
1

MetaKernel: Learning Variational Random
Features with Limited Labels

Yingjun Du, Haoliang Sun, Xiantong Zhen, Jun Xu, Yilong Yin, Ling Shao, Fellow, IEEE
and Cees G. M. Snoek, Senior Member, IEEE

Abstract—Few-shot learning deals with the fundamental and challenging problem of learning from a few annotated samples, while
being able to generalize well on new tasks. The crux of few-shot learning is to extract prior knowledge from related tasks to enable fast
adaptation to a new task with a limited amount of data. In this paper, we propose meta-learning kernels with random Fourier features for
few-shot learning, we call MetaKernel. Specifically, we propose learning variational random features in a data-driven manner to obtain
task-specific kernels by leveraging the shared knowledge provided by related tasks in a meta-learning setting. We treat the random
feature basis as the latent variable, which is estimated by variational inference. The shared knowledge from related tasks is incorporated
into a context inference of the posterior, which we achieve via a long-short term memory module. To establish more expressive kernels,
we deploy conditional normalizing flows based on coupling layers to achieve a richer posterior distribution over random Fourier bases.
The resultant kernels are more informative and discriminative, which further improves the few-shot learning. To evaluate our method, we
conduct extensive experiments on both few-shot image classification and regression tasks. A thorough ablation study demonstrates that
the effectiveness of each introduced component in our method. The benchmark results on fourteen datasets demonstrate MetaKernel
consistently delivers at least comparable and often better performance than state-of-the-art alternatives.

Index Terms—Meta Learning, Few-shot Learning, Normalizing Flow, Variational Inference, Random Features

F

1 INTRODUCTION

HUMANS have the amazing ability to learn new concepts
from only a few examples, and then effortlessly gen-

eralize this knowledge to new samples. In contrast, despite
considerable progress, existing image classification models
based on deep neural networks e.g., [2], [3], are still highly
dependent on large amounts of annotated training data [4]
to achieve satisfactory performance. This learnability gap
between human intelligence and existing neural networks
has motivated many to study learning from a few samples,
e.g., [5], [6], [7], [8]. Meta-learning, a.k.a. learning to learn [9],
[10], emerged as a promising direction for few-shot learn-
ing [11], [7], [8], [1].

The working mechanism of meta-learning involves a
meta-learner that exploits the common knowledge from
various tasks to improve the performance of each individual
task. Remarkable success has been achieved in learning
good parameter initializations [8], [12], efficient optimization
update rules [11], [7], and powerful common metrics [13],
[14] from related tasks, which enables fast adaptation to
new tasks with few training samples. Meta-learning has also
proven to be effective in learning amortized networks shared
by related tasks, which generate specific parameters [15] or
normalization statistics [16] for individual few-shot learning
tasks. However, how to properly define and exploit the prior

• Y. Du, X. Zhen and C. Snoek are with the University of Amsterdam,
Amsterdam, the Netherlands.

• J. Xu is with Nankai University, Tianjin, China.
• H. Sun, and Y. Yin are with the School of Software, Shandong University,

China.
• X. Zhen and L. Shao are with the Inception Institute of Artificial

Intelligence, UAE.
• A preliminary version of this work appeared in ICML 2020 [1].

Manuscript received , 2021; revised , 2021.

knowledge from experienced tasks remains an open problem
for few-shot learning, and is the one we address in this paper.

An effective base-learner should be powerful enough
to solve individual tasks, while being able to absorb the
information provided by the meta-learner for overall benefit.
Kernels [17], [18], [19] have proven to be a powerful tech-
nique in the machine learning toolbox, e.g., [20], [21], [22],
[23], [24], as they are able to produce strong performance
without relying on a large amount of labelled data. Moreover,
task-adaptive kernels with random features, leveraging data-
driven sampling strategies [23], achieve improved perfor-
mance over universal ones, at low sampling rates [25], [26],
[27], [28]. This makes kernels with data-driven random
features well-suited tools for learning tasks with limited
data. Hence, we introduce kernels as base-learners into the
meta-learning framework for few-shot learning. However,
due to the limited availability of samples, it is challenging
to learn informative random features for few-shot tasks by
solely relying on a tasks own data. Therefore, exploring the
shared prior knowledge from different but related tasks is
essential for obtaining richer random features and few-shot
learning.

We propose learning task-specific kernels in a data-
driven way with variational random features by leveraging
the shared knowledge provided by related tasks. To do
so, we develop a latent variable model that treats the
random Fourier basis of translation-invariant kernels as the
latent variable. The posterior over the random feature basis
corresponds to the spectral distribution associated with the
kernel. The optimization of the model is formulated as a
variational inference problem. Kernel learning with random
Fourier features for few-shot learning allows us to leverage
the universal approximation property of kernels to capture

ar
X

iv
:2

10
5.

03
78

1v
1

 [
cs

.L
G

]
 8

 M
ay

 2
02

1

2

tanh

+
tanh

tanh

+
tanh

tanh

+
tanh

Fig. 1. MetaKernel learning framework. The meta-learner employs an LSTM-based context inference network φ(·) to infer the spectral distribution
over ωt

0, the kernel from the support set St of the current task t, and the outputs ht−1 and ct−1 of the previous task. The enriched random bases
ωt

k are obtained via conditional normalizing flows with a flow of length k. During the learning process, the cell state in the LSTM is deployed to
accumulate shared knowledge by experiencing a set of prior tasks. The remember and forget gates in the LSTM episodically refine the cell state by
absorbing information from each experienced task. For each individual task, the task-specific information extracted from the support set is combined
with distilled information from the previous tasks to infer the adaptive spectral distribution of the kernels.

shared knowledge from related tasks. This probabilistic
modelling framework provides a principled way of learning
data-driven kernels with random Fourier features and, more
importantly, fits well into the meta-learning framework for
few-shot learning, providing us the flexibility to customize
the variational posterior and leverage meta-knowledge to
enhance individual tasks.

To incorporate the prior knowledge from experienced
tasks, we further propose a context inference scheme to
integrate the inference of random feature bases of the
current task into the context of previous related tasks. The
context inference provides a generalized way to integrate
shared knowledge from the related tasks with task-specific
information for the inference of random feature bases. To
do so, we adopt a long short-term memory (LSTM) based
inference network [29], leveraging its capability of learning
long-term dependencies to collect and refine the shared meta-
knowledge from a set of previously experienced tasks.

A preliminary conference version of this work, which also
covers variational random features and task context inference
was published previously [1]. In this extended work, we
further propose conditional normalizing flows to infer richer
posteriors over the random bases, which allows us to obtain
more informative random features. The normalizing flows
(NFs) [30], [31], [32], [33], [34] model complicated high
dimensional marginal distributions by transforming a simple
base distribution (e.g., a standard normal) or priors through a
learnable, invertible mapping and then applying the change
of variables formula. Normalizing flows, which have not yet
been explored in few-shot learning, provide a well-suited
technique for learning more expressive random features by
transforming a random basis into a richer distribution. The
overall learning framework of our MetaKernel is illustrated
in Figure 1.

To validate our method, we conduct extensive exper-
iments on fourteen benchmark datasets for a variety of
few-shot learning tasks including image classification and
regression. Unlike our prior work [1], we also experiment
on the large-scale Meta-Dataset by Triantafillou et al. [35]
and the challenging few-shot domain generalization setting
suggested by Du et al. [16]. MetaKernel consistently delivers
at least comparable and often better performance than
state-of-the-art alternatives on all datasets, and the ablative
analysis demonstrates the effectiveness of each MetaKernel
component for few-shot learning.

The rest of this paper is organized as follows: Section 2
summarizes related work. Section 3 presents the proposed
MetaKernel framework. Section 4 summarizes experimental
details, state-of-the-art comparisons and detailed ablation
studies. Section 5 closes with concluding remarks.

2 RELATED WORK

2.1 Meta-Learning
Meta-learning, or learning to learn, endues machine learning
models the ability to improve their performance by lever-
aging knowledge extracted from a number of prior tasks. It
has received increasing research interest with breakthroughs
in many directions, e.g., [8], [12], [15], [36], [37]. Existing
methods can be roughly categorized into four groups.

Models in the first group are based on distance metrics
and generally learn a shared or adaptive embedding space
in which query images are accurately matched to support
images for classification. They rely on the assumption that
a common metric space is shared across related tasks and
usually do not employ an explicit base-learner for each task.
By extending the matching network [13] to few-shot scenar-
ios, Snell et al. [14] constructed a prototype for each class
by averaging the feature representations of samples from

3

the class in the metric space. The classification is conducted
by matching the query samples to prototypes by computing
their distances. To enhance the prototype representation,
Allen et al. [38] proposed an infinite mixture of prototypes
(IMP) to adaptively represent data distributions for each
class, using multiple clusters instead of a single vector.
Oreshkin et al. [39] proposed a task-dependent adaptive
metric for few-shot learning and established prototypes of
classes conditioned on a task representation encoded by a
task embedding network. Yoon et al. [40] proposed a few-
shot learning algorithm aided by a linear transformer that
performs task-specific null-space projection of the network
output. Graphical neural network based models generalize
the matching methods by learning the message propagation
from the support set and transferring it to the query set [41].
Prototype based methods have recently been improved in a
variety of ways [42], [35], [43]. In this work, we design an
explicit base-learner based on kernels for each individual
task.

Algorithms in the second group learn an optimization
that is shared across tasks, while being adaptable to new
tasks. Finn et al. [8] proposed model-agnostic meta-learning
(MAML) to learn an appropriate initialization of model
parameters and adapt it to new tasks with only a few gradient
steps. To make MAML less prone to meta-overfitting, easier
to parallelize and more interpretable, Zintgraf et al. [44]
proposed fast context adaptation via meta-learning (CAVIA),
a single model that adapts to a new task via gradient
descent by updating only a set of input parameters at test
time, instead of the entire network. Ravi and Larochelle [7]
proposed an LSTM-based meta-learner that is trained to
optimize a neural network classifier. It captures both the
short-term knowledge in individual tasks and the long-
term knowledge common to all tasks. Learning a shared
optimization algorithm has also been explored to quickly
learn new tasks [11], [45]. Bayesian meta-learning meth-
ods [46], [47], [15], [48] usually rely on hierarchical Bayesian
models to learn the shared statistical information from
different tasks and to infer the uncertainty of the models.
Rusu et al. [12] proposed to learn a low-dimensional latent
embedding of model parameters and perform optimization-
based meta-learning in this space, which allows for a task-
specific parameter initialization and achieves adaptation
more effectively. Our method is orthogonal to optimization
based methods and learns a specific base-learner for each
task.

The third group of explicitly learned base-learners in-
corporate what meta-learners have learned and effectively
addresses individual tasks [15], [49], [1]. Gordon et al. [15]
avoided the need for gradient based optimization at test
time by amortizing the posterior inference of task-specific
parameters in their VERSA. It amortizes the cost of inference
and alleviates the need for second derivatives during training
by replacing test-time optimization with a forward pass
through the inference network. To enable efficient adaptation
to unseen learning problems, Bertinetto et al. [49] incorpo-
rated fast solvers with closed-form solutions as the base
learning component of their meta-learning framework. These
teach the deep network to use ridge regression as part of its
own internal model, enabling it to quickly adapt to novel
data. In our method, we also deploy an explicit base-learner

but, differently, we leverage a memory mechanism based on
an LSTM to collect shared knowledge from related tasks and
enhance the base-learners for individual tasks.

In the fourth group, a memory mechanism is part of the
solution, where an external memory module is deployed
to store and leverage key knowledge for quick adapta-
tion [50], [51], [52]. Santoro et al. [50] introduced neural
Turing machines into meta-learning by augmenting their
neural network with an external memory module, which is
used to rapidly assimilate new data to help make accurate
predictions with only a few samples. Munkhdalai et al. [51]
proposed a Meta Network (MetaNet) to learn meta-level
knowledge across tasks and shifting the inductive biases via
fast parameterization for rapid generalization. Munkhdalai
et al. [52] designed conditionally shifted neurons within the
framework of meta-learning, which modify their activation
values with task-specific shifts retrieved from a memory
module. In this work, we also leverage a memory mechanism,
but, differently, we deploy an LSTM module to collect shared
knowledge from related tasks experienced previously to help
solve individual tasks.

2.2 Kernel Learning

Kernel learning with random Fourier features is a versatile
and powerful tool in machine learning [53], [19], [54]. Pioneer-
ing works [24], [55], [56] learn to combine predefined kernels
in a multi-kernel learning manner. Kernel approximation by
random Fourier features (RFFs) [57] is an effective technique
for efficient kernel learning [58], which has recently become
increasingly popular [23], [26]. RFFs [57] are derived from
Bochner’s theorem [59].

Theorem 1 (Bochner’s theorem [59]). A continuous, real valued,
symmetric and shift-invariant function k(x,x′) = k(x− x′) on
Rd is a positive definite kernel if and only if it is the Fourier
transform p(ω) of a positive finite measure such that

k(x,x′) =

∫
Rd
eiω
>(x−x′)dp(ω) = Eω[ζω(x)ζω(x′)∗] (1)

where ζω(x) = eiω
>x.

It is guaranteed that ζω(x)ζω(x)∗ is an unbiased estima-
tion of k(x,x′) with sufficient RFF bases {ω} drawn from
p(ω) [57]. For a predefined kernel, e.g., radial basis function
(RBF), we sample from its spectral distribution using the
Monte Carlo method, and obtain the explicit feature map:

z(x) =
1√
D

[cos(ω>1 x + b1), · · · , cos(ω>Dx + bD)], (2)

where {ω1, · · · ,ωD} are the random bases sampled from
p(ω), and [b1, · · · , bD] are D biases sampled from a uniform
distribution with a range of [0, 2π]. Finally, the kernel value
k(x,x′) = z(x)z(x′)> in K is computed as the dot product
of their random feature maps with the same bases.

Wilson and Adams [60] learn kernels in the frequency
domain by modelling the spectral distribution as a mixture
of Gaussians and computingits optimal linear combination.
Instead of modelling the spectral distribution with explicit
density functions, other works focus on optimizing the
random base sampling strategy [61], [23]. Nonetheless, it has
been shown that accurate approximation of kernels does not

4

necessarily result in high classification performance [62], [63].
This suggests that learning adaptive kernels with random
features by data-driven sampling strategies [23] can improve
the performance, even with a low sampling rate, compared
to using universal random features [62], [63].

Our work introduces kernels into few-shot meta-learning.
We propose to learn kernels with random features in a
data-driven way by formulating it as a variational inference
problem. This allows us to generate task-specific kernels as
well as to leverage shared knowledge from related tasks.

2.3 Normalizing Flows
Normalizing flows (NFs) [64], [30], [32] are promising
methods for expressive probability density estimation with
tractable distributions. Unlike variational methods, sampling
and density evaluation can be efficient and exact for NFs
with neat architectures. Generally, NFs are categorized
into five types based on how they construct a flow: 1)
Autoregressive flows were one of the first classes of flows
with invertible autoregressive functions. Examples of such
flows include inverse autoregressive flow [65] and masked
autoregressive flow [66]. 2) Linear flows generalize the idea
of permutating of input variables via an invertible linear
transformation [33]. 3) Residual flows [67] are designed as
residual networks. The invertible property can be preserved
under appropriate constraints; 4) volume-preserved flows
with effective invertible architecture, such as coupling lay-
ers [31], are typically used in generative tasks. 5) Infinitesimal
flows provide another alternative strategy for constructing
flows in continuous time by parameterizing its infinitesimal
dynamics [32]. Normalizing flows are known to be effective
in applications with probabilistic models, including proba-
bilistic modelling [33], [68], [69], [70], inference [32], [65] and
representation learning [71].

In this work, we introduce conditional normalizing flows
into our kernel learning framework to infer richer posteriors
over the random bases, which yields more informative
random features. To our knowledge, this is the first work
that introduces conditional normalizing flows into the meta-
learning framework for few-shot learning.

3 METHODOLOGY

In this section, we present our methodology for learning ker-
nels with random Fourier features under the meta-learning
framework with limited labels. In Section 3.1, we describe the
base-learner based on kernel ridge regression. We introduce
kernel learning with random features by formulating it as a
variational inference problem in Section 3.2. We describe
the context inference to leverage the shared knowledge
provided by related tasks in Section 3.3. We further enrich
the variational random features by conditional normalizing
flows in Section 3.4.

3.1 Meta-Learning with Kernels
We adopt the episodic training strategy [7] commonly used
for few-shot meta-learning, which involves meta-training and
meta-test stages. In the meta-training stage, a meta-learner
is trained to enhance the performance of a base-learner on
a meta-training set with a batch of few-shot learning tasks,

where a task is usually referred to as an episode [7]. In the
meta-test stage, the base-learner is evaluated on a meta-test set
with different classes of data samples from the meta-training
set.

For the few-shot classification problem, we sample N -
way k-shot classification tasks from the meta-training set,
where k is the number of labelled examples for each of
the N classes. Given the t-th task with a support set
St = {(xi,yi)}N×ki=1 and query set Qt = {(x̃i, ỹi)}mi=1

(St,Qt ⊆ X), we learn the parameters αt of the predictor
fαt using a standard learning algorithm with a kernel trick
αt = Λ(Φ(X), Y), where St = {X,Y }. Here, Λ is the
base-learner and Φ : X → RX is a mapping function
from X to a dot product space H. The similarity measure
k(x,x′) = 〈Φ(x),Φ(x′)〉 is called a kernel [19].

In traditional supervised learning, the base-learner for the
t-th single task usually relies on a universal kernel to map the
input into a dot product space for efficient learning. Once the
base-learner is trained on the support set, its performance is
evaluated on the query set using the following loss function:∑

(x̃,ỹ)∈Qt
L
(
fαt
(
Φ(x̃)

)
, ỹ
)
, (3)

where L(·) can be any differentiable function, e.g., cross-
entropy loss. In the meta-learning setting for few-shot
learning, we usually consider a batch of tasks. Thus, the
meta-learner is trained by optimizing the following objective
function w.r.t. the empirical loss on T tasks:

T∑
t

∑
(x̃,ỹ)∈Qt

L
(
fαt
(
Φt(x̃)

)
, ỹ
)
, s.t. αt = Λ

(
Φt(X), Y

)
,

(4)
where Φt is the feature mapping function which can be
obtained by learning a task-specific kernel kt for each task t
with data-driven random Fourier features.

In this work, we employ kernel ridge regression, which
has an efficient closed-form solution, as the base-learner Λ
for few-shot learning. The kernel value in the Gram matrix
K ∈ RCk×Ck is computed as k(x,x′) = Φ(x)Φ(x′)>, where
“>” is the transpose operation. The base-learner Λ for a single
task is obtained by solving the following objective w.r.t. the
support set of this task,

Λ = arg min
α

Tr[(Y − αK)(Y − αK)>] + λTr[αKα>], (5)

which admits a closed-form solution

α = Y (λI +K)−1. (6)

The learned predictor is then applied to samples in the query
set X̃ :

Ŷ = fα(X̃) = αK̃, (7)

Here, K̃ = Φ(X)Φ(X̃)> ∈ RCk×m, with each element as
k(x, x̃) between the samples from the support and query sets.
Note that we also treat λ in (5) as a trainable parameter by
leveraging the meta-learning setting, and all these parameters
are learned by the meta-learner.

In order to obtain task-specific kernels, we consider learn-
ing adaptive kernels with random Fourier features in a data-
driven way. This also enables shared knowledge of different
tasks to be captured by exploring their dependencies in the
meta-learning framework.

5

3.2 Variational Random Features

From a probabilistic perspective, under the meta-learning
setting for few-shot learning, the random feature basis
is obtained by maximizing the conditional predictive log-
likelihood of samples from the query set Q:

max
p

∑
(x,y)∈Q

log p(y|x,S) (8)

= max
p

∑
(x,y)∈Q

log

∫
p(y|x,S,ω)p(ω|x,S)dω. (9)

We adopt a conditional prior distribution p(ω|x,S) over the
base ω, as in the conditional variational autoencoder [72],
rather than an uninformative prior [73], [74]. By depending
on the input x, we infer the bases that can specifically
represent the data, while leveraging the context of the current
task by conditioning on the support set S .

In order to infer the posterior p(ω|y,x,S) over ω, which
is generally intractable, we use a variational distribution
qφ(ω|S) to approximate it, where the base is conditioned on
the support set S by leveraging meta-learning. We obtain the
variational distribution by minimizing the Kullback-Leibler
(KL) divergence:

DKL[qφ(ω|S)||p(ω|y,x,S)]. (10)

By applying Bayes’ rule to the posterior p(ω|y,x,S), we
derive the evidence lower bound (ELBO) as

log p(y|x,S) ≥ Eqφ(ω|S) log p(y|x,S,ω)

−DKL[qφ(ω|S)||p(ω|x,S)]. (11)

The first term of the ELBO is the predictive log-likelihood
conditioned on the observation x, S and the inferred RFF
bases ω. Maximizing it enables us to make an accurate
prediction for the query set by utilizing the inferred bases
from the support set. The second term in the ELBO minimizes
the discrepancy between the meta variational distribution
qφ(ω|S) and the meta prior p(ω|x,S), which encourages
samples from the support and query sets to share the same
random Fourier bases. The full derivation of the ELBO is
provided in the supplementary material.

We now obtain the objective by maximizing the ELBO
with respect to a batch of T tasks:

L =
1

T

T∑
t=1

[∑
(x,y)∈Qt

Eqφ(ωt|St) log p(y|x,St,ωt)

−DKL[qφ(ωt|St)||p(ωt|x,St)]
]
, (12)

where St is the support set of the t-th task associated with its
specific bases {ωtd}Dd=1 and (x,y) ∈ Qt is the sample from
the query set of the t-th task.

3.3 Task Context Inference

We propose a context inference which puts the inference
of random feature bases for the current task in the context
of related tasks. We replace the variational distribution in
(10) with a conditional distribution qφ(ωt|St, C), where we
use C to contain the shared knoweledge provided by related
tasks. This makes the bases {ωtd}Dd=1 of the current t-th task

Fig. 2. Graphical illustration of variational inference of the random Fourier
basis under the meta-learning framework for few-shot learning, where
(x,y) is a sample in the query set Qt. The base ωt of the t-th task is
dependent on the support set St of the current task and the context C of
related tasks. The dashed lines indicate variational inference.

conditioned also on the context C of related tasks, which
gives rise to a new ELBO, as follows:

log p(y|x,St) ≥ Eqφ(ω|St,C) log p(y|x,St,ω)

−DKL[qφ(ω|St, C)||p(ω|x,St)].
(13)

This can be represented in a directed graphical model, as
shown in Figure 2. In a practical sense, the KL term in
(13) encourages the model to extract useful information
from previous tasks for inferring the spectral distribution
associated with each individual sample x of the query set in
the current task.

The context inference integrates the knowledge shared
across tasks with the task-specific knowledge to build up
adaptive kernels for individual tasks. The inferred random
features are highly informative due to the information
absorbed from experienced tasks. The base-learner built on
the inferred kernel with the informative random features
effectively solves the current task.

However, since there is usually a large number of related
tasks, it is non-trivial to model them all simultaneously.
We consider using recurrent neural networks to gradually
accumulate information episodically along with the learning
process by organizing tasks in a sequence. We propose
an LSTM-based inference network, leveraging its innate
capability of remembering long-term information [75]. The
LSTM offers a well-suited structure to implement the context
inference. The cell state c stores and accrues the meta
knowledge shared among related tasks. It can also be
updated when experiencing a new task in each episode
over the course of learning, where the output h is used to
adapt the model to each specific task.

To be more specific, we model the variational posterior
qφ(ωt|St, C) through qφ(ω|ht), which is parameterized as
a multi-layer perceptron (MLP) φ(ht). Note that ht is the
output from an LSTM that takes St and C as inputs. We
implement the inference network with bidirectional LSTMs
[76], [77]. For the LSTM, we have

[ht, ct] = gLSTM(S̄t,ht−1, ct−1), (14)

where gLSTM(·) is a LSTM network that takes the current
support set, the output ht−1 and the cell state ct−1 as
input. S̄t is the average over the feature representation
vectors of samples in the support set [78]. The feature

6

representation is obtained by a shared convolutional network
ψ(·). To incorporate more context information, we also
implement the inference with a bidirectional LSTM. We thus

have ht = [
→
ht,
←
ht], where

→
ht and

←
ht are the outputs from

the forward and backward LSTMs, respectively, and [·, ·]
indicates a concatenation operation.

Therefore, the optimization objective with the context
inference is:

L =
1

T

T∑
t=1

[∑
(x,y)∈Qt

Eqφ(ωt|ht) log p(y|x,St,ωt)

−DKL[qφ(ωt|ht)||p(ωt|x,St)]
]
,

(15)

where the variational approximate posterior qφ(ωt|ht) is
taken as a multivariate Gaussian with a diagonal covariance.
Given the support set as input, the mean ωµ and standard
deviation ωσ are output from the inference network φ(·). The
conditional prior p(ωt|x,St) is implemented with a prior
network which takes an aggregated representation using the
cross attention [79] between x and St. The details of the
prior network are provided in the supplementary material.
To enable back propagation with the sampling operation
during training, we adopt the reparametrization trick [74],
[73] as ω = ωµ + ωσ � ε, where ε ∼ N (0, I).

During the course of learning, the LSTMs accumulate
knowledge in the cell state by updating their cells using
information extracted from each task. For the current task t,
the knowledge stored in the cell is combined with the task-
specific information from the support set to infer the spectral
distribution for this task. To accrue information across all the
tasks in the meta-training set, the output and the cell state
of the LSTMs are passed down across batches. As a result,
the final the cell state contains the distilled prior knowledge
from all the tasks experienced in the meta-training set.

3.4 Enriching Random Features by Normalizing Flows
The posterior distribution qφ(ω|ht) is assumed to be a fully
factorized Gaussian, resulting in limited expressive ability to
approximate the true posterior over random Fourier bases.
Motivated by the empirical success of normalizing flows [32]
and conditional normalizing flows [34], we propose the
conditional normalizing flows that provide a principled way
to learn richer posteriors.

Normalizing flows map a complex distribution px(X) to
a simpler distribution pz(Z) through a chain of transforma-
tions. Let x ∈ X denote data sampled from an unknown
distribution x ∼ pX(x). The key idea in normalizing flows
is to represent pX(x) as a transformation x = g(z) of a
single Gaussian distribution z ∼ pZ = N (0, I). Moreover,
we assume that the mapping is bijective: x = g(z) = f−1(z).
Therefore, the log-likelihood of the data is given by the
change of variable formula:

log (pX(x)) = log (pZ (f(x))) + log

(∣∣∣∣det

(
∂f(x)

∂xT

)∣∣∣∣) ,
(16)

where ∂f(x)
∂xT is the Jacobian of the map f(x) at x. The

functions f can be learned by maximum likelihood (16),
where the bijectivity assumption allows expressive mappings
to be trained by gradient backpropagation.

Fig. 3. Effect of conditional normalizing flows on the random bases.
They transform the single Gaussian distribution of the random bases
into a more complex distribution, which yields more informative random
features.

To make the Jacobian tractable for the map f(x),
NICE [30] and RealNVP [31] proposed to stack a sequence of
simple bijective transformations, such that their Jacobian is a
triangular matrix. In this way, the log-determinant depends
only on the sum of its diagonal elements. Dinh et al. [30], [31]
proposed the additive coupling layer for each transformation.
In each affine coupling transformation, the input vector
x ∈ Rd is split into upper and lower halves, xI1 ,xI2 ∈ Rd/2.
These are plugged into the following transformation, referred
to as a single flow-block fi:

z1 = xI1 , z2 = xI2 ◦ exp(si(xI1)) + ti(xI1), (17)

where ◦ denotes element-wise multiplication. It is important
to note that the mappings si and ti can be arbitrarily
complicated functions of xi and need not be invertible
themselves. In practice, si and ti are achieved via neural
networks.

Given the outputs z1 and z2, this affine transformation is
invertible by:

xI1 = z1, xI2 = (z2 − ti(z1)) ◦ exp(−si(z1)). (18)

The RealNVP [31] flow comprises k reversible flow-blocks
interleaved with switch-permutations,

fRealNVP = fk · r . . . f2 · r · f1, (19)

where r denotes a switch-permutation, which permutes the
order of x1 and x2. According to the chain rule, the log-
determinant of the Jacobian of the whole transformation f is
computed by summing the log-determinants of the Jacobian
of each fi, making the likelihood calculation tractable.

Conditional normalizing flows [34] learn conditional
likelihoods for complicated target distributions in multi-
variate prediction tasks. Take an input x ∈ X and a
regression target y ∈ Y . CNFs learn a complicated distri-
bution pY |X(y|x) using a conditional prior pZ|X(z|x) and
a mapping fφ : Y × X → Z , which is bijective in Y and Z .
The log-likelihood of CNFs is:

log(pY |X(y|x)) = log(pZ|X(z|x)) + log(

∣∣∣∣ ∂z∂y
∣∣∣∣)

= log(pZ|X(fφ(y,x)|x)) + log(

∣∣∣∣∂fφ(y,x)

∂y

∣∣∣∣).
(20)

Different from NFs, in the log-likelihood of CNFs, all
distributions are conditional and the flow has a conditioning
argument for x.

We parameterize the approximate posterior distribution
qφ(ω|ht) with a flow of length K , qφ(ω|ht) := qK(ωK). The

7

ELBO (11) is thus written as an expectation over the initial
distribution q0(ω):

log p(y|x,S) ≥− Eqφ(ω|ht)[log qφ(ω|ht) + log p(y,ω|S,x)]

=− Eq0(ω0) [ln qK(ωK) + log p(y,ωK |S,x)]

=− Eq0(ω0)[ln q0(ω0)−
K∑
k=1

ln |det
∂f

∂ωk
|]

+ Eq0(ω0)[log p(y,ωK |S,x)],
(21)

where q0(ω0) is obtained from the approximate posterior
distribution qφ(ω|ht) without transformation.

We then obtain the objective by maximizing the log-
likelihood log p(y|x,S) with respect to a batch of T tasks:

L =
1

T

T∑
t=1

[∑
(x,y)∈Qt

Eq0(ωt0)[− ln q0(ωt0) +
K∑
k=1

ln |det
∂f

∂ωtk
|]

+Eq0(ωt0)
[
log p(y,ωtK |St,x)

]]
,

(22)
where ωtk is the random base after k transformations.

We rely on the conditional coupling layer from [34] to
transform the random base distribution. This layer is an
extension of the affine coupling layer from RealNVP [31] to
make the computation of the Jacobian for the map f(x)
tractable. The input ωk−1 = [ωI0k−1,ω

I1
k−1] of an affine

coupling layer is split into two parts, which are transformed
individually:

ωIik = ωIik−1 � exp(si+1(ω
I(1−i)
k−(1−i),h

t)

+t(i+1)(ω
I(1−i)
k−(1−i),h

t)
(23)

where i ∈ {0, 1}. Note that the transformations si+1, ti+1 do
not need to be invertible and are modelled as convolutional
neural networks. The inverse of an affine coupling layer is:

ωIik−1 = (ωIik − t(1+i)(ω
I1
k−(1−i),h

t))

� exp(−s(1+i)(ωIik−i,h
t)).

(24)

The log-determinant of the Jacobian for one affine coupling
layer is calculated as the sum over si, i.e.,

∑
j s1(ωI1k−1,h

t)j +∑
j s2(ωI0k ,h

t)j . A deep invertible network is built as a
sequence of multiple such layers, with a permutation of
the dimensions after each layer. The conditional input ht

is added as an extra input to each transformation in the
coupling layer. We refer to the kernel constructed based
on the random bases by conditional normalizing flows as
MetaKernel.

We visualize the distribution of the random bases pro-
duced by the CNFs in Figure 3. ωk indicates the distribution
of the random bases after k transformations. This visualiza-
tion shows that we can transform a single Gaussian distri-
bution of random bases into a more complex distribution,
which achieves more informative random features, resulting
in improved performance, as we will demonstrate in our
experiments.

4 EXPERIMENTS

In this section, we report our experiments to demonstrate the
effectiveness of the proposed MetaKernel for both regression

and classification with limited labels. We also provide
thorough ablation studies to gain insight into our method by
showing the efficacy of each introduced component.

4.1 Few-Shot Classification
The few-shot classification experiments are conducted
on four commonly used benchmarks, i.e., Omniglot [6],
miniImageNet [13], CIFAR-FS [80] and Meta-Dataset [35]. We
also perform experiments on DomainNet [81] for few-shot
domain generalization. Sample images from each dataset are
provided in Figure 4.

4.1.1 Datasets
Omniglot [6] is a few-shot classification benchmark that
contains 1623 handwritten characters (each with 20 exam-
ples). All characters are grouped into one of 50 alphabets.
For fair comparison against the state of the art, we follow
the same data split and pre-processing used by Vinyals et
al. [13]. Specifically, the training, validation, and test sets are
composed of a random split of [1100, 200, 423]. The dataset
is augmented with rotations of 90 degrees, which results
in 4000 classes for training, 400 for validation, and 1292 for
testing. The number of examples is fixed to 20. All images are
resized to 28×28. For a N -way, k-shot task at training time,
we randomly sample N classes from the 4000 classes, each
with (k+15) examples. Thus, there are C×k examples in the
support set and C×15 examples in the query set. The same
sampling strategy is followed for validation and testing.

miniImageNet [13] is a challenging dataset constructed
from ImageNet [82], which comprises a total of 100 different
classes (each with 600 instances). All images are down-
sampled to 84×84. We use the same splits as Ravi and
Larochelle [7], with [64, 16, 20] classes for training, validation
and testing. We use the same episodic sampling strategy as
for Omniglot.

CIFAR-FS [49] is adapted from CIFAR-100 [80] for few-
shot learning. In the many-shot image classification bench-
mark CIFAR-100, there are 100 classes grouped into 20
superclasses (each with 600 instances). CIFAR-FS uses the
same split criteria (64, 16, 20) with which miniImageNet has
been generated. The resolution of all images is 32×32.

Meta-Dataset [35] is composed of ten existing image clas-
sification datasets (eight for training, two for testing). These
are: ILSVRC-2012 (ImageNet, [82]), Omniglot [6], Aircraft [83],
CUB-200-2011 (Birds, [88]), Describable Textures [89], Quick
Draw [84], Fungi [85], VGG Flowr [90], Traffic Signs [86] and
MS-COCO [87]. Each episode generated in Meta-Dataset uses
classes from a single dataset. Two of these datasets, Traffic
Signs and MSCOCO, are fully reserved for evaluation, which
means that no classes from these sets are participated in the
training set. Apart from for Traffic Signs and MS-COCO, the
remaining datasets contribute some classes to the training,
validation and test splits. There are about 14 million images
in total in Meta-Dataset.

DomainNet. [81]. Du et al. [16] introduced the setting of
few-shot domain generalization, which combines the chal-
lenges of both few-shot classification and domain generaliza-
tion. It is based on the DomainNet dataset by Peng et al. [81],
which contains six distinct domains, i.e., clipart, infograph,
painting, quickdraw, real, and sketch, for 345 categories. The
categories are from 24 divisions.

8

Few-shot Domain Generalization

Meta-Dataset

OmniglotCIFAR-FSminiImageNet

Fig. 4. Examples from each dataset. Orange and green boxes indicate the meta-training and meta-test tasks for each dataset. S and Q indicate the
support and query sets for each task. For Meta-Dataset, we only show examples from ImageNet [82], Aircraft [83], Quick Draw [84], Fungi [85],Traffic
Signs [86] and MS-COCO [87]. For the few-shot domain generalization, we only show the examples from DomainNet using Quick Draw as the target
domain during the meta-test stage.

4.1.2 Implementation Details

We extract image features using a shallow convolutional
neural network with the same architecture as [15] for
miniImageNet, and CIFAR-FS. We do not use any fully
connected layers in this CNNs. For the Meta-Dataset ex-
periments, we use a ResNet-18 [3] as our base learner to be
consistent with [35]. The dimension of all feature vectors is
256. We also evaluate the random Fourier features (RFFs)
and the radial basis function (RBF) kernel, where we take the
bandwidth σ as the mean of the pair-wise distances between
samples in the support set of each task. The inference
network φ(·) is a three-layer MLP with 256 units in the
hidden layers and rectifier non-linearity, where the input
sizes is 512 for the bidirectional LSTMs. We use an SGD
optimizer with a momentum of 0.9 in all experiments.

The key hyperparameter for the number of bases D
in (2) is set to D=780 for MetaKernel in all experiments,
while we use RFFs with D=2048 as this produces the best
performance. The sampling rate in MetaKernel is much lower
than in previous works using RFFs, in which D is usually set
to be 5 to 10 times the dimension of the input features [95],
[57]. We adopt a similar meta-testing protocol as [15], [8], but
we test on 3000 episodes rather than 600 and present the
results with 95% confidence intervals. All reported results

are produced by models trained from scratch. We compare
with previous methods that use the same training procedures
and similar shallow conventional CNN architectures as ours.
Our code will be publicly released.

4.1.3 Comparison to the State of the art

Few-shot image classification. We first evaluate MetaKernel
on the miniImageNet, CIFAR-FS and Omniglot datasets under
various way (the number of classes used in each task) and
shot (the number of support set examples used per class)
configurations. The results are reported in Table 1. We report
the results of two experiments using MAML [8]. To keep
MAML [8] consistent with our backbone for miniImageNet
and CIFAR-FS, in addition to its original results, we also
implement MAML (64C) with 64 channels in each convo-
lutional layer for fair comparison. While it obtains modest
performance, we believe the increased model size leads to
overfitting. As the original SNAIL uses a very deep ResNet-
12 network for embedding, we cite the results of SNAIL
reported in [49] using a similar shallow network as ours.
For fair comparison, we also cite the original results of
R2-D2 [49] using 64 channels. On all benchmark datasets,
MetaKernel delivers the best performance. It is worth noting
that MetaKernel achieves an accuracy of 55.5% under the 5-

9

TABLE 1
Few-shot image classification performance (%) on mini ImageNet, CIFAR-FS, and Omniglot. Best performing methods and any other runs within the

96% confidence margin are obtained in bold. MetaKernel consistently achieves the top performance.

miniImageNet, 5-way CIFAR-FS, 5-way Omniglot, 5-way Omniglot, 20-way

Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

META-LSTM [7] 43.4±0.8 60.6±0.7 — — — — — —
MATCHING NET [13] 44.2 57 — — 98.1 98.9 93.8 98.5
SNAIL (32C) by [49] 45.1 55.2 — — 99.1±0.2 99.8 ±0.1 97.6 ±0.3 99.4 ±0.2
MAML (64C) 46.7±1.7 61.1±0.1 58.9±1.8 71.5±1.1 — — — —
MAML [8] 48.7±1.8 63.1±0.9 58.9±1.9 71.5±1.0 98.7±0.4 99.9±0.1 95.8±0.3 98.9±0.2
PROTONET [14] 47.4±0.6 65.4±0.5 55.5±0.7 72.0±0.6 98.5±0.2 99.5±0.1 95.3±0.2 98.7±0.1
IMAML [36] 49.3±1.9 — — — — — — —
R2-D2 (64C) [49] 49.5±0.2 65.4±0.2 62.3±0.2 77.4±0.2 — — — —
OVEPGGP [91] 50.0±0.4 67.1±0.2 — — — — — —
PLATIPUS [47] 50.1±1.9 — — — — — — —
GNN [41] 50.3 66.4 61.9 75.3 99.2 99.7 97.4 99.0
RELATION NET [92] 50.4±0.8 65.3±0.7 55.0±1.0 69.3±0.8 90.6 ±0.2 99.8±0.1 97.6±0.2 99.1±0.1
R2-D2 [93] 51.7±1.8 63.3±0.9 60.2±1.8 70.9±0.9 98.6 99.7 94.7 98.9
CAVIA [44] 51.8±0.7 65.6±0.6 — — — — — —
VERSA [15] 53.3±1.8 67.3±0.9 62.5±1.7 75.1±0.9 99.7±0.2 99.8±0.1 97.7±0.3 98.8±0.2
METAVRF [1] 54.2±0.8 67.8±0.7 63.1±0.7 76.5±0.9 99.8±0.1 99.9±0.1 97.8±0.3 99.2±0.2
METAKERNEL 55.5±0.9 68.5±0.8 64.3±0.8 77.5±0.9 99.9±0.1 99.9±0.1 98.7±0.3 99.6±0.2

TABLE 2
Few-shot Meta-Dataset classification accuracy (%) with variable number of ways and shots, following the setup in [35]. 1000 tasks are sampled for

evaluation. MetaKernel is a consistent top-performer.

Dataset Matching Net [13] ProtoNet [14] fo-MAML [8] Relation Net [92] fo-Proto-MAML [35] RFS [94] MetaKernel

LR-Simple LR-Distill

ILSVRC 45.00 50.50 45.51 34.69 49.53 60.14 61.48 61.71
Omniglot 52.27 59.98 55.55 45.35 63.37 64.92 64.31 65.43
Aircraft 48.97 53.10 56.24 40.73 55.95 63.12 62.32 65.37
Birds 62.21 68.79 63.61 49.51 68.66 77.69 79.47 77.13

Textures 64.15 66.56 68.04 52.97 66.49 78.59 79.28 82.01
Quick Draw 42.87 48.96 43.96 43.30 51.52 62.48 60.83 58.46

Fungi 33.97 39.71 32.10 30.55 39.96 47.12 48.53 49.73
VGG Flower 80.13 85.27 81.74 68.76 87.15 91.60 91.00 93.16
Traffic Signs 47.80 47.12 50.93 33.67 48.83 77.51 76.33 77.91
MSCOCO 34.99 41.00 35.30 29.15 43.74 57.00 59.28 56.97

Mean Accuracy 51.24 56.10 53.30 42.87 57.52 68.02 68.28 68.79

TABLE 3
Few-shot domain generalization performance (5-way %). The best

performing methods and any other runs within 95% confidence margin
are denoted in bold. MetaKernel is on par with MetaNorm for 1-shot and

outperforms all previous methods for the 5-shot setting.

Method 1-shot 5-shot

ProtoNets [14] 28.4±1.8 47.9±0.8
MAML [8] 28.7±1.8 49.3±0.8
VERSA [15] 30.9±1.7 51.7±0.8
MetaNorm [16] 32.7±1.7 51.9±0.8
METAKERNEL 34.7±1.7 53.7±0.8

way 1-shot setting on the miniImageNet dataset, surpassing
the second-best model by 1.3%. This is a good improvement
considering the challenge of this setting. On CIFAR-FS, our

model surpasses the second-best method, i.e., VERSA [15]
and has a smaller margin of error bar under the 5-way 1-shot
setting using the same backbone. On Omniglot, performance
of all methods saturates. Nonetheless, MetaKernel achieves
the best performance under most settings, including 5-way 1-
shot, 5-way 5-shot, and 20-way 1-shot. It is also competitive
under the 20-way 5-shot setting, falling within the error bars
of the state of the art.

Few-shot meta-dataset classification. Next, we evaluate
MetaKernel on the most challenging few-shot classification
benchmark i.e., Meta-Dataset [35], which is composed of
10 image classification datasets. For Meta-Dataset, we train
our model on the ILSVRC [82] training split and test on
the 10 diverse datasets. As shown in Table 2, MetaKernel
outperforms fo-Proto-MAML [35] across all 10 datasets.
MetaKernel also surpasses the second-best method, RFS [94],
on 7 out of 10 datasets. Overall, we perform well against

10

-5 50
-5

0

5
3-shot

-5 50
-3

0

3
5-shot

-5 50-5

0

5
10-shot

Fig. 5. Few-shot regression performance comparison (MSE). MetaKernel fits the target function well, even with variational random features only
using three shots, and consistently outperforms MAML for all settings. Legend: MAML; MetaKernel (variational RFFs only);
MetaKernel (variational RFFs & task context); MetaKernel (full model); Ground Truth; Support Samples.

TABLE 4
Ablation studies on mini ImageNet and CIFAR-FS demonstrating benefit of random Fourier features, task context inference and feature enriching by

normalizing flows. Best settings within the 95% confidece margin are denoted in bold.

miniImageNet, 5-way CIFAR-FS, 5-way

Method 1-shot 5-shot 1-shot 5-shot

RBF Kernel 42.1±1.2 54.9±1.1 46.0±1.2 59.8±1.0
RFFs 52.8±0.9 65.4±0.9 61.1±0.8 74.7±0.9
Variational RFFs 51.3±0.8 66.1±0.7 61.1±0.7 74.3±0.9
Variational RFFs & task context inference 54.2±0.8 67.8±0.7 63.1±0.7 76.5±0.9
METAKERNEL 55.5±0.9 68.5±0.8 64.3±0.8 77.5±0.9

previous methods, achieving new state-of-the-art results on
the challenging Meta-Dataset.

Few-shot domain generalization. We also evaluate our
method on few-shot domain generalization [16], which
combines the challenges of both few-shot classification and
domain generalization. For few-shot domain generalization,
each task has only a few samples in the support set for
training and we test the model on tasks in a query set, which
come from a different domain than the support set. The
results are reported in Table 3. MetaKernel obtains the best
performance, surpassing the MetaNorm [16] by a margin
of up to 2.0% on the 5-way 1-shot and 1.8% on the 5-
way 5-shot setting. Its performance on the few-shot domain
generalization task demonstrates that MetaKernel is not only
able to handle the problem of few-shot learning, but also
thrives under domain-shifts.

4.2 Few-Shot Regression

We also consider regression tasks with a varying number
of shots k, and compare MetaKernel with MAML [8], a
representative meta-learning algorithm. We follow MAML
[8] and fit a target sine function y=A sin (wx+ b), with only
a few annotated samples. A ∈ [0.1, 5], w ∈ [0.8, 1.2], and
b ∈ [0, π] denote the amplitude, frequency, and phase, which
follow a uniform distribution within the corresponding
interval. The goal is to estimate the target sine function given
only n randomly sampled data points. Here, we consider
inputs within the range of x ∈ [−5, 5], and conduct three
tests under the conditions of k=3, 5, 10. For fair comparison,
we compute the feature embedding using a small MLP with

two hidden layers of size 40, following the same settings
used in MAML.

The results in Figure 5 show that MetaKernel fits the
function well with only three shots, even when we do not
use the full model. It performs better with an increasing
number of shots, almost entirely fitting the target function
with ten shots. We observe all MetaKernel variants perform
better than MAML [8] for all three settings with varying
numbers of shots, both visually and in terms of MSE. Best
results are obtained with our full model.

4.3 Ablation Studies
To study how our proposed components bring performance
gains to MetaKernel on few-shot learning, our ablations
consider: (1) the benefit of random Fourier features; (2) the
benefit of task context inference; (3) the benefit of enriching
random features by normalizing flows; (4) the effect of deeper
embeddings; (5) the efficiency of the model; (6) the versatility
of the model.

Benefit of random Fourier features. We first show the
benefit of random Fourier features (RFFs) by comparing
them with the regular RBF kernel. As can be seen from the
first two rows in Table 4, RFFs perform 10.7% better than
an RBF kernel on the 5-way 1-shot setting of miniImageNet,
and 14.9% better on the 5-way 5-shot setting of CIFAR-FS.
The considerable performance gain over RBF kernels on both
datasets indicates the benefit of adaptive kernels based on
random Fourier features for few-shot image classification.
The modest performance obtained by RBF kernels is due
to the mean of pair-wise distances of support samples
being unable to provide a proper estimate of the kernel

11

Fig. 6. Efficiency with varying numbers D of bases. MetaKernel consis-
tently achieves better performance than regular RFFs, especially with
relatively low sampling rates.

0 20 40 60 80 100
(a) Number of Way

85

90

95

100

A
cc

ur
ac

y
(%

)

20-way, 5-shot
20-way, 1-shot
 5 -way, 5-shot
 5 -way, 1-shot

0 2 4 6 8 10
(b) Number of Shot

96

97

98

99

100

A
cc

ur
ac

y
(%

)

20-way, 5-shot
20-way, 1-shot
 5 -way, 5-shot
 5 -way, 1-shot

Fig. 7. Versatility of MetaKernel with varied ways and shots on Omniglot.

bandwidth. Note that the performance of RFFs is better
than the variational RFFs on the 5-way 1-shot setting of
miniImageNet. This may be due to the fact that the sup-
port samples are too small, resulting in the random bases
generated from the samples not accurately representing the
current task, while the parameters in the random bases of
RFFs are sampled from a standard Gaussian distribution.
Therefore, the context information among previous related
tasks should be integrated into the variational RFFs. In
addition, RFFs cannot use the context information directly
since it generates random base parameters sampled from a
deterministic distribution.

Benefit of task context inference. We investigate the
benefit of adding task context inference to the MetaKernel.
Specifically, we leverage a bi-LSTM cell state c to store and
accrue the meta-knowledge shared among related tasks. The
experimental results are reported in Table 4. Adding task
context inference on top of the MetaKernel with variational
random features leads to a consistent gain under all settings,
for both datasets. This demonstrates the effectiveness of
using an LSTM to explore task dependency.

Benefit of enriching features by normalizing flows.
We show the benefit of enriching the variational random
features by conditional normalizing flow in the last row
of Table 4. we find that MetaKernel performs better than
MetaVRF (55.5% -up 1.3%) under the 5-way 1-shot setting on
miniImageNet and (64.3% -up 1.2%) under the 5-way 1-shot
setting on CIFAR-FS. These results indicate that the CNFs
provide more informative kernels for the new task, which
allows the learned distribution of random bases to more
closely approximate the real random bases distribution and
therefore improves few-shot classification performance.

Deep embeddings. MetaKernel is independent of the
convolutional architecture for feature extraction and works
with deeper embeddings, either pre-trained or trained from
scratch. In general, the performance improves with more
powerful feature extraction architectures. We evaluate our
method using pre-trained embeddings in order to compare
with existing methods using deep embedding architectures.
Specifically, we adopt the pre-trained embeddings from a 28-
layer wide residual network (WRN-28-10) [101], in a similar
fashion to [12], [99], [100]. We choose activations in the
21-st layer, with average pooling over spatial dimensions,
as feature embeddings. The dimension of the pre-trained
embeddings is 640. We show the comparison results on the
miniImageNet dataset for 5-way 1-shot and 5-shot settings
in Table 5. MetaKernel achieves the best performance under
both settings and surpasses LEO [12], a recently proposed

TABLE 5
Deep embedding performance (%) on mini ImageNet (5-way) using a
28-layer wide residual feature extractor. The best performing methods
and any other runs within the 95% confidence margin are denoted in

bold. MetaKernel also outperforms previous methods for deeper
networks.

Method 1-shot 5-shot

META-SGD [96] 54.24±0.03 70.86±0.04
SNAIL [97] 55.71±0.99 68.88±0.92
GIDARIS et al. [98] 56.20±0.86 73.00±0.64
BAUER et al. [99] 56.30±0.40 73.90±0.30
ADARESNET (DF) [52] 57.10±0.70 70.04±0.63
TADAM [39] 58.50±0.30 76.70±0.30
QIAO et al. [100] 59.60±0.41 73.54±0.19
LEO [12] 61.76±0.08 77.59±0.12
METAVRF [1] 63.80±0.05 77.97±0.28
METAKERNEL 65.03±0.03 79.01±0.28

meta-learning method, especially on the challenging 5-
way 1-shot setting. Compared with our conference paper,
MetaVRF [1], MetaKernel performs 1.23% better on the 5-
way 1-shot setting of miniImageNet, which also validates
the effectiveness of the CNFs. The consistent state-of-the-
art results on all benchmarks using both shallow and deep
feature extraction networks validate the effectiveness of
MetaKernel for few-shot learning.

Efficiency. Regular RFFs usually require high sampling
rates to achieve satisfactory performance. However, our
MetaKernel achieves high performance with a relatively
low sampling rate, which guarantees its high efficiency. In
Figure 6, we compare with regular RFFs using different
sampling rates. We provide the performance change of fully
trained models using RFFs and MetaKernel under a varying
number of bases D. We show the comparison results for
the 5-way 5-shot setting on miniImageNet and CIFAR-FS in
Figure 6. MetaKernel consistently yields higher performance
than regular RFFs with the same number of sampled bases.
The results verify the efficiency of MetaKernel in learning
adaptive kernels and its effectiveness in improving perfor-
mance by exploring the dependencies of related tasks.

Versatility. In contrast to most existing meta-learning
methods, MetaKernel is applicable to versatile settings. We
evaluate the performance of MetaKernel on more challenging
scenarios where the number of ways N and shots k between
training and testing are inconsistent. Specifically, we test the
performance of MetaKernel on Omniglot tasks with varied

12

N and k, when it is trained on one particular N -way k-
shot task. As shown in Figure 7, the results demonstrate the
trained model still produces good performance, even under
the challenging conditions with a far higher number of ways.
In particular, the model trained on the 20-way 5-shot task
retains a high accuracy of 94% on the 100-way setting, as
shown in Figure 7(a). The results also indicate that our model
exhibits considerable robustness and flexibility to a variety
of testing conditions.

5 CONCLUSION

In this paper, we introduce kernel approximation based on
random Fourier features into the meta-learning framework
for few-shot learning. We propose to learn random features
for each few-shot task in a data-driven way by formulating
it as a variational inference problem, where the random
Fourier basis is defined as the latent variable. We introduce an
inference network based on an LSTM module, which enables
the shared knowledge from related tasks to be incorporated
into each individual task. To further enhance the kernels, we
introduce conditional normalizing flows to generate richer
posteriors over random bases, resulting in more informative
random features. Experimental results on both regression
and classification tasks demonstrate the effectiveness for few-
shot learning. The extensive ablation study demonstrates the
efficacy of each component in our MetaKernel.

REFERENCES

[1] X. Zhen, H. Sun, Y. Du, J. Xu, Y. Yin, L. Shao, and C. G. M. Snoek,
“Learning to learn kernels with variational random features,” in
International Conference on Machine Learning. PMLR, 2020, pp.
11 409–11 419.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems, 2012, pp. 1097–1105.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 770–778.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A Large-Scale Hierarchical Image Database,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2009.

[5] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object
categories,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, no. 4, pp. 594–611, 2006.

[6] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-
level concept learning through probabilistic program induction,”
Science, vol. 350, no. 6266, pp. 1332–1338, 2015.

[7] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in International Conference on Learning Representations,
2017.

[8] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International Conference
on Machine Learning. JMLR. org, 2017, pp. 1126–1135.

[9] J. Schmidhuber, “Learning to control fast-weight memories: An
alternative to dynamic recurrent networks,” Neural Computation,
vol. 4, no. 1, pp. 131–139, 1992.

[10] S. Thrun and L. Pratt, Learning to learn. Springer Science &
Business Media, 2012.

[11] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. de Freitas, “Learning to learn
by gradient descent by gradient descent,” in Advances in Neural
Information Processing Systems, 2016.

[12] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu,
S. Osindero, and R. Hadsell, “Meta-learning with latent em-
bedding optimization,” in International Conference on Learning
Representations, 2019.

[13] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching
networks for one shot learning,” in Advances in Neural Information
Processing Systems, 2016, pp. 3630–3638.

[14] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for
few-shot learning,” in Advances in Neural Information Processing
Systems, 2017, pp. 4077–4087.

[15] J. Gordon, J. Bronskill, M. Bauer, S. Nowozin, and R. E. Turner,
“Meta-learning probabilistic inference for prediction,” in Interna-
tional Conference on Learning Representations, 2019.

[16] Y. Du, X. Zhen, L. Shao, and C. G. M. Snoek, “MetaNorm: Learning
to normalize few-shot batches across domains,” in International
Conference on Learning Representations, 2021.

[17] B. Schölkopf and A. J. Smola, Learning with kernels. MIT Press,
2002.

[18] B. Scholkopf and A. J. Smola, Learning with kernels: support
vector machines, regularization, optimization, and beyond. Adaptive
Computation and Machine Learning series, 2018.

[19] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in
machine learning,” The Annals of Statistics, pp. 1171–1220, 2008.

[20] N. Cristianini, J. Shawe-Taylor et al., An introduction to support
vector machines and other kernel-based learning methods. Cambridge
University Press, 2000.

[21] A. J. Smola and B. Schölkopf, “A tutorial on support vector
regression,” Statistics and Computing, 2004.

[22] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Advances in Neural Information Processing Systems,
2007.

[23] A. Sinha and J. C. Duchi, “Learning kernels with random features.”
in Advances in Neural Information Processing Systems, 2016.

[24] F. R. Bach, G. R. Lanckriet, and M. I. Jordan, “Multiple kernel
learning, conic duality, and the smo algorithm,” in International
Conference on Machine Learning, 2004, p. 6.

[25] J. Hensman, N. Durrande, and A. Solin, “Variational fourier
features for gaussian processes,” Journal of Machine Learning
Research, vol. 18, no. 1, pp. 5537–5588, 2017.

[26] L. Carratino, A. Rudi, and L. Rosasco, “Learning with sgd and
random features,” in Advances in Neural Information Processing
Systems, 2018, pp. 10 192–10 203.

[27] B. Bullins, C. Zhang, and Y. Zhang, “Not-so-random features,” in
International Conference on Learning Representations, 2018.

[28] C.-L. Li, W.-C. Chang, Y. Mroueh, Y. Yang, and B. Poczos, “Implicit
kernel learning,” in International Conference on Artificial Intelligence
and Statistics, 2019, pp. 2007–2016.

[29] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[30] L. Dinh, D. Krueger, and Y. Bengio, “Nice: Non-linear independent
components estimation,” arXiv preprint arXiv:1410.8516, 2014.

[31] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation
using real nvp,” International Conference on Learning Representations,
2017.

[32] D. Rezende and S. Mohamed, “Variational inference with nor-
malizing flows,” in International Conference on Machine Learning.
PMLR, 2015, pp. 1530–1538.

[33] D. P. Kingma and P. Dhariwal, “Glow: generative flow with
invertible 1× 1 convolutions,” in Advances in Neural Information
Processing Systems, 2018, pp. 10 236–10 245.

[34] C. Winkler, D. Worrall, E. Hoogeboom, and M. Welling, “Learning
likelihoods with conditional normalizing flows,” arXiv preprint
arXiv:1912.00042, 2019.

[35] E. Triantafillou, T. Zhu, V. Dumoulin, P. Lamblin, U. Evci,
K. Xu, R. Goroshin, C. Gelada, K. Swersky, P.-A. Manzagol, and
H. Larochelle, “Meta-dataset: A dataset of datasets for learning to
learn from few examples,” arXiv preprint arXiv:1903.03096, 2019.

[36] A. Rajeswaran, C. Finn, S. Kakade, and S. Levine, “Meta-learning
with implicit gradients,” arXiv preprint arXiv:1909.04630, 2019.

[37] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey,
“Meta-learning in neural networks: A survey,” arXiv preprint
arXiv:2004.05439, 2020.

[38] K. R. Allen, E. Shelhamer, H. Shin, and J. B. Tenenbaum, “Infi-
nite mixture prototypes for few-shot learning,” in International
Conference on Machine Learning, 2019, pp. 232–241.

[39] B. Oreshkin, P. R. López, and A. Lacoste, “Tadam: Task dependent
adaptive metric for improved few-shot learning,” in Advances in
Neural Information Processing Systems, 2018, pp. 721–731.

[40] S. W. Yoon, J. Seo, and J. Moon, “Tapnet: Neural network
augmented with task-adaptive projection for few-shot learning,”

13

in International Conference on Machine Learning. PMLR, 2019, pp.
7115–7123.

[41] V. Garcia and J. Bruna, “Few-shot learning with graph neural
networks,” in International Conference on Learning Representations,
2018.

[42] T. Cao, M. Law, and S. Fidler, “A theoretical analysis of the number
of shots in few-shot learning,” arXiv preprint arXiv:1909.11722,
2019.

[43] X. Zhen, Y. Du, H. Xiong, Q. Qiu, C. G. M. Snoek, and L. Shao,
“Learning to learn variational semantic memory,” in Advances in
Neural Information Processing Systems, 2020.

[44] L. Zintgraf, K. Shiarli, V. Kurin, K. Hofmann, and S. Whiteson,
“Fast context adaptation via meta-learning,” in International Confer-
ence on Machine Learning, 2019, pp. 7693–7702.

[45] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P.
Lillicrap, M. Botvinick, and N. De Freitas, “Learning to learn
without gradient descent by gradient descent,” in International
Conference on Machine Learning, 2017, pp. 748–756.

[46] H. Edwards and A. Storkey, “Towards a neural statistician,” arXiv
preprint arXiv:1606.02185, 2016.

[47] C. Finn, K. Xu, and S. Levine, “Probabilistic model-agnostic meta-
learning,” in Advances in Neural Information Processing Systems,
2018, pp. 9516–9527.

[48] S. Sæmundsson, K. Hofmann, and M. P. Deisenroth, “Meta
reinforcement learning with latent variable gaussian processes,”
arXiv preprint arXiv:1803.07551, 2018.

[49] L. Bertinetto, J. F. Henriques, P. H. Torr, and A. Vedaldi, “Meta-
learning with differentiable closed-form solvers,” in International
Conference on Learning Representations, 2019.

[50] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in
International Conference on Machine Learning, 2016, pp. 1842–1850.

[51] T. Munkhdalai and H. Yu, “Meta networks,” in International
Conference on Machine Learning, 2017.

[52] T. Munkhdalai, X. Yuan, S. Mehri, and A. Trischler, “Rapid
adaptation with conditionally shifted neurons,” arXiv preprint
arXiv:1712.09926, 2017.

[53] C. M. Bishop, Pattern Recognition and Machine Learning. springer,
2006.

[54] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” Journal
of Machine Learning Research, vol. 12, no. Sep, pp. 2539–2561, 2011.

[55] M. Gönen and E. Alpaydın, “Multiple kernel learning algorithms,”
Journal of Machine Learning Research, vol. 12, pp. 2211–2268, 2011.

[56] D. Duvenaud, J. R. Lloyd, R. Grosse, J. B. Tenenbaum, and
Z. Ghahramani, “Structure discovery in nonparametric re-
gression through compositional kernel search,” arXiv preprint
arXiv:1302.4922, 2013.

[57] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Advances in Neural Information Processing Systems,
2007, pp. 1177–1184.

[58] T. Gärtner, P. A. Flach, A. Kowalczyk, and A. J. Smola, “Multi-
instance kernels,” in International Conference on Machine Learning,
2002.

[59] W. Rudin, Fourier analysis on groups. Wiley Online Library, 1962,
vol. 121967.

[60] A. Wilson and R. Adams, “Gaussian process kernels for pattern
discovery and extrapolation,” in International Conference on Machine
Learning, 2013, pp. 1067–1075.

[61] Z. Yang, A. Wilson, A. Smola, and L. Song, “A la carte–learning
fast kernels,” in Artificial Intelligence and Statistics, 2015, pp. 1098–
1106.

[62] H. Avron, V. Sindhwani, J. Yang, and M. W. Mahoney, “Quasi-
monte carlo feature maps for shift-invariant kernels,” Journal of
Machine Learning Research, vol. 17, no. 1, pp. 4096–4133, 2016.

[63] W.-C. Chang, C.-L. Li, Y. Yang, and B. Poczos, “Data-driven
random fourier features using stein effect,” arXiv preprint
arXiv:1705.08525, 2017.

[64] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed,
and B. Lakshminarayanan, “Normalizing flows for probabilistic
modeling and inference,” Journal of Machine Learning Research,
vol. 22, no. 57, pp. 1–64, 2021.

[65] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever,
and M. Welling, “Improved variational inference with inverse
autoregressive flow,” Advances in Neural Information Processing
Systems, vol. 29, pp. 4743–4751, 2016.

[66] G. Papamakarios, T. Pavlakou, and I. Murray, “Masked autoregres-
sive flow for density estimation,” in Advances in Neural Information
Processing Systems, 2017, pp. 2335–2344.

[67] R. T. Chen, J. Behrmann, D. Duvenaud, and J.-H. Jacobsen,
“Residual flows for invertible generative modeling,” in Advances
in Neural Information Processing Systems, 2019.

[68] J. Ho, X. Chen, A. Srinivas, Y. Duan, and P. Abbeel, “Flow++:
Improving flow-based generative models with variational de-
quantization and architecture design,” in International Conference
on Machine Learning. PMLR, 2019, pp. 2722–2730.

[69] P. Esling, N. Masuda, A. Bardet, R. Despres et al., “Universal
audio synthesizer control with normalizing flows,” arXiv preprint
arXiv:1907.00971, 2019.

[70] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A flow-based
generative network for speech synthesis,” in IEEE International
Conference on Acoustics, Speech and Signal Processing, 2019, pp. 3617–
3621.

[71] J.-H. Jacobsen, A. Smeulders, and E. Oyallon, “i-revnet: Deep
invertible networks,” in International Conference on Learning Repre-
sentations, 2018.

[72] K. Sohn, H. Lee, and X. Yan, “Learning structured output
representation using deep conditional generative models,” in
Advances in Neural Information Processing Systems, 2015, pp. 3483–
3491.

[73] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[74] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backprop-
agation and approximate inference in deep generative models,”
arXiv preprint arXiv:1401.4082, 2014.

[75] F. A. Gers and J. Schmidhuber, “Recurrent nets that time and
count,” in Proceedings of the IEEE-INNS-ENNS International Joint
Conference on Neural Networks, vol. 3, 2000, pp. 189–194.

[76] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural
networks,” IEEE Transactions on Signal Processing, vol. 45, no. 11,
pp. 2673–2681, 1997.

[77] A. Graves and J. Schmidhuber, “Framewise phoneme classification
with bidirectional lstm and other neural network architectures,”
Neural Networks, vol. 18, no. 5-6, pp. 602–610, 2005.

[78] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdi-
nov, and A. J. Smola, “Deep sets,” in Advances in Neural Information
Processing Systems, 2017, pp. 3391–3401.

[79] H. Kim, A. Mnih, J. Schwarz, M. Garnelo, A. Eslami, D. Rosen-
baum, O. Vinyals, and Y. W. Teh, “Attentive neural processes,” in
International Conference on Learning Representations, 2019.

[80] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” University of Toronto, Tech. Rep., 2009.

[81] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang,
“Moment matching for multi-source domain adaptation,” in IEEE
International Conference on Computer Vision, 2019, pp. 1406–1415.

[82] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. Berg, and
L. Fei-Fei, “ImageNet large scale visual recognition challenge,”
International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252,
2015.

[83] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi,
“Fine-grained visual classification of aircraft,” arXiv preprint
arXiv:1306.5151, 2013.

[84] J. Jongejan, H. Rowley, T. Kawashima, J. Kim, and N. Fox-Gieg,
“The quick, draw! – a.i. experiment,” quickdraw.withgoogle.com,
2016.

[85] B. Schroeder and Y. Cui, “FGVCx fungi classification challenge
2018,” github.com/visipedia/fgvcx_fungi_comp, 2018.

[86] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel,
“Detection of traffic signs in real-world images: The German traffic
sign detection benchmark,” in International Joint Conference on
Neural Networks, 2013, pp. 1–8.

[87] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects
in context,” in European Conference on Computer Vision, 2014, pp.
740–755.

[88] C. Wah, S. Branson, P. Welinder, P. Perona, and
S. Belongie, “The caltech-ucsd birds-200-2011 dataset,”
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html, 2011.

[89] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi,
“Describing textures in the wild,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2014.

quickdraw.withgoogle.com
github.com/ visipedia/fgvcx_fungi_comp

14

[90] M.-E. Nilsback and A. Zisserman, “Automated flower classifi-
cation over a large number of classes,” in Indian Conference on
Computer Vision, Graphics & Image Processing, 2008, pp. 722–729.

[91] J. Snell and R. Zemel, “Bayesian few-shot classification with
one-vs-each pólya-gamma augmented gaussian processes,” arXiv
preprint arXiv:2007.10417, 2020.

[92] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M.
Hospedales, “Learning to compare: Relation network for few-
shot learning,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 1199–1208.

[93] A. Devos, S. Chatel, and M. Grossglauser, “Reproducing meta-
learning with differentiable closed-form solvers,” in ICLR Work-
shop, 2019.

[94] Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola,
“Rethinking few-shot image classification: a good embedding is
all you need?” arXiv preprint arXiv:2003.11539, 2020.

[95] F. X. Yu, A. T. Suresh, K. M. Choromanski, D. N. Holtmann-Rice,
and S. Kumar, “Orthogonal random features,” in Advances in
Neural Information Processing Systems, 2016, pp. 1975–1983.

[96] Z. Li, F. Zhou, F. Chen, and H. Li, “Meta-sgd: Learning to learn
quickly for few-shot learning,” arXiv preprint arXiv:1707.09835,
2017.

[97] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple
neural attentive meta-learner,” in International Conference on
Learning Representations, 2018.

[98] S. Gidaris and N. Komodakis, “Dynamic few-shot visual learning
without forgetting,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 4367–4375.

[99] M. Bauer, M. Rojas-Carulla, J. B. Świątkowski, B. Schölkopf, and
R. E. Turner, “Discriminative k-shot learning using probabilistic
models,” arXiv preprint arXiv:1706.00326, 2017.

[100] S. Qiao, C. Liu, W. Shen, and A. L. Yuille, “Few-shot image
recognition by predicting parameters from activations,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
7229–7238.

[101] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[102] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

15

6 APPENDIX

6.1 Derivations of the ELBO
For a singe task, we begin with maximizing log-likelihood of the conditional distribution p(y|x,S) to derive the ELBO of
MetaKernel. By leveraging Jensen’s inequality, we have the following steps as

log p(y|x,S) = log

∫
p(y|x,S,ω)p(ω|x,S)dω (25)

= log

∫
p(y|x,S,ω)p(ω|x,S)

qφ(ω|S)

qφ(ω|S)
dω (26)

≥
∫

log

[
p(y|x,S,ω)p(ω|x,S)

qφ(ω|S)

]
qφ(ω|S)dω (27)

= Eqφ(ω|S) log [p(y|x,S,ω)]−DKL[qφ(ω|S)||p(ω|x,S)]︸ ︷︷ ︸
ELBO

. (28)

The ELBO can also be derived from the perspective of the KL divergence between the variational posterior qφ(ω|S) and
the posterior p(ω|y,x,S):

DKL[qφ(ω|S)||p(ω|y,x,S)] = Eqφ(ω|S) [log qφ(ω|S)− log p(ω|y,x,S)]

= Eqφ(ω|S)
[
log qφ(ω|S)− log

p(y|ω,x,S)p(ω|x,S)

p(y|x,S)

]
= log p(y|x,S) + Eqφ(ω|S) [log qφ(ω|S)− log p(y|ω,x,S)− log p(ω|x,S)]

= log p(y|x,S)− Eqφ(ω|S) [log p(y|ω,x,S)] +DKL[qφ(ω|S)||p(ω|x,S)] ≥ 0.

(29)

Therefore, the lower bound of the log p(y|x,S) is

log p(y|x,S) ≥ Eqφ(ω|S) log [p(y|x,S,ω)]−DKL[qφ(ω|S)||p(ω|x,S)], (30)

which is consistent with (28).

6.2 Cross attention in the prior network
In p(ω|x,S), both x and S are inputs of the prior network. In order to effectively integrate the two conditions, we adopt the
cross attention [79] between x and each element in S . In our case, we have the key-value matrices K = V ∈ RC×d, where d
is the dimension of the feature representation, and C is the number of categories in the support set. We adopt the instance
pooling by taking the average of samples in each category when the shot number k > 1.

For the query Qi = x ∈ Rd, the Laplace kernel returns attentive representation for x:

Laplace(Qi,K, V) := WiV ∈ Rd, Wi := softmax(−‖Qi −Kj.‖1)Cj=1 (31)

The prior network takes the attentive representation as the input.

6.3 More experimental details
We train all models using the Adam optimizer [102] with a learning rate of 0.0001. The other training setting and network
architecture for regression and classification on three datasets are different as follows.

6.4 Inference networks
The architecture of the inference network with vanilla LSTM for the regression task is in Table 6. The architecture of the
inference network with bidirectional LSTM for the regression task is in Table 7. For few-shot classification tasks, all models
share the same architecture with vanilla LSTM, as in Table 8, For few-shot classification tasks, all models share the same
architecture with bidirectional LSTM, as in Table 9.

6.5 Prior networks
The architecture of the prior network for the regression task is in Table 10. For few-shot classification tasks, all models share
the same architecture, as in Table 11.

6.6 Feature embedding networks
Regression. The fully connected architecture for regression tasks is shown in Table 12. We train all three models (3-shot,
5-shot, 10-shot) over a total of 20, 000 iterations, with 6 episodes per iteration.

Classification. The CNN architectures for Omniglot, CIFAR-FS, and miniImageNet are shown in Table 13, 14, and 15. The
difference of feature embedding architectures for different datasets is due the different image sizes.

6.7 Other settings
The settings including the iteration numbers and the batch sizes are different on different datasets. The detailed information
is given in Table 16.

16

TABLE 6
The inference network φ(·) based on the vanilla LSTM used for regression.

Output size Layers

40 Input samples feature
40 fully connected, ELU
40 fully connected, ELU
40 LSTM cell, Tanh to µw, log σ2

w

TABLE 7
The inference network φ(·) based on the bidirectional LSTM for regression.

Output size Layers

80 Input samples feature
40 fully connected, ELU
40 fully connected, ELU
40 LSTM cell, Tanh to µw, log σ2

w

TABLE 8
The inference network φ(·) based on the vanilla LSTM for Omniglot, mini ImageNet, CIFAR-FS.

Output size Layers

k × 256 Input feature
256 instance pooling
256 fully connected, ELU
256 fully connected, ELU
256 fully connected, ELU
256 LSTM cell, tanh to µw, log σ2

w

TABLE 9
The inference network φ(·) based on the bidirectional LSTM for Omniglot, mini ImageNet, CIFAR-FS.

Output size Layers

k × 512 Input feature
256 instance pooling
256 fully connected, ELU
256 fully connected, ELU
256 fully connected, ELU
256 LSTM cell, tanh to µw, log σ2

w

TABLE 10
The prior network for regression.

Output size Layers

40 fully connected, ELU
40 fully connected, ELU
40 fully connected to µw, log σ2

w

17

TABLE 11
The prior network for Omniglot, mini ImageNet, CIFAR-FS

Output size Layers

256 Input query feature
256 fully connected, ELU
256 fully connected, ELU
256 fully connected to µw, log σ2

w

TABLE 12
The fully connected network ψ(·) used for regression.

Output size Layers

1 Input training samples
40 fully connected, RELU
40 fully connected, RELU

TABLE 13
The CNN architecture ψ(·) for Omniglot.

Output size Layers
28×28×1 Input images
14×14×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.9, pool (2×2, stride=2, SAME)
7×7×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.9, pool (2×2, stride=2, SAME)
4×4×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.9, pool (2×2, stride=2, SAME)
2×2×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.9, pool (2×2, stride=2, SAME)
256 flatten

TABLE 14
The CNN architecture ψ(·) for CIFAR-FS

Output size Layers
32×32×3 Input images
16×16×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
8×8×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
4×4×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
2×2×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
256 flatten

TABLE 15
The CNN architecture ψ(·) for mini ImageNet

Output size Layers
84×84×3 Input images
42×42×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
21×21×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
10×10×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
5×5×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
2×2×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
256 flatten

18

TABLE 16
The iteration numbers and batch sizes on different datasets.

Dataset Iteration Batch size

Regression 20, 000 25

Omniglot 100, 000 6

CIFAR-FS 200, 000 8

miniImageNet 150, 000 8

	1 Introduction
	2 Related Work
	2.1 Meta-Learning
	2.2 Kernel Learning
	2.3 Normalizing Flows

	3 Methodology
	3.1 Meta-Learning with Kernels
	3.2 Variational Random Features
	3.3 Task Context Inference
	3.4 Enriching Random Features by Normalizing Flows

	4 Experiments
	4.1 Few-Shot Classification
	4.1.1 Datasets
	4.1.2 Implementation Details
	4.1.3 Comparison to the State of the art

	4.2 Few-Shot Regression
	4.3 Ablation Studies

	5 Conclusion
	References
	6 Appendix
	6.1 Derivations of the ELBO
	6.2 Cross attention in the prior network
	6.3 More experimental details
	6.4 Inference networks
	6.5 Prior networks
	6.6 Feature embedding networks
	6.7 Other settings

