
JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Constructing Stronger and Faster Baselines for
Skeleton-based Action Recognition

Yi-Fan Song, Zhang Zhang, Member, IEEE,
Caifeng Shan, Senior Member, IEEE, and Liang Wang, Fellow, IEEE

Abstract—One essential problem in skeleton-based action recognition is how to extract discriminative features over all skeleton joints.
However, the complexity of the recent State-Of-The-Art (SOTA) models for this task tends to be exceedingly sophisticated and
over-parameterized. The low efficiency in model training and inference has increased the validation costs of model architectures in
large-scale datasets. To address the above issue, recent advanced separable convolutional layers are embedded into an early fused
Multiple Input Branches (MIB) network, constructing an efficient Graph Convolutional Network (GCN) baseline for skeleton-based
action recognition. In addition, based on such the baseline, we design a compound scaling strategy to expand the model’s width and
depth synchronously, and eventually obtain a family of efficient GCN baselines with high accuracies and small amounts of trainable
parameters, termed EfficientGCN-Bx, where ”x” denotes the scaling coefficient. On two large-scale datasets, i.e., NTU RGB+D 60 and
120, the proposed EfficientGCN-B4 baseline outperforms other SOTA methods, e.g., achieving 92.1% accuracy on the cross-subject
benchmark of NTU 60 dataset, while being 5.82× smaller and 5.85× faster than MS-G3D, which is one of the SOTA methods. The
source code in PyTorch version and the pretrained models are available at https://github.com/yfsong0709/EfficientGCNv1.

Index Terms—Action Recognition, Skeleton Sequence, Graph Convolutional Network, EfficientNet, Separable Convolution

F

1 INTRODUCTION

HUMAN action recognition becomes increasingly crucial
and achieves promising progress in various applica-

tions during the past decade, such as video surveillance,
human-computer interaction, video retrieval and so on [1],
[2], [3]. One essential problem in human action recognition
is how to extract discriminative and rich features to fully de-
scribe the variations of spatial configurations and temporal
dynamics in human actions.

Currently, skeleton-based representations are very pop-
ular for human action recognition, as human skeletons
provide a compact data form to depict dynamic changes in
human body movements [4]. Skeleton data is a time series
of 3D coordinates of multiple skeleton joints, which can be
either estimated from 2D images by pose estimation meth-
ods [5] or directly collected by multimodal sensors such as
Kinect [6]. Moreover, compared to conventional RGB based
action recognition methods, skeleton-based representations
are more robust to the variations of illumination, camera
viewpoints and other background changes. These merits
inspire researchers to develop various methods to explore
informative features from skeleton motion sequences for
action recognition.

• Yi-Fan Song, Zhang Zhang, and Liang Wang are with the School
of Artificial Intelligence, University of Chinese Academy of Sciences
(UCAS), Beijing 100190, China, and also with the Center for Re-
search on Intelligent Perception and Computing (CRIPAC), National
Laboratory of Pattern Recognition (NLPR), Institute of Automation,
Chinese Academy of Sciences (CASIA), Beijing 100190, China. (Email: yi-
fan.song@cripac.ia.ac.cn, zzhang@nlpr.ia.ac.cn, wangliang@nlpr.ia.ac.cn)

• Caifeng Shan is with the College of Electrical Engineering and Au-
tomation, Shandong University of Science and Technology (SDUST),
Qingdao 266590, China, and also with the Artificial Intelligence Research,
Chinese Academy of Sciences (CAS-AIR), Beijing 100190, China. (Email:
caifeng.shan@gmail.com)

The development of skeleton-based action recognition
can be divided mainly into two phases. In early years,
conventional methods adopt Recurrent Neural Network
(RNN)-based or Convolutional Neural Network (CNN)-
based models to analyze skeleton sequences. For example,
Du et al. [7] employ a hierarchical bidirectional RNN to
capture rich dependencies between different body parts. Li
et al. [8] design a simple yet effective CNN architecture
for action classification from trimmed skeleton sequences.
In recent years, due to the greatly expressive power for
depicting structural data, graph-based models [9], [10] have
been proposed for modeling dynamic skeleton sequences.
Yan et al. [11] firstly propose a Spatial Temporal Graph
Convolutional Networks (ST-GCN) for skeleton-based ac-
tion recognition, after that increasing number of studies [12],
[13], [14] are reported based on GCN models.

Nevertheless, for learning discriminative and rich fea-
tures from skeleton sequences, current State-Of-The-Art
(SOTA) models are often exceedingly sophisticated and
over-parameterized, where the network often contains a
multi-stream architecture with a large number of model
parameters, which leads to a complicated training proce-
dure and high computational cost (and thus low inference
speed). For example, the 2s-AGCN in [13] contains about
6.94 million parameters, and it takes nearly 4 GPU-days for
model training on the NTU RGB+D 60 dataset [15]. And
the DGNN [16] contains more than 26 million parameters,
which makes it very hard to do parameter tuning on large-
scale datasets. The high model complexity has seriously lim-
ited the development of skeleton-based action recognition,
while there are few literatures on this issue.

To tackle this problem, some efforts are made in this
paper to extremely reduce the redundant trainable param-
eters while maintaining the model performance. Firstly,

ar
X

iv
:2

10
6.

15
12

5v
2 

 [
cs

.C
V

] 
 3

 M
ar

 2
02

2

https://github.com/yfsong0709/EfficientGCNv1


JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

Frame n

Frame n+1

Class
Main Stream

EfficientGCN Block ST-Joint Attention

Joint Branch

Bone Branch

Velocity Branch

GAP, FC

Data Preprocess

Fig. 1. The overall pipeline of our approach, where ⊕ represents con-
catenation operation, GAP and FC denote the Global Average Pooling
operation and Fully Connected layer, respectively. (Best viewed in color.)

an early fused Multiple Input Branches (MIB) architecture
is constructed to capture rich features from both spatial
configurations and temporal dynamics of joints in skeleton
sequences. The early fusion strategy has been widely used to
fuse multi-modal information for various visual tasks, such
as Video Question Answering (VQA) [17]. In this paper, we
emphasize that the proposed MIB mainly aims to reduce
the model parameters and computational costs of multi-
stream GCN models for more efficient skeleton-based action
recognition. In details, three input branches including joint
positions (relative and absolute), motion velocities (one or
two temporal steps), and bone features (lengths and angles)
are fused in the early stage of the whole network, rather than
the conventional late fusion at score layer in most multi-
stream GCN models [13], [18], [19]. The optimal fusion stage
is chosen by exhaustive search (see Sec. 5.3.4). To the best of
our knowledge, it is the first time to investigate the impacts
of different fusion locations and assess the optimal fusion
layer in GCN-based skeleton action recognition.

Secondly, besides the Basic Layer (BasicLayer) proposed
in ST-GCN [11], we extend four kinds of convolutional
layers in CNN, i.e., Bottleneck Layer (BottleLayer) [20],
Separable Layer (SepLayer) [21], Expanded Separable Layer
(EpSepLayer) [22], and Sandglass Layer (SGLayer) [23], to
the GCN network for extracting temporal dynamics and
compressing the model size. These four layers can obviously
reduce the amount of parameter tuning costs in training,
and accelerate the model inference in testing.

Thirdly, in order to determine the structural hyper-
parameters for each block, we resort to the compound scal-
ing method proposed by Tan and Le [24], which uniformly
scales the network width, depth and resolution with a set
of fixed scaling coefficients. Due to its high efficiency, the
original compound scaling strategy has gradually become
a popular baseline constructing method for many visual
recognition tasks. However, it is quite hard to directly uti-
lize the compound scaling strategy in GCN-based models
because the resolution scaling in original EfficientNet [24]
cannot be implemented on graph data explicitly. To address
this issue, we modify the original scaling strategy to adapt
to graph data, by removing the resolution scaling factor and
rebuilding the constraint between width and depth factors.
Such a strategy improves the model performance in an
efficient way, bringing a competitive model accuracy with
significantly fewer model parameters and lower computa-
tional cost than other GCN-based SOTA methods.

Finally, for more accurate recognition, inspired by Hou
et al. [25], an attention module, named Spatial Temporal

0 5 10 15

Number of Parameters (M)

88

88.5

89

89.5

90

90.5

91

91.5

92

92.5

M
o

d
e

l 
A

c
c
u

ra
c
y
 (

%
)

B0

B2

B4

PA-ResGCN-B19 [27]
4s-Shift-GCN [51]

2s-AGCN [13]

MS-G3D [18]

SGN [36]

DynamicGCN [34]

NAS-GCN [50]

EfficientGCN

Other methods

Fig. 2. Model size vs. model accuracy on the cross-subject benchmark
of NTU 60 dataset. (Best viewed in color.)

Joint Attention (ST-JointAtt), is proposed and inserted into
each block of the model. This attention module aims to find
the most essential joints from the whole skeleton sequence,
and eventually enhances the model ability to extract dis-
criminative features. Compared to other attention modules
such as STC-attention (STCAtt) [26] and Part-wise Attention
(PartAtt) [27], this new module jointly deals with the spatial
and temporal attentions, while STCAtt is asynchronous
and PartAtt ignores the temporal differences. In addition,
compared with the previous PartAtt module, the proposed
ST-JointAtt module can be used without manual division
of parts in skeleton graph, thus eliminates the need of
designing appropriate pooling rules over joints in each part.
Accordingly, we choose the ST-JointAtt module for building
an efficient and general baseline with as few manual inter-
ventions as possible.

Combining these efforts mentioned above, a family of ef-
ficient GCN baselines with relatively small amounts of train-
able parameters while keeping competitive performance to
other SOTA methods is obtained and termed EfficientGCN-
Bx, where ”x” denotes the scaling coefficient. The whole
pipeline of EfficientGCN is shown in Fig. 1, where the
three input sequences (Joint, Velocity and Bone) are initially
extracted from the original skeleton sequence. Next, each
sequence is sent to a separate input branch consisting of
several convolutional blocks. Then, the three branches will
be fused and passed through the main stream. Similar to
the input branches, the main stream is also composed of
a number of convolutional blocks. Finally, the features of
all frames and joints are globally averaged and fed into a
Fully Connected (FC) layer for action classification. In this
paper, three types of EfficientGCN with scaling coefficients
of {0,2,4} are provided to verify the effectiveness of our
approach. Compared to the most popular baseline, i.e., 2s-
AGCN [13], the EfficientGCN-B0 achieves over 1% relative
performance improvement on both NTU RGB+D 60 [15]
and 120 [28] datasets, while only needs 23.93× smaller
amount of model parameters and achieves 13.67× faster
inference speed. Besides, EfficientGCN-B4 obtains the SOTA
performance on the two datasets, e.g., 92.1% on the cross-
subject benchmark of NTU 60 dataset. Furthermore, when



JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

considering the model size and graph computational cost,
EfficientGCN-B4 is 5.82× smaller and 5.85× faster than MS-
G3D [18], which is one of the best SOTA methods in the
field. For a clear illumination, Fig. 2 is drawn to demon-
strate the accuracy-parameter performance of EfficientGCN,
where the EfficientGCN is remarkably better than other
SOTA methods.

This work is an extension of an earlier and preliminary
version presented in [27], namely ResGCN. Compared to
our previous work, main modifications and contributions of
this paper are summarized as follows:

• For temporal convolutional layers, ResGCN proves
that the BottleLayer is efficient for the GCN network.
Besides, this work further introduces other three
types of layers (SepLayer, EpSepLayer and SGLayer)
to skeleton-based action recognition, further improv-
ing the model efficiency.

• In previous work, each block in the model is con-
structed with manually selected hyper-parameters,
where the number of layers and channels are fixed.
In contrast, this study employs a compound scaling
strategy to configure the model’s width and depth
with a scaling coefficient, which brings an effective
and more flexible approach to design the model
architecture.

• In ResGCN, an attention module named PartAtt is
proposed to assign spatial attentions to body parts,
while this paper offers a fine-grained module (ST-
JointAtt), which not only considers the spatial at-
tention, but also distinguishes the most essential
temporal frames.

• Compared to the preliminary version, EfficientGCN
achieves a better performance with a significantly
lower number of parameters and calculations on two
large-scale datasets, i.e., NTU RGB+D 60 & 120. For
example, EfficientGCN-B4 obtains a 92.1% accuracy
on the cross-subject benchmark with only 2.03 mil-
lion parameters, significantly smaller and faster than
ResGCN.

The remainder of this paper is organized as follows:
Sec. 2 describes recent studies related to our work. Sec. 3
briefly introduces several crucial techniques of the proposed
EfficientGCN. Sec. 4 presents the details of our EfficientGCN
baselines. Extensive experiments on two large-scale datasets
are reported in Sec. 5, and the conclusion is given in Sec. 6.

2 RELATED WORK

2.1 Skeleton-based Action Recognition

Due to its compactness to the RGB-based representations,
action recognition based on skeleton data has received
increasing attentions. In an earlier work [29], a convo-
lutional co-occurrence feature learning framework is pro-
posed, where a hierarchical methodology is employed to
gradually aggregate different levels of contextual informa-
tion. The study in [30] designs a view adaptive model to
automatically regulate observation viewpoints during the
occurrence of an action, so as to obtain view invariant repre-
sentations of human actions. However, due to the ignorance

of spatial configurations, these CNN or RNN-based models
gradually fade out from the stage of frontier research.

Inspired by the booming graph-based methods, Yan et
al. [11] firstly introduce GCN into the skeleton-based action
recognition task, and propose the ST-GCN to model the
spatial configurations and temporal dynamics of skeletons
synchronously. Following this work, Song et al. [14], [31]
aim to solve the occlusion problem in this task, and propose
a multi-stream GCN to extract rich features from more
activated skeleton joints. Liu et al. [18] explore the effects
of multi-adjacency GCN and dilated temporal CNN, and
design a sophisticated model named MS-G3D to disentangle
multi-scale graph convolutions. Furthermore, the study in
[32] provides a decoupling GCN to boost the graph mod-
eling ability with no extra computation. To achieve global
joint relationship modeling, Shi et al. [13] introduce the Non-
local method [33] into a two-stream GCN model, named
2s-AGCN, which significantly improves the recognition ac-
curacy. Similar as 2s-AGCN, Dynamic GCN proposed by Ye
et al. [34] offers a novel method to model global dependency,
by which the model achieves outstanding accuracy for
skeleton-based action recognition. Although these methods
achieve considerable performance, the increasing computa-
tional cost caused by the multi-stream structure becomes
the obstacle to apply them in real scenarios. Therefore,
how to reduce the complexity of the GCN models is still
a challenging problem.

2.2 Efficient Models
The model efficiency commonly indicated by the number
of trainable parameters and Floating-point Operations Per
Second (FLOPs), is always a non-negligible indicator in
deep learning tasks. Extensive studies have made efforts
to enhance the efficiencies of neural networks, i.e., reduc-
ing the amount of model parameters or FLOPs, such as
MobileNetv1 [21], MobileNetv2 [22], MobileNeXt [23], and
EfficientNet [24]. The model family of MobileNet mainly
cuts the model size by separable convolutions, which fac-
torizes standard convolutions into a depth-wise convolution
applied to every channel individually and a 1 × 1 point-
wise convolution to combine the outputs of the depth-
wise convolution. To further determine the structural hyper-
parameters in neural networks, compound scaling [24] is
proposed to build a family of EfficientNet models.

Some existing studies for skeleton-base action recog-
nition have also been considering the model complexity
problem. The study of [35] constructs a lightweight network
with CNN-based blocks, which is not as accurate as GCN
models. The work in [36] adopts a complex data prepro-
cessing strategy, whose inputs include positions, velocities,
frame indexes and joint types. This data preprocessing mod-
ule enables the model to recognize actions with a shallow
model, thereby achieves a very fast inference speed with 188
sequences/(second*GPU), yet its performance is obviously
lower than other SOTA models.

2.3 Attention Models
Attention mechanisms have become an integral part of
compelling sequence modeling in various tasks. Traditional
attention modules for image processing can be divided into



JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

(a) (b) 𝑥[: , : , 𝑖]

𝑥[: , : , 𝑗]

𝑙𝑥

𝑙𝑦
𝑙𝑧

𝑥

𝑦

𝑧

𝑎𝑥

𝑎𝑦𝑎𝑧

(c)

Differences
Bones

Fig. 3. The demonstration of input data. (a) is the relative positions, (b)
is the motion velocities, and (c) demonstrates the 3D lengths and the 3D
angles of a bone. (Best viewed in color.)

two categories: 1) channel-wise and 2) spatial-wise. Specifi-
cally, SENet [37] uses a bottleneck structure to obtain atten-
tion scores at channel dimension, providing a paradigm to
build channel-wise attentions. Based on SENet, CBAM [38]
not only focuses on channel-wise attention, but also utilizes
convolutional layers to calculate attention maps at spatial
dimension for adaptive feature refinement. Along with the
popularity of Self Attention (SelfAtt) in Natural Language
Processing (NLP), the Non-Local [33] method employs Self-
Att at spatial dimension, which globally explores attentions
for the relationship between each pair of pixels.

With respect to action recognition, Baradel et al. [39] in-
troduce the attention mechanism into an RGB-based action
recognition model, which uses human poses to calculate
spatial and temporal attentions. The study in [40] firstly
introduces attention modules into skeleton-based action
recognition, where a spatial-temporal attention Long Short-
Term Memory (LSTM) is built to allocate different levels of
attention to the discriminative joints within each frame. Si
et al. [41] also incorporate attention modules within LSTM
units. Both of the two models apply attention modules for
each frame individually, which may attend to some unstable
noisy features. Besides, 2s-AGCN [13] offers a variant of
attention model based on the Non-Local structure, and its
improved version Dynamic-GCN [34] proposes another way
to obtain the globally spatial attentions. In addition, Cheng
et al. [32] embeds attention into its DropGraph module,
leading to a significant accuracy increase.

3 PRELIMINARY TECHNIQUES

In this section, we briefly discuss several crucial techniques
used in the proposed EfficientGCN. Firstly, the data pre-
processing module is introduced and formulated. Then, the
GCN layer is reviewed. Finally, we compare the separable
convolution to the standard convolution.

3.1 Data Preprocessing

Data preprocessing is very essential for skeleton-based ac-
tion recognition, according to previous studies [13], [14],
[42]. In this work, the input features after various pre-
processing are mainly divided into three classes: 1) joint
positions, 2) motion velocities and 3) bone features.

Suppose that the original 3D coordinate set of an action
sequence is X = {x ∈ RCin×Tin×Vin}, where Cin, Tin,
Vin denote the input coordinates, frames, and joints, respec-
tively. Then the relative position set is obtained as the nor-

∗ =

(b) Depth-wise Convolutional Operation

∗ =

(a) Standard Convolutional Operation

∗ =

(c) Point-wise Convolutional Operation

𝐶𝑖𝑛

𝐷𝑓

𝐷𝑓

𝐶𝑖𝑛

𝐷𝑓

𝐷𝑓

𝐶𝑜𝑢𝑡

𝐷𝑓

𝐷𝑓

𝐶𝑜𝑢𝑡

𝐷𝑓

𝐷𝑓

𝐶𝑜𝑢𝑡

𝐷𝑘

𝐷𝑘

𝐶𝑖𝑛

𝐷𝑓

𝐷𝑓

𝐶𝑖𝑛

𝐷𝑓

𝐷𝑓

𝐶𝑖𝑛

𝐷𝑘

𝐷𝑘

𝐶𝑜𝑢𝑡

1

1

Fig. 4. Standard convolution vs. separable convolution for skeleton-
based action recognition, where Cin and Cout denote the numbers of
input and output channels, Df and Dk denote the sizes of feature map
and convolutional kernel, and ∗ represents convolutional operation.(Best
viewed in color.)

malized position features, i.e., R = {ri|i = 1, 2, · · · , Vin},
where

ri = x[:, :, i]− x[:, :, c], (1)

and c represents the index of the center spine joint. Next,
the input of joint positions is formed by the concatenation
of X and R. Moreover, it is easy to obtain the two sets of
motion velocities, F = {ft|t = 1, 2, · · · , Tin} for fast motion
and S = {st|t = 1, 2, · · · , Tin} for slow motion, with the
following definitions

ft = x[:, t+ 2, :]− x[:, t, :],
st = x[:, t+ 1, :]− x[:, t, :]. (2)

And the input of motion velocities is acquired by concate-
nating F and S for each joint to obtain a feature vector at
each time. Finally, the input of bone features consists of the
bone lengths L = {li|i = 1, 2, · · · , Vin} and the bone angles
A = {ai|i = 1, 2, · · · , Vin}. To obtain these two sets, the
lengths and angles of each bone are calculated by

li = x[:, :, i]− x[:, :, iadj ],
ai,w = arccos(

li,w√
l2i,x+l

2
i,y+l

2
i,z

), (3)

where iadj means the adjacent joint of the i-th joint, and
w ∈ {x, y, z} denotes the 3D coordinates. Fig. 3 displays the
calculation diagram for these three inputs.

3.2 Graph Convolution
According to Yan et al. [11], graph convolutional operation
for each frame t can be written as

fout(vti) =
∑

vtj∈N(vti)

1

Zti(vtj)
fin(vtj) ·w(lti(vtj)), (4)

where vti denotes the i-th joint at the t-th frame, fin(·) and
fout(·) are the input and output features of corresponding



JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

joints, N(vti) is the neighbor set of vti, the normalizing term
Zti is set to balance the contributions of different neighbors,
w(·) is a weight function to allocate weights indexed by the
label function lti(·), which is designed to construct several
neighbor sets N(vti) by assigning different labels to each
graph node. There are three label functions in [11], but
we only choose the distance based partition in our model,
which defines lti(vtj) = d(vti, vtj), where d(vti, vtj) denotes
the graphic distance between vti and vtj . The joints with
the same distance will form a subset and share a learnable
weight function w(·). Generally, with the adjacency matrix
A, Eq. 4 can be transformed into:

fout =
D∑
d=0

Wdfin(Λ
− 1

2

d AdΛ
− 1

2

d �Md), (5)

whereD is a predefined maximum graphic distance, fin and
fout denote the input and output feature maps, � means
element-wise product, Ad represents the d-th order adja-
cency matrix that marks the pairs of joints with a graphic
distance d, and Λd is used to normalize Ad. Wd and Md are
both learnable parameters, which are utilized to implement
the convolution operation and tune the importance of each
edge, respectively.

3.3 Separable Convolution

Separable convolution is initially designed as the core layers
based on which MobileNet [21] is built, aiming at the
deployment of deep learning models on computationally
limited platforms such as robotics, self-driving car, aug-
mented reality, etc.. As its name implies, separable con-
volution factorizes a standard convolution into a depth-
wise convolution and a point-wise convolution. Concretely,
for depth-wise convolution, a convolutional filter is only
applied to one corresponding channel, while the point-wise
convolution uses a 1 × 1 convolution layer to combine the
output of depth-wise convolution and to adjust the number
of output channels. The comparison of standard convolution
and separable convolution is displayed in Fig. 4.

Concretely, suppose that the input feature size is Df ×
Df , the kernel size is Dk × Dk, the number of input
and output channels are Cin and Cout, then the calcu-
lational process of standard convolution is illustrated in
the top row of Fig. 4. This brings a batch of trainable
parameters numbered Dk × Dk × Cin × Cout × Df × Df .
With respect to separable convolution shown in the bottom
two rows of Fig. 4, the computational cost is changed to
Dk ×Dk × Cin ×Df ×Df + Cin × Cout ×Df ×Df . Note
that the most of trainable parameters are contained in the
point-wise convolution [21], which is implemented by a
1× 1 convolution. Thus, if the numbers of input and output
channels are big enough, e.g., > 256, then the computational
cost of separable computation will be decreased by nearly
Dk ×Dk times compared to that of standard convolution.

4 EFFICIENTGCN
This part provides technical details to the proposed Ef-
ficientGCN for skeleton-based action recognition. Firstly,
the MIB architecture is discussed and an example of

SGC
64, 128

TC, /2
128, 128

Block Structure

GCN Block
64, 128, /2

BatchNorm

FC, 128, 𝑄

BatchNorm BatchNorm

Joint Velocity Bone

Output

Input 
Branch

GCN Block
48, 64, /2
Attention

Attention

Initial Block
6, 64

Initial Block
6, 64

Initial Block
6, 64

GCN Block
64, 48

Attention

GCN Block
64, 48

Attention

GCN Block
64, 48

Attention

GCN Block
48, 16

Attention

GCN Block
48, 16

Attention

GCN Block
48, 16

Attention

Main 
Stream

GAP
TC

128, 128

Attention

Depth

GAP: Global Average Pool FC: Fully Connected Layer

SGC: Spatial Graph Convolution TC: Temporal Convolution

Fig. 5. The overview of the proposed EfficientGCN model, where the
two numbers in each block denote input and output channels, Q is
the number of action classes, ⊕ and � represent concatenation and
element-wise product, and /2 represents a stride of 2. (Best viewed in
color.)

EfficientGCN-B0 is constructed. Then, four kinds of con-
volutional layers popularly used in CNNs are extended
to graph convolution to increase the efficiency of GCN
blocks. Next, a compound scaling strategy is utilized to
synchronously scale the width and depth of EfficientGCN-
B0, generating a family of efficient baselines. Finally, an
attention module is proposed to enhance the discrimination
of skeleton features.

4.1 Model Architecture
After the data preprocessing module designed in Sec. 3.1,
three types of input data are obtained, i.e., Joint, Velocity and
Bone. For current high-performance complex models, they
usually apply a multi-stream architecture to handle these
input data. For example, Shi et al. [13] take the joint data and
bone data as inputs for feeding to two GCN branches with



JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

(b) BottleLayer(a) BasicLayer (c) SepLayer (d) EpSepLayer (e) SGLayer

𝐿 ∗ 1 Conv
(𝐶𝑖𝑛, 𝐶𝑜𝑢𝑡), /2

1 ∗ 1 Conv
(𝐶𝑖𝑛, 𝐶𝑟𝑑)

𝐿 ∗ 1 Conv
(𝐶𝑟𝑑,𝐶𝑟𝑑), /2

1 ∗ 1 Conv
(𝐶𝑟𝑑,𝐶𝑜𝑢𝑡)

𝐿 ∗ 1 D-Conv
(𝐶𝑖𝑛, 𝐶𝑖𝑛), /2

1 ∗ 1 P-Conv
(𝐶𝑖𝑛, 𝐶𝑜𝑢𝑡)

1 ∗ 1 Conv
(𝐶𝑖𝑛, 𝐶𝑒𝑝)

𝐿 ∗ 1 D-Conv
(𝐶𝑒𝑝, 𝐶𝑒𝑝), /2

1 ∗ 1 P-Conv
(𝐶𝑒𝑝, 𝐶𝑜𝑢𝑡)

𝐿 ∗ 1 D-Conv
(𝐶𝑖𝑛, 𝐶𝑖𝑛)

1 ∗ 1 P-Conv
(𝐶𝑖𝑛, 𝐶𝑟𝑑)

1 ∗ 1 P-Conv
(𝐶𝑟𝑑, 𝐶𝑜𝑢𝑡)

𝐿 ∗ 1 D-Conv
(𝐶𝑜𝑢𝑡, 𝐶𝑜𝑢𝑡), /2

P-Conv: Point-wise Convolution

D-Conv: Depth-wise Convolution

𝐶𝑟𝑑 = 𝐶𝑜𝑢𝑡/𝑟𝑟𝑑

𝐶𝑒𝑝 = 𝐶𝑖𝑛 ∗ 𝑟𝑒𝑝

Fig. 6. The details of various convolutional layers, where Cin and Cout denote the numbers of input and output channels, rrd and rep are employed
to reduce or expand the inner channels. (Best viewed in color.)

the same model structures separately, and eventually choose
the fusion results of two streams as the final decision. This is
an effective way to augment the input data and enhance the
model performance. However, a multi-stream network often
means high computational cost and difficulties of parameter
turning on large-scale datasets. Thus, we devise the MIB
architecture that fuses the three input branches at the early
stage of our model, then apply one main stream to extract
discriminative features. This architecture not only retains
the rich input features, but also significantly suppresses
the model complexity with fewer parameters, thus is easier
to be trained. An example of EfficientGCN with the MIB
architecture is demonstrated in Fig. 5.

Concretely, the input branches are formed by orderly
stacking a BatchNorm layer for fast convergence, an initial
block implemented by ST-GCN layer [11] for data-to-feature
transformation, and two GCN blocks with attentions for
informative feature extraction. After the input branches, a
concatenation operation is employed to fuse the feature
maps of three branches and then send them to the main
stream, which is constructed by two GCN blocks. Finally, the
output feature map of the main stream is globally averaged
to a feature vector, and an FC layer is used to determine the
final action class.

4.2 Block Details

Inspired by MS-G3D [18] which achieves a considerable
performance, as the subplot of Fig. 5 shows, the basic com-
ponents of EfficientGCN (i.e., GCN blocks) are implemented
by orderly stacking a Spatial Graph Convolutional (SGC)
layer, several Temporal Convolutional (TC) layers and an
attention module. The depth for each GCN block is defined
as the number of TC layers stacked in this block. Besides,
for each layer, a residual link is utilized to make the model
optimization more easily than the original unreferenced fea-
ture projection. It also should be noted that the first TC layer
has a stride of 2 for each block in the main stream, which
aims to compress the features and reduce the convolutional
costs.

In detail, the SGC layer is implemented by a graph con-
volution mentioned in Sec. 3.2, and the attention module can

be implemented by the proposed ST-JointAtt (see Sec. 4.4)
or other traditional attention modules. For the implemen-
tation of TC layer, except for the basic L × 1 convolution
(BasicLayer) originally used in ST-GCN model [11], we
introduce four types of convolutional architectures widely
used in CNN literatures to further boost the efficiency of
GCN models (see Fig. 6). Specifically, for BottleLayer, a bot-
tleneck structure [20] is utilized for temporal convolution,
which is also used in our preliminary version of this paper,
i.e., ResGCN [27]. The other three layers, i.e., SepLayer,
EpSepLayer and SGLayer, are inspired by three versions
of separable convolutions [21], [22], [23], all of which are
composed of depth-wise convolutions and point-wise con-
volutions mentioned in Sec. 3.3. Note that the block with
a certain layer, e.g., BasicLayer, is denoted as BasicBlock
for simplicity, and by analogy to BottleBlock, SepBlock,
EpSepBlcok and SGBlock.

4.3 Scaling Strategy
Empirically, expanding both the width (e.g., WRN [44])
and the depth (e.g., ResNet [20]) of networks will benefit
the model capability and hence improve the performance.
Commonly, the model’s width and depth are defined as the
numbers of channels and layers. These two factors are often
considered independently, and determined by handcrafted
adjustment. However, in a recent work et al. [24], Tan and Le
show that it is critical to balance all dimensions of network,
e.g., width/depth/resolution, based on which a compound
scaling strategy is proposed to scale network width, depth,
and resolution with a set of fixed scaling coefficients. The
obtained EfficientNets significantly outperform other con-
volutional networks, but with much smaller model sizes.
Inspired by that, after removing the resolution factor, we
propose a new scaling strategy for skeleton-based action
recognition, by which a family of models are constructed
in a principled way:

width: mw = αφ

depth: md = βφ

s.t. α2 · β ≈ 2

α ≥ 1, β ≥ 1

(6)



JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Frame T

Frame 2

Frame T

Frame 2
Temporal 
Pooling

Frame 1

Joint 1

Joint 2

Joint V

Spatial 
Pooling

Frame 1

Frame 2

Frame T

FC (C, C/rrd) + BN
 + H

ardSw
ish

FC (C/rrd, C)
+ Sigmoid

FC (C/rrd, C)
+ Sigmoid

𝐶×𝑇×𝑉 𝐶×𝑉

𝐶×𝑇

𝐶×(𝑉 + 𝑇)

𝐶×1×𝑉

𝐶×𝑇×1

Frame 1

𝐶×𝑇×𝑉

Feature
Map

Attention
Map

Fig. 7. The overview of the proposed ST-JointAtt module, where C, T, V denote the numbers of input channels, frames and joints respectively,
rrd = 4 is utilized to compact the features, ⊗ represents the outer-product, BN denotes the batch normalization, HardSwish [43] and Sigmoid are
both activated functions. (Best viewed in color.)

where mw and md are width and depth multipliers, φ is
a compound coefficient to state the available resources for
model scaling, α and β are both hyper-parameters to control
the resource assignments to the model’s width and depth.
In this paper, α and β are set to 1.2 and 1.35 by a small grid
search (see Sec. 5.4). Here, the resolution factor is omitted
due to the pre-defined skeleton structure. The modification
of skeleton’s resolution will destroy the graph convolutional
operation.

The constraint conditions in Eq. 6 are utilized to con-
strain the increasing speed of the model size. When dou-
bling the model depth or width, the FLOPs will approx-
imately increase to 2 or 4 times. Thus, the FLOPs of the
scaled model will be (α2 · β)φ ≈ 2φ times than the baseline.
Note that this increase may differ from theoretical values
due to the rounding function (see Appendix A).

4.4 Spatial Temporal Joint Attention

Previous attention modules for skeleton-based action recog-
nition are mainly implemented by a Multi-layer Perception
(MLP) like SENet structure [37], such as AGC-LSTM [41]
and MS-AAGCN [26]. These modules are usually performed
on each channel or spatial dimension independently, while
other dimensions are globally averaged to a single unit.
The preliminary version of this paper [27] proposes a Par-
tAtt module which only works on the spatial dimension.
However, intuitively, the spatial and temporal information
could be relevant to each other. Thus, separately consid-
ering frames and joints is sub-optimal for weighting the
importance of skeleton joints in different action phases. To
address this issue, inspired by coordinate attention [25], we
propose a novel attention module, named Spatial Temporal
Joint Attention (ST-JointAtt), to jointly distinguish the most
informative joints in certain frames from the whole skeleton
sequence.

The overview of the proposed ST-JointAtt module is
shown in Fig. 7, from which the input features are firstly
averaged in frame- and joint-level respectively. Then, these
pooled feature vectors are concatenated together and fed
through an FC layer to compact information. Next, two
independent FC layers are utilized to obtain two sets of
attention scores for frame dimension and joint dimension

respectively. Finally, the scores of frames and joints are mul-
tiplied by channel-wise outer-product, and the result can be
seen as the attention scores for the whole action sequence.
The proposed ST-JointAtt module can be formulated as

finner = θ((poolt(fin)⊕ poolv(fin)) ·W ) (7)

fout = fin � (σ(finner ·Wt)⊗ σ(finner ·Wv)) (8)

where fin and fout denote input and output feature maps,
⊕ denotes concatenation operation, ⊗ and �mean channel-
wise outer-product and element-wise product, poolt(·) and
poolv(·) are average pooling operations on frame- and joint-
level respectively, σ(·) and θ(·) represent Sigmoid and
HardSwish [43] activation functions, and W ∈ RC×C

r ,
Wt ∈ RC

r ×C , Wv ∈ RC
r ×C are trainable parameters.

4.5 Loss Function
Suppose that the final FC layer in the EfficientGCN model
outputs a logits vector z ∈ RQ, where Q is the number of
action classes, the classification probabilities for the input
sample can be computed by a Softmax function, i.e.,

ŷi =
ezi∑Q
j=1 e

zj
, i = 1, 2, · · · , Q, (9)

where zi denotes the i-th element of z. Then, a cross-
entropy loss is calculated as the objective function for model
optimization:

L = −
Q∑
i=1

yi log ŷi (10)

where y ∈ RQ is the one-hot vector indicating the ground
truth of action class.

4.6 Discussion
In this section, we interpret why the EfficientGCN method
can achieve superior accuracy but with much fewer model
parameters than traditional GCN models. Firstly, the use
of separable convolution in TC layers brings high effi-
ciency to the model, by which the EfficientGCN reduces
model parameters and FLOPs significantly. It should be
noticed that the parameter reduction caused by separable



JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

convolution may not always hurt the model performance,
since separable convolution has been proved to capture the
most effective part of standard convolutions and meanwhile
discard other redundant parts [45].

Moreover, as to the superior accuracy achieved by the Ef-
ficientGCN, it is mainly attributed to the compound scaling
strategy and the ST-JointAtt module, where the former one
is based on an empirical experience in CNN-based visual
recognition that carefully balancing network depth, width,
and resolution can lead to better performance [24], and the
latter one further enhances the learning of spatial-temporal
joint features through making the GCN attends on those
informative joints and frames in action sequences.

To validate the above analysis, extensive ablation studies
have been performed to evaluate the impacts and contribu-
tions of the above three components in the next section (see
Section Sec. 5.3, 5.4, and 5.5).

5 EXPERIMENTAL RESULTS

In this section, we evaluate the proposed EfficientGCN on
two large-scale datasets, i.e., NTU RGB+D 60 [15] and NTU
RGB+D 120 [28]. Ablation studies are also performed to
validate the contribution of each component in our model.
For simplicity, all experiments in ablation studies choose
EfficientGCN-B0 with SGBlock (rrd = 2) as the baseline
model (details can be seen in Appendix A). Finally, result
analysis and visualization are reported to prove the effec-
tiveness of the proposed method.

5.1 Datasets
5.1.1 NTU RGB+D 60
This large-scale indoor dataset is provided in [15], which
contains 56880 human action videos collected by three
Kinect v2 cameras. These actions consist of 60 classes, where
the last 10 classes are all interactions between two subjects.
For simplicity, the input frame number is set to 300, and
the sequences with less than 300 frames are padded by 0 at
the end. Each frame contains no more than 2 skeletons, and
each skeleton is composed of 25 joints. The authors of this
dataset recommend two benchmarks: 1) cross-subject (X-
sub) contains 40320 training videos and 16560 evaluation
videos divided by splitting the 40 subjects into two groups.
2) cross-view (X-view) recognizes the videos collected by
cameras 2 and 3 as training samples (37920 videos), while
the videos collected by camera 1 are treated as evaluation
samples (18960 videos). Note that there are 302 wrong
samples selected by [28] that need to be ignored.

5.1.2 NTU RGB+D 120
This is currently the largest indoor skeleton-based action
recognition dataset [28], which is an extended version of
the NTU RGB+D 60. It totally contains 114480 videos per-
formed by 106 subjects from 155 viewpoints. These videos
consist of 120 classes, extended from the 60 classes of
the previous dataset. Similarly, two benchmarks are sug-
gested: 1) cross-subject (X-sub120) divides subjects into
two groups, to construct training and evaluation sets (63026
and 50922 videos respectively). 2) cross-setup (X-set120)
contains 54471 videos for training and 59477 videos for

TABLE 1
Comparisons of different TC layer types on X-sub benchmark in

accuracy (%), FLOPs (×109) and parameter number (×106).

Layer Mean±Std. FLOPs # Param.

BasicLayer 90.0±0.12 2.96 0.34

BottleLayer (rrd = 4) 89.6±0.15 2.62 0.26

SepLayer 89.6±0.15 2.62 0.26

EpSepLayer (rep = 1) 89.6±0.21 2.80 0.28
EpSepLayer (rep = 2) 89.9±0.19 3.08 0.32
EpSepLayer (rep = 4) 90.1±0.15 3.63 0.41

SGLayer (rrd = 2) (Baseline) 90.0±0.10 2.73 0.29
SGLayer (rrd = 4) 89.8±0.13 2.63 0.25

evaluation, which are separated based on the distance and
height of their collectors. According to [28], 532 bad samples
of this dataset should be ignored in all experiments.

5.2 Implementation Details
In our experiments, the maximum number of training
epochs is set to 70. The initial learning rate is set to 0.1
and decays with a cosine schedule after the 10th epoch.
Moreover, a warmup strategy [20] is applied over the first 10
epochs, gradually increasing the learning rate from 0 to the
initial value for a stable training procedure. The stochastic
gradient descent (SGD) with the Nesterov momentum of
0.9 and the weight decay of 0.0001 is employed to tune
the parameters. The hyper-parameters D and L defined in
Sec. 3.2 and 4.2 are set to 2 and 5 respectively, which are de-
termined by a grid search (see Appendix B). Other structural
parameters will be discussed in ablation studies (Sec. 5.3).
In addition, a dropout layer with 0.25 drop probability is
added after the GAP layer and before the final FC layer to
avoid overfitting. It also should be noticed that the activated
function used in all convolutional blocks is chosen as Swish
function [46], which is similar with ReLU function but
smooth and differentiable everywhere. In our experiments
on X-view benchmark, a special data transformation [13]
is performed for view alignment. All our experiments are
performed on two TITAN RTX GPUs.

5.3 Ablation Studies
In this part, we mainly discuss the contributions of different
components in the proposed EfficientGCN, including the
selection of TC layers, the choice of the attention modules,
the importance of data preprocessing module, and the ne-
cessity of the early fused architecture. This section explains
why we use these settings to construct the baseline model
EfficientGCN-B0. All of the experiments in this section are
performed more than 10 times to compute the mean accu-
racy and standard error for convincing results.

5.3.1 Comparisons of TC Layers
In Sec. 4.2 and Fig. 6, five types of TC layers are provided,
namely BasicLayer, BottleLayer, SepLayer, EpSepLayer and
SGLayer. To select the best TC layer for skeleton-based
action recognition, we test them with the EfficientGCN-B0
model on X-sub benchmark, and the results are presented in



JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

TABLE 2
Comparisons of different attention modules on X-sub benchmark in

accuracy (%), FLOPs (×109) and parameter number (×106).

Attention Mean±Std. FLOPs # Param.

w/o Att 88.9±0.16 2.72 0.24
w/ ChannelAtt 89.3±0.18 2.72 0.25
w/ FrameAtt 88.5±0.19 2.72 0.24
w/ JointAtt 89.1±0.18 2.72 0.24

w/ STCAtt [26] 89.5±0.14 2.74 0.30
w/ PartAtt [27] 89.4±0.21 2.72 0.33

w/ ST-JointAtt (Baseline) 90.0±0.10 2.73 0.29

TABLE 3
Comparisons of different inputs on X-sub benchmark in accuracy (%),

FLOPs (×109) and parameter number (×106).

Inputs Mean±Std. FLOPs # Param.

Joint 87.7±0.15 1.28 0.17
Velocity 86.6±0.21 1.28 0.17

Bone 88.4±0.14 1.28 0.17

Joint + Velocity 89.4±0.22 1.94 0.23
Joint + Bone 88.9±0.22 1.94 0.23

Velocity + Bone 89.7±0.13 1.94 0.23

Joint + Velocity + Bone (Baseline) 90.0±0.10 2.73 0.29

Tab. 1, where rrd and rep denote the ratios of reducing and
expanding channels in the corresponding layer. As shown
in Tab. 1, although the EpSepLayer (rep = 4) obtains the
highest mean accuracy (90.1%), the SGLayer with rrd = 2
achieves the optimal trade-off between performance and
computational cost, resulting in the competitive mean ac-
curacy of 90.0%, lower standard derivation of 0.10%, faster
inference speed with 2.73G FLOPs, and smaller model size
with 0.29M parameters. Therefore, we choose the SGLayer
with rrd = 2 to build the baseline model.

5.3.2 Comparisons of Attention Modules
To enhance the model ability to extract informative fea-
tures, the ST-JointAtt module is designed and embedded
into the convolutional blocks. We compare ST-JointAtt with
other attention modules, i.e., ChannelAtt, FrameAtt, Join-
tAtt, STCAtt, and PartAtt, and the results are presented
in Tab. 2, where the first three attention modules are de-
signed by ourselves based on the SENet [37] structure,
and the last two are proposed in [26], [27], respectively.
It is observed that, after incorporating attention modules,
the model achieves obvious accuracy improvement. And
ST-JointAtt produces the best accuracy, while other five
modules are slightly worse. This indicates the importance
of inserting attention modules and the effectiveness of the
ST-JointAtt module in finding the most informative joints
and frames from the whole skeleton sequence.

5.3.3 Necessity of Data Preprocessing
Data preprocessing is essential to enhance the model per-
formance, proven by several previous studies [13], [14],
[42]. We summarize these preprocessing methods into three
classes, i.e., joint positions, motion velocities and bone fea-
tures. To explore the necessity of each input branch, we
present Tab. 3, from which the model with three inputs is

TABLE 4
Comparisons of different fusion stages on X-sub benchmark in
accuracy (%), FLOPs (×109) and parameter number (×106).

Fusion Mean±Std. FLOPs # Param.

Before 1st stage 88.8±0.30 2.29 0.24
After 1st stage 89.7±0.13 2.48 0.27

After 2nd stage (Baseline) 90.0±0.10 2.73 0.29
After 3rd stage 89.8±0.25 3.43 0.38
After 4th stage 89.5±0.22 3.84 0.52

At the score layer 89.9±0.06 3.85 0.52

0 0.5 1 1.5 2 2.5 3

Number of Parameters (M)

90

90.5

91

91.5

92

92.5

M
o

d
e

l 
A

c
c
u

ra
c
y
 (

%
)

[1.0, 2.00] (only depth)

[1.1, 1.65]

[1.2, 1.35] (selected)

[1.3, 1.15]

[1.4, 1.00] (only width)

Fig. 8. Model size vs. model accuracy of different width and depth
scaling hyper-parameters (α and β). (Best viewed in color.)

clearly better than others. With the increase of branches, the
model performance is improved. This phenomenon further
confirms the effectiveness of the data preprocessing module.

5.3.4 Necessity of Early Fused Architecture
Originally proposed by 2s-AGCN [13], multi-stream mod-
els fused at the final score layer gradually dominate the
model architectures for skeleton-based action recognition.
However, the late fusion strategy at score layer requires
training three models independently to deal with three
types of input data. So, this strategy cannot be implemented
within an end-to-end training pipeline and thereby increases
the training complexity. Furthermore, we find that many
parameters in multi-stream models are redundant, with no
contribution to model performance. Thus, we construct an
early fused MIB architecture in this paper. Tab. 4 gives the
results of models with different fusion stages. It is seen
that fusing after the 2nd stage is the inflection point of the
accuracy-parameter curve, which is the best model to bal-
ance accuracy and complexity. Although fusing at the score
layer brings a comparable model accuracy, the model size
and computational cost are greatly increased, leading to an
exceedingly sophisticated and over-parameterized model.
Accordingly, the MIB fused after the 2nd stage is chosen
as the architecture of our baseline model.

5.4 Comparisons of Compound Scaling Strategies
In this section, we test several compound scaling strategies
with different width and depth scaling hyper-parameters (α
and β), which are mentioned in Sec. 4.3. To choose the best



JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

setting of α and β within the constraint conditions in Eq. 6,
we set α to {1.0, 1.1, 1.2, 1.3, 1.4}, respectively, and the
hyper-parameter β can be calculated by Eq. 6 with a preci-
sion of 0.05. Then, from the baseline model EfficientGCN-B0,
we construct five EfficientGCN-B2 and five EfficientGCN-
B4 with different scaling hyper-parameters. These models’
accuracies and parameter numbers are shown in Fig. 8, from
which the EfficientGCN-B4 obtains the best performance
when α = 1.2 and β = 1.35. It is also worth noting that,
merely increasing either width or depth may hurt the model
performance, whose accuracies with EfficientGCN-B4 are
obviously lower than those of compound scaling strategies.

5.5 Comparisons with SOTA Methods

5.5.1 NTU RGB+D 60 Dataset
We compare our EfficientGCN family against previous
SOTA methods on both X-sub and X-view benchmarks of
NTU 60 datasets. The results are displayed in Tab. 5. It
should be noted that most previous studies in action recog-
nition only report the best accuracies in comparisons. We
also report the best accuracy for each EfficientGCN model
for fair comparisons. There are several typical comparisons
shown as follows:

From Tab. 5, the best performance of the baseline model
EfficientGCN-B0 are 90.2% and 94.9% for X-sub and X-
view benchmark, respectively. When applying the pro-
posed scaling strategy with coefficients of 2 and 4, the
EfficientGCN-B2 and EfficientGCN-B4 are built, and achieve
better performances on the two benchmarks. Especially for
EfficientGCN-B4, its accuracy on X-sub benchmark 92.1%,
outperforming other SOTA methods. Here, three typical
methods should be noticed. 1) The first one is ST-GCN
[11], which is currently the most popular backbone model
for skeleton-based action recognition. Compared to ST-
GCN, our EfficientGCN-B4 leads over 10% on X-sub bench-
mark. 2) 2s-AGCN [13] is another popular baseline for
skeleton-based action recognition. The proposed baseline
EfficientGCN-B0 outperforms 2s-AGCN in both accuracy
and efficiency. 3) The third one is MST-GCN [19], which
is the current SOTA method with the GCN technique. The
EfficientGCN-B4 is slightly better than MST-GCN in accu-
racy on X-sub benchmark. With respect to the comparisons
within the EfficientGCN family, the accuracy shows a gradu-
ally improving trend with the increase of scaling coefficient.

STA-LSTM [40] and AGC-LSTM [41] are also enhanced
by attention modules. However, there are obvious differ-
ences between EfficientGCN and these two models, e.g., our
attention module works jointly on frames and joints, while
their models use the attention modules for frames and joints
individually. The performance of EfficientGCN-B4 greatly
exceeds STA-LSTM over 10% on the two benchmarks, and
outperforms AGC-LSTM by 2.9% and 1.1% on X-sub and
X-view benchmarks, respectively. Moreover, 2s-AGCN and
its improved versions Dynamic-GCN [34] can also be con-
sidered as a variant of globally spatial attention (non-local
structure), while they achieve comparable performances to
our model. In addition, DC-GCN+ADG [32] utilizes atten-
tion mechanism to guide its DropGraph module. This model
is better than EfficientGCN-B4 on X-view benchmark, but
significantly worse on X-sub benchmark.

TABLE 5
Comparisons with SOTA methods on NTU 60 dataset in accuracy (%).
The top part consists of several models without GCN techniques, while

the other part contains some graph-based models.

Model Conference X-sub X-view

HBRNN [7] CVPR15 59.1 64.0
ST-LSTM [47] ECCV16 69.2 77.7

STA-LSTM [40] AAAI17 73.4 81.2
HCN [29] IJCAI18 86.5 91.1

VA-fusion [30] TPAMI19 89.4 95.0

ST-GCN [11] AAAI18 81.5 88.3
SR-TSL [42] ECCV18 84.8 92.4

RA-GCNv1 [14] ICIP19 85.9 93.5
RA-GCNv2 [31] TCSVT20 87.3 93.6

AS-GCN [48] CVPR19 86.8 94.2
2s-AGCN [13] CVPR19 88.5 95.1

AGC-LSTM [41] CVPR19 89.2 95.0
DGNN [16] CVPR19 89.9 96.1

PL-GCN [49] AAAI20 89.2 95.0
NAS-GCN [50] AAAI20 89.4 95.7

SGN [36] CVPR20 89.0 94.5
4s-Shift-GCN [51] CVPR20 90.7 96.5

MS-G3D [18] CVPR20 91.5 96.2
DC-GCN+ADG [32] ECCV20 90.8 96.6
PA-ResGCN-B19 [27] ACMMM20 90.9 96.0
Dynamic-GCN [34] ACMMM20 91.5 96.0

MST-GCN [19] AAAI21 91.5 96.6

EfficientGCN-B0 – 90.2 94.9
EfficientGCN-B2 – 91.4 95.7
EfficientGCN-B4 – 92.1 96.1

As an increasingly popular technique, Neural Archi-
tecture Search (NAS) has been proposed for automatically
searching efficient model structures. The NAS-based meth-
ods usually explore all potential topological structures from
a large search space, while the hyper-parameters of model
blocks (e.g., the width and depth of convolutional layers) are
hardly considered. Different from the NAS-based methods,
the compound scaling strategy mainly aims to optimize
the hyper-parameters of convolutional layers in each model
block with fixed topological structures (see Fig. 5 and Fig. 6),
which is easier to implement and cheaper to deploy in real
tasks. There have been some studies introducing differen-
tiable NAS into skeleton-based action recognition, e.g., the
NAS-GCN [50] which has achieved promising results in
skeleton action recognition, but is still much more complex
than our method, as shown in Tab. 5. In the future, it is
worthy to study the combination of exploring both topology
structures and hyper-parameters for better action recogni-
tion models.

It should also be noticed that there are four SOTA models
(MS-G3D [18], DC-GCN+ADG [32], 4s-Shift-GCN [51], and
MST-GCN [19]) producing slightly higher accuracies than
ours on the X-view benchmark. The inferior performance
of the EfficientGCN in cross-view action recognition can be
explained from two aspects: 1) in contrast to the 3-stream
fusion in the EfficientGCN, the DC-GCN+ADG, the 4s-Shift-
GCN and the MST-GCN all adopt 4-stream (joint, bone,
motion, and bone motion) fusion strategy, where the addi-
tional bone motion information may enhance the robustness



JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

TABLE 6
Comparisons with SOTA methods on NTU 120 dataset in accuracy (%).
The top part consists of several models without GCN techniques, while

the other part contains some graph-based models.

Model Conference X-sub120 X-set120

PA-LSTM [15] CVPR16 25.5 26.3
ST-LSTM [47] ECCV16 55.7 57.9

FSNet [52] TPAMI19 59.9 62.4

ST-GCN [11] AAAI18 70.7? 73.2?

SR-TSL [42] ECCV18 74.1? 79.9?

RA-GCNv1 [14] ICIP19 74.4 79.4
RA-GCNv2 [31] TCSVT20 81.1 82.7

AS-GCN [48] CVPR19 77.9? 78.5?

2s-AGCN [13] CVPR19 82.5? 84.2?

SGN [36] CVPR20 79.2 81.5
4s-Shift-GCN [51] CVPR20 85.9 87.6

MS-G3D [18] CVPR20 86.9 88.4
DC-GCN+ADG [32] ECCV20 86.5 88.1
PA-ResGCN-B19 [27] ACMMM20 87.3 88.3
Dynamic-GCN [34] ACMMM20 87.3 88.6

MST-GCN [19] AAAI21 87.5 88.8

EfficientGCN-B0 – 86.6 85.0
EfficientGCN-B2 – 88.0 87.8
EfficientGCN-B4 – 88.7 88.9

?: These results are implemented based on the released codes.

of cross-view skeleton features; 2) both the MS-G3D and
the MST-GCN introduce multi-scale graph convolution to
aggregate more context information in skeleton feature ex-
traction. Though superior performance can be achieved on
the X-view benchmark by these models, both the 4-stream
fusion strategy and the multi-scale graph convolution def-
initely increase the model complexities and computational
costs.

These results imply that the proposed EfficientGCN is
a strong baseline with competitive performance compared
to SOTA methods. We consider that this is caused by the
superior capability of the compound scaling strategy to
balance the model accuracy and complexity, hereby a wider
and deeper model can be constructed and easily trained
to achieve better performance. Moreover, the proposed ST-
JointAtt module contributes to the model accuracy, which
makes the model prone to discover the most informative
joints.

5.5.2 NTU RGB+D 120 Dataset

As a newly released dataset, there are fewer papers report-
ing results on the NTU 120 dataset. For comprehensive com-
parisons, four popular models, i.e., ST-GCN [11], SR-TSL
[42], AS-GCN [48] and 2s-AGCN [13], are implemented by
ourselves, based on their released codes. Tab. 6 presents the
experimental results, from which we can find the proposed
EfficientGCN achieves the highest performance, compared
to other models. For example, EfficientGCN-B4 outperforms
the current SOTA method, MST-GCN [34], by 1.2% on X-
sub120 benchmark. Similar to the results on NTU 60 dataset,
the performance of EfficientGCN is mainly attributed to the
contribution of the compound scaling strategy.

TABLE 7
Comparisons with SOTA methods on X-sub benchmark in accuracy
(%), FLOPs (×109) and parameter number (×106). The models in

three parts are compared with EfficientGCN-B0, B2, B4, respectively.

Model Acc. FLOPs Ratio # Param. Ratio

EfficientGCN-B0 90.2 2.73 1× 0.29 1×
ST-GCN [11] 81.5 16.32? 5.98× 3.10? 10.69×
SR-TSL [42] 84.8 4.20? 1.54× 19.07? 65.76×

RA-GCNv1 [14] 85.9 32.80? 12.01× 6.21? 21.41×
RA-GCNv2 [31] 87.3 32.80? 12.01× 6.21? 21.41×

AS-GCN [48] 86.8 26.76? 9.80× 9.50? 32.76×
2s-AGCN [13] 88.5 37.32? 13.67× 6.94? 23.93×

SGN [36] 89.0 – – 0.69 2.37×
AGC-LSTM [41] 89.2 – – 22.89† 78.93×

DGNN [16] 89.9 – – 26.24† 90.48×
NAS-GCN [50] 89.4 – – 6.57† 22.66×
PL-GCN [49] 89.2 – – 20.70† 71.38×

EfficientGCN-B2 91.4 4.05 1× 0.51 1×
4s-Shift-GCN [51] 90.7 10.0 2.47× 2.76? 5.41×

DC-GCN+ADG [32] 90.8 25.72? 6.35× 4.96? 9.73×
PA-ResGCN-B19 [27] 90.9 18.52? 4.57× 3.64 7.14×

EfficientGCN-B4 92.1 8.36 1× 1.10 1×
MS-G3D [18] 91.5 48.88? 5.85× 6.40 5.82×

Dynamic-GCN [34] 91.5 – – 14.40† 13.09×
MST-GCN [19] 91.5 – – 12.00 10.91×

?: These results are implemented based on the released codes.
†: These results are provided by their authors.

5.5.3 Model Complexity

In order to verify the efficiency of our model, we compare
our EfficientGCN family with other methods in terms of
accuracy and model complexity (FLOPs and number of
parameters) on X-sub benchmark of NTU 60 dataset. The
experimental results are presented in Tab. 7. This table is
divided into three parts, where the models are grouped into
three parts with different accuracies. The ratios following
FLOPs and parameter number denote the ratio between
the model and its corresponding EfficientGCN. Due to the
lack of reported FLOPs and parameter numbers for most
models, we obtain the results by their released codes or
directly asking their authors for helps. Note that the FLOPs
of SGN [36] and Dynamic-GCN [34] are reported by their
authors but not presented in this table, because these two
models contain well-designed data transformation modules,
which resize the original skeleton sequence to a very short
sequence (e.g., 20 frames), instead of performing on the
whole 300 frames. Thus, we ignore the FLOPs of these two
models and only give the numbers of their parameters for
fair comparisons.

In the top part of Tab. 7, it is observed that there is
a large gap between the efficiencies of EfficientGCN-B0
and previous models. Compared to the first GCN baseline
for skeleton-based action recognition, i.e., ST-GCN [11],
EfficientGCN-B0 outperforms by 8.7% in accuracy, with a
5.98× fewer FLOPs and a 10.68× fewer parameters. DGNN
[16] obtains the same accuracy as EfficientGCN-B0, but its
amount of trainable parameters is exceedingly larger, about
90× than EfficientGCN-B0. SGN [36] is a lightweight and
efficient model for skeleton-based action recognition, which
achieves 89.0% accuracy with only 0.69×106 parameters.



JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

1 2 3 4 5 6 10 11 12 13 15 16 17 18 19 24 25 28 29 30 33 34 35 36 37 39 41 44 45 47 48
Prediction Label

eating meal/snack 2
clapping 10
reading 11
writing 12

wearing a shoe 16
taking off a shoe 17

playing with a phone 29
typing on a keyboard 30

sneezing/coughing 41

Gr
ou

nd
tru

th
 L

ab
el

0.02 0.78 0.05 0.01 0.01 0 0 0.01 0 0 0 0 0 0.03 0.01 0 0 0.05 0.01 0 0 0 0 0 0.01 0 0 0 0 0 0

0 0 0 0 0 0 0.77 0.01 0.03 0.01 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0.01 0 0 0 0 0

0 0 0 0 0 0 0 0.68 0.16 0 0 0 0 0 0 0 0 0 0.06 0.06 0.01 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.12 0.64 0 0 0 0 0 0 0 0 0 0.06 0.18 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.01 0 0 0.01 0.79 0.15 0 0 0 0.01 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.01 0.01 0 0.01 0 0 0 0.15 0.73 0 0 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01

0 0 0 0 0 0 0 0.09 0.06 0 0.01 0.01 0 0 0 0 0 0 0.65 0.16 0 0 0 0 0 0 0 0 0 0 0

0 0.02 0 0 0 0 0 0.04 0.1 0 0 0 0 0 0 0 0 0.01 0.04 0.75 0 0 0 0.01 0 0 0 0 0 0 0

0 0 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0 0.02 0.02 0.78 0.04 0.02 0.01 0.04

1 2 3 5 10 11 12 13 15 16 17 18 19 24 25 28 29 30 33 34 35 37 38 39 41 42 44 45 47 48
Prediction Label

eating meal/snack 2
clapping 10
reading 11
writing 12

wearing a shoe 16
taking off a shoe 17

playing with a phone 29
typing on a keyboard 30

sneezing/coughing 41

Gr
ou

nd
tru

th
 L

ab
el

0.03 0.75 0.06 0 0 0.01 0.01 0 0 0 0 0.02 0.03 0 0.01 0.04 0.01 0 0.01 0 0 0.01 0.01 0 0 0 0 0 0 0

0 0 0 0 0.83 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0.02 0 0 0 0 0 0

0 0 0 0 0 0.7 0.15 0 0 0 0 0 0 0 0 0 0.08 0.05 0.01 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0.1 0.66 0 0 0 0 0 0 0 0 0 0.07 0.16 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.01 0.85 0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0

0 0 0 0 0 0 0 0 0 0.05 0.91 0 0 0.02 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0.01 0 0.01 0 0.03 0.04 0.01 0 0 0 0 0 0 0 0 0.81 0.06 0 0.01 0 0 0 0 0 0.01 0 0 0 0

0 0.01 0 0 0 0.02 0.09 0 0 0 0 0 0 0 0.01 0 0.08 0.76 0 0 0 0 0 0 0 0 0 0 0 0

0.01 0 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0.01 0 0.01 0.8 0 0.03 0.03 0.01 0.04

Fig. 9. Confusion matrices of EfficientGCN-B0 (top) and EfficientGCN-
B4 (bottom) with failure actions (less than 80% accuracy on X-sub
benchmark), where the numbers in coordinate axes represent the in-
dexes of each action category, the red and green rectangles denote two
groups of similar actions. (Best viewed in color.)

However, it is still worse than our EfficientGCN-B0 in both
model accuracy and model size.

As to the middle part, EfficientGCN-B2 achieves 91.4%
accuracy with 4.05×109 FLOPs and 0.51×106 parameters,
which are about 4.57× faster and 7.14× smaller than the
preliminary version of this paper (PA-ResGCN-B19). Fur-
thermore, the bottom part shows that EfficientGCN-B4
achieves a SOTA accuracy with a small amount of trainable
parameters. Though it has been around 4× larger than the
EfficientGCN-B0, it is still much fewer than the other models
with similar performance. These results clearly show that
the proposed method brings a remarkable improvement in
both model accuracy and complexity, which will benefit to
the real applications of skeleton-based action recognition.

5.6 Discussion and Visualization

5.6.1 Confusion Matrices and Failure Cases

Although EfficientGCN receives promising results on the
large-scale datasets, there are still some actions difficult to be
well recognized. As Fig. 9 displays, we draw the confusion
matrices of some actions for the proposed EfficientGCN-
B0 and EfficientGCN-B4, respectively, where the selected
actions are determined according to their insufficient ac-
curacies (less than 80% on X-sub benchmark). From the
top row of Fig. 9, two groups of similar actions should
be noticed. The first one is marked by the red rectangles,
including reading, writing, playing with a phone, and typing
on a keyboard. All these actions are mainly performed by the
slight shaking of two hands, which are extremely similar at
spatial configurations and temporal dynamics. The second
group, surrounded by green rectangles, consists of two
similar actions, i.e., wearing a shoe and taking off a shoe.
These two actions have similar spatial configurations, but
different temporal dynamics. With respect to EfficientGCN-
B4 (bottom row of Fig. 9), the recognition accuracies of
actions in the second group receive a significant improve-
ment, while the actions in the first group are still hard to be
distinguished.

This issue is mainly caused by the lack of joints to
represent two hands, thus the information of two hands is
generally insufficient. Furthermore, the fringe joints of NTU

(a) (b)

Fig. 10. The subfigures (a) and (b) describe the attention maps of
two randomly selected samples respectively, where the four parts of
each subfigure are calculated by the attention modules in four stages
of EfficientGCN-B4 model. A small square with darker color denotes a
higher attention weight for the corresponding spatial temporal joint. All
these attention maps are performed on X-sub benchmark. (Best viewed
in color.)

60 dataset often contain much noise (e.g., the 4th, 7th, and
8th frames of throwing in Fig. 11), which makes a huge in-
fluence on capturing the discriminative features. However,
our approach is not particularly designed for dealing with
noises. Therefore, it is still challenging to recognize such
subtle actions.

5.6.2 Attention Maps
To illustrate the characteristics of the ST-JointAtt module, we
depict the attention maps of two randomly selected samples
at four stages of the EfficientGCN-B4 model. As shown in
Fig. 10, for the two different action samples, the left and
right subfigures share similar attention maps at all stages.
For each subfigure, the top two feature maps at the first two
GCN stages show the stronger selectivity on spatial joints,
and the bottom two at high-level GCN stages display addi-
tional selectivity on time frames. It should be noticed that
the frames in the later of the sequence which are out of the
duration of actions are padded by zeros, the attention maps
at the last stage successfully distinguish these uninformative
frames with small weights. From these figures, it shows that
the proposed ST-JointAtt module pays more attention to
informative joints at the early convolutional stages, while
distinguishes informative frames in the later convolutional
stages. Meanwhile, the joint sensitivity is weakened at the
later stages, which may be caused by the over-smoothing
problem in GCN as the adjacent skeleton joints tend to
become indistinguishable in deeper layers.

5.6.3 Class Activation Maps
To show how our model works, the activation maps of some
skeleton sequences are calculated by class activation map
[53], as presented in Fig. 11, in which the activated joints
in several sampled frames are displayed. From this figure,
we can find that the EfficientGCN-B4 model successfully
concentrates on the most informative joints, i.e., left arm
for drinking water, throwing and waving hand, upper body
for taking off a jacket, and left leg for kicking. This implies
that the proposed ST-JointAtt module works well. Besides,



JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

Drinking 
water

Throwing

Taking off 
a jacket

Waving 
hand

Kicking

Fig. 11. Activated joints in 10 contextual frames of EfficientGCN-B4 for the sample actions, i.e., drinking water, throwing, taking off a jacket, waving
hand, and kicking. The red points denote the activated joints, while blue points represent non-activated joints. (Best viewed in color.)

compared with the preliminary PartAtt module proposed in
[27], this new attention module results in more reasonable
attention weights in temporal dimension, by which only
informative moving joints in certain frames are captured
(e.g., all joints in the first two frames of kicking are not
activated).

5.7 Generalization of EfficientGCN

From the above experimental results, the EfficientGCN
shows an outstanding performance for the skeleton-based
action recognition task. To further validate the generaliza-
tion ability of the EfficientGCN, we apply the EfficientGCN-
B4 to other skeleton-based tasks such as person re-
identification (ReID) [54], [55].

Following the procedure in [55], four open benchmarks
on skeleton-based person ReID are employed, including
BIWI [56], IAS-A/IAS-B [57], and KGBD [58]. The same
training/testing splits for each dataset are adopted as men-
tioned in [55], and the number of input frame is set to 80 for
KGBD and 10 for others in this paper. Note that the skeleton
sequences with more than 80 (or 10) frames will be split to
several samples with the same person ID. The experimental
results on the four benchmarks are displayed in Tab. 8. It
can be seen that the EfficientGCN-B4 model significantly
outperforms the other SOTA models on three benchmarks,
indicating that our model has an excellent performance on

TABLE 8
Comparisons with other person ReID methods in rank-1 accuracy (%).

Method BIWI IAS-A IAS-B KGBD

D13+KNN [56] 39.3 33.8 40.5 46.9
D16+Adaboost [59] 41.8 27.4 39.2 69.9

Single-layer LSTM [60] 15.8 20.0 19.1 39.8
Multi-layer LSTM [61] 36.1 34.4 30.9 46.2

PoseGait [62] 33.3 41.4 37.1 90.6
Locality-Awareness-SGE [55] 63.3 60.1 62.5 90.6

EfficientGCN-B4 64.5 67.3 62.4 96.1

skeleton-based person ReID task, further showing its great
potential to other skeleton-based motion analysis tasks.

6 CONCLUSION

In this paper, we have constructed a family of efficient but
strong baselines based on a set of techniques for boosting
model efficiencies. Different from other multi-stream mod-
els, the proposed EfficientGCN fuses three input branches
at early stage, obviously eliminating the redundant param-
eters. In order to further reduce the model complexity,
four TC layers are designed according to the bottleneck
structure and separable convolution, which significantly



JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

saves the computational cost. Moreover, a compound scal-
ing strategy is utilized to uniformly scale the model width
and depth, further reducing the model complexity. On two
large-scale datasets, NTU RGB+D 60 & 120, the proposed
EfficientGCN-B4 achieves the SOTA performance, while its
FLOPs and number of parameters are obviously fewer than
other models. Thus, the new baselines will have a huge
potential for developing more complicated models. In the
future, we will extend the proposed baseline with the object
appearance, which is likely responsible for the recognition
of some extremely similar actions.

ACKNOWLEDGMENTS

This work is sponsored by the National Key R&D Program
of China under Grant 2016YFB1001002, the National Nat-
ural Science Foundation of China under Grant 61525306,
Grant 61633021, and Grant 61721004, the Shandong Provin-
cial Key Research and Development Program (Major Sci-
entific and Technological Innovation Project) under Grant
2019JZZY010119, and CAS-AIR.

REFERENCES

[1] R. Poppe, “A survey on vision-based human action recognition,”
Image Vis. Comput., vol. 28, no. 6, pp. 976–990, 2010.

[2] J. K. Aggarwal and M. S. Ryoo, “Human activity analysis: A
review,” ACM Comput. Surv., vol. 43, no. 3, p. 16, 2011.

[3] D. Weinland, R. Ronfard, and E. Boyer, “A survey of vision-based
methods for action representation, segmentation and recognition,”
Comput. Vis. Image Understand, vol. 115, no. 2, pp. 224–241, 2011.

[4] G. Johansson, “Visual perception of biological motion and a model
for its analysis,” Percept. Psychophys., vol. 14, no. 2, pp. 201–211,
1973.

[5] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-
person 2D pose estimation using part affinity fields,” in IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 7291–7299.

[6] Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE
Multimedia, vol. 19, no. 2, pp. 4–10, 2012.

[7] Y. Du, W. Wang, and L. Wang, “Hierarchical recurrent neural
network for skeleton based action recognition,” in IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2015, pp. 1110–1118.

[8] C. Li, Q. Zhong, D. Xie, and S. Pu, “Skeleton-based action recog-
nition with convolutional neural networks,” in IEEE Int. Conf.
Multimedia Expo Workshop (ICMEW). IEEE, 2017, pp. 597–600.

[9] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” arXiv:1609.02907, 2016.

[10] R. Li, S. Wang, F. Zhu, and J. Huang, “Adaptive graph convolu-
tional neural networks,” in AAAI Conf. Artif. Intell., 2018.

[11] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in AAAI Conf.
Artif. Intell., 2018.

[12] X. Zhang, C. Xu, X. Tian, and D. Tao, “Graph edge convolutional
neural networks for skeleton-based action recognition,” IEEE
Trans. Neural Netw. Learn. Syst., 2019.

[13] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Two-stream adaptive graph
convolutional networks for skeleton-based action recognition,”
in IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2019, pp.
12 026–12 035.

[14] Y.-F. Song, Z. Zhang, and L. Wang, “Richly activated graph
convolutional network for action recognition with incomplete
skeletons,” in IEEE Int. Conf. Image Process (ICIP). IEEE, 2019.

[15] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “NTU RGB+D: A
large scale dataset for 3d human activity analysis,” in IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 1010–1019.

[16] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Skeleton-based action
recognition with directed graph neural networks,” in IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2019, pp. 7912–7921.

[17] D. Huang, P. Chen, R. Zeng, Q. Du, M. Tan, and C. Gan, “Location-
aware graph convolutional networks for video question answer-
ing,” in AAAI Conf. Artif. Intell., vol. 34, no. 07, 2020, pp. 11 021–
11 028.

[18] Z. Liu, H. Zhang, Z. Chen, Z. Wang, and W. Ouyang, “Dis-
entangling and unifying graph convolutions for skeleton-based
action recognition,” in IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2020.

[19] Z. Chen, S. Li, B. Yang, Q. Li, and H. Liu, “Multi-scale spatial
temporal graph convolutional network for skeleton-based action
recognition,” in AAAI Conf. Artif. Intell., 2021.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2016, pp. 770–778.

[21] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv:1704.04861, 2017.

[22] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2018, pp. 4510–4520.

[23] D. Zhou, Q. Hou, Y. Chen, J. Feng, and S. Yan, “Rethinking
bottleneck structure for efficient mobile network design,” in Eur.
Conf. Comput. Vis. (ECCV), 2020.

[24] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in Internat. Conf. Mach. Learn.
(ICML), 2019.

[25] Q. Hou, D. Zhou, and J. Feng, “Coordinate attention for efficient
mobile network design,” in IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2021, pp. 13 713–13 722.

[26] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Skeleton-based action
recognition with multi-stream adaptive graph convolutional net-
works,” IEEE Trans. Image Process., vol. 29, pp. 9532–9545, 2020.

[27] Y.-F. Song, Z. Zhang, C. Shan, and L. Wang, “Stronger, faster
and more explainable: A graph convolutional baseline for
skeleton-based action recognition,” in ACM Int. Conf. Multimedia
(ACMMM), 2020, pp. 1625––1633.

[28] J. Liu, A. Shahroudy, M. L. Perez, G. Wang, L.-Y. Duan, and A. K.
Chichung, “NTU RGB+D 120: A large-scale benchmark for 3d
human activity understanding,” IEEE Trans. Pattern Anal. Mach.
Intell., 2019.

[29] C. Li, Q. Zhong, D. Xie, and S. Pu, “Co-occurrence feature learning
from skeleton data for action recognition and detection with
hierarchical aggregation,” in IJCAI Int. Joint Conf. Artif. Intell.,
2018.

[30] P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, and N. Zheng,
“View adaptive neural networks for high performance skeleton-
based human action recognition,” IEEE Trans. Pattern Anal. Mach.
Intell., 2019.

[31] Y.-F. Song, Z. Zhang, C. Shan, and L. Wang, “Richly activated
graph convolutional network for robust skeleton-based action
recognition,” IEEE Trans. Circuits Syst. Video Technol., vol. 31,
no. 5, pp. 1915–1925, 2021.

[32] K. Cheng, Y. Zhang, C. Cao, L. Shi, J. Cheng, and H. Lu, “De-
coupling gcn with dropgraph module for skeleton-based action
recognition,” in Eur. Conf. Comput. Vis. (ECCV), 2020.

[33] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural
networks,” in IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
2018, pp. 7794–7803.

[34] F. Ye, S. Pu, Q. Zhong, C. Li, D. Xie, and H. Tang, “Dynamic
gcn: Context-enriched topology learning for skeleton-based action
recognition,” in ACM Int. Conf. Multimedia (ACMMM), 2020.

[35] F. Yang, S. Sakti, Y. Wu, and S. Nakamura, “Make skeleton-based
action recognition model smaller, faster and better,” in ACM
International Conference on Multimedia in Asia, 2019.

[36] P. Zhang, C. Lan, W. Zeng, J. Xing, J. Xue, and N. Zheng,
“Semantics-guided neural networks for efficient skeleton-based
human action recognition,” in IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2020.

[37] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
in IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2018, pp.
7132–7141.

[38] S. Woo, J. Park, J.-Y. Lee, and I. So Kweon, “Cbam: Convolutional
block attention module,” in Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 3–19.

[39] F. Baradel, C. Wolf, and J. Mille, “Human action recognition: Pose-
based attention draws focus to hands,” in IEEE Int. Conf. Comput.
Vis. (ICCV), 2017, pp. 604–613.

[40] S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu, “An end-to-end
spatio-temporal attention model for human action recognition
from skeleton data,” in AAAI Conf. Artif. Intell., 2017.



JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

[41] C. Si, W. Chen, W. Wang, L. Wang, and T. Tan, “An attention
enhanced graph convolutional lstm network for skeleton-based
action recognition,” in IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2019, pp. 1227–1236.

[42] C. Si, Y. Jing, W. Wang, L. Wang, and T. Tan, “Skeleton-based action
recognition with spatial reasoning and temporal stack learning,”
in Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 103–118.

[43] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan,
W. Wang, Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for
mobilenetv3,” in IEEE Int. Conf. Comput. Vis. (ICCV), 2019, pp.
1314–1324.

[44] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Br.
Mach. Vis. Conf. (BMVC), 2016.

[45] J. Guo, Y. Li, W. Lin, Y. Chen, and J. Li, “Network decoupling:
From regular to depthwise separable convolutions,” in Br. Mach.
Vis. Conf. (BMVC), 2018.

[46] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” arXiv:1710.05941, 2017.

[47] J. Liu, A. Shahroudy, D. Xu, and G. Wang, “Spatio-temporal lstm
with trust gates for 3d human action recognition,” in Eur. Conf.
Comput. Vis. (ECCV). Springer, 2016, pp. 816–833.

[48] M. Li, S. Chen, X. Chen, Y. Zhang, Y. Wang, and Q. Tian, “Actional-
structural graph convolutional networks for skeleton-based ac-
tion recognition,” in IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2019, pp. 3595–3603.

[49] L. Huang, Y. Huang, W. Ouyang, and L. Wang, “Part-level graph
convolutional network for skeleton-based action recognition,” in
AAAI Conf. Artif. Intell., 2020.

[50] W. Peng, X. Hong, H. Chen, and G. Zhao, “Learning graph convo-
lutional network for skeleton-based human action recognition by
neural searching,” in AAAI Conf. Artif. Intell., 2020.

[51] K. Cheng, Y. Zhang, X. He, W. Chen, J. Cheng, and H. Lu,
“Skeleton-based action recognition with shift graph convolutional
network,” in IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
2020.

[52] J. Liu, A. Shahroudy, G. Wang, L.-Y. Duan, and A. C. Kot,
“Skeleton-based online action prediction using scale selection
network,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 6,
pp. 1453–1467, 2019.

[53] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba,
“Learning deep features for discriminative localization,” in IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 2921–2929.

[54] H. Zhao, M. Tian, S. Sun, J. Shao, J. Yan, S. Yi, X. Wang, and
X. Tang, “Spindle net: Person re-identification with human body
region guided feature decomposition and fusion,” in IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 1077–1085.

[55] H. Rao, S. Wang, X. Hu, M. Tan, Y. Guo, J. Cheng, X. Liu, and
B. Hu, “A self-supervised gait encoding approach with locality-
awareness for 3d skeleton based person re-identification,” IEEE
Trans. Pattern Anal. Mach. Intell., 2021.

[56] M. Munaro, A. Fossati, A. Basso, E. Menegatti, and L. Van Gool,
“One-shot person re-identification with a consumer depth cam-
era,” in Person Re-Identification. Springer, 2014, pp. 161–181.

[57] M. Munaro, S. Ghidoni, D. T. Dizmen, and E. Menegatti, “A
feature-based approach to people re-identification using skele-
ton keypoints,” in IEEE international conference on robotics and
automation (ICRA). IEEE, 2014, pp. 5644–5651.

[58] V. O. Andersson and R. M. Araujo, “Person identification using
anthropometric and gait data from kinect sensor,” in AAAI Conf.
Artif. Intell., 2015.

[59] P. Pala, L. Seidenari, S. Berretti, and A. Del Bimbo, “Enhanced
skeleton and face 3d data for person re-identification from depth
cameras,” Computers & Graphics, vol. 79, pp. 69–80, 2019.

[60] A. Haque, A. Alahi, and L. Fei-Fei, “Recurrent attention models
for depth-based person identification,” in IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2016, pp. 1229–1238.

[61] W. Zheng, L. Li, Z. Zhang, Y. Huang, and L. Wang, “Relational
network for skeleton-based action recognition,” in IEEE Int. Conf.
Multimedia Expo (ICME). IEEE, 2019, pp. 826–831.

[62] R. Liao, S. Yu, W. An, and Y. Huang, “A model-based gait
recognition method with body pose and human prior knowledge,”
Pattern Recognit., vol. 98, p. 107069, 2020.

Yi-Fan Song received the M.Eng. degree from
Zhengzhou University, Zhengzhou, China, in
2018. Currently, He is a Ph.D. candidate of the
School of Artificial Intelligence, University of Chi-
nese Academy and Sciences (UCAS). His re-
search interests include computer vision, action
recognition, action prediction, and neural archi-
tecture search.

Zhang Zhang received the B.S. degree in com-
puter science and technology from Hebei Uni-
versity of Technology, Tianjin, China, in 2002,
and the Ph.D. degree in pattern recognition and
intelligent systems from the National Laboratory
of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, Beijing, China
in 2009. Currently, he is an associate professor
at the National Laboratory of Pattern Recogni-
tion, Institute of Automation, Chinese Academy
of Sciences (CASIA). His research interests in-

clude activity recognition, video surveillance, and time series analysis.
He has published 20s research papers on computer vision and pattern
recognition, including IEEE TPAMI, CVPR, and ECCV etc.

Caifeng Shan received the B.Eng. degree from
the University of Science and Technology of
China (USTC), the M.Eng. degree from the In-
stitute of Automation, Chinese Academy of Sci-
ences, and the Ph.D. degree in computer vision
from Queen Mary, University of London. His re-
search interests include computer vision, pattern
recognition, image and video analysis, machine
learning, bio-medical imaging, and related appli-
cations. He has authored more than 100 papers
and 60 patent applications. He has served as

Associate Editor or Guest Editor for many scientific journals including
IEEE Transactions on Circuits and Systems for Video Technology and
IEEE Journal of Biomedical and Health Informatics. He is a Senior
Member of IEEE.

Liang Wang received both the B.Eng. and
M.Eng. degrees from Anhui University in 1997
and 2000, respectively, and the Ph.D. de-
gree from the Institute of Automation, Chinese
Academy of Sciences (CASIA) in 2004. From
2004 to 2010, he was a research assistant at
Imperial College London, United Kingdom, and
Monash University, Australia, a research fellow
at the University of Melbourne, Australia, and a
lecturer at the University of Bath, United King-
dom, respectively. Currently, he is a full professor

of the Hundred Talents Program at the National Lab of Pattern Recog-
nition, CASIA. His major research interests include machine learning,
pattern recognition, and computer vision. He has widely published in
highly ranked international journals such as IEEE Transactions on Pat-
tern Analysis and Machine Intelligence and IEEE Transactions on Image
Processing, and leading international conferences such as CVPR, ICCV,
and ICDM. He is an IEEE Fellow, and an IAPR Fellow.



JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

APPENDIX A
NETWORK ARCHITECTURE

Here we present the details to calculate the scaled width
and depth. Firstly, the initial channels and TC layers of
four blocks are set to {48, 24, 64, 128} and {0.5, 0.5, 1, 1},
respectively. Then, the rounding functions are given as:

Cφ = ε(C0/16× αφ) ∗ 16 (S.1)

Lφ = ε(L0 × βφ) (S.2)

where Cφ and Lφ denote the numbers of scaled channels
and TC layers with scaling coefficient φ, C0 and L0 denote
the initial channels and TC layers, α and β are defined in
Sec. 4.3, and ε(·) represents the step function formulated as:

ε(x) =

{
dxe, if x− bxc > 0.5
bxc, if x− bxc ≤ 0.5

(S.3)

where d·e and b·c mean up and down rounding functions,
respectively.

Finally, the network architectures of models with scaling
coefficients {2, 4}, i.e., EfficientGCN-B2 and EfficientGCN-
B4, can be calculated by initial channels, initial TC layers,
and rounding functions. The architectures of these three
baselines are shown in Tab. S.1, Tab. S.2 and Tab. S.3.

TABLE S.1
The architecture of EfficientGCN-B0 network. Each row describes a

block with the following settings and output shape, where ×3
represents three input branches, /2 denotes a stride of 2, Q is the

number of action classes.

Stage Block Depth Channels Shape

– BN×3 – (6, 6)× 3 (6× Tin × Vin)× 3

– ?BasicBlock×3 1 (6, 64)× 3 (64× Tin × Vin)× 3

1 SGBlock×3 0† (64, 48)× 3 (48× Tin × Vin)× 3

2 SGBlock×3 0† (48, 16)× 3 (16× Tin × Vin)× 3

– Concat – 16× 3, 48 48× Tin × Vin

3 SGBlock 1 48, 64, /2 64× Tin/2× Vin
4 SGBlock 1 64, 128, /2 128× Tin/4× Vin

– GAP – 128, 128 128

– FC – 128, Q Q

?: This BasicBlock is fixed and without attentions for stable training.
†: Actually, the initial depths of the two blocks in input branches are
both 0.5. The depth of 0 is obtained after rounding.

TABLE S.2
The architecture of EfficientGCN-B2 network. Each row describes a

block with the following settings and output shape, where ×3
represents three input branches, /2 denotes a stride of 2, Q is the

number of action classes.

Stage Block Depth Channels Shape

– BN×3 – (6, 6)× 3 (6× Tin × Vin)× 3

– ?BasicBlock×3 1 (6, 64)× 3 (64× Tin × Vin)× 3

1 SGBlock×3 1 (64, 64)× 3 (64× Tin × Vin)× 3

2 SGBlock×3 1 (64, 32)× 3 (32× Tin × Vin)× 3

– Concat – 32× 3, 96 96× Tin × Vin

3 SGBlock 2 96, 96, /2 96× Tin/2× Vin
4 SGBlock 2 96, 192, /2 192× Tin/4× Vin

– GAP – 192, 192 192

– FC – 192, Q Q

?: This BasicBlock is fixed and without attentions for stable training.

TABLE S.3
The architecture of EfficientGCN-B4 network. Each row describes a

block with the following settings and output shape, where ×3
represents three input branches, /2 denotes a stride of 2, Q is the

number of action classes.

Stage Block Depth Channels Shape

– BN×3 – (6, 6)× 3 (6× Tin × Vin)× 3

– ?BasicBlock×3 1 (6, 64)× 3 (64× Tin × Vin)× 3

1 SGBlock×3 2 (64, 96)× 3 (96× Tin × Vin)× 3

2 SGBlock×3 2 (96, 48)× 3 (48× Tin × Vin)× 3

– Concat – 48× 3, 144 144× Tin × Vin

3 SGBlock 3 144, 128, /2 128× Tin/2× Vin
4 SGBlock 3 128, 272, /2 272× Tin/4× Vin

– GAP – 272, 272 272

– FC – 272, Q Q

?: This BasicBlock is fixed and without attentions for stable training.

APPENDIX B
GRID SEARCH FOR RECEPTIVE FIELD

There are two hyper-parameters mentioned in Sec. 3.2 and
4.2, i.e., D for the maximum spatial graph distance and L for
the temporal window size. They directly determine the re-
ceptive field of the base convolutional operation, thus have
implication on the model performance. The effects of these
two hyper-parameters are discussed in this section, and the
experimental results are shown in Tab. S.4 and Tab. S.5. For
the maximum graph distance D, we can find that there is an
obvious decline when D < 2. However, D > 3 is not better
than D = 2 or D = 3 because an oversized receptive field
will make the skeleton graph over-smoothing. Similarly, the
temporal window size L is also required to choose a suitable
value by balancing the model accuracy and complexity.
Thus, according to these two tables, we set D = 2 and
L = 5 (Bold in tables) by choosing a high model accuracy
and a low model complexity simultaneously. Note that the
settings of D = 2, L = 11 and D = 3, L = 9 are slightly
more accurate than D = 2, L = 5, but their model complex-
ities are considerably higher than the selected setting.

TABLE S.4
Comparisons with different receptive fields on X-sub benchmark in

accuracy (%).

Acc. D = 1 D = 2 D = 3 D = 4 D = 5

L = 3 87.7 88.9 89.2 88.8 88.5
L = 5 88.1 89.9 89.9 89.7 89.5
L = 7 88.6 89.8 89.9 89.5 89.7
L = 9 88.8 89.9 90.0 89.8 89.9
L = 11 88.7 90.0 89.9 89.7 89.7

TABLE S.5
Comparisons with different receptive fields on X-sub benchmark in

FLOPs (×109) and parameter numbers (×106).

F. / P. D = 1 D = 2 D = 3 D = 4 D = 5

L = 3 2.35/0.27 2.72/0.30 3.09/0.33 3.46/0.36 3.83/0.39
L = 5 2.70/0.29 3.08/0.32 3.45/0.35 3.82/0.38 4.19/0.41
L = 7 3.06/0.32 3.43/0.35 3.80/0.38 4.18/0.41 4.55/0.44
L = 9 3.42/0.35 3.79/0.38 4.16/0.41 4.53/0.44 4.90/0.47
L = 11 3.78/0.37 4.15/0.40 4.52/0.43 4.89/0.46 5.26/0.49


	1 Introduction
	2 Related Work
	2.1 Skeleton-based Action Recognition
	2.2 Efficient Models
	2.3 Attention Models

	3 Preliminary Techniques
	3.1 Data Preprocessing
	3.2 Graph Convolution
	3.3 Separable Convolution

	4 EfficientGCN
	4.1 Model Architecture
	4.2 Block Details
	4.3 Scaling Strategy
	4.4 Spatial Temporal Joint Attention
	4.5 Loss Function
	4.6 Discussion

	5 Experimental Results
	5.1 Datasets
	5.1.1 NTU RGB+D 60
	5.1.2 NTU RGB+D 120

	5.2 Implementation Details
	5.3 Ablation Studies
	5.3.1 Comparisons of TC Layers
	5.3.2 Comparisons of Attention Modules
	5.3.3 Necessity of Data Preprocessing
	5.3.4 Necessity of Early Fused Architecture

	5.4 Comparisons of Compound Scaling Strategies
	5.5 Comparisons with SOTA Methods
	5.5.1 NTU RGB+D 60 Dataset
	5.5.2 NTU RGB+D 120 Dataset
	5.5.3 Model Complexity

	5.6 Discussion and Visualization
	5.6.1 Confusion Matrices and Failure Cases
	5.6.2 Attention Maps
	5.6.3 Class Activation Maps

	5.7 Generalization of EfficientGCN

	6 Conclusion
	References
	Biographies
	Yi-Fan Song
	Zhang Zhang
	Caifeng Shan
	Liang Wang

	Appendix A: Network Architecture
	Appendix B: Grid Search for Receptive Field

