN and RN, benefiting from
the more effective metric learning methods. In particu-
lar, DSN learns task-adaptive different subspace metrics,
and DEMD uses the Earth Mover’s Distance to capture
detailed differences of each two images in local regions.
And compared with other meta-learning methods, such
as adaCNN, MAML and Proto-MAML, MetaOpt obtains
better accuracy on most datasets (except for miniCharac-
ter). In particular, MetaOpt can share common parameters
(in backbone models) for different tasks, allowing to fo-
cus on the optimizing of high-level classifiers, leading to
fast adaptation with only few shots in training. Among
metric-based /meta-learning methods, DEMD /MetaOpt ob-
tains better results on most datasets. When comparing with
best meta-learning (MetaOpt) and metric-based (DEMD)
methods, the former works better on datasets with more
objects in larger difference value between intra-concept
consistency and inter-concept similarity, such as MiniPlaces,
while the latter works better on more fine-grained datasets,
such as MiniFlower and MiniFood. DEMD and MetaOpt
obtain comparable results on more simple datasets with
smaller complexity (in Table [7), such as MiniCharacter and
MinilmageNet. Since miniPlaces dataset usually consists of
object co-occurrences between different categories, sharing
the common parameters and focusing on high-level dis-
crimination allow MetaOpt to obtain better performance
on miniPlaces. Since different categories in fine-grained
datasets usually contain similar prototypes, DEMD can fo-
cus more on detailed regions, leading to better performance
on more fine-grained datasets.

One interesting method is Proto-MAML, a meta-learning
method like MAML, whose classifier is initialized with the
class prototype from metric-based method PN. Thus, the
comparison between ProtoMAML, MAML and PN is worth
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TABLE 7
Intra-concept visual consistency and inter-concept visual similarity in different datasets.
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Datasets Cina (0/0) Sinr (0/0)
GIST BoW CNN | HOG LBP GIST BoW CNN HOG LBP
Minilmagenet 0.45 2.40 5.11 0.25 11.24 | 0.37(0.08) 2.23(0.17) 4.90(0.21) | 0.20(0.05) 7.64(3.60)
MiniPlaces 0.44 2.40 4.96 0.27 4.22 0.36(0.08)  2.23(0.17) 4.73(0.23) | 0.20(0.07)  3.63(0.59)
MiniFlower 0.55 2.38 5.29 0.44 1891 | 0.46(0.09) 2.22(0.16) 5.11(0.18) | 0.37(0.07) 17.74(1.17)
MiniFood 0.45 2.40 5.16 0.31 11.67 | 0.39(0.06) 2.23(0.07) 4.97(0.19) | 0.25(0.06)  11.24(0.43)
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Fig. 12. (a): the average gain from CNN-4 to ResNet-12 over all datasets for different methods. (b): the average gain from CNN-4 to ResNet-12

over all methods on different datasets.

discussing. The results of Proto-MAML on Minilmagenet is
in line with the reported results in , where the accuracy
of Proto-MAML is slightly worse than PN. However, com-
pared with MAML and PN, Proto-MAML obtains better per-
formance on three datasets (i.e., MiniCharacter, MiniPlaces,
and MiniFood) with CNN-4, and on MiniCharacter with
ResNet-12. With a shallow backbone (CNN-4), Proto-MAML
works better than PN and MAML on most datasets, demon-
strating that a suitable initialization (with PN in Proto-
MAML) is also necessary to MAML. Otherwise, the trained
model may fall into some suboptimal states due to fast
convergence in the shallow architecture. In contrast, with
a deeper backbone (ResNet-12), PN works slightly better
than Proto-MAML on most datasets, showing that PN can
be better optimized with a deeper architecture. Furthermore,
when using ResNet-12, MAML obtains a lower performance
than PN on all datasets. That’s probably because it is dif-
ficult for MAML to learn a good initialization in a large
parameter space. Compared to MAML, Proto-MAML can
be optimized with better initialization, allowing it to obtain
more gains on most datasets.

5.5 Discussion

Based on the above analysis, we can obtain:

o A dataset with a low image complexity presents bet-
ter performance. Besides, intra-concept visual con-
sistency and inter-concept visual similarity also can
influence performance differences.

o Different methods have diverse performance on dif-
ferent types of datasets, which is relevant to two im-
portant dimensions, namely dataset structures and
the method ability. According to our experimental
analysis, the best metric-based method and the best
meta-learning one obtain comparable performance

on different datasets. A better metric function is
important for metric-based methods while better
adaptive strategies are vital for meta-learning meth-
ods. Combining better metric function learning with
better adaptive strategies can be explored in FSIR.

e It's more effective to design FSIR architectures ac-
cording to the characteristics of data distribution. For
instance, DEMD focuses more on detailed regions,
resulting in better performance on fine-grained
datasets. MetaOpt shares common parameters and
focuses on optimizing category sensitive classifiers,
obtaining best accuracy on miniPlaces with object co-
occurrences between different scenes.

6 PERSPECTIVES AND FUTURE DIRECTIONS

According to existing FSIR researches and our observations,
we give some prospective analysis on future works from the
following aspects.

Transferable FSIR. It is common to utilize prior repre-
sentations obtained in models which are trained with large
examples for new tasks. Our work has demonstrated
that the relevance between images in base and novel cat-
egories, and the data structures of the images have much
influence on the FSIR performance. The results provide
criterion for selecting or integrating features for FSIR. Fur-
thermore, there are situations that images in base categories
and novel categories have different data distributions [11],
[55]. Sometimes, images in novel categories are even cou-
pled with unlabeled data [80]. It is important for few-shot
learning methods to eliminate the domain gap between base
and novel categories, thus these methods can obtain repre-
sentations with better generalization ability. The analysis of
the dataset bias somewhat reveals the shared information
among different examples. These results also provide useful
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guidance for designing transductive FSIR models to further
improve FSIR performance. Moreover, in real world FSIR
scenarios, how to explore knowledge from available images
to recognize images in some specific target domains is in
high demand. For example, recognizing fine-grained novel
categories [81], [82] uses generic base categories instead
of fine-grained ones, considering the data from general
images is easier to access. Our work has investigated the
transferable capability impacted by the dataset bias, intro-
ducing insightful observations to effectively obtain adapted
representations for FSIR.

Incremental learning of few shot learning. In many
applications, it is often desirable to have the flexibility of
learning novel concepts, with limited data and without re-
training on the full training set, namely Incremental Few-
Shot Learning (IFSL) [83]], [84], [85], [86]. In this task, the
novel classes with only a few labeled examples for each class
should be considered based on the trained model for a set of
base classes. Similar to existing few-shot learning methods,
IFSL should also consider the recognition performance on
unseen novel classes. Therefore, some observations from
our work can still provide guidance in designing IFSL. For
example, if the unseen novel classes are very relevant to
based categories, IFSLs can obtain better recognition perfor-
mance. On the other hand, different from existing few-shot
learning methods, IFSL should also consider the recognition
performance on base classes. For that, incremental leaning
is incorporated into the few-shot learning framework. The
performance differences on different datasets from dataset
structures and different few-shot learning methods are
worth exploration. For example, what types of few-shot
learning methods lead to better performance of IFSL when
combined with incremental learning? Our experimental de-
sign and analysis can provide the reference for supporting
such exploration. For example, integrating metric-based
methods and meta-learning ones based on their different
learning mechanisms is worthy of further study.

FSIR on data of non-uniform distributions. Data in
non-uniform distribution, such as data in long-tailed dis-
tribution (LTD) and out-of- distribution (OOD), is typically
challenging to the machine learning models. The vast ma-
jority of existing FSIR works assume training data of each
base category is even. However, this is a highly restrictive
setting, LTD is the most common in real-world scenarios,
where some categories have plenty of samples while more
categories have only a few ones. One goal of few-shot
learning is to address the problem in the recognition with
LTD data. Particularly in our work, we demonstrate that
larger data (without increasing categories) and diverse cate-
gory distribution may enhance the generative ability of the
model. In addition to long-tailed data distribution, a more
challenging task is to deal with the OOD data, where test
data is not in the same distribution as training data. How to
use this kind of data of non-uniform distributions for FSIR is
worth exploring. In our case, we demonstrate that different
datasets have various complexity, intra-concept consistency
and inter-concept similarity, thus, different datasets are
OOD to each other. Mixing those OOD data may damage
transferability of the FSIR model, thus, how to filter those
noise from the data with mixed distributions is worth
researching. Moreover, it's more practical and challenging
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to use unlabeled OOD data for data augmentation, thus,
few-shot learning with semi-supervised training is also a
significant research direction in future.

FSIR with extra knowledge. Since visual data contains
complex structural information, it is difficult to directly ex-
tract effective knowledge, especially for the generic knowl-
edge which can be used to establish some connections on
novel categories. However, this generic knowledge can be
relatively easily obtained from some prior knowledge such
as attributes [28]], [87], word embeddings (learned from
large-scale text corpora) [88]], [89], [90], relationships of
entities [89]], [90], [91], knowledge graph [89], [90] etc. This
kind of information are complementary for FSIR, and the
problem of dataset bias can be alleviated to some extent
by applying techniques of information fusion or knowledge
transfer. Extra knowledge is useful both for the cases of cate-
gory diversity or dataset from different domains. As human
can easily correlate various kinds of extra knowledge to
recognize a new object, we believe FSIR with extra knowl-
edge is a potentially important research topic to improve
performance of existing few shot benchmarks as well as for
practical applications.

7 CONCLUSIONS

Few-shot image recognition (FSIR) is an important research
problem in the machine learning and computer vision com-
munity. In this paper, we study FSIR with dataset bias
systematically. First, we investigate impact of transferable
capabilities learned from distributions of base categories.
We introduce instance density and category diversity to
depict distributions of base categories, and relevance to
measure relationships between base categories and novel
categories. Experimental results on different sub-datasets
of ImageNet demonstrate the relevance, instance density
and category diversity can depict the transferable bias
from base categories. Second, we investigate differences
in performance on different datasets from characteristics
of dataset structures and different few-shot learning meth-
ods. We introduce image complexity, intra-concept visual
consistency, and inter-concept visual similarity to quantify
characteristics of dataset structures. From comprehensive
experimental evaluations on five datasets with eight few-
shot learning methods, some insightful observations are
obtained from the perspective of both dataset structures and
few-shot learning methods. We hope these observations are
helpful to guide future FSIR research.
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