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Matrix Completion via Non-Convex Relaxation
and Adaptive Correlation Learning
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Abstract—The existing matrix completion methods focus on optimizing the relaxation of rank function such as nuclear norm, Schatten-p
norm, etc. They usually need many iterations to converge. Moreover, only the low-rank property of matrices is utilized in most existing
models and several methods that incorporate other knowledge are quite time-consuming in practice. To address these issues, we
propose a novel non-convex surrogate that can be optimized by closed-form solutions, such that it empirically converges within dozens
of iterations. Besides, the optimization is parameter-free and the convergence is proved. Compared with the relaxation of rank, the
surrogate is motivated by optimizing an upper-bound of rank. We theoretically validate that it is equivalent to the existing matrix
completion models. Besides the low-rank assumption, we intend to exploit the column-wise correlation for matrix completion, and thus an
adaptive correlation learning, which is scaling-invariant, is developed. More importantly, after incorporating the correlation learning, the
model can be still solved by closed-form solutions such that it still converges fast. Experiments show the effectiveness of the non-convex
surrogate and adaptive correlation learning.

Index Terms—Artificial Intelligence, Pattern Recognition, Matrix Completion, Non-Convex Surrogate, Adaptive Correlation Learning,
Parameter-Free Optimization.
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1 INTRODUCTION

Matrix is a fundamental element in machine learning
and the low-rank property of matrix has been applied in
many practical applications [1]–[3]. Low-rank matrix com-
pletion (LRMC) [4], [5], aiming to recover a low-rank matrix
according to the observed entries, plays an important role
in many fields, such as image recovery [6], [7], recommen-
dation systems [8], robust principal component analysis [9]–
[11], multi-task learning [12]–[14], etc. The main motivation
behind low-rank is from the observation that a part of
principal components of a matrix usually contain most of
the information, especially in optical imagery (shown in
Figure 1). In other words, the distribution of singular values
of an image matrix is often heavy-tailed.

The original LRMC model [4] intends to optimize the
nuclear norm of matrix, the convex envelope of rank. To
improve the performance, plenty of works focus on opti-
mizing the nuclear norm and its variants such as truncated
version [15], weighted version [16], etc. As the nuclear
norm is the `1-norm of singular values, the nuclear norm
relaxed problem can be generalized to the Schatten-p norm.
With 0 < p < 1, the Schatten-p norm approximates rank
better than the nuclear norm. It should be emphasized that
Schatten-p is not convex when 0 < p < 1. In particular,
solutions of LRMC with Schatten-1/2 and Schatten-2/3 are
derived in [17]–[19]. Additionally, several different surro-
gates are also developed to obtain a better approximation
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of rank [20], [21]. Besides, diverse factorization models are
derived from these surrogates. For instance, the factored
nuclear norm [22], [23] transforms it into two Frobenius
norm terms while RegL1 [24] tries to improve the robustness
of the noisy model. Factored group-sparse regularization
[25] proves that the Schatten-p norm is equivalent to the
sum of two group-sparse norms. Bilinear model [26] shows
that the Schatten-p norm can be converted into nuclear
norms of two factored matrices. To improve the results of
matrix completion, the models proposed in [27]–[29] in-
corporate the similarity as the prior information. However,
the similarity is given as the prior information such that
the model fails to work on general cases. Besides, several
works [30], [31] focus on how to integrate various kinds
of information. The main barrier of these hybrid models is
inefficient optimization. They usually consume significant
amounts of time to train, which results in unavailability in
practice.

To optimize the proposed models, several optimization
techniques are applied such as the semidefinite program-
ming (SDP) [4], augmented Lagrange multiplier method
(ALM) [24], alternative direction method of multipliers
(ADMM) [32], re-weighted method [33], [34], etc. SDP is
time-consuming especially when m and n are not tiny
values (e.g., m = n = 100) [35]. ALM [36] and ADMM
[32] are the most popular methods in matrix completion but
it needs lots of iterations to converge. To accelerate the opti-
mization, auxiliary variables are frequently introduced [24],
[25] and the linearized ADMM [37] is widely applied since
the direct subproblem of ADMM may have no closed-form
solution. Non-factored models usually depend on singular
value decomposition (SVD) which causes computational
complexity O(mn2) per iteration. Factored models usually
need O(mnd) time per iteration where d is the column
number of factored matrices. For the noisy extension, the
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proximal gradient method is widely used to solve the non-
smooth term, i.e., the nuclear norm (denoted by ‖ · ‖∗).
However, d is hard to set and experiments show that smaller
d may lead to slower convergence in some cases. In other
words, ADMM requires more iterations to converge, which
implies expensive costs.

In sum, the existing LRMC models rely on paramet-
ric algorithms (e.g., gradient-based methods, ADMM-based
methods, etc.), which require lots of iterations to con-
verge. Additionally, most of them only focus on the low-
rank property. Different from the existing models, we pro-
pose a model with a novel Non-Convex surrogate and
Adaptive corRelation Learning (NCARL) for LRMC prob-
lem, to achieve faster convergence and exploit the hidden
information of the matrix. Besides the low-rank assump-
tion, NCARL incorporates an adaptive correlation learning
mechanism to exploit correlation and mines the potential in-
formation column-wisely. The main contributions are listed
as follows:

• We aim to optimize an upper-bound of rank(·) via
the full-rank factorization, which provides a novel
non-convex surrogate. Compared with other factored
methods, our model does not need the initial rank d.
Surprisingly, it can be solved by closed-form solu-
tions without linearization and auxiliary variables,
such that its optimization is totally parameter-free.

• Besides the low-rank assumption, the potential in-
formation of columns is exploited by our model via
learning column-wise correlation adaptively. Owing
to the smooth surrogate, the model still has closed-
form solutions after incorporating the adaptive cor-
relation learning, which implies the two parts are
compatible.

• The proposed algorithm usually converges within 20
iterations such that it is competitive in the terms
of efficiency compared with factored models, even
though our model does not need the initial rank.
Although factored models seem to need less time per
iteration, they require a large number of iterations
to converge. Experiments support the computational
efficiency of our model.

1.1 Notations
In this paper, mi and mj denote the i-th row and j-

th column of M , respectively. M† is the Moore-Penrose
pseudo-inverse. R(M) represents the space spanned by
columns of M . diag(m) represents the diagonal matrix
with diagonal entries m. Sn+ and Sn++ denote the set of
positive semi-definite and positive definite n × n matrices,
respectively. � represents the Hadamard product. Without
additional statements, given a matrix M ∈ Rm×n, we
assume m ≥ n. Given a square matrix Q ∈ Rn×n and
non-zero binary vectors p, q = {0, 1}n where ‖p‖0 = k1

and ‖q‖0 = k2, [Q]p,q ∈ Rk1×k2 represents the sub-matrix
where the i-th row and j-th column are deleted from Q if
pi = 0 and qj = 0. Specially, for a vector v, [v]p represents
the sub-vector that removes the i-th entry from v if vi = 0.
1 denotes the vector whose entries are all 1 and p̄ = 1 − p.
`2,0-norm and `2,1-norm of M are respectively defined as
‖M‖2,0 =

∑m
i=1 1[‖mi‖2 6= 0] and ‖M‖2,1 =

∑m
i=1 ‖mi‖2
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Fig. 1. An illustration of singular values of a natural image.

where mi is the i-th row of M . All proofs are summarized
in appendix.

2 RELATED WORK

First, we provide the formal definition of LRMC. Sup-
pose that we have observed some entries denoted by a
matrix M ∈ Rm×n, where indexes are represented by Ω.
Particularly, Mij = 0 if (i, j) /∈ Ω. The known LRMC
attempts to recover a low-rank matrix X from the obser-
vations. LRMC can be formulated as

min
X

rank(X), s.t. Xij = Mij ∀(i, j) ∈ Ω. (1)

Assume that m ≥ n holds, then we could rewrite the
constraint as a concise matrix form via introducing a filter
matrix P as

Pij =

{
1, (i, j) ∈ Ω;
0, (i, j) /∈ Ω.

(2)

Accordingly, the LRMC problem can be rewritten as

min
X

rank(X), s.t. X � P = M, (3)

where � represents the Hadamard product. Instead of solv-
ing the NP-hard problem caused by rank(·), the existing
models [4], [25], [38] aim to optimize a relaxed function ϕ(·)
of rank(·) such that the objective is converted into

min
X

ϕ(X), s.t. X � P = M. (4)

For instance, the classical LRMC model [4] uses the nuclear
norm, ‖ · ‖∗, as ϕ(·). Max norm [39] is also investigated for
LRMC. As ‖X‖∗ =

∑
i=1 σi where σi represents the singu-

lar value, an important variant is to employ the Schatten-
p norm [17]–[19], [25], [38], ‖X‖Sp = (

∑
i=1 σ

p
i )

1
p . Based

on these surrogates, some models design more complicated
surrogates, such as truncated nuclear norm [15], weighted
nuclear norm [16], etc. Besides, several models [27], [30], [31]
also integrate other kinds of information. S3LR introduces
the popular subspace exploitation into the mechanism,
while the prior graph information is utilized in the model
proposed by [27]. To accelerate the optimization and avoid
searching the rank of matrix in all possible values, factored
models [22], [23], [25] have been widely investigated. The
core idea of factored models is to assume that recovered
matrix can be factored as two small matrices. For example,
the factored nuclear norm model [22] is defined as

min
X=AB,X�P=M

1

2
(‖X‖∗)⇔ min

AB�P=M

1

2
(‖A‖2F + ‖B‖2F ).

(5)
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FGSR [25] aims to factorize Schatten-1/2 and Schatten-2/3
as two convex surrogates instead.

A well-known extension of LRMC is the noisy version.
If the contaminated case regarding polluted observations is
considered, i.e., Mij = (Xij)∗ + εij where (Xij)∗ and εij
denote the true value and noise respectively, the recovery
task indicates the simultaneous minimization of residuals
and rank,

min
X
‖X � P −M‖2F + γ · ϕ(X), (6)

where γ is the hyper-parameter to leverage residuals and
rank. Some works [15], [24] focus on improving the noisy
model as well. Specifically, RegL1 [24] utilizes `1-norm to
replace the Frobenius norm and ensure {εij}i,j sparse. To
retrieve a simple discussion, we only focus on the noiseless
case at first and the model can be easily extended into the
noisy case.

3 PROBLEM REFORMULATION

Unlike most LRMC models, we do not relax rank(·)
as the nuclear norm. Instead, for an arbitrary matrix X ∈
Rm×n, we can apply full-rank factorization and have

X = WTUT , (7)

where U ∈ Rn×n is an orthogonal matrix. Note that the
full-rank factorization is not unique. On the one hand,
rank(X) = rank(W ) ≤ ‖W‖2,0 since rank(W ) ≤ ‖W‖2,0
holds for any W . In other words, `2,0-norm is an upper-
bound of rank(·). Therefore, we can optimize the following
upper-bound as the objective function

min
W,U
‖W‖2,0, s.t. (WTUT )� P = M,UTU = I. (8)

On the other hand, {ui}ni=1 denotes an orthonormal basis
while wj can be regarded as the coordinate of (xj)T under
{ui}ni=1. The low-rank property of X indicates that only a
few basis vectors are activated. In sum, ‖W‖2,0 is a rational
replacement of rank(X). The following theorem rigorously
shows the connection between the following problem and
the original one.

Theorem 1. Problem (8) is equivalent to problem (3). In other
words, X∗ = WT

∗ U
T
∗ where X∗, W∗, and U∗ are the optimal

solutions of two problems, respectively.

Accordingly, we can focus on how to optimize problem
(8). Likewise, since the optimization of `2,0-norm is NP-hard
and `2,1-norm is convex envelope of it, problem (8) can be
relaxed into

min
W,U
‖W‖2,1, s.t. (WTUT )� P = M,UTU = I;

⇒min
W,U
‖W‖22,1, s.t. (WTUT )� P = M,UTU = I.

(9)

The following theorem demonstrates that the above objec-
tive function can be converted into a smooth function which
has continuous first-order derivative.

Theorem 2. Define Ψ and Ψ′ as follows{
Ψ = {(X,D)|X � P = M, tr(D†) = 1, D ∈ Sn+},
Ψ′ = {(W,U)|(WTUT )� P = M,UTU = I}. (10)

Algorithm 1 Algorithm to solve problem (11).
Input: Mask matrix P , observed entries M , perturbation

coefficient δ = 10−6, and maximum iterations tm = 50.
X ←M .
repeat

Update D by Eq. (15).
D̂ ← D + δI .
Fi ← PiD̂

−1Pi.
Update X according to Eq. (20): xi ←mi(Fi)

pi+D̂−1.
until convergence or exceeding maximum iteration tm.

Output: Recovered matrix X .

Then problem (9) is equivalent to

min
X,D

tr(XDXT ), s.t. (X,D) ∈ Ψ. (11)

Meanwhile, the relation of optimal solutions of the two problems
can be established as

X∗ = WT
∗ U

T
∗ , D∗ = U∗ΛU

T
∗ ,Λ = diag(

‖wi
∗‖2

‖W∗‖2,1
)†, (12)

where U∗ΛUT∗ is the eigenvalue decomposition of D∗,
(X∗, D∗) = arg min

(X,D)∈Ψ
tr(XDXT ),

(W∗, U∗) = arg min
(W,U)∈Ψ′

‖W‖22,1.
(13)

Proposition 1. Problem (11) is non-convex. In particular, the
subproblem regarding X is convex.

In spite of the non-convexity, tr(XDXT ) is smooth com-
pared with ‖X‖∗. In the following subsection, an efficient
gradient-free algorithm, which can converge into the global
optimum, is developed. Besides, in the next section, we will
find that this surrogate is more compatible with additional
mechanisms.

3.1 Optimization of Problem (11)
Since the problem is non-convex and the subproblem

regarding X is convex, we optimize problem (11) by an
alternative method. Inspired by [13], Theorem 3 provides
a closed-form solution for the subproblem regarding D.

Theorem 3. If X is fixed as constant, the optimum of problem
(11) is ‖X‖2∗, i.e.,

‖X‖2∗ = min
D

tr(XDXT ), s.t. tr(D†) = 1, D ∈ Sn+, (14)

where the optimal D is given as

D = (
(XTX)

1
2

tr((XTX)
1
2 )

)†. (15)

Accordingly, we can focus on how to optimize
minX tr(XDXT ) subject to X � P = M . The Lagrangian
function can be represented as

L = tr(XDXT ) + tr(V T (X � P −M)), (16)

where V ∈ Rm×n denotes Lagrange multipliers. Note that
only |Ω|multipliers are needed due to the fact thatXijPij =
Mij always holds if (i, j) /∈ Ω. The KKT conditions are{

∇XL(X,V ) = 2XD + V � P = 0,
X � P = M.

(17)
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To obtain the closed-form solution, we replace D with D̂ =
D + δI (δ > 0) since D̂ is invertible. Note that xi � pi =
xidiag(pi). To keep notations uncluttered, let Pi = diag(pi).
Accordingly, we have{

xi = − 1
2v

iPiD̂
−1

xiPi = mi ⇒ −1

2
viPiD̂

−1Pi = mi. (18)

Let Fi = PiD̂
−1Pi. Lemma 1 shows that [Fi]pi,pi is invert-

ible.

Lemma 1. For any Q ∈ Sn++ and any non-zero binary vector
p ∈ {0, 1}n, [Q]p,p is positive definite.

Definition 1. Given a binary vector p ∈ {0, 1}n and a square
matrix Q ∈ Rn×n, suppose that [Q]p,p is invertible. We define
Qp+ ∈ Rn×n as a matrix which satisfies [Qp+]p,p = [Q]−1

p,p and
the other entries are 0.

Accordingly, V and X can be approximately solved by{
vi = −2mi(Fi)

pi+

xi = mi(Fi)
pi+D̂−1.

(19)

However, the residual caused by Eq. (19) can not be guar-
anteed to be upper-bounded when ∃i, D̂ii = 0. To address
this issue, define Hi ∈ Rn×n as a diagonal matrix such that
[Hi]ii = 1[D̂ii 6= 0] and the other diagonal entries are 1. If
the solution is modified as{

vi = −2mi(F̂i)
pi+,

xi = mi(F̂i)
pi+(HiD̂Hi)

pi+,
(20)

where F̂i = PiD̂
hi+Pi and hi = diag(Hi), Theorem 4

shows that the residual between approximate solution and
real solution is related to δ.

Theorem 4. Let X̂ and V̂ denote the approximate solutions de-
fined in Eq. (20). There exists a constant u, which is independent
on δ, such that X̂ � P = M and ‖∇XL(X̂, V̂ )‖ ≤ 2δu‖M‖.

Therefore, with δ → 0, ∇XL → 0. In our experiments,
we set δ = 10−6. To compute D, we need O(mn2) time.
Since we have to compute the inverse of D̂, O(n3) are
needed to calculate X at least. Recall that m ≥ n and thus
the computational complexity is O(mn2). The algorithm
to solve problem (11) is summarized in Algorithm 1. In
Section 5, we can see that our method can converge within
20 iterations. Compared with other methods that require
hundreds even thousands of iterations to converge, the
consuming time of the proposed model is less even though
the computational complexity of each iteration is O(mn2).
Theoretically, combining with Theorem 3 and 4, we have the
following proposition,

Corollary 1. If δ → 0, then Algorithm 1 will approach the global
minimum of problem (11).

3.2 Recovery Bound
As the recovery bound, which exposes the upper bound

of errors between the recovered matrix and the real matrix,
is an important part in field of matrix completion, we also
provide recovery bounds about our model. Inspired by
Theorem 3, the following theorem is the critical part to show
recovery bounds.

(a) Image-1 (b) Image-2

Fig. 2. Two images from MSRC-v2 which are used for image recovery.

Theorem 5. Problem (9) is equivalent to

min
X
‖X‖∗, s.t. X � P = M. (21)

Therefore, recovery bounds for the nuclear relaxation
model [4], [39] can be applied to our model. For instance,
the famous recovery bound proposed by [4] is available for
our model:

Lemma 2. [4] Let X0 ∈ Rm×n be the real matrix, and
N = max(m,n). Suppose that |Ω| entries of X0 are observed
uniformly at random. Then there are constants c1 and c2 such
that if |Ω| ≥ c1N

5/4r logN , the unique minimizer equals with
X0 with probability at least 1− c2N−3 logN .

Remark: One may concern the significance of our relax-
ation since the equivalence between problem (9) and the
nuclear norm surrogate. Roughly speaking, the main merits
include the tractable optimization and scalability of our
model. On the one hand, the optimization is completely
parameter-free. Compared with gradient-based methods
and ADMM-based methods, no hyper-parameters (e.g.,
step-size in gradient-based methods, increasing coefficient
in ADMM-based methods, etc.) are required, which leads
to the simple optimization. On the other hand, our model
is well formulated from the mathematical aspect, since the
mathematical form is common in machine learning. There-
fore, it is easy to incorporate other mechanisms without
obvious expenses and extra derivation. As we show in
the next section, the optimization of the whole model is
analogous to the one of problem (9) after introducing the
correlation learning of columns. Contrastively, the existing
models that attempt to integrate the additional information
of matrices and the nuclear norm surrogate (e.g., LRFD [30],
S3LR [31], etc.) needs a great deal of time to train.

3.3 Noisy Case

Similarly, the noisy matrix completion can be modeled
by adding an extra regularization,

min
X,D

J︷ ︸︸ ︷
‖X � P −M‖2F + γtr(XDXT ),

s.t. tr(D†) = 1, D ∈ Sn+.

(22)

Without any additional proofs, Theorem 2 and 3 can be
easily extended into the noisy case. The solution of the
subproblem regarding D is given by Eq. (15). Since the
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subproblem to solve X is an unconstrained problem, we
can take the derivative and set it to 0,

∇XJ = 2X � P − 2M � P + 2γXD = 0. (23)

Similar with Eq. (20),X can be solved analytically by adding
a perturbation,

xi = miPi(Pi + γD̂)−1. (24)

Motived by Theorem 4, ‖∇XJ ‖ ≤ 2δu‖M‖ always holds
if X is approximately computed by Eq. (24). Obviously, the
computational cost of every iteration is O(mn2). Figure 5
gives a vivid illustration of the result of the noisy model.

Interestingly, if D ∈ Sn++, then problem (22) can be
regarded as a Maximum A Posterior (MAP) model from
the probabilistic perspective. In the probabilistic model, X
is a random variable, and M is regarded as supervised
information. Hence, the objective is to solve

max
X

p(X|M)⇔ max
X

p(M |X) · P (X). (25)

Recall that Mij = (Xij)∗ + εij if (i, j) ∈ Ω. Suppose that
εij ∼ N (0, I). Therefore, p(Mij |Xij) can be modeled as
N (Xij , I) if (i, j) ∈ Ω. To be convenient, p(Mij |Xij) = 1
if (i, j) /∈ Ω. We further assume that the prior distribu-
tion of X is a matrix Gaussian distribution, i.e., p(X) =
MN (0, I, 1

2γD
−1) 1. Take the log of Eq. (25),

log p(M |X) + log(X)

=
∑
i,j

log p(Mij |Xij) + logMN (0, I,
1

2γ
D−1)

=
∑

(i,j)∈Ω

logN (0, 1) + logMN (0, I,
1

2γ
D−1)

=− ‖X � P −M‖2F − γtr(XDXT )− n

2
log |D−1|+ C,

(26)

where C denotes the constant term. Therefore, Eq. (18) is
equivalent to

min
X,D
‖X � P −M‖2F + γtr(XDXT ) +

n

2
log |D−1|. (27)

Note that log |D−1| can be viewed as a penalty term such
that eigenvalues of D−1 will not be too large. To simplify
the model, the constraint tr(D−1) is used to replace |D−1|,
which can restrict eigenvalues as well. Specifically speaking,
if tr(D−1) = 1, |D−1| < tr(D−1) = 1 always holds. In sum,
Eq. (22) is thus derived from the probabilistic aspect.

4 ADAPTIVE CORRELATION LEARNING: COMPLE-
TION CORRELATION OF COLUMNS

Although the matrix completion is usually formulated as
a brief optimization problem, the concise formulation may
hide some important properties in practice. In this section,
we will design a rational mechanism to utilize some ad-
ditional information to improve the performance of matrix

1.MN (E,Σ1,Σ2) =
exp(− 1

2
tr(Σ2

−1(X−E)TΣ1
−1(X−E)))

(2π)mn/2|Σ1|n/2|Σ2|m/2
where

E ∈ Rm×n is the mean, Σ1 ∈ Rm×m and Σ2 ∈ Rn×n represent
covariance matrix of row and column, respectively.

Algorithm 2 Algorithm to solve NCARL (defined in Eq.
(33)).
Input: The tradeoff hyper-parameter α, sparsity k, mask

matrix P , observed entries M , perturbation coefficient
δ = 10−6, and maximum iterations tm = 50.
X ←M .
repeat
lij ← ‖xi − xj‖22.
Update S by Eq. (32).
S ← S+ST

2 .
Update D by Eq. (15).
L← DS − S.
Q̂← D + αL+ δI .
Fi ← PiQ̂

−1Pi.
Update X according to Eq. (20): xi ←mi(Fi)

pi+Q̂−1.
until convergence or exceeding maximum iteration tm.

Output: Recovered matrix X .

completion. Meanwhile, it also verifies the compatibility of
the surrogate proposed in the previous section.

In practical applications, columns probably have un-
derlying connections with each other. For instance, in rec-
ommendation systems, a column vector may represent the
preferences of a user to diverse items. According to the
obtained information (i.e., the observed entries), we can
judge whether two users are similar. Therefore, the two
recovered user vectors, which are highly similar, should be
more analogous. Inspired by this, we have the following
assumption,

Assumption 1. Two vectors are similar if the Euclidean distance
between them is small. Formally, given xi, xj , and xk, xi are
more similar with xj compared with xk if ‖xi − xj‖2 < ‖xi −
xk‖2.

Suppose that we have obtained similarities of some pairs
of column vectors as the prior knowledge. Formally, let
Sij ≥ 0 denote the similarity of (xi)∗ and (xj)∗ where
(xi)∗ is the i-th column of the optimal matrix X∗. Clearly,
S should be symmetric. Naturally, the recovered matrix X
should keep these similarities. More formally,

min
X

n∑
i,j=1

Sij‖xi − xj‖22 ⇔ min
X

tr(XLXT ), (28)

where L = DS − S and DS is a diagonal matrix where
(DS)ii =

∑n
j=1 Sij . The matrix, L, is usually called Lapla-

cian matrix in spectral graph theory [40]. Hence, the noise-
less model is formulated as

min
X,D

tr(XDXT ) + αtr(XLXT ),

s.t. X � P = M, tr(D†) = 1, D ∈ Sn+.
(29)

However, the similarity matrix S is frequently unavail-
able in most matrix completion scenarios. Inspired by self-
supervised learning [41], we compute S adaptively in the
training phase. Suppose that the recovered matrix is X(t) at
step t. Then, the similarity S is updated according to X(t).
Accordingly, the key is how to obtain a rational similarity
matrix S based on Assumption 1. Intuitively, for every
column vector, the number of correlated columns should not
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Algorithm 3 Algorithm to solve NCARL-noisy.
Input: The tradeoff hyper-parameter α and γ, sparsity k,

mask matrix P , observed entries M , perturbation coeffi-
cient δ = 10−6, and maximum iterations tm = 50.
X ←M .
repeat
lij ← ‖xi − xj‖22.
Update S by Eq. (32).
S ← S+ST

2 .
Update D by Eq. (15).
L← DS − S.
Q̂← P +D + δI + αL.
Update X according to Eq. (20): xi ←miPiQ̂

−1.
until convergence or exceeding maximum iteration tm.

Output: Recovered matrix X .

be too large. In other words, si should be sparse. Besides,
we normalize S such that S1 = 1. In this paper, we design a
novel point-wise similarity learning model, which can pre-
cisely control the sparsity degree. The designed correlation
learning model is

min
S1=1,S≥0

n∑
i,j=1

Sij‖x(t)
i − x

(t)
j ‖

2
2 + ‖µTS‖2F

⇔ min
S1=1,S≥0

tr(X(t)LX(t)T ) + ‖µTS‖2F ,
(30)

where µ ∈ Rn represents hyper-parameters for n columns.
Theorem 6 states that the n hyper-parameters can be con-
verted into one parameter if we assume that the sparsity
degrees of columns are identical. According to Theorem
6, Corollary 2 demonstrates that the correlation learning
mechanism is scaling-invariant.

Theorem 6. In problem (30), each row of the optimal S is k-
sparse (i.e., ∀i, ‖si‖0 = k) if µ satisfies

1

2
(kl

(k)
i −

k∑
v=1

l
(v)
i ) < µ2

i ≤
1

2
(kl

(k+1)
i −

k∑
v=1

l
(v)
i ), (31)

where i = 1, 2, · · · , n, lij = ‖xi − xj‖22 and l(k)
i is the k-

th smallest value in {lij}nj=1. Moreover, if µ2
i = 1

2 (kl
(k+1)
i −

k∑
v=1

l
(v)
i ), S can be solved by

Sij = (
l
(k+1)
i − lij

k∑
v=1

l
(k+1)
i − l(v)

i

)+. (32)

Corollary 2. The adaptive graph learning process is scaling-
invariant. In other words, if X̂ = kX , then the learned similarity
Ŝ satisfies Ŝ = S.

To keep S symmetric, we set S ← (S + ST )/2. By
unifying the above correlation learning and the matrix com-
pletion model proposed in Section 3, the final objective of
NCARL can be formulated as

min
X,D,S

tr(X(D + αL)XT ) + α‖µTS‖2F ,

s.t. X � P = M, tr(D†) = 1, D ∈ Sn+, S1 = 1, S ≥ 0.
(33)

It should be pointed out that the added correlation learning
mechanism does not impact the optimization of D. The only
difference is that D should be replaced by D + αL in Eq.
(20) when optimizing X . Accordingly, the adaptive correla-
tion learning is compatible with the non-convex surrogate
such that problem (33) can be optimized by the alternative
method as well. The entire procedure is summarized in
Algorithm 2.

Similarly, the model for noisy case, NCARL-noisy, is
given as

min
X,D

‖X � P −M‖2F + γtr(XDXT )

+ α(tr(XLXT ) + ‖µTS‖2F ),

s.t. tr(D†) = 1, D ∈ Sn+, S1 = 1, S ≥ 0.

(34)

Analogous to Eq. (24), we have xi = miPi(Pi+γD̂+αL)−1.
The whole procedure to solve NCARL-noisy is similar with
Algorithm 2, and the concrete algorithm is stated in Algo-
rithm 3. The computational cost of updating X and D does
not change. The optimization of S requires O(n2 log n+n2)
and thus, the time complexity of each iteration is still
O(mn2).

5 EXPERIMENTS

In this section, we test the performance of NCARL and
its noisy extension on several real datasets. The experimen-
tal details, results, and analysis are reported as follows. All
codes are implemented by MATLAB 2019b.

5.1 Baseline Methods

In our experiments, 8 representative models are com-
pared with our model, including classical nuclear norm [4],
factored nuclear norm (F-Nuclear) [22], Schatten-p norm (Sp-
norm) [38], weighted nuclear norm (WNNM) [16], factored
model with `1-norm (RegL1) [24], factored group-sparse
regularization (FGSR) [25], LRFD [30], and S3LR [31]. Specif-
ically, S3LR introduces the sparse subspace learning [42].
Note that the subspace learning can also be reformulated
as the compatible form of our proposed surrogate. The
authors [31] use the traditional nuclear norm and develop
the optimization based on LADMM [37]. For Schatten-p
norm, we set p as 1/2 and 2/3. In particular, F-nuclear,
RegL1, and FGSR are factored models, which are usually
more efficient on large scale matrices. The hyper-parameters
of these methods are searched in the same way recorded in
corresponding papers. All codes are downloaded from the
authors’ homepages.

5.2 Datasets and Evaluation Metric

NCARL is first tested on 3 synthetic matrices with differ-
ent scale, including 500×300, 1500×1000, and 4000×3000.
The rank of these matrices are set as 100, 200, and 300,
respectively. As all models performs well on the clean data
when the missing entries is not too large, the missing rate,
ε, is set as 0.8 and 0.9. Moreover, we add tiny noise on 20
percent of observed entries to disturb models. Then, we test
different models on two real images (denoted by Image-1
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(a) Image-1 with random mask (b) Recovered Image-1 (c) Image-2 with random mask (d) Recovered Image-2

(e) Image-1 with block mask (f) Recovered Image-1 (g) Image-2 with block mask (h) Recovered Image-2

Fig. 3. Recovered images under different kinds of noise. For random noise, the missing rate, ε, is set as 0.5, while the missing block is 50× 50 for
the block mask. The colorful image is obtained by recovering images from three channels individually.

TABLE 1
MSE and consuming seconds on three synthetic matrices. ε represents the missing rate.

Size ε Metric Nuclear F-Nuclear S1/2 S2/3 WNNM RegL1 FGSR LRFD S3LR NCARL

500× 300

0.8
MSE 0.0428 0.0515 0.0410 0.0347 0.0958 0.0473 0.0549 0.1921 0.0387 0.0344
Time 3.9667 4.9850 3.7477 3.6688 18.274 34.134 9.7684 116.76 69.783 3.2725

0.9
MSE 0.0446 0.3484 0.0991 0.0709 0.0952 0.0492 0.0556 0.2996 0.0406 0.0397
Time 3.7660 6.6923 1.6861 1.6662 11.778 40.323 7.4459 119.77 85.002 1.6175

1500× 1000

0.8
MSE 0.0409 0.1079 0.0433 0.0357 0.1006 0.0584 0.0377 0.5788 0.0385 0.0328
Time 37.993 33.935 56.461 52.000 610.76 165.63 32.941 > 3000 1612.7 26.262

0.9
MSE 0.0404 0.5451 0.0599 0.0450 0.1028 0.0527 0.0453 0.6978 0.0389 0.0326
Time 42.730 36.529 29.242 28.973 237.84 126.18 86.099 > 3000 1556.8 27.176

4000× 3000

0.8
MSE 0.0383 0.1640 0.0445 0.0343 - - 0.0630 - - 0.0255
Time 2042.9 374.65 1290.3 1393.1 - - 713.15 - - 229.50

0.9
MSE 0.0360 0.5988 0.0529 0.0408 - - 0.0474 - - 0.0287
Time 2007.2 369.95 564.55 547.60 - - 633.48 - - 189.91

M
S

E

(a) MSE

T
im

e
 (

s
)

(b) Time

Fig. 4. Experiemntal results on MovieLens-1M with different ε. Note that
the nuclear norm consumes more than 3000s on this dataset.

and Image-2) from MSRC-v2 2 [43] and two recommendation
system datasets, MovieLens-100K and MovieLens-1M 3 [44].
The colorful images, which are stored as 320×240×3 tensors
in computer, are shown in Figure 2. Two MovieLens datasets
are two large matrices. Specifically, MovieLens-100K is a

2. research.microsoft.com/en-us/projects/objectclassrecognition/
3. grouplens.org/datasets/movielens/

943 × 1682 matrix while MovieLens-1M is a 6040 × 3952
matrix. For the images, we convert the image into grey
pictures to obtain a matrix and mask ε (0 < ε < 1) of
pixels randomly. For MovieLens-100K, since only parts of
entries are known, we mask ε of known entries randomly.
The normalized mean-squared-error (MSE) is employed to
measure the performance of various models. The definition
of MSE is

MSE =

√√√√∑(i,j)∈Υ\Ω(Xij − (Xij)∗)2∑
(i,j)∈Υ\Ω(Xij)2

∗
, (35)

where X∗ is the true matrix and Υ is the set of known
entries. Besides the recovery quality, the consuming time
is also a vital metric in our paper.

5.3 Experimental Setup
There are two hyper-parameters (α and k) to tune in

NCARL. It should be emphasized that the two hyper-
parameters are introduced via incorporating correlation
learning into the proposed surrogate that can be opti-
mized via a parameter-free algorithm. Therefore, the hyper-

research.microsoft.com/en-us/projects/objectclassrecognition/
grouplens.org/datasets/movielens/
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TABLE 2
MSE on two noiseless datasets. Image-1 and Image-2 denote the images chosen from MSRC-V2 while ML-100K denotes the recommendation

system dataset, MovieLens-100K. ε represents the missing rate.

ε Nuclear F-Nuclear S1/2 S2/3 WNNM RegL1 FGSR LRFD S3LR NCARL

Image-1

0.4 0.1285 0.1285 0.1298 0.1259 0.1930 0.1285 0.1460 0.1824 0.1223 0.1267
0.5 0.1338 0.1338 0.1359 0.1311 0.1926 0.1338 0.1492 0.2455 0.1268 0.1309
0.6 0.1396 0.1396 0.1441 0.1380 0.1967 0.1396 0.1555 0.2785 0.1328 0.1385
0.7 0.1468 0.1468 0.1559 0.1464 0.2065 0.1468 0.1621 0.3374 0.1397 0.1451

Image-2

0.4 0.1880 0.1880 0.1967 0.1877 0.2911 0.1880 0.2152 0.2933 0.1786 0.1766
0.5 0.1913 0.1913 0.2031 0.1925 0.2847 0.1913 0.2169 0.7527 0.1813 0.1804
0.6 0.1975 0.1975 0.2119 0.2002 0.2908 0.1975 0.2176 0.8971 0.1886 0.1892
0.7 0.2068 0.2067 0.2266 0.2117 0.3003 0.2067 0.2247 0.9773 0.1973 0.1991

ML-100K

0.4 0.2799 0.3570 0.3818 0.3342 0.3877 0.2763 0.3147 0.3962 0.2746 0.2733
0.5 0.2859 0.3782 0.4183 0.3650 0.3915 0.2815 0.3189 0.4219 0.2803 0.2787
0.6 0.2936 0.4050 0.4465 0.3918 0.4005 0.2878 0.3650 0.4463 0.2917 0.2848
0.7 0.3083 0.4503 0.4927 0.4386 0.4050 0.3002 0.3670 0.4511 0.3029 0.2953

TABLE 3
Consuming seconds of various models.

ε Nuclear F-Nuclear S1/2 S2/3 WNNM RegL1 FGSR LRFD S3LR NCARL

IMG-1

0.4 1.5624 0.7689 4.9093 4.8850 9.4661 15.7755 1.1416 32.5176 45.3176 0.6179
0.5 1.5574 0.7913 4.0239 4.1486 17.7139 18.2746 1.1728 33.8724 44.3514 0.9211
0.6 1.6201 0.8880 3.3858 3.3786 21.0650 19.8961 1.0485 44.7844 46.4201 1.0525
0.7 1.5986 0.6103 2.6372 2.6854 13.8199 22.8290 0.9676 46.2483 47.9612 0.9640

IMG-2

0.4 1.7186 1.1745 7.1439 7.5223 11.1063 15.4871 3.2615 67.1065 69.5478 1.3193
0.5 1.9493 1.4213 7.7525 7.5294 12.2682 17.2063 2.8130 71.0738 66.4808 1.4625
0.6 1.9046 1.7328 5.4397 5.5025 25.9807 18.8793 2.5439 94.2695 62.4828 1.4859
0.7 1.8639 1.0327 4.5917 4.3262 17.1553 21.3594 2.1404 91.5482 61.4658 1.2273

ML-100K

0.4 32.5527 38.8636 43.2083 42.8679 180.6862 1333.5766 53.9980 > 3000 > 3000 7.9339
0.5 34.9918 39.2142 41.6637 41.5215 144.4549 1538.9810 46.3761 > 3000 > 3000 8.0379
0.6 34.2989 38.8689 40.5688 40.2747 109.9873 1677.0022 44.2300 > 3000 > 3000 7.7124
0.7 34.7444 38.5751 38.5936 38.6748 86.8998 1920.2985 38.8642 > 3000 > 3000 8.4206

parameters in NCARL do not contradict our claim about
parameter-free optimization. Specifically, α is searched from
{100, 101, · · · , 104} and k is searched from {5, 10, 20, 50}.
Note that the perturbation coefficient δ is set as 10−6 and
the maximum iteration tm is set as 50. For factored models,
the upper-bounds of rank are identical to each other. On
synthetic datasets, the upper-bounds are set as the exact
rank. On two images, they are fixed as 200 while they are
set as 500 on MovieLens datasets. To ensure fairness, all
methods with randomness are run 5 times and the average
results are reported.

5.4 Experimental Results

5.4.1 Synthetic Datasets

The results on synthetic low-rank matrices are summa-
rized in Table 1. Since WNNM, RegL1, LRFD, and S3LR
require too much time to converge, we use dash marks to
represent the unavailability of these methods. The optimal
and suboptimal results are bolded. From Table 1, NCARL
shows the strong stability and impressive efficiency due to
the fast convergence. It should be emphasized that S3LR
usually provides the competitive results but with too much
time. It also provides convincing evidence about the effec-
tiveness of extra mechanisms for matrix completion. The
major barrier to introduce additional information is the

complicated and inefficient optimization. Therefore, the pro-
posed surrogate, which is compatible with diverse models
in machine learning, is meaningful.

5.4.2 Real Datasets

For all real datasets, we run all methods under var-
ious missing rates (or named as the mask rate), ε ∈
{0.4, 0.5, 0.6, 0.7}. MSEs are recorded in Table 2. For the
two images and MovieLens-100K, the best results and
second ones are highlighted in the boldface, while the
consuming time is reported in Table 3. Due to the large
scale of MovieLens-1M, several compared methods (Nu-
clear, WNNM, RegL1, LRFD, and S3LR) become ineffi-
cient and thereby we only employ F-nuclear, Schatten-p
norm, and FGSR as our main competitors. Although the
classical nuclear norm model is quite time-consuming on
MovieLens-1M, it acts as a baseline model. MSE and time
on MovieLens-1M are shown in Figure 4. From Table 2,
Table 3, and Figure 4, we conclude that NCARL obtains
preferable performance on all datasets with the least time.
As we expect, factored models like FGSR and F-Nuclear
are more efficient especially on two MovieLens datasets.
Although the performance of S3LR is usually impressive
compared with other competitors due to the additional
subspace exploration, its time cost is extremely expensive.
Specifically, it needs more than 3000s to converge, which is
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(a) Polluted Image-1 (b) γ = 10−6, r = 240 (c) γ = 10−3, r = 210 (d) γ = 10−1, r = 20

(e) Polluted Image-2 (f) γ = 10−6, r = 240 (g) γ = 10−3, r = 204 (h) γ = 10−1, r = 2

Fig. 5. Recovered images employing noisy model with different γ. r is the average rank of recovered images from three channels. The mask rate,
ε, is set as 0.5.

TABLE 4
Ablation Experiments of NCARL (ε = 0.5): Correlation represents the correlation preserving term and Adaptive denotes the adaptive learning

mechanism.

Correlation Adaptive
Image-1 Image-2 MovieLens-100K MovieLens-1M

MSE Time (s) MSE Time (s) MSE Time (s) MSE Time (s)

Method-A 7 7 0.1484 0.8297 0.2030 1.2890 0.3905 5.9932 0.6481 236.4501
Method-B X 7 0.1476 0.8098 0.2027 1.2236 0.2922 7.0448 0.2721 241.2230
NCARL X X 0.1309 0.7302 0.1804 1.4625 0.2787 8.0379 0.2542 260.1178

unacceptable in practice, even though it returns the second-
best results. By contrast, NCARL performs significantly in
terms of both MSE and time.

To test the recovery quality under different kinds of
noise, images are contaminated by random noise and block
noise. NCARL works well under both noises and the re-
covered images are shown in Figure 3. Besides, the perfor-
mance of noisy extension, NCARL-noisy, is also illustrated
in Figure 5. To establish the low-rank property (indicated
by Theorem 5) of our surrogate meanwhile, we show the
recovery results with different γ. Note that the closed-form
solution is approximate, singular values of the recovery
images approach 0 numerically. Therefore, we regard the
singular values smaller than 10−3 as 0 and mark the number
of singular values larger than 10−3 as the rank r. Obviously,
the rank of the obtained image becomes smaller with the
growth of γ from Figure 5.

To testify the rapid convergence of NCARL, we show the
objective value of NCARL on Image-1 and MovieLens-100K
in Figure 6. Clearly, NCARL converges fast within 20 itera-
tions. This attractive trait is more apparent on images. Con-
trasively, the other models, which are solved by gradient-
based methods or ADMM-based methods, require hundreds
or thousands of iterations to converge. Accordingly, NCARL
can be used in large scale datasets (like MovieLens-1M) as
well, though the computational complexity of each iteration
is O(mn2).

To study the effect of sparsity k, results with different
k are shown in Figure 7, where α is assigned as the best
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(b) MovieLens-100K

Fig. 6. Convergence of Algorithm 2 on Image-1 and MovieLens-100K
with ε = 0.5. Clearly, NCARL converges rapidly on both datasets,
especially Image-1

value from {100, 101, · · · , 104}. In our experiments, α is set
as 100 on Image-1 and 102 on MovieLens-100K. From Figure
7, it is not hard to find that the proposed model will get the
best performance when k is not too large and the optimal k
becomes larger with the increase of matrix scale. On Image-
1, the best sparsity is 10 while k = 100 will lead to the best
MSE on MovieLens-100K. Moreover, the increase of k will
not burden the time cost obviously.

5.5 Ablation Analysis
To test the impact of different parts, we design ablation

experiments on all datasets. There are totally 2 mechanisms
to testify, column correlation preserving term and adaptive
correlation learning mechanism. Accordingly, we conduct
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Fig. 7. The influence of sparsity k to MSE on Image-1 and MovieLens-
100K with ε = 0.5.

experiments to study the role of two parts and the results
are recorded in Table 4. On the one hand, we conclude that
the correlation preserving is useful for LRMC, especially on
recommendation system datasets. Specifically speaking, the
correlation preserving decreases MSE by about 0.1 and 0.37
on MovieLens-100K and MovieLens-1M, respectively. On
the other hand, the adaptive learning mechanism further
promotes the performance of our model. Compared with the
method only with the correlation preserving, the adaptive
learning reduces MSE by about 0.2 on two MovieLens
datasets.

In particular, the two mechanisms do not burden the
time cost significantly. In contrast, S3LR, which introduces
sparse subspace learning into the nuclear norm model,
requires much more time to train than the original nuclear
model.

6 CONCLUSION

In this paper, we propose a novel model for low-rank
matrix completion. Rather than the nuclear norm, a non-
convex surrogate is developed. Although the surrogate is
non-convex, it is easy to optimize and extend since the op-
timization consists of multiple closed-form solutions. Based
on the proposed relaxation, we introduce an adaptive cor-
relation learning to explore the underlying information of
the matrix, which is inspired by recommendation systems.
Although the computational complexity of each iteration is
O(mn2), the algorithm converges so fast that it needs less
time than the existing methods. We conduct experiments on
2 real images and 2 recommendation system datasets and
the superiority of our model is supported on both recovery
quality and consuming time. In the future work, we will
focus on the investigation about the convergence rate since
the rapid convergence is only verified empirically.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11
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Fig. 8. Proof sketch of the main theoretical results.

APPENDIX A
PROOFS

In this part, proofs of the above theorems and proposi-
tions are elaborated successively.

A.1 Proof of Theorem 1
Proof. Let J1 = min

U,W
‖W‖2,0, s.t. (W,U) ∈ Ψ′,

J2 = min
X

rank(X), s.t. X � P = M.
(36)

On the one hand, for the optimal (W∗, U∗), we can easily
find an X = (U∗W∗)

T ∈ {X|X � P = M}, which indicates
J2 ≤ J1.

On the other hand, for the optimal X∗, we can apply the
full-rank factorization on X∗, and thus we can get J1 ≤ J2.

Overall, we have J1 = J2.

A.2 Proof of Theorem 2
The following theorem demonstrates that the above ob-

jective function can be converted into a smooth function that
has a continuous first-order derivative.

Lemma 3. Given k non-negative constants ci and variable x ∈
{x|xT 1 = 1,x > 0}, the following inequality holds

k∑
i=1

c2i
xi
≥ (

k∑
i=1

ci)
2. (37)

The equality holds if and only if xi = ci∑k
i=1 ci

.

Proof. Let f(x) =
∑k
i=1

c2i
xi

where x > 0. At first, we will
show that f(x) is convex. Clearly,

∇f(x) = −


c21
x2
i

...
c2k
x2
k

 ,∇2f(x) = 2


c21
x3
1

. . .
c2k
x3
k

 ∈ Sk++.

(38)
The convex property indicates that the objective is equiv-
alent to prove (

∑k
i=1 ci)

2 is the infimum of f(x) for x ∈
{x|xT 1 = 1,x > 0}. Now, we solve

min
xT 1=1,x≥0

k∑
i=1

c2i
xi
, (39)

via Lagrangian method. Let λ and η ≥ 0 be Lagrangian
multipliers,

L =
k∑
i=1

c2i
xi

+ λ(
k∑
i=1

xi − 1)− ηTx. (40)

Therefore, the KKT conditions can be formulated as
− c2i
x2
i

+ λ− ηi = 0,
k∑
i=1

xi = 1,

ηixi = 0,

⇒


ηi = 0,

λ = (
k∑
i=1

ci)
2,

xi = ci
k∑
i=1

ci

.
(41)

Substitute the solution into f(x) and we get f∗(x) =
(
∑k
i=1 ci)

2. Hence, the lemma is proved.

Proof of Theorem 1. To keep simplicity, let{
J0 = ‖(WTUT )� P −M‖2F + γ‖W‖22,1,
J1 = ‖X � P −M‖2F + γtr(XDXT ).

(42)

On the one hand, for any W and orthogonal matrix U ,
we can construct X = WTUT , D = UΛUT , and Λ =

diag( ‖w
i‖2

‖W‖2,1 )†. Then,

tr(XDXT ) = tr(XUΛUTXT )

=tr(WTΛW ) = tr(
∑
i

Λiiw
iTwi)

=
∑
i

tr(Λii‖wi‖22) = ‖W‖22,1.
(43)

Hence, we have minJ1 ≤ minJ0. On the other hand, for
any X and D, we can perform full rank factorization to
X and eigenvalue factorization to D, which means X =
WTUT and D = UΛUT . Similarly,

tr(XDXT ) =
∑
i

tr(Λii‖wi‖22). (44)

According to Lemma 3, we have tr(XDXT ) ≥
(
∑
i ‖wi‖2)2 = ‖W‖22,1. The equality holds if and only if

Λii = ( ‖w
i‖2

‖W‖2,1 )†. Hence, minJ1 ≥ minJ0.
In sum, the theorem is proved.

A.3 Proof of Proposition 1

Proof. We can consider the special case that X = x ∈ R,
D = y ∈ R, and P = M = 0. Accordingly,

∇tr(XDXT ) =

[
2xy
x2

]
⇒∇2tr(XDXT ) =

[
2y 2x
2x 0

]
= H.

(45)

When x = y = 1 and v = [1;−1], we have vTHv = −1 < 0.
Hence, the problem is non-convex. Note that the constraint
tr(D†) = 1 is not convex such that the problem regarding
D is non-convex. When D is fixed, the subproblem,

min
X

tr(XDXT ), s.t. X � P = M, (46)

is convex. To show it, we rewrite tr(XDXT ) as

tr(XDXT ) =
∑
i

xiD(xi)T . (47)
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Expand X according to rows, and we have

∇tr(XDXT ) =


D
D
...
D



⇒∇2tr(XDXT ) =


D 0 · · · 0
0 D · · · 0
...

...
. . .

...
0 0 · · · D

 ∈ Smn+ .

(48)

Hence, the proposition is proved.

A.4 Proof of Theorem 3

Proof. According to the Cauchy-Schwarz inequality, we
have

tr(XDXT )

=tr(D
1
2 (XTX)

1
2 (D

1
2 (XTX)

1
2 )T ) · tr((D†) 1

2 (D†)
1
2 )

≥tr(D
1
2 (XTX)

1
2 (D†)

1
2 )2.

(49)

The equality holds if and only if

D
1
2 (XTX)

1
2 = k(D†)

1
2 . (50)

Since X = WTUT and D = UΛUT , we can rewrite the
right hand as

tr(XDXT ) ≥ tr(UΛ
1
2UT (XTX)

1
2U(Λ†)

1
2UT )2

= tr(UÎUT (XTX)
1
2 )2

= (
∑
i

1[
‖wi‖2
‖W‖2,1

> 0]tr(uiu
T
i (XTX)

1
2 ))2.

(51)

where Î = ΛΛ†. Note that tr(uiu
T
i (XTX)

1
2 ) can be rewrit-

ten as

tr(uiu
T
i (XTX)

1
2 ) = tr(uiu

T
i (UWWTUT )

1
2 )

= tr(uTi U(WWT )
1
2UTui)

= tr(eTi V S
1
2V Tei),

(52)

where ei = UTui and WWT = V SV T . Note that
eTi V SV

Tei = 0, eTi V S
1
2V Tei = 0. Hence, we have

tr(XDXT ) ≥ (
∑
i

1[
‖wi‖2
‖W‖2,1

> 0]tr(uiu
T
i (XTX)

1
2 ))2

= tr((XTX)
1
2 )2 = ‖X‖2∗,

(53)

where 1[·] is the indicator function. Formally, 1[·] = 1 if · is
true; otherwise, 1[·] = 0.

A.5 Proof of Lemma 1

Proof. Given a matrix Q ∈ Sn++ and arbitrary vector x ∈ Rn,
we have

xTQx > 0. (54)

For any binary vector p, suppose that ‖p‖0 = k. Accord-
ingly, the sub-matrix [Q]p,p is a k × k matrix. Given an
arbitrary vector y ∈ Rk, we can construct a n-dimension

vector, v, such that v[p] = y and [v]p̄ = 0. Accordingly, we
have that

0 < vTQv =
n∑

i,j=1

vivjQij = yT [Q]p,py. (55)

Hence, the theorem is proved.

A.6 Proof of Theorem 4
To prove Theorem 4 completely, we will prove it by two

sub-theorems. First, if Dii 6= 0 for any i, we aim to prove
the following theorem.

Theorem 7. Let X̂ and V̂ denote the approximate solutions
defined as {

γ̂i = −2mi(Fi)
pi+,

x̂i = mi(Fi)
pi+D̂−1.

(56)

where Fi = PiD̂
−1Pi, Hi = [Fi]pi,pi ∈ Rri×ri and ri =

‖pi‖0. If ∀i,Dii 6= 0, then there exists a constant u, which is
independent on δ, such that X̂�P = M and ‖∇XL(X̂, V̂ )‖ ≤
2δu‖M‖.

The above theorem proves Theorem 4 partially. Then, we
will prove the more general case when there exists i which
satisfies Dii = 0, which completes the proof.

A.6.1 Proof of Theorem 7
Lemma 4. Given a binary vector p ∈ Rn and a square matrix
S ∈ Rn×n, suppose that [S]p,p is invertible. Then we have
PSPSp+ = P where P = diag(p).

Proof. Let A = PSP and B = Sp+. Then we have

(AB)ij =
∑
k

aikbik. (57)

It is not hard to see that

AB = P. (58)

Lemma 5. For any S ∈ Sn++ and i ∈ {1, 2, · · · , n}, Sii 6= 0.

Proof. Use the eigenvalue decomposition, and we can factor
S as

S = UTΛU. (59)

Then, we have
Sii = uTi Λui > 0. (60)

Lemma 6. Given a matrix A ∈ Rm×n and x ∈ Rn, the
following inequality,

‖Ax‖2 ≤ ‖A‖F ‖x‖2. (61)

Lemma 7. [45] Let A ∈ Rn×n be an invertible matrix, and
B = A−1. If bqp 6= 0 for any p, q ∈ {1, 2, · · · , n}, then Ap̄,q̄ ∈
R(n−1)×(n−1) is invertible. Let M = A−1

p̄,q̄ , and then we have

mij = bij −
bipbqj
bqp

. (62)

The lemma is proved in literature [45]. To keep the
notations uncluttered, we use ‖ · ‖ to replace ‖ · ‖F for short.
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Lemma 8. For ∀S ∈ Sn++ and binary vector p which satisfies
‖p‖0 = n− 1, ‖Sp+S‖2 < (n− 1) +

‖bk‖22
b2kk

where pk = 0 and
B = S−1.

Proof. Without loss of generality, we assume that k = n, i.e.,
pn = 0. To be simple, let M = Sp+. According to Lemma 7,
we have

mij =

{
bij − binbnj

bnn
, i, j ≤ n− 1;

0, otherwise.
(63)

Let T = Sp+S. Without formal proof, tn = 0 and [T ]p,p =
I . Now, we focus on tn using the above equation. For i 6= n,

tin =
∑
l

milaln =
∑
l

(bil −
binbnl
bnn

)aln

=
∑
l

bilaln −
bin
bnn

∑
l

bnlaln.

(64)

Due to AB = I , we have

(AB)in =
∑
l

bilaln =

{
1, i = n;
0, i 6= n.

(65)

Accordingly,

tin = − bin
bnn

. (66)

Hence, we have

‖Sp+S‖2 = ‖T‖2 = (n− 1) +
∑
i 6=n

b2in
b2nn

< (n− 1) +
‖bn‖22
b2nn

.

(67)
Hence, the lemma is proved.

Lemma 9. If ∀i,Dii 6= 0, then

‖d̂i‖22
d̂2
ii

<
‖di‖22
d2
ii

. (68)

Since the lemma is obvious, we omit the corresponding
proof.

Now, we begin the proof of Theorem 7.

Proof. First, we show that X̂ � P = M . Note that we only
need to prove that

x̂iPi = mi. (69)

Note that

(Fi)
pi+Pi = (Fi)

pi+. (70)

Combine the above equation and Eq. (56), and we have

xiPi = mi(Fi)
pi+D̂−1Pi = mi(Fi)

pi+PiD̂
−1Pi

= mi(Fi)
pi+Fi = miPi = mi.

(71)

where we use the lemma and fact X̂ � P = M . Hence, we
prove that X̂ � P = M holds.

Now, we focus on how to prove ‖∇XL(X̂, V̂ )‖ ≤
2δu‖M‖. Let G = ∇XL(X̂, V̂ ) represent the gradient.
Substitute Eq. (56) into G, and we have

gi = 2xiD + viPi = 2mi(Fi)
pi+D̂−1D − 2mi(Fi)

pi+P

= 2mi(Fi)
pi+D̂−1D̂ − 2δmi(Fi)

pi+D̂−1 − 2mi(Fi)
pi+P

= 2mi(Fi)
pi+ − 2mi(Fi)

pi+ − 2δmi(Fi)
pi+D̂−1

= −2δmi(Fi)
pi+D̂−1

= −2δmi(PiD̂
−1Pi)

pi+D̂−1.
(72)

According to Lemma 6, we have

‖gi‖ = 2δ‖mi(Fi)
pi+D̂−1‖

≤ 2δ‖mi‖‖(Fi)p
i+D̂−1‖.

(73)

Now, we need to prove that there exists a constant u such
that ‖(Fi)p

i+D̂−1‖ ≤ u. Let S = D̂−1, and we have

‖(Fi)p+D̂−1‖
=‖(S)p+S‖
=‖(S)p1+P1P2 · · ·S‖
=‖(S)p1+P1SP1(S)p1+P2SP2(S)p2+ · · ·S‖
≤‖(S)p1+P1SP1‖ · ‖(S)p1+P2SP2‖ · · · ‖(S)pt+S‖.

(74)

where [p1,p2, · · · ,pt] is a sequence, p1 = p, and ‖pt‖0 =
n − 1. pi+1 is constructed by replace a zero entry of pi.
According to Lemma 8, we have

‖(S)pt+S‖2 < (n− 1) +
‖d̂k‖22
d̂2
kk

. (75)

where (pt)k = 0. According to the Lemma 9, there exists a
constant ct such that

‖d̂k‖22
d̂2
kk

≤ ct. (76)

Hence,
‖(S)pt+S‖2 < (n− 1) + nc2t . (77)

Similarly, it is not hard to find that

‖(S)pi+Pi+1SPi+1‖2 < (n− 1) + nc2i . (78)

Let

u =

√∏
i

[(n− 1) + nc2i ]. (79)

Hence, the theorem is proved.

A.6.2 Proof of the General Case
For any matrix A, let A−i denote a sub-matrix which is

obtained by deleting the i-th column. Besides, define πi as
a vector where its i-th entry is 0 and others are 1.

The following lemma explains the situation when Dii =
0.

Lemma 10. As D is computed by Algorithm 1, Dii = 0 if and
only if xi = 0.

Proof. On the one hand, if xi = 0, then (XTX)ii = 0. Let
XTX = V TΛV . Note that

(XTX)ii = vTi Λvi = 0. (80)
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Clearly, (XTX)
1
2 = V TΛ

1
2V . Hence, we have

((XTX)
1
2 )ii = vTi Λ

1
2vi = 0. (81)

Similarly,

((XTX)
†
2 )ii = vTi Λ

†
2vi. (82)

On the other hand, the proof of Dii = 0 ⇒ xi = 0 is
similar.

Corollary 3. As D is computed by Algorithm 1, if Dii = 0, then
‖γi‖0 = ‖γi‖0 = 0.

Lemma 11. For any i, define πi ∈ Rn+1. Given an arbitrary
matrix Q ∈ Sn+, let A be an (n + 1) × (n + 1) matrix where
[A]πi,πi = Q and [A]π̄i,π̄i = 0. Then we will have A ≥ 0,
[A

1
2 ]πi,πi = Q

1
2 and [A

1
2 ]π̄i,π̄i = 0.

The proof is similar with Lemma 4.

Lemma 12. Let X∗ = arg minX�P=M ‖X‖∗. If ∀i, (i, j) /∈ Ω,
then ‖(xj)∗‖0 = 0.

Proof. Let
R = arg min

X−i�P−i=M−i
‖X‖∗. (83)

If (X−i)∗ 6= R, then we have ‖R‖∗ < ‖(X−i)∗‖∗. Thereby
we can construct a matrix X0 that satisfies

[X0]−i = R, [X0]i,· = 0. (84)

According to Lemma 11, we have

‖X0‖∗ = tr[(XT
0 X0)

1
2 ] = tr[(RTR)

1
2 ] = ‖R‖∗ > ‖(X−i)∗‖∗,

(85)
which results in a conflict.

Hence, (X−i)∗ = R. In other words, (xi)∗ = 0.

Proof of Theorem 4. As is shown in Algorithm 1 and Lemma
10, if ∀i, (i, j) /∈ Ω, then xi, computed by

xi = m̂i(F̂i)
pi+(HiD̂Hi)

pi+, (86)

will always be 0. According to Lemma 12, the neglect of the
i-th column is sound due to there being no observed entry.

To complete the proof of Theorem 4, we can convert the
situation, where ∃i,Dii = 0, into the simple case which has
been discussed in the last subsection. Specifically speaking,
provided that ∀k, (k, i) /∈ Ω, the original problem can be
transformed into

min
X−i,[D]πi,πi

tr(X−i[D]πi,πiX
T
−i),

s.t. X−i � P−i = M−i, [D]πi,πi ≥ 0, tr([D]†πi,πi) = 1.
(87)

The above transformation can be performed multiple times
until all diagonal entries ofD are non-zero. LetX−,D−, and
Γ− (Lagrangian multipliers) be the corresponding matrices
when all unobserved columns are removed. Clearly, we
have

‖∇XL(X,Γ)‖ = ‖∇X−L(X−,Γ−)‖. (88)

Combining with the conclusion of Theorem 7, the theorem
is thus proved.

A.7 Proof of Corollary 1

The proof of Corollary 1 relies on Theorem 5 while the
latter does not rely on the former. Therefore, we just employ
the conclusion of Theorem 5.

Proof. The proof is similar to the one for Theorem 5. If
each step decreases the objective value, the algorithm has to
approach a local minimum since the loss is lower-bounded.

Clearly, if δ → 0, then the solution that Algorithm 1
tends toward will be a valid solution for problem (90). For
this convex problem, the solution is indeed its optimum. As
is shown in the proof of Theorem 5, it is also the global
optimum for the proposed surrogate.

Hence, the theorem is proved.

A.8 Proof of Theorem 5

Proof. According to Proposition 1, problem (11) in the main
paper is a non-convex optimization problem. From Theorem
2, we find that if the model converges, the optimal solutions,
X∗ and D∗, should satisfy

R((X∗)
T ) ⊆ R((D∗)

†), (89)

where R(·) represents the space spanned by columns. Let
G = D†. Interestingly, the above condition indicates that
problem (11) has the same optimum with a sub-problem,

min
X,G

tr(XG†XT ),

s.t. X � P = M, tr(G) = 1, G ∈ Sn+,R(XT ) ⊆ R(G).
(90)

It should be emphasized that the feasible domain of the
above problem is smaller than problem (11) such that we
call it a sub-problem.

According to Page 76 and 651 of [46], the sub-problem
is convex. As we analyse above, X∗ and D∗ are also valid
solution for the sub-problem since R((X∗)

T ) ⊆ R((D∗)
†).

Via reductio, there is no solution which leads to a smaller
value of the sub-problem. Combining with the convexity of
the sub-problem, (X∗, D∗) is the optimum of it. Suppose
that there exists (X∗, D0) that satisfies the constraints of
problem (11) but does not obey R((X∗)

T ) ⊆ R(D†0). Then,
we can set

D̂0 = (
((X∗)

TX∗)
1
2

tr(((X∗)TX∗)
1
2 )

)†, (91)

such that tr(X∗D̂0(X∗)
T ) ≤ tr(X∗D0(X∗)

T ). Since
tr(X∗D0(X∗)

T ) ≤ tr(X∗D̂0(X∗)
T ), tr(X∗D0(X∗)

T ) =
tr(X∗D̂0(X∗)

T ). In other words, (X∗, D̂0) is also an optimal
solution of problem (11).

Furthermore, the optimal solution of the sub-problem
should be the optimal solution of problem (11).

Now, we need to show the following equation,

‖X∗‖2∗ = min
X�P=M

‖X‖2∗. (92)

Suppose that X̃ = arg min
X�P=M

‖X‖2∗. Since X∗ � P = M ,

‖X∗‖2∗ ≥ ‖X̃‖2∗. Similarly, if we set

D̃ = (
(X̃T X̃)

1
2

tr((X̃T X̃)
1
2 )

)†, (93)
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then (X̃, D̃) is a solution of the sub-problem. According to
Theorem 3, we have ‖X∗‖2∗ ≤ ‖X̃‖2∗. Therefore, we have
proven ‖X̃‖2∗ = ‖X∗‖2∗, which means X∗ = X̃ .

Hence, the theorem is proved.

A.9 Proof of Theorem 6

Proof. Let lij = ‖xi − xj‖22, and the problem to solve is

min
S1=1,S≥0

tr(XLXT ) + ‖µTS‖2F

⇔ min
S1=1,S≥0

n∑
i

n∑
j

lijSij + µ2
i

n∑
j

S2
ij .

(94)

And the problem is equivalent to solve the following n
subproblems individually,

min
si1=1,si≥0

n∑
j

lijSij + µ2
i

∑
j

S2
ij . (95)

More abstractly, every subproblem is equivalent to

min
αT 1n=1,α≥0

‖α+
f

2λ
‖22. (96)

Similarly, the Lagrangian of the above equation is

Lα = ‖α+
f

2λ
‖22 + ξ(1−

n∑
i=1

αi)−
n∑
i=1

βiαi, (97)

where ξ and βi is Lagrangian variables. The KKT conditions
are given as 

∂Lα
∂αi

= αi + fi
2λ − ξ − βi = 0

βiαi = 0
n∑
i=1

αi = 1, βi ≥ 0, αi ≥ 0.
(98)

Then we consider the following cases{
αi = 0⇒ ξ − fi

2λ = −βi ≤ 0

αi ≥ 0⇒ αi = ξ − fi
2λ ,

(99)

which means
αi = (ξ − fi

2λ
)+. (100)

Without loss of generality, assume that f1 ≤ f2 ≤ · · · ≤ fn.

If ξ− fk+1

2λ ≤ 0 < ξ− fk
2λ , then α is k-sparse. Due to

n∑
i=1

αi =

1, we have
n∑
i=1

αi = kξ −
k∑
i=1

fi
2λ

= 1, (101)

which means

ξ =
1

2kλ

k∑
i=1

fi +
1

k
. (102)

Combine with our assumption and we have

1
2kλ

k∑
i=1

fi + 1
k −

fk+1

2λ ≤ 0 < 1
2kλ

k∑
i=1

fi + 1
k −

fk
2λ

⇒ fk
2λ <

1
2kλ

k∑
i=1

fi + 1
k ≤

fk+1

2λ

⇒ kfk
2 −

1
2

k∑
i=1

fi < λ ≤ kfk+1

2 − 1
2

k∑
i=1

fi.

(103)

Hence, if λ is set within the above range, then α will be
k-sparse. In other words, λ is converted into the amount
of neighbors k. In classification tasks, as the amount of k
frequently takes a small proportion, k is set as a large value
and named as the number of activation samples.

If we simply set λ as its upper bound, i.e., λ = kfk+1

2 −
1
2

k∑
i=1

fi, we have

αi = (

k∑
i=1

fi + 2λ

2kλ
− fi

2λ
)+ = (

fk+1 − fi

kfk+1 −
k∑
i=1

fi

)+. (104)

Hence, the theorem is proved.
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