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A function space analysis of finite neural
networks with insights from sampling theory

Raja Giryes, Senior Member, IEEE

Abstract—This work suggests using sampling theory to analyze the function space represented by interpolating mappings. While the
analysis in this paper is general, we focus it on neural networks with bounded weights that are known for their ability to interpolate (fit)
the training data. First, we show, under the assumption of a finite input domain, which is the common case in training neural networks,
that the function space generated by multi-layer networks with bounded weights, and non-expansive activation functions are smooth.
This extends over previous works that show results for the case of infinite width ReLU networks. Then, under the assumption that the
input is band-limited, we provide novel error bounds for univariate neural networks. We analyze both deterministic uniform and random
sampling showing the advantage of the former.

Index Terms—Neural network generalization, Sampling theory, Fourier analysis, Frame theory, Band-limited mappings
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1 INTRODUCTION

Recently, it has been shown that neural networks with a
univariate output and bounded weights perform a smooth
interpolation between their training data [1], [2], [3]. These
works provide an extension to many recent results that have
studied the approximation power of neural networks. While
in the general universal approximation theory, either in the
infinite width case [4], [5] or the finite width case [6], it is
shown that virtually any function may be approximated, the
new results demonstrate that by adding constraints on the
network weights, we get a smaller function space although
the width of the network is infinite.

An interesting question that may arise as a follow up to
these works that focused on the approximation power of the
network is whether we may use their results to get new esti-
mation error bounds for networks trained on n data samples.
One intriguing phenomenon of neural networks is that for
“natural good data” they both overfit the training data and
generalize well at the same time, while for random “bad”
data they just perform memorization with no generalization
[7]. This phenomenon hints that the generalization of the
network depends also on the structure of the input data and
not only on the network parameters.

In this work, we focus on the case of data that is gener-
ated by band-limited functions and that the neural network
reaches a zero training error, i.e., interpolating the data.
This behavior is observed in practice and proved in various
recent works [8], [9], [10], [11], [12]. We show for a neural
network that when it interpolates (overfits) the training
data, its squared error scales as O(1/n(d+2)/d), where n
is the size of the training data and d is the dimension of
the input. Note that our result suggests that for large d
the squared error scales as 1/n, and therefore the error
without the square scales as 1/

√
n, which coincides with
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the known bounds for the error of neural networks. Yet,
for low-dimensional inputs, e.g., d = 1, our bounds are
much better than the existing ones. This is possible by our
assumption on the input data and by incorporating their
dimension in the analysis. Moreover, our result provides a
concrete example where the memorization of the network
helps its generalization. Note that it naturally excludes the
case of random data, which have an infinite bandwidth. As
we shall see hereafter in the proof of our results, the fact that
the network fits all the training examples is a key element
in its ability to get low error for all the other points of the
function that generated the data.

The contribution of our work is twofold. First, we show
that the function represented by a finite width network with
bounded weights have a bounded total variation of its first
derivative, i.e.,

∫ π
−π f

′′(x)dx <∞, where [−π, π] is assumed
to be the input domain. This shows that finite networks
perform a smooth interpolation of their training data. This
extends over previous works that have been limited to infi-
nite width networks. The second is providing generalization
results both for infinite width networks and finite width
ones. We use tools from sampling theory to analyze the error
of the network both in the case of deterministic uniform
sampling (Theorem 4) and the more realistic case of random
sampling (Theorem 5). Then in Theorem 8 we extend the
results to multivariate functions (under the assumption of
uniform sampling). Notice that the analysis performed in
these theorems is general to any mapping that interpolates
the training data. Yet, we put the focus on neural networks
in this paper because of the following two important prop-
erties: (i) they are known to be able to interpolate the data;
and (ii) when the weights of the network are bounded then
the frequencies of the mapping represented by the network
decay rapidly (as we prove in the first part of the paper),
which is one of the characteristics that the mapping should
satisfy for our analysis to hold.
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2 RELATED WORK

A relationship between network representation and a given
function space was shown in [13], [14]. In particular, these
works focused on the ridgelet transform. The first studied
the approximation power of networks with some special
activation function using ridgelets. The second presented a
connection between neural networks with ReLU activation
and the ridgelet transform. They demonstrated that such
networks satisfy the universal approximation property. An-
other line of works showed that networks learn first lower
frequencies in the data [15], [16], [17]. Another paper [18]
analyzes the impact of gradient descent on the network
approximation power. The work in [19] studies the gap
between the sample complexity required for training a fully
connected and a CNN. They show that CNN may require
significantly less samples compared to a fully connected
network. This is different than this paper that focuses on
the impact of the network smoothness on its generalization
performance.

The works in [1], [2], [3] have shown that shallow infinite
width networks with bounded weights perform a smooth
(spline) interpolation of the training data. Another connec-
tion between neural networks and splines was exhibited in
[20]. It focused on the specific case of max affine splines
and used them to show a relationship between template
matching and networks.

A connection between adding a regularization on the
weights of the network and their generalization was shown
in various works. While classic generalization error bounds
for neural networks presented a dependency on the number
of parameters in the network [21], Rademacher complexity
(RC) based analysis showed that by bounding the norm
of the weights, the generalization error is independent of
the network width [22], [23]. The work in [24] provided
improved generalization bounds, which depend on the log
of the product of the network weights instead of only
the products. Yet, the deficiency of these bounds is their
independence of the input data; thus, they do not capture
cases such as overfitting of random data [7].

Margin based approaches, which take into account also
the input distribution, mitigate this issue [25], [26], [27].
Note that “`2 regularization does not significantly impact
margins or generalization” [26], where the analysis here de-
pends on the consequence of this regularization. Thus, these
approaches are complementary to our analysis. Bounding
the weights is also shown useful under the kernel (RKHS)
assumption [28], which is not required in our work. Gener-
alization error bounds for data that is separable under some
random feature network or kernel is shown [29], [30]. This
is different than our work, which assumes a more realistic
assumption on the mapping function that is generating the
data, namely, that it is band-limited (i.e., smooth).

The contribution of this work is also relevant to general
sampling theory. Indeed, many results have been developed
in this field for the reconstruction performance of inter-
polation techniques from both uniform and non-uniform
samples [31], [32], [33]. Yet, all these results assume that
the interpolating function belongs to the space of the target
functions (e.g., only generating band-limited functions in
the reconstruction). In our case, we do not have this as-

sumption as the neural network does not necessarily gen-
erate band-limited functions. Thus, we develop theoretical
reconstruction guarantees for this setting.

3 NEURAL NETWORKS AND SAMPLING THEORY
PRELIMINARIES

This section surveys some preliminaries of neural networks
and sampling theory. Readers that are familiar with these
topics may skip to the next section.

Any neural network training relies on a given input
dataset {(xi, yi)}n−1i=0 with n pairs of data sample xi and
label yi. In general, the input space of a neural network is
limited, i.e., x is sampled just from a specific interval of in-
terest (for example, in images the pixel values are only in the
range [0, 255]). Without loss of generality, we will assume
for the simplicity of the presentation that x ∈ [−π, π]. In this
case, we can arbitrarily define the values of f(x) outside this
interval (we do not sample the function there and therefore
it does not affect the data generation and the network
trained). We specifically select a periodic continuation of f
such that f(x) = f(x+ 2π).

Since we assume that f is bandlimited, then f must
be also smooth and thus this assumption implies that
f(−π) = f(π). Notice that this assumption does not limit
us in any way as if this is not the case, there are various
ways to mitigate this issue. For example, in the case that
f(x)−f(x+2π) is not too large, we may extend the function
a bit beyond x = 2π in a smooth way such that it will remain
band limited and satisfy the periodicity assumption. An-
other popular alternative is using a symmetric expansion of
f (copying a mirrored version of f in the interval [−π, π] to
the interval [π, 3π], which enforces having f(−π) = f(3π)
due to the mirroring) before applying the periodic exten-
sion. This just changes the integral limits when calculating
the Fourier coefficients of f and requires replacing the
DFT (which we use hereafter) with DCT (Discrete Cosine
Transform) [34].

Since f is periodic, we may calculate its Fourier coeffi-
cients

ck =
1

(2π)d

∫
‖x‖∞≤π

f(x)e−jx
T kdx, (1)

where k ∈ Zd. If f is bandlimited (also known as trigono-
metric polynomial [35]) then ck = 0 if ∃i such that k[i] > K.
Thus,

f(x) =
∑

−K≤k[i]≤K

cke
jxT k. (2)

Note that we sum over all the combinations in which |k[i]| ≤
K .

Using the sampling theorem for bandlimited periodic
signals, we may recover f(x) using just n ≥ N , (2K+ 1)d

samples {f(xi)}n−1i=0 . For completeness, and as it will help us
later in the derivations, we briefly describe here this result.

Uniform sampling. We start with reconstruction using
uniform sampling. Assume that our sample points are on
the grid

[
2πi1

2K + 1
,

2πi2
2K + 1

, . . . ,
2πid

2K + 1
],
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where il = 0, . . . , 2K for l = 1, . . . , d. In the one dimen-
sional case (d = 1), we have

f(xi) =
K∑

k=−K
cke

j2πki
2K+1 . (3)

Denoting by c the vector that contains the Fourier coeffi-
cients in it and by y the vector that contains the values of
f(xi), we may rewrite (3) as (see [33])

y = F ∗c, (4)

where F ∈ CN×N is the DFT (Discrete Fourier Trans-
form) matrix, whose columns (in 1D) are of the form
{ej2πk

i
2K+1 }Kk=−K , and F ∗ is its conjugate transpose, which

is also its inverse (up to a scale factor 1/N ) because the
rows of F are orthogonal to each other. Notice that the same
holds true for the multi-dimensional case (d > 1) and then
F is simply the d-dimensional DFT (in this case, we can also
cast c in a vector representation). Having this relationship,
we can recover the vector c, and thus the whole function f ,
from y by computing c = 1

N Fy.
Oversampling. Notice that if the number of measure-

ments that we have are n > N , then we still have the
relationship in (4) but in this case F ∈ CN×n is a DFT (tight)
frame, whose columns are of the form {ej2πk in }Kk=−K (in
1d). Since the rows of F are orthogonal in this case as well
(also for d > 1), we still have that 1

nFF
∗ = I and thus we

can reconstruct the function f using c = 1
nFy as before.

Notice that due to the redundancy that we have in the
measurements, we may use other DFT operators to recon-
struct c. In particular, for any Ñ and n ≥ Ñ ≥ (2K+1)d, we
can simply pad c with zeros, which yields the relationship
y = F ∗c for the DFT frame F ∈ CÑ×n (which is the
standard DFT transform if n = Ñ ). As before, we can
reconstruct the Fourier coefficients by c = 1

nFy. We abuse
notation here and elsewhere denoting by c also the padded
representation. The use will be clear from the context.

Non-uniform sampling. In many cases, we get just a
random (non-uniform) set of samples of the space. In this
case, the set of input points {xi}n−1i=0 do not lie on the grid
but are randomly spread in [−π, π]d. The sampled points
obey

f(xi) =
K∑

k=−K
cke

jkT xi . (5)

Writing (5) in a matrix form yields f = Dc, where the
rows of D are {ejkxi}Kk=−K (in the 1D case). Notice that
D ∈ Cn×N is very similar to the DFT inverse transform (F ∗)
but with the difference that its rows correspond to random
frequencies unlike F ∗ whose rows have equi-spaced fre-
quencies (that leads to the orthogonality property). Notice
that also here we may pad c with zeros and thus have
D ∈ Cn×Ñ in a similar way to the oversampling case. If
Ñ = 2K̃ + 1 for some K̃ ≥ K then the rows of D are
{ejkxi}K̃

k=−K̃ (in the 1D case).
If D has a full column rank (which is the case of many

random sampling schemes [31], [32], [33]), i.e., invertible,
then we may again reconstruct the function f by computing
c = D†y, where D† = (D∗D)−1D∗ is the pseudo-inverse
of D. Although we can get perfect reconstruction also with

Fig. 1. Top: The mapping function learned by the network for the two-
dimensional projections of the digits 1 and 7 (the blue and yellow
scattered points). The yellow and blue colors in the mapping represent
outputs for 1 and 7 respectively. Bottom: The Fourier transform of the
above mapping. We present in bright yellow the frequencies correspond-
ing to 95% of the energy of the mapped function. Dark yellow and bright
blue corresponds to the frequencies the complement to 98% and 99%
of the energy. It can be clearly seen that the mapping is (approximately)
band limited.

random sampling, its disadvantage is the noisy case, where
we get noise amplification that depends on the ratio κ
between the largest and smallest non-zero singular value of
D (the condition number of D∗D). This ratio is dependent
also on the ratio between n and Ñ [36], [37]. We use it
hereafter to provide error bounds for neural networks with
randomly sampled training data.

Smoothness of neural network mappings. The underly-
ing assumption in this work is that the mapping function of
the (true) data f is band limited (or having rapidly decaying
high frequencies). To justify this assumption, we train a
neural network on data of two digits (1 and 7) from MNIST
and show that the learned mapping that overfits (most of)
the data has fast decaying frequencies. To be able to make
the visualization of the network mapping, we project the
images of the digits to a two dimensional subspace using
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PCA (using the two largest components). We then train a
simple network 2 → 1000 → 1000 → 2 with ReLU as the
activation function and softmax at the end. The network
reaches an accuracy of ∼ 92%. Figure 1 shows the learned
mapping and the coefficients of its Fourier transform that
hold 95% (bright yellow), 98% (dark yellow), and 99%
(bright blue) of the energy of the mapping. To generate this
plot, we calculate on a 2D grid the outputs of the network f
and then applied FFT (Fast Fourier Transform) to this grid.
The plot shows the locations of the coefficients with the
largest magnitudes. It can be clearly seen that the mapping
of this data is (approximately) band limited.

Notice that the assumption that the mapping function of
the true data should have fast decaying frequencies (i.e., the
decision boundaries in it should be relatively smooth as is
the case in Figure 1) is a hidden assumption in other works,
e.g. the recent work by Ghorbani et al. [38] that suggests that
the decision boundary in linear networks is of lower order
polynomial (which implies that the mapping they represent
will have fast decaying high frequencies).

While the analysis in the paper assumes for the simplic-
ity of the analysis only the “pure” band limited mapping
case, we explain at the end how it may be extended also to
the case of approximately band limited mappings (i.e., with
fast decaying high frequencies).

4 THE FUNCTION SPACE OF BOUNDED FINITE NEU-
RAL NETWORKS

The work in [1] proved that any function φ represented by
a two layer overparameterized (with number of parameters
going to infinity) ReLU network with univariate input and
output has a bounded total variation in their first derivative
as the bound on the network norm imposes a constraint on

max

(∫
x
φ′′(x)dx, φ′(∞) + φ′(−∞)

)
. (6)

They have shown that this implies a spline interpolation
(of at least order one, i.e., linear) between the training data,
which the network overfitted (which is possible due to its
overparameterization). The work in [2] have extended their
results showing that the network performs a second order
(cubic) spline interpolation between the data points under
some assumption on the initial weights and the optimiza-
tion process. The result of [1] have been extended in [3] to
the case of multi-dimensional input. They have shown that
in this case, the functions represented by the network have a
bounded R-norm, which is related to the Radon transform
of the represented function.

Notice that the existing works [1], [2], [3] assume shallow
networks with infinite width. We show here that under the
assumption that the input domain is bounded (as is the
common case with neural networks training), then neural
networks with bounded norm approximate functions that
have a bounded derivative and thus also total variation
in the second derivative. These papers show that the opti-
mization is precisely controlling the `1 norms (of the second
derivatives in the case of dimension 1) in two-layer infinite-
width networks, leading to a minimum-norm interpolating
solution. We take a different approach that do not assume a
specific algorithm for training the network except of that

it leads to fitting the training data and having bounded
weights. We use that to show that a similar quantity to the
one studied in [1], [2], [3] is bounded, but not that it dictates
the solution (as we do not assume a specific algorithm).

Denote by σi the non-linearity in the network at the ith
layer and by Wi and bi the weights and biases there. Then,
we may write a feed-forward network with L layers as

φ(x) = σL(bL +WLσL−1(· · ·σ2(b2 +W2σ1(b1 +W1x)).

If we denote by zi the output of the ith layer, then we can
write the above recursively as

zi = σi(bi +Wizi−1), (7)

where z0 = x and zL = φ(x). For such a network we prove
the following proposition, which is an extension of the result
in [25].

We rely on a result from [25] that shows the relationship∥∥∥dφdx∥∥∥ ≤ ∏i ‖Wi‖F . Yet, that work presents this result only
for networks with ReLU, Sigmoid or hyperbolic tangent as
non-linearity and without biases. The following proposition
presents this result also for networks with biases and other
non-expansive activation functions.
Proposition 1. Let φ(x) be a feed-forward network with

an input x, non-expansive non-linear function σi and
weights and biases {Wi}Li=1 and {bi}Li=1. Then, we have∥∥∥∥dφdx

∥∥∥∥ ≤ L∏
i=1

‖Wi‖ ≤
L∏
i=1

‖Wi‖F , (8)

where ‖·‖ and ‖·‖F are the spectral and Frobinius norms
respectively. Notice that the product

∏L
i=1 ‖Wi‖2F can be

upper bounded by the sum
∑L
i=1 ‖Wi‖2F .

Proof. For calculating the Jacobian dφ
dx , we may use the

chain rule (as used in back-propagation), getting

dφ

dx
=

dφ

dzL−1

dzL−1
dzL−2

· · · dz2
dz1

dz1
dx

. (9)

Thus, using matrix norm inequalities we have∥∥∥∥dφdx
∥∥∥∥ =

∥∥∥∥∥
L∏
i=1

dzi
dzi−1

∥∥∥∥∥ ≤
L∏
i=1

∥∥∥∥ dzi
dzi−1

∥∥∥∥ . (10)

Now, notice that

dzi
dzi−1

= diag(σ′i(bi +Wizi−1))Wi. (11)

Since the spectral norm of the diagonal matrix diag(σ′i(bi +
Wizi−1)) is its maximal value and as this value is smaller or
equal to 1 (as we assume σ is non-expansive), we have that∥∥∥∥ dzi

dzi−1

∥∥∥∥ = ‖diag(σ′i(bi +Wizi−1))Wi‖ ≤ ‖Wi‖ . (12)

Plugging this inequality in (10) and then using the known
relationship between the spectral and the Frobenius norms,
we get the desired result. �

To get a bound on the total variation of the second
derivative we make the following simple observation: The
discontinuities in the function approximated by the network
are only due to the non-linear function in the network.
Since the first derivative is bounded the “jumps” that occur
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in it are finite. Since we are dealing with a finite domain
and a finite network, the number of such discontinuities is
finite and therefore the integral over the second derivative
is also finite (also known as the total variation of the first
derivative).

Notice that in the case of infinite network and infinite do-
main, we cannot make the above assumptions and therefore
a more sophisticated approach as the one in [1] is required to
give a bound on the total variation of the first derivative. Yet,
their work does not apply to the finite network case as does
our result here. Notice that for shallow networks, which is
the case studied in [1], [2], [3], the number of discontinuities
in the network grows linearly with the width. In the deeper
case, it grows faster (see analysis in [20], [39]) but is still
bounded.

This provides us with the following corollary for finite
neural networks with a univariate output.
Corollary 2. Let φ be a finite multi-layer neural network

with bounded weights (i.e.,
∏L
i=1 ‖Wi‖ or

∏L
i=1 ‖Wi‖F

are bounded) and non-expansive non-linearities that
have a finite amount of discontinuities in their first
derivative. Assume the training data is in the interval
[−π, π]d. Then the total variation of the derivative of this
function,

∫
x∈[−π,π]d ∆φ(x)dx, is finite, where ∆φ(x) =

∇2φ(x) is the Laplacian of φ(x).

Proof. Using Proposition 1 we have that all the partial deriva-
tives of φ(x) are bounded in the domain [−π, π]d. Since
the network is finite and the discontinuities in the network
derivative emerges from the non-linearities that have a finite
amount of discontinuities in their first derivative, we have
a finite amount of “jumps” in the interval [−π, π] and all
of them. The integral over the second derivative can be
bounded by the difference between the largest and smallest
first derivative of φ times the interval size plus the sum of
the sizes of the jumps (as each is a delta function in the
second derivative). As the first derivative and the amount
of “jumps” are bounded, we have that

∫
x∈[−π,π]d ∇

2φ(x)dx
is finite. �

5 SAMPLING THEORY BASED ERROR BOUNDS

We turn now to use the above findings to prove that a neural
network with bounded norms can recover band-limited
functions with very high precision both with uniform and
non-uniform sampling, where the latter is the more common
case when getting a training data for a neural network. The
underlying assumption in the analysis here is that the labels
yi are generated by a band limited function f(x). We also
assume that the neural network used interpolates the data
and has bounded weights. Specifically, that

∏
i ‖Wi‖F is

bounded (as we rely on Corollary 2 in our analysis).

5.1 A periodic representation of the neural network
function
Denote by φ̃n : R → R a function represented by a neural
network that has bounded weights and is trained with n
training samples. While this function is defined for all R,
for our data we are only interested in the output of the
network in the domain [−π, π]. Therefore, for analyzing
the network estimation error compared to the function f(x)

Fig. 2. Approximation of a band-limited function f(x) using a neural
network φn trained using only 16 training examples (y).

in this domain, we can change φ̃n arbitrarily as we wish
outside of this domain.

To be able to calculate a Fourier series, we define the
function φn, which is equal to φ̃n in the domain [−π, π] and
is periodic outside of it with a period 2π. Clearly, also in
this case we may have that φ̃n(x + 2π) 6= φ̃n(x). Yet, as we
discussed in the preliminaries section, this can be leveraged,
for example, by using a symmetric extension and then the
same analysis that we present below will remain the same
but with a DCT replacing the DFT used in the analysis.
Since both are orthogonal, the derived results remain the
same. Thus, for simplicity we just assume a regular periodic
extension.

Given that φn is periodic we may calculate its Fourier
series

φn(x) =
∑
k∈Z

ζke
jxk, (13)

where ζk is calculated as in (1) (with φn instead of f ).
Now, assume that the network has overfitted the data,

i.e., f(xi) = φn(xi), then if φn is band-limited as f , then
we get from sampling theory that f = φn. In the case of
uniform sampling, if the network function φn was exactly a
spline, we could have used the result in [40] to calculate the
network error as a function of n. Yet, φn is not guaranteed
to be band-limited and as shown in [1], [2], the connection
between the points may be beyond ”linear”. Figure 2 pro-
vides an example of a trained network output, where we get
different types of interpolations between the training points
that are generated from a band-limited function. Therefore
a more general error analysis is required.

To this end, we take the following strategy. First we show
that since the network approximates smooth functions, then
its spectrum decay fast. Then we use this to bound the error
of the network for data that is generated from bandlimited
mappings.
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5.2 Spectral decay rate of networks with bounded
weights

We introduce the following lemma that provide a bound
on the decay rate of finite neural networks with bounded
weights.

Lemma 3. Let φn(x) be a finite multi-layer neural network
with bounded weights (i.e.,

∏L
i=1 ‖Wi‖ or

∏L
i=1 ‖Wi‖F

are bounded), and non-expansive non-linearities that
have a finite amount of discontinuities in their first
derivative. Assume the training data is in the interval
[−π, π]. Then the Fourier coefficients of φn(x), obeys

ζk = O(|k|−2). (14)

Proof. According to Corollary 2, if the network has
bounded weights then φn(x) has a finite total variation
of the derivative of this function, i.e.,

∫
x∈[−π,π] φ

′′
n(x)dx.

Clearly, in this case also φ̃n(x) = φ(x)I[−π,π] has a finite
total variation. The indicator function I[−π,π] is one inside
the domain [−π, π] and zero outside of it.

Notice that φn(x)I[−π,π]d ∈ L1. One way to see this is
using the fact that φn(x) is Liphschitz (as it has a bounded
first derivative as shown in Lemma 1) and [−π, π] is a finite
domain. Thus, using a standard known result, the finite
total variation in the first derivative implies that the Fourier
transform φ̂n(w) of φn(x)I[−π,π]d obeys φ̂n(w) = O(|w|−2).
Using the known relationship that the Fourier coefficients of
φn (ζk) are equal (up to a constant) to the “sampled Fourier
transform” φ̂n(k) yields the desired result. �

Having the above decay rate for the Fourier coefficients
of φn(x), we turn to bound the error between φn(x) and
f(x). We start with the case of uniform sampling and then
move to the case of non-uniform sampling. We present both
results for the univariate case. One may extend them to the
multi-dimensional input case using a similar technique. We
defer this to a future work.

5.3 Network error with uniform univariate samples

The next theorem shows that the network error in the
uniform sampling case decreases as a function of 1

n3 .

Theorem 4. If a finite width univariate network has bounded
weights (i.e.,

∏L
i=1 ‖Wi‖ or

∏L
i=1 ‖Wi‖F are bounded),

the training data of size n ≥ 2K + 1 is fitted by the net-
work and it is uniformly sampled from a band-limited
function with 2K + 1 non-zero Fourier coefficients, then
we have

‖f(x)− φn(x)‖2L2
[−π,π]

= (15)∫ π

x=−π
(f(x)− φn(x))2dx = O(1/n3),

i.e., the error of the network scales as O(1/n3).

The proof of this theorem is a special case of the one of
Theorem 5 for non-uniform sampling, which is presented
next.

5.4 Network error with random univariate samples

Having the result for the uniform sampling case, we move
to study the random sampling case. Analyzing this case is
more important as it resembles in a closer way the case of
real data, where we get labels for randomly sampled inputs.
We show in this case the rate of convergence is of the order
of 1

Ñ3
(Ñ ≤ n), where we assume that the random sampling

pattern generates an operator D ∈ Cn×Ñ that is invertible
with a condition number κ. Notice that this enables us to
tradeoff the network error decay rate and the condition
number of D. If Ñ = n we get the fastest decay rate but
the condition number is very bad. Reducing Ñ improves
the condition number but slows down the decay rate. We
discuss the case, which is equivalent to xi ∼ U [−π, π]
(i.e., sampling from a uniform distribution in the domain
[−π, π]), after the proof of the theorem. We claim that in
that random sampling case, the network error scales as 1

n3 ,
like in the deterministic uniform sampling case.

Theorem 5. If a finite width univariate network has bounded
weights (i.e.,

∏L
i=1 ‖Wi‖ or

∏L
i=1 ‖Wi‖F are bounded),

the training data (xi, yi) of size n ≥ 2K + 1 is randomly
sampled from a band-limited function f with 2K + 1
non-zero Fourier coefficients (i.e., yi = f(xi)), an opera-
tor D ∈ Cn×Ñ (Ñ ≤ n) that corresponds to the sampling
pattern that is invertible with a condition number κ, and
the network φn fits the data, then with high probability

‖f(x)− φn(x)‖2L2
[−π,π]

= O(κ2/Ñ3). (16)

Proof. Let Ñ = 2K̃ + 1 for K̃ ∈ Z.1 From the Parseval
identity and the fact that f is band-limited, we have

‖f(x)− φn(x)‖2L2
[−π,π]

=
∞∑

k=−∞
|ck − ζk|2 (17)

=
∑
k≤K̃

|ck − ζk|2 +
∑
|k|>K̃

|ζk|2 .

To bound the network error, we need to bound the two
terms in the rhs (right hand side) of the (17).

We start with the second term. Using Lemma 3, we have
that |ζk| ≤ a/ |k|2 for some constant a. Thus,∑

|k|>K̃

|ζk|2 ≤ a
∑
|k|>K̃

1

|k|4
= O

(
1

K̃3

)
(18)

= O

(
1

Ñ3

)
,

where the first equality follows from the decay rate of the
sum

∑
|k|>K̃

1
|k|4 . Plugging (18) in (17) leads to

‖f(x)− φn(x)‖2L2
[−π,π]

≤
∑
k≤K̃

|ck − ζk|2 +O

(
1

Ñ3

)
. (19)

Turning to bound the first term in the rhs of (19), notice
that from the assumption that the network fitted the training

1. This assumption is used just for the simplicity of the presentation
to perform a symmetric expansion of c. If n is even we can just perform
a non-symmetric expansion.
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data, we have f(xi) = φn(xi) for 1 ≤ i ≤ n. Using the
Fourier series expansion of φn(x), we have that

φn(xi) =
∑
k∈Z

ζke
jkxi =

∑
|k|≤K̃

ζke
jkxi +

∑
|k|>K̃

ζke
jkxi . (20)

Denote by y the vector whose ith entry is φn(xi), D the
operator that contains {ejkxi}Kk=−K in its rows, ζ the vector
containing the coefficients ζk, k ≤ K̃ , and y\K̃ ∈ Cn the
vector whose ith entry is equal to

∑
|k|>K̃ ζke

jkxi . With this
notation, we may write (20) in a vector form

y = Dζ + y\K̃ , (21)

Denote by ζl the vector that contains the set of coefficients
ζ−K̃+lÑ , . . . , ζK̃+lÑ . Notice that each coefficient in ζl is
multiplied in y\K̃ by the same complex exponent as in the

multiplication between D and ζ but with a factor ejlÑxi .
Thus, by denoting Ll = diag

(
ejÑlx1 , . . . , ejÑlxn

)
, the di-

agonal matrix that contains these exponent factors, we may
write y\K̃ =

∑
l 6=0 LlDζ

l. Using the assumption that D is
invertible and y = Dc, we get from (21) that

c = ζ +
∑
l 6=0

D†LlDζ
l. (22)

Notice that ||c − ζ||22 =
∑
k≤K̃ |ck − ζk|

2, which is exactly
the term we want to bound in (19). From (22), we have

‖c− ζ‖22 =

∥∥∥∥∥∥
∑
l 6=0

D†LlDζ
l

∥∥∥∥∥∥
2

2

(23)

=
∑
l 6=0

||D†LlDζl||22 +
∑
q 6=l,0

∑
l 6=0

(D†LlDζ
l)∗D†LlDζ

q

≤
∑
l 6=0

||D†LlDζl||22 +
∑
q 6=l,0

∑
l 6=0

∥∥∥D†LlDζl∥∥∥ ∥∥∥D†LlDζq∥∥∥
2

≤ κ2
∑
l 6=0

||ζl||22 + κ2
∑
q 6=l,0

∑
l 6=0

∥∥∥ζl∥∥∥ ‖ζq‖2 ,
where we use the Cauchy Schwartz inequality in the second
step, and matrix norm inequalities in the last step, namely,∥∥∥D†LlDζl∥∥∥

2
≤
∥∥∥D†∥∥∥

2
‖Ll‖2 ‖D‖2

∥∥∥ζl∥∥∥
2

(24)

with the fact that
∥∥D†∥∥

2
= 1/σmin(D), ‖D‖2 = σmax(D),

‖Ll‖2 = 1 and κ = σmax(D)/σmin(D).
We turn to bound the terms at the rhs of (23). For the

first, we have that
∑
l 6=0 ||ζl||22 = O

(
1
Ñ3

)
as in (18). For the

second term, from Lemma 3, we have that
∥∥ζl∥∥

2
and ‖ζq‖2

behave as
√

n
(nl)4 = 1√

nnl2
and 1√

nnq2
respectively. Thus,

∑
q 6=l,0

∑
l 6=0

∥∥∥ζl∥∥∥
2
‖ζq‖2 ≤

1

n3

∑
q 6=0

1

q2

∑
l 6=q

1

l2
= O

(
1

n3

)
, (25)

where in the last equality we use the fact that
∑
l 6=q

1
l2 =

constant and thus
∑
q 6=0

1
q2
∑
l 6=q

1
l2 = constant as well.

Thus, we get from (19) that ‖c− ζ‖22 = O(κ2/Ñ3). (23).
Combining this with (19) leads to the desired result. �

One may inquire what can be said on κ in Theorem 5.
To this end, we employ the empirical analysis performed in
[37]. In that work, it was conjectured that the eigenvalues of

a randomly subsampled frame obey a Manova distribution.
To employ their result in our case, we may treat D as a
matrix sampled from a significantly larger Fourier basis. In
their work, they have two parameters. The first is γ, which
is the fraction between the large basis and the size of the
rows, namely Ñ in our case. This selection of subset of the
rows creates a frame (the selection can be deterministic in
this step of the selection as is our case). We set γ = εÑ ,
where ε is a very small number as the large basis should
represent the whole space we are sampling from and we
scale ε with Ñ as we get closer to the whole space when we
add more samples. The second parameter is β = n

Ñ
, which

is the redundancy factor in D. Given these two parameters,
the support of the MANOVA distribution that characterize
the singular values of D is [r−, r+], where

r± =

(√
β(1− γ)±

√
1− βγ

)2

(26)

=

(√
n

Ñ
− εn±

√
1− εn

)2

.

Note that r−/r+ provides a bound to the condition
number (as the minimal/maximal singular value may be
greater/smaller than r−/r+). Assuming εn is negligible, we
have that

κ ≤ (
√
β + 1)2

(
√
β − 1)2

. (27)

Notice that in Theorem 5, the ratio β ofD is a free parameter
that we may adjust to optimize the bound. This leads us to
the following conjecture

Conjecture 6. If a finite width univariate network has
bounded weights (i.e.,

∏L
i=1 ‖Wi‖ or

∏L
i=1 ‖Wi‖F are

bounded), the training data (xi, yi) of size n ≥ 2K+ 1 is
randomly sampled from a band-limited function f with
2K + 1 non-zero Fourier coefficients (i.e., yi = f(xi)),
xi ∼ U [−π, π], and the network φn fits the data, then

‖f(x)− φn(x)‖2L2
[−π,π]

= O(1/n3). (28)

It is a conjecture as it relies on empirical analysis [37]
(with no rigorous proof) and on our assumptions above. If
all of these are correct, then we get this result by simply
plugging (27) and Ñ = n

β in the bound of Theorem 5, which
yields

‖f(x)− φn(x)‖2L2
[−π,π]

= O

(
(
√
β + 1)4β3

(
√
β − 1)4

/n3
)
. (29)

Since β is an arbitrary constant, the nominator can be also
considered as such and thus we get that the error scales as
O(1/n3). Notice that this bound is not tight and thus we
cannot use it to approximate the ratio between the number
of samples required in the deterministic and random cases
in order to get the same error. Next we present a numerical
simulation that demonstrates that this ratio is not so high
and that both uniform deterministic and random sampling
indeed obey a decay rate of 1/n3 for band-limited signals.
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Fig. 3. Network error as a function of the number of training samples
n. Top: Training with random samples. Bottom: Training with uniform
(equispaced) samples. We show in the small rectangles the same plots
in log-log scale. Note that the network error scales as 1/n3 for both
random and uniform cases.

5.5 Network error with uniform multivariate samples
We now turn to analyze the multivariate case. Yet, in this
case, we limit ourselves to uniform sampling and to infinite
width networks. We also use the following vector indexing
notation. Given a vector of indices k = [k1, . . . , kd], we
abuse notation and use it to index functions and tensors
by simply converting (uniquely) the tensor indices in k to
be vector indices as if the tensor/function was represented
in a column-stack.

We start with the following lemma that we use in our
proof.
Lemma 7. If a two-layer neural network with a ReLU

activation has an infinite width and bounded weights
(assuming

∑2
i=1 ‖Wi‖2F is controlled) then the Fourier

coefficients of φn(x) obeys

dk = O(‖k‖−(d+1)
p ) (30)

for any p ≥ 1.

Proof. According to [3] (see Equations (10) and (11)
there), if the network has bounded weights then the learned

network φ̃n(x) has a finite R-norm. Clearly, in this case
also φ̃n(x)I[−π,π]d = φn(x)I[−π,π]d has a finiteR-norm. The
indicator function I[−π,π]d is one inside the domain [−π, π]d

and zero outside of it.
Notice that φn(x)I[−π,π]d ∈ L1. One way to see this is

using the fact that φn(x) is Liphschitz (e.g., see Proposi-
tion 8 in [3]) and [−π, π]d is a finite domain. Thus, from
Proposition 12 in [3], we have that the Fourier transform
φ̂n(w) of φn(x)I[−π,π]d obeys φ̂n(tw) = O(|t|−(d+1)

). Using
the known relationship that the Fourier coefficients of φn
(dk) are equal (up to a constant) to the “sampled Fourier
transform” φ̂n(k) and the fact that ‖tk‖p = t ‖k‖p for any
p ≥ 1 yields the desired result. �

Having the above decay rate for the Fourier coefficients
of φn(x), we turn to bound the error between φn(x) and
f(x) in the multivariate case.
Theorem 8. If a two-layer multivariate neural-network with

a ReLU activation has bounded weights as in Lemma 7
and the training data is uniformly sampled on the d-
dimensional grid such that ‖k‖1 ≤ K , then we have

‖f(x)− φn(x)‖2L2
[−π,π]d

= (31)∫
x∈[−π,π]d

(f(x)− φn(x))2dx = O(1/n(d+2)/d),

i.e., the error of the network scales as O(1/n3)

Proof. Since we sample all points such that ‖k‖∞ ≤ K , we
have that n = (2K+1)d. From the Parseval identity and the
fact that f is band-limited, we have

‖f(x)− φn(x)‖2L2
[−π,π]d

=
∑
k∈Zd

|ck − dk|2 (32)

=
∑

‖k‖∞≤K

|ck − ζk|2 +
∑

‖k‖∞>K

|dk|2 .

To bound the network error, we need to bound the two
terms in the rhs (right hand side) of the Eq. (32).

We start with the second term. We have that∑
‖k‖∞>K

|dk|2 ≤
∑

‖k‖1>K

|dk|2 ≤ a
∑

‖k‖1>K

1

‖k‖2(d+1)
1

(33)

= a
∑

t≥K+1

∑
‖k‖1=t

t−2(d+1)

≤ a
∑

t≥K+1

2d
(
t+ d− 1

t

)
1

t2(d+1)

≤ a2d

(d− 1)!

∑
t≥K+1

1

td+3
≤ O

(
2d

(d− 1)!(K + 1)d+2

)

= O

(
4d

(d− 1)!(2K + 2)d+2

)
≤ O

(
4d

(d− 1)!n(d+2)/d

)
,

where the first inequality is due to the fact that ‖k‖1 ≥
‖k‖∞, the second inequality uses Lemma 7 from which we
have ‖dk‖1 ≤ a/ ‖k‖21 for some constant a, the following
equality use a simple split of the sum, the third inequality
is due to a simple combinatorics identity for the sum of
non-negative integers factored by 2d to take into account
each all orthants, the fourth inequality uses the fact that
(t+ d− 1)(t+ d− 2) · · · (t+ 1)/td−1 < 1 for large t, and the
rest of the inequalities use standard arithmetic operations.
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Turning to bound the first term in the rhs of Eq. (32),
notice that from the assumption that the network fitted the
training data, we have f(xs) = φ(xs) for s ∈ Zd such that
‖s‖∞ ≤ K . Using the Fourier series expansion of φ(x), we
have that

φn(xs) =
∑
k∈Zd

ζke
jkT xs (34)

=
∑

‖k‖∞≤K

ζke
jkT xs +

∑
‖k‖∞>K

ζke
jkT xs .

Denote by y the output that is equal at index s to φn(xs),
F ∈ Cn×n the d-dimensional DFT, ζ the vector containing
the coefficients ζk, ‖k‖∞ ≤ K , and y\K ∈ Cn the vector
whose sth entry is equal to

∑
‖k‖∞>K

ζke
jkT xs . With this

notation, we may write Eq. (34) in a vector form as we have
done in Eq. (21)

y = F ∗ζ + y\K . (35)

Using the fact that 1
nFF

∗ = I and c = 1
nFy (as the samples

are equispaced), we have

c = ζ +
1

n
Fy\K . (36)

Moving ζ to the left hand side (lhs) and then taking a vector
`2 norm on both sides leads us to

‖c− ζ‖22 =

∥∥∥∥ 1

n
Fy\K

∥∥∥∥2
2

. (37)

Notice that ||c−ζ||22 =
∑
‖k‖∞≤K

|ck − ζk|2, which is exactly
the term we want to bound in (32). Thus, we just need to
bound the rhs in (37).

Because xs are uniform samples, we have ejk
T xs =

ej(k+(2K+1)q)T xs for any q ∈ Zd. Thus, we can partition the
coefficients ζk, |k|∞ > K into groups of size n = (2K+ 1)d.
We can write each group as a vector dq whose entries con-
tain the coefficients of ej(k+(2K+1)q)T xs for all k such that
‖k‖∞ ≤ K . With this notation, we have y\K̃ =

∑
q 6=0 F

∗dq

(notice that we exclude q = 0 as dζ0 = d). Plugging it in
Eq. (37) leads to

‖c− ζ‖22 = ||
∑
q 6=0

dq||22. (38)

Expanding the rhs leads to

||
∑
q 6=0

ζq||22 =
∑
q 6=0

||ζq||22 +
∑
l 6=q,0

∑
q 6=0

(dl)∗dq (39)

≤ O
(

4d

(d− 1)!n(d+2)/d

)
+
∑
q 6=l,0

‖dq‖2
∑
l 6=0

∥∥∥dl∥∥∥
2
,

where the bound for first term follows Eq. (33) and for
the second term we use Cauchy Schwartz inequality. Now
notice that using Lemma 7, we have that

∥∥ζl∥∥
2

and ‖ζq‖2

behave as
√
n 1

((2K+1)‖q‖1)2(d+1) = 1√
n(d+2)/d‖q‖d+1

1

and
1√

n(d+2)/d‖l‖d+1
1

respectively. Thus,∑
q 6=l,0

∑
l 6=0

∥∥∥ζl∥∥∥
2
‖ζq‖2 (40)

≤ 1

n(d+2)/d

∑
q 6=l,0

1

‖q‖d+1
1

∑
l 6=0

1

‖l‖d+1
1

= O

(
1

n(d+2)/d

)
,

where in the last equality we use the fact that
∑
l 6=0

1
‖l‖d+1

1

=

constant and thus
∑
q 6=l,0

1
‖q‖d+1

1

∑
l 6=0

1
‖l‖d+1

1

= constant as

well. Thus, we get that ‖c− ζ‖22 = O
(

1
n(d+2)/d

)
. Using this

with Eq. (32) and the fact that (d− 1)! decays faster than 4d

leads to the desired result.
�

Extending this result to the random sampling case is
possible in almost the same way done in the univariate
case. Notice that this result for the multivariate case states
that for large d the squared error scales as 1/n (or the
error without the square as 1/

√
n), which coincide with

classic generalization bounds that states that the error scales
as 1/

√
n. Yet, our result reveals the dependence on the

dimension of the input. Thus, for small d we get better error
rates.

5.6 Beyond band-limited functions

The underlying assumption in the above analysis is the
mapping f(x) is band-limited. Yet, one may inquire whether
the input of neural networks really obeys this assumption.
We claim here that we do not need to have this assumption
in order to have the above generalization guarantees.

Assume that the function f(x) corresponds instead to
the output of a neural network with bounded weights. As
we have proven in Section 4, the spectrum of this function
decays rapidly. This implies that most of the energy of this
function is concentrated in a limited band and thus, we can
repeat a similar derivation to the one performed above for
such functions as well. Therefore, our assumption of band-
limited functions is not restricting the implication of the
theorem.

5.7 Empirical demonstration

We have generated a bandlimited signal with 11 Fourier
coefficients (K = 5). The signal is presented in Figure 2.
We sampled both uniformly (equispaced) and randomly the
function f , generating n pairs of (xi, yi = f(xi)), where
n ∈ {11, 16, 24, 32, 40, 48, 56, 64}. Then we trained a neural
network with two hidden layers of size 1000. We trained
the network with weight decay and a SGD with momentum
(with parameter 0.5). Once the network converged, we
calculated its error compared to the generating function.
Figure 3 shows that in both cases the error scales as 1/n3.
The very larger error at n = 11 in the random case may
be explained by the fact that in this case, we can just have
β = 1 and then the condition number is relatively large,
which increases the error.



TO APPEAR IN TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022 10

Fig. 4. Approximation of a band-limited (K = 4) function f(x) using a
network φn trained using only 16 training examples (y).

Notice that in the random sampling case, we need
roughly twice the number of points to get to the same
error as in the equispaced sampling case. This shows the
great advantage of the latter. This observation may serve
as a motivation for the farthest point sampling technique
used in active learning when searching for new examples to
annotate.

In another experiment, we have generated a bandlimited
signal with 9 Fourier coefficients (K = 4). The signal is
presented in Figure 4. We sampled both uniformly (equi-
spaced) and randomly the function f , generating n pairs
of (xi, yi = f(xi)), where n ∈ {9, 16, 24, 32, 40, 48, 56, 64}.
Then we trained a neural network with two hidden layers
of size 1000. We trained the network with weight decay
and a SGD with momentum (with parameter 0.5). Once the
network converged, we calculated its error compared to the
generating function. Figure 5 shows that in both cases the
error scales as 1/n3 (the plateau at the end is probably due
to numerical errors). As before, the larger error at n = 9 in
the random case may be explained by the fact that in this
case, we can just have β = 1 and then the condition number
is relatively large, which increases the error.

Notice that also here, in the case of a small number
of samples, we get better error with deterministic uniform
sampling compared to random sampling.

6 CONCLUSION

This work used sampling theory tools to analyze the er-
ror of neural networks. We showed that when the input
data is band-limited, the network squared error scales as
O(1/n(d+2)/d). For the univariate case, we have shown that
the error scales as 1/n3 both with uniformly sampled and
randomly sampled data. To the best of our knowledge, no
such decay rate was demonstrated in the literature of neural
network generalization (see for example the survey [41]). As
we assume that the network fits the data, the total network
error studied in this work is the same as its generalization
error.

Fig. 5. Network error as a function of the number of training samples
n for K = 4. Top: Training with random samples. Bottom: Training with
uniform (equispaced) samples. We put the same plots in a log-log scale
in the small rectangles. Notice that the network error scales as 1/n3 in
both cases.

While this work provides a generalization error of over-
parameterized networks with bounded weights, our analy-
sis does not take into account the implicit bias on the margin
of these networks implied by the optimization [42], [43],
which is also important for network generalization [25], [26].
We believe that a combination of these tools may further
improve the understanding of neural networks.

In our work, we have assumed that the trained neural
network is interpolating the data and that at this stage
the weights are bounded. While this assumption holds in
practice, in the theoretical works that prove interpolation
of the training data by the network [8], [9], [10], [11], [12]
the `2 norm of the weights may increase with sample size
for fitting non-smooth targets, possibly even exponentially
in dimension for the Lipschitz case (see, e.g., [44]). Yet, as
we focus on smooth target functions, the weights are likely
to remain bounded as observed empirically. We defer to a
future work to prove theoretically that these weights are
bounded for networks that are trained with data generated
from band-limited mapping, which we studied here. We
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believe that for such band-limited target functions there will
be a fixed upper bound depending on the bandwidth.

Notice that while the discussion in this paper was on
band-limited functions, our results may be easily extended
to other types of functions such as ones that have compact
support in wavelets or splines. In this case, one may use
tools from generalized sampling theory [31], [45], [46], [47],
[48] to represent the signal in a similar way as we have
done in (4) and then perform a similar analysis to the one
performed in this paper.
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