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Cross-modal Learning for Domain Adaptation
in 3D Semantic Segmentation

Maximilian Jaritz, Tuan-Hung Vu, Raoul de Charette, Émilie Wirbel, and Patrick Pérez

Abstract—Domain adaptation is an important task to enable learning when labels are scarce. While most works focus only on the
image modality, there are many important multi-modal datasets. In order to leverage multi-modality for domain adaptation, we propose
cross-modal learning, where we enforce consistency between the predictions of two modalities via mutual mimicking. We constrain our
network to make correct predictions on labeled data and consistent predictions across modalities on unlabeled target-domain data.
Experiments in unsupervised and semi-supervised domain adaptation settings prove the effectiveness of this novel domain adaptation
strategy. Specifically, we evaluate on the task of 3D semantic segmentation from either the 2D image, the 3D point cloud or from both.
We leverage recent driving datasets to produce a wide variety of domain adaptation scenarios including changes in scene layout,
lighting, sensor setup and weather, as well as the synthetic-to-real setup. Our method significantly improves over previous uni-modal
adaptation baselines on all adaption scenarios. Our code is publicly available at this url: https://github.com/valeoai/xmuda journal

Index Terms—Domain adaptation, unsupervised learning, semi-supervised learning, semantic segmentation, 2D/3D
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1 INTRODUCTION

S CENE understanding is central to many applications
and, among other tasks, semantic segmentation from

images has been extensively studied. However, for applica-
tions that involve interaction with the world, e.g., in robotics,
autonomous driving or virtual reality, scenes should be
understood in 3D. In this context, 3D semantic segmentation
is gaining attention and an increasing number of datasets
provide jointly annotated 3D point clouds (PCs) and 2D im-
ages. The modalities are complementary since PCs provide
geometry while images capture texture and color.

Manual segmentation is tedious in images [1], but even
more so in 3D PCs, because the annotator has to inspect
the scene from different viewpoints [2]. This results in a
high annotation cost. Unfortunately, the question whether
sufficient ground truth can be obtained to train a large
neural network can make or break a computer vision sys-
tem. Our goal in this work is to alleviate this problem with
transfer learning, in particular domain adaptation (DA), i.e.
we leverage multiple modalities (2D/3D) to improve the
adaptation of a model to a target domain.

We consider both unsupervised and semi-supervised
DA, that is when labels are available in the source domain,
but not (or only partially) in the target domain. Most of
DA literature investigates the image modality [3], [4], [5],
[6], [7], but only a few address the point-cloud modal-
ity [8]. Different from these, we perform DA on images and
point clouds simultaneously with the aim to explicitly exploit
multi-modality for the DA goal.

We use driving data from synchronized cameras and
LiDARs, and want to profit from the fact that the domain
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Fig. 1: Overview of the proposed cross-modal learning
for domain adaptation. Here, a 2D and a 3D network
take an image and a point cloud as inputs respectively
and predict their own 3D segmentation labels. Note, that
the 2D predictions are uplifted to 3D. The proposed cross-
modal learning enforces consistency between the 2D and 3D
predictions via mutual mimicking, which proves beneficial
in both unsupervised and semi-supervised domain adapta-
tion.

gaps differ across these sensors. For example, a LiDAR is
more robust to lighting changes (e.g., day/night) than a
camera. On the other hand, LiDAR sensing density varies
with the sensor setup while cameras always output dense
images. Our work takes advantage of the cross-modal dis-
crepancies while preserving the best performance of each
sensor thanks to the dual-head architecture – thus avoiding
that the limitations of one modality negatively affect the
other modality’s performance.

We propose a cross-modal loss which enforces con-
sistency between multi-modal predictions, as depicted in
Fig. 1. Our specifically designed dual-head architecture
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enables robust training by decoupling the supervised main
segmentation loss from the unsupervised cross-modal loss.

We demonstrate that our cross-modal framework pro-
posal can be either applied in the unsupervised set-
ting (coined xMUDA), or semi-supervised setting (coined
xMoSSDA).

This paper is an extension of our work [9] which cov-
ered only UDA evaluated on three scenarios. Besides the
significant expansion of the experimental evaluation (Sec. 4)
– including the addition of two new DA scenarios (see
Fig. 5), the evaluation on the newly released nuScenes-
Lidarseg [10], and the inclusion of new baselines –, we
also add a completely new use case of semi-supervised DA
(SSDA) in Secs. 3.3 and 4.4. The original code base of [9] will
be extended with new experiments and the SSDA set up.

In summary our contributions are:

• We introduce new domain adaptation scenarios (4
unsupervised and 4 semi-supervised), for the task of
3D semantic segmentation, leveraging recent 2D-3D
driving datasets with cameras and LiDARs;

• We propose a new DA approach with an unsuper-
vised cross-modal loss which enforces multi-modal
consistency and is complementary to other existing
unsupervised techniques [11];

• We design a robust dual-head architecture which
uncouples the cross-modal loss from the main seg-
mentation objective;

• We evaluate xMUDA and xMoSSDA, our unsu-
pervised and semi-supervised DA scenarios respec-
tively, and demonstrate their superior performance.

2 RELATED WORK

2.1 Unsupervised Domain Adaptation

The past few years have seen an increasing interest in
unsupervised domain adaptation (UDA) for complex per-
ception tasks like object detection and semantic segmenta-
tion. Under the hood of such methods lies the same spirit
of learning domain-invariant representations, i.e., features
coming from different domains should introduce insignifi-
cant discrepancies. Some works promote adversarial train-
ing to minimize the source-target distribution shift, either
on pixel- [3], feature- [4] or output-space [5], [6]. Instead of
adversarial learning, Fourier transform can also be used to
stylize the source images as target [14]. Revisited from semi-
supervised learning [11], self-training with pseudo-labels
has also recently proved effective for UDA [7], [15], [16].

Recent works start addressing UDA in the 3D world, i.e.,
for point clouds. LiDAR DA works are surveyed in [17].
PointDAN [18] proposes to jointly align local and global
features used for classification. Achituve et al. [19] improve
UDA performance using self-supervised learning. Wu et
al. [8] adopt activation correlation alignment [20] for UDA in
3D segmentation from LiDAR point clouds. Langer et al. [21]
use resampling to stylize a 64 as 32-layer LiDAR, thereby
aligning source and target in input point-cloud space. Yi et
al. [22] also address gaps between LiDAR sampling patterns
by chaining a LiDAR-specific completion network with a
LiDAR-agnostic segmentation network. In this work, we

also address domain adaptation, but from a different angle,
i.e. by aligning RGB and LiDAR in output space.

To the best of our knowledge, there are no previous
UDA works in 2D/3D semantic segmentation for multi-
modal scenarios. Only some consider the extra modality,
e.g., depth, solely available at training time on the source
domain and leverage such privileged information to boost
adaptation performance [23], [24]. Otherwise, we here as-
sume all modalities are available at train and test time on
both source and target domains.

2.2 Semi-supervised Domain Adaption

While UDA has become an active research topic, semi-
supervised domain adaptation (SSDA) has so far been little-
studied despite being highly relevant in practical applica-
tions. In SSDA, we would like to transfer knowledge from
a source domain with labeled data to a target domain with
partially labeled data.

Early approaches based on SVM [25] have addressed
SSDA in image classification and object detection [26], [27],
[28]; few has been done for deep networks. Recently, Saito et
al. [29] propose an adversarial SSDA learning scheme to
optimize a few-shot deep classification model with minimax
entropy. Wang et al. [30] extend UDA techniques in 2D
semantic segmentation to the SSDA setting by additionally
aligning feature prototypes of labeled source and target
samples. Our work is the first to address SSDA in point
cloud segmentation.

2.3 Cross-modality learning

In our context, we define cross-modality learning as knowl-
edge transfer between modalities. This is different from
multi-modal fusion where a single model is trained su-
pervisedly to combine complementary inputs, such as
RGB-D [31], [32] or LiDAR and RGB [33], [34], [35].

Castrejón et al. [36] address cross-modal scene retrieval
by learning a joint high-level feature representation that is
agnostic to the input modality (real image, clip art, text, etc.)
through enforcement of similar statistics across modalities.
Gupta et al. [37] adapt the more direct feature alignment
technique of distillation [38] in a cross-modal setup.

Self-supervised learning produces useful representations
in the absence of labels, e.g. by forcing networks with differ-
ent input modalities to predict a similar output. Sayed et
al. [39] minimize the cosine distance between RGB and
optical flow features. Alwassel et al. [40] use clustering to
generate pseudo labels and mutually train an audio and
video network. Munro et al. [41] use self-supervision with
temporal consistency between RGB and flow.

Similar to us, Gong et al. [42] address UDA for segmenta-
tion with RGB and LiDAR, but focus on fusing labels from
multiple partial source datasets. Instead, we use a single
source dataset and explore the tasks of UDA and SSDA.

2.4 Point cloud segmentation

While images are dense tensors, 3D point clouds can be
represented in multiple ways, which leads to competing
network families evolving in parallel.
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Fig. 2: Our architecture for cross-modal unsupervised learning for domain adaptation. There are two independent
network streams: a 2D stream (in red) which takes an image as input and uses a U-Net-style 2D ConvNet [12], as well as a
3D stream (in blue) which takes a point cloud as input and uses a U-Net-Style 3D SparseConvNet [13]. The size of the first
dimension of feature output tensors of both streams is N , equal to the number of 3D points. To achieve this equality, we
project the 3D points, where labels exist, into the image and sample the 2D features at the corresponding pixel locations.
The four segmentation outputs consist of the main predictions P2D, P3D and the mimicry predictions P2D→3D, P3D→2D. We
transfer knowledge across modalities using KL divergences DKL(P3D‖P2D→3D), where the objective of the 2D mimicry
prediction is to estimate the main 3D prediction, and, vice versa, DKL(P2D‖P3D→2D).

Voxels are similar to pixels, but very memory intense
in their dense representation as most of them are usually
empty. Some 3D CNNs [43], [44] rely on OctTree [45] to
reduce memory usage but without addressing the problem
of manifold dilation. Graham et al. [13] and similar imple-
mentation [46] address the latter by using hash tables to
convolve only on active voxels. This allows for very high
resolution with typically only one point per voxel. Aside
from the cubic ones, cylindrical voxels are also employed
[47], [48]. Finally, sparse point-voxel convolutions [49] can
benefit from lightweight support of the high resolution
point-based branch.

Point-based networks perform computation in continu-
ous 3D space and can thus directly accept point clouds as
input. PointNet++ [50] uses point-wise convolution, max-
pooling to compute global features and local neighborhood
aggregation for hierarchical learning akin to CNNs. Many
improvements have been proposed in this direction, such
as continuous convolutions [51], deformable kernels [52] or
lightweight alternatives [53].

In this work, we select SparseConvNet [13], which is top
performing on ScanNet [54], as our 3D network.

3 CROSS-MODAL LEARNING FOR DA
Our aim is to exploit multi-modality as a source of knowl-
edge for unsupervised learning in domain adaptation.
Therefore, we propose a cross-modal learning objective,
implemented as a mutual mimicking game between modal-
ities, that drives toward consistency across predictions from
different modalities. Of note, while our training exploits

multi-modality, the 2D/3D predictions solely rely on either
2D or 3D input respectively in our architecture, making
it uni-modal at inference. Specifically, we investigate the
modalities of 2D images and 3D point clouds for the task
of 3D semantic segmentation as it is a core task for machine
vision.

We present the network architecture in Sec. 3.1, our
framework for cross-modal unsupervised domain adapta-
tion, coined ‘xMUDA’, in Sec. 3.2 and its semi-supervised
version, analogously called ‘xMoSSDA’, in Sec. 3.3.

3.1 Architecture
Our architecture predicts point-wise segmentation labels. It
consists of two independent streams which respectively take
a 2D image and a 3D point cloud as inputs, and output
features of size (N,F2D) and (N,F3D) respectively, where N
is the number of 3D points within the camera field of view.
An overview is depicted in Fig. 2. By design, the 2D and
3D streams are independent, i.e. in each stream, point-cloud
semantic predictions solely rely on the respective modality.
Such an architecture choice allows better understanding of
advantages and drawbacks of each modality in particular
scenarios; it also helps highlight the merit of our proposed
cross-modal learning.

As network backbones, we use SparseConvNet [13] for
3D and a modified version of U-Net [12] for 2D. Further
implementation details are provided in Sec. 4.2.
Dual Segmentation Head. We call segmentation head
(‘classify’ arrows in Fig. 2) the last linear layer in the network
that transforms the output features into logits followed by a
softmax function to produce class probabilities.
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Fig. 3: Single-head vs. dual-head architecture. (a) Naive
way of enforcing consistency directly between main seg-
mentation heads. (b) Our proposal of a dual-head architec-
ture to uncouple the mimicry from the main segmentation
head for more robustness.

For cross-modal learning, we establish a mimicking
game between the 2D and 3D output probabilities, i.e.,
each modality should predict the other modality’s output.
The overall objective drives the two modalities toward an
agreement, thus enforcing consistency between outputs.

In a naive approach, each modality has a single seg-
mentation head (Fig. 3a) and the cross-modal optimization
objective aligns the outputs of both modalities. Unfortu-
nately, this setup is not robust as the mimicking objective
competes directly with the main segmentation objective. The
risk is that a negative transfer from the weak modality might
degrade the performance of the strong one. This is why, in
practice, one needs to down-weight the mimicry loss w.r.t.
the segmentation loss to boost performance. However, this
is a serious limitation, because down-weighting the mimicry
loss also decreases its adaptation effect.

In order to address this problem, we propose to disen-
tangle the mimicry from the main segmentation objective.
Therefore, we propose a dual-head architecture as depicted
in Figs. 2 and 3b. In this setup, the 2D and 3D streams
both have two segmentation heads: one main head for the
best possible prediction, and one mimicry head to estimate
the other modality’s output. The outputs of the four seg-
mentation heads (see Fig. 2) are of size (N,C), with C
the number of classes, such that we obtain a vector of
class probabilities for each 3D point. The two main heads
produce the best possible segmentation predictions, P2D
and P3D respectively for each branch. The two mimicry
heads estimate the other modality’s output: 2D estimates
3D (P2D→3D) and 3D estimates 2D (P3D→2D).

In the following, we introduce how we use the de-
scribed architecture for cross-modal learning in unsuper-
vised (Sec. 3.2) and semi-supervised (Sec. 3.3) domain adap-
tation, respectively.

3.2 Unsupervised Domain Adaptation (xMUDA)
We propose xMUDA, cross-modal unsupervised domain
adaptation, which considers a source-domain dataset S ,
where each sample consists of a 2D image x2D

s ∈ RH×W×3,
a 3D point cloud x3D

s ∈ RN×3 and 3D segmentation labels
y3D
s ∈ J1, CKN with C classes, as well as a target-domain
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�
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(a) Proposed UDA training setup

Source 2D Target 2D

Source 3D Target 3D

Uni-modal self-training
Pseudo-labels, MinEnt
Source-target alignment
Deep logCORAL
Cross-modal self-training
xMUDA

PLxM xM

(b) UDA on multi-modal data

Fig. 4: Cross-modal training with adaptation. (a) xMUDA
learns from supervision on the source domain (plain lines)
and self-supervision on the target domain (dashed lines)
thanks to cross-modal learning between 2D/3D. (b) We
consider four data subsets: Source 2D, Target 2D, Source 3D
and Target 3D. In contrast to existing techniques, xMUDA
introduces a cross-modal self-training mechanism for UDA.

dataset T , lacking annotations, where each sample only
consists of an image x2D

t and a point cloud x3D
t .

In the following, we define the usual supervised learning
setup, our cross-modal loss LxM, and an additional variant
‘xMUDAPL’ that further uses pseudo-labels to boost per-
formance. An overview of the learning setup is in Fig. 4a.
The difference between our cross-modal learning and existing
uni-modal UDA techniques, such as as Pseudo-labels [11],
MinEnt [5] or Deep logCORAL [20] is visualized in Fig. 4b.

3.2.1 Supervised Learning
The main goal of 3D segmentation is learned through
cross-entropy in a classical supervised fashion on the
source-domain data. Denoting Px ∈ [0, 1]N×C the soft-
classification map associated by the segmentation model
to the N 3D points of interest, for a given input x, the
segmentation loss Lseg of each network stream (2D and 3D)
for a given training sample in S reads:

Lseg(x,y
3D) = − 1

N

N∑
n=1

C∑
c=1

y(n,c) logP (n,c)
x , (1)

where x is either x2D
s or x3D

s and y3D equals y3D
s . We denote

tensor entries’ indices as superscript.

3.2.2 Cross-Modal Learning
The goal of unsupervised learning across modalities is
twofold. Firstly, we want to transfer knowledge from one
modality to the other on the target-domain dataset; for
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example, if one modality is more sensitive than the other to
the domain shift, then the robust modality should teach the
sensitive one the correct class in the target domain where no
labels are available. Secondly, we want to design an auxil-
iary objective on source and target domains, where the task
is to estimate the other modality’s prediction. By mimicking
not only the class with maximum probability, but the whole
distribution like in teacher-student distillation [38], more
information is exchanged, leading to softer labels.

We choose the KL divergence for the cross-modal loss
LxM and define it as follows:

LxM(x) = DKL(P
(n,c)
x ‖Q(n,c)

x ) (2)

= − 1

N

N∑
n=1

C∑
c=1

P (n,c)
x log

P
(n,c)
x

Q
(n,c)
x

, (3)

with (P ,Q) ∈ {(P2D, P3D→2D), (P3D, P2D→3D)} where P is
the target distribution from the main prediction which is to
be estimated by the mimicking prediction Q. This loss is
applied on the source and the target domain as it does not
require ground-truth labels and is the key to our proposed
domain adaptation framework. In the source domain, LxM
can be seen as an auxiliary mimicry loss in addition to the
main segmentation loss Lseg.

The final objective for each network stream (2D and 3D)
is the combination of the segmentation loss Lseg on source-
domain data and the cross-modal loss LxM on both domains:

min
θ

[ 1

|S|
∑
xs∈S

(
Lseg(xs,y

3D
s ) + λsLxM(xs)

)
+

1

|T |
∑
xt∈T

λtLxM(xt)
]
, (4)

where λs, λt are hyperparameters to weight LxM on source
and target domain respectively and θ are the network
weights of either the 2D or the 3D stream.

There are parallels between our approach and Deep Mu-
tual Learning [55] in training two networks in collaboration
and using the KL divergence as mimicry loss. However,
unlike this work, our cross-modal learning establishes con-
sistency across modalities (2D/3D) without supervision.

3.2.3 Self-training with Pseudo-Labels
Cross-modal learning is complementary to pseudo-
labeling [11] used originally in semi-supervised learning
and recently in UDA [7], [15]. To benefit from both, once
having optimized a model with Eq. 4, we extract pseudo-
labels offline, selecting highly-confident labels based on
the predicted class probability. Then, we train again from
scratch using the produced pseudo-labels for an additional
segmentation loss on the target-domain training set. The
optimization problem writes:

min
θ

[ 1

|S|
∑
xs

(
Lseg(xs,y

3D
s ) + λsLxM(xs)

)
+

1

|T |
∑
xt

(
λPLLseg(xt, ŷ

3D
t ) + λtLxM(xt)

)]
, (5)

where λPL weights the pseudo-label segmentation loss and
ŷ3D are the pseudo-labels. For clarity, we will refer to
the xMUDA variant that uses additional self-training with
pseudo-labels as xMUDAPL.

3.3 Semi-supervised Domain Adaptation (xMoSSDA)

Cross-modal learning can also be used in semi-supervised
domain adaptation, thus benefiting from a small portion of
labeled data in the target domain.

Formally, we consider in xMoSSDA a labeled source-
domain dataset S where each sample contains an image x2D

s ,
a point cloud x3D

s and labels y3D
s . Different from unsuper-

vised learning, the target-domain set consists of a usually
small labeled part T` where each sample holds an image
x2D
t` , a point cloud x3D

t` and labels y3D
t` , as well as an, often

larger, unlabeled part Tu where each sample consists only
of an image x2D

tu and a point cloud x3D
tu .

3.3.1 Supervised Learning

Unlike xMUDA, we do not only apply the segmentation
loss Lseg(x,y

3D) of Eq. 1 on the source-domain dataset S ,
but also on the labeled target-domain dataset T`: The
segmentation loss in Eq. 1 thus applies both to samples
(x,y3D) ∈ {(x2D

s ,y
3D
s ), (x3D

s ,y
3D
s )} in S and to samples

(x,y3D) ∈ {(x2D
t` ,y

3D
t` ), (x

3D
t` ,y

3D
t` )} in T`. Note that, in

practice, we train on source and target domains at the same
time by concatenating examples from both in a batch.

3.3.2 Cross-Modal Learning

We apply the unsupervised cross-modal loss LxM of Eq. 2 on
all datasets, i.e., (labeled) source-domain S , labeled target-
domain T`, and unlabeled target-domain dataset Tu. The
latter, Tu, is a typically large portion of unlabeled data
compared to a usually much smaller labeled portion T`.
Subsequently, it is beneficial to also exploit Tu with an
unsupervised loss, such as cross-modal learning. The com-
plete objective is a combination of supervised segmentation
loss Lseg where labels are available (i.e., in sets S and T`),
and unsupervised cross-modal loss LxM everywhere (i.e., on
S, T` and Tu) which enforces consistency between the 2D
and 3D predictions. It writes:

min
θ

[ 1

|S|
∑
xs∈S

(
Lseg(xs,y

3D
s ) + λsLxM(xs)

)
+

1

|T`|
∑

xt`∈T`

(
Lseg(xt`,y

3D
t` ) + λt`LxM(xt`)

)
+

1

|Tu|
∑

xtu∈Tu

λtuLxM(xtu)
]
,

(6)

where λs, λt` and λtu are the weighting hyperparameters
for LxM. In practice we choose λs = λt` for simplicity.

3.3.3 Self-training with Pseudo-Labels

As in the unsupervised setting, we extend semi-supervised
cross-modal learning to also benefit from pseudo-labels.
After having trained a model with Eq. 6, we use the model
to generate predictions on the unlabeled target-domain
dataset Tu and extract highly-confident pseudo-labels which



6

are used to train again from scratch with the following
objective:

min
θ

[ 1

|S|
∑
xs∈S

(
Lseg(xs,y

3D
s ) + λsLxM(xs)

)
+

1

|T`|
∑

xt`∈T`

(
Lseg(xt`,y

3D
t` ) + λt`LxM(xt`)

)
+

1

|Tu|
∑

xtu∈Tu

(
λPLLseg(xtu, ŷ

3D
tu ) + λtuLxM(xtu)

)]
,

(7)

where λPL is weighting the pseudo-label segmentation loss
and ŷ3D are pseudo-labels. We call this variant xMoSSDAPL.

4 EXPERIMENTS

For evaluation, we identified five domain adaptation (DA)
scenarios relevant to autonomous driving, shown in Fig. 5,
and evaluated our proposals against recent baselines.

Hereafter, we first describe the datasets (Sec. 4.1), the
implementation backbone and training details (Sec. 4.2), and
then evaluate xMUDA (Sec. 4.3) and xMoSSDA (Sec. 4.4).
Finally, we extend our cross-modal framework to fu-
sion (Sec. 4.5), demonstrating its global benefit.

4.1 Datasets

To compose our domain adaptation scenarios displayed in
Fig. 5, we leveraged public datasets nuScenes-Lidarseg [10],
VirtualKITTI [56], SemanticKITTI [2], A2D2 [57] and Waymo
Open Dataset (Waymo OD) [58]. The split details are in
Tab. 1. Our scenarios cover typical DA challenges like
change in scene layout, between right and left-hand-side
driving in the nuScenes-Lidarseg: USA/Singapore scenario,
lighting changes, between day and night in nuScenes-
Lidarseg: Day/Night, synthetic-to-real data, between simu-
lated depth and RGB to real LiDAR and camera in
VirtualKITTI/SemanticKITTI, different sensor setups and
characteristics like resolution/FoV in A2D2/SemanticKITTI
and weather changes between sunny San Francisco,
Phoenix, Mountain View and rainy Kirkland in Waymo OD:
SF,PHX,MTV/KRK.

In all datasets, the LiDAR and the camera are syn-
chronized and calibrated, allowing 2D/3D projections. For
consistency across datasets, we only use the front camera’s
images, even when multiple cameras are available.

Waymo OD does not provide point-wise 3D segmenta-
tion labels so we leverage 3D object bounding-box labels.
Points lying inside a box are labeled as that class and points
outside of all boxes are labeled as background.

To compensate for source/target classes mismatch (e.g.,
VirtualKITTI/SemanticKITTI) or accommodate for classes
scarcity, we apply a custom class mapping detailed in Ap-
pendix A. Note that VirtualKITTI provides depth maps so
we simulate LiDAR scanning via uniform point sampling.

All training data and splits can be reproduced with our
code, and more details are in Appendix A.

4.2 Implementation Details

In the following, we briefly introduce our implementation.
Please refer to our code for further details.

Source S Target T

Scenario Train Train Val/Test

U
D

A

nuSc-Lidarseg: USA/Singap. 15,695 9,665 2,770/2,929
nuSc-Lidarseg: Day/Night 24,745 2,779 606/602
Virt.KITTI/Sem.KITTI 2,126 18,029 1,101/4,071
A2D2/Sem.KITTI 27,695 18,029 1,101/4,071

SS
D

A

nuSc-Lidarseg: USA/Singap. 15,695 T`
Tu

2,884
6,781 2,770/2,929

Virt.KITTI/Sem.KITTI 2,126 T`
Tu

5,642
32,738 1,101/4,071

A2D2/Sem.KITTI 27,695 T`
Tu

5,642
32,738 1,101/4,071

Waymo OD:
SF,PHX,MTV/KRK 158,081 T`

Tu
11,853
94,624 3,943/3,932

TABLE 1: Size of the splits in frames for all proposed DA
scenarios. While there is a single target-domain training set
in UDA (T ), there are two in SSDA: a labeled target-domain
training set T` and a (much larger) unlabeled set Tu.

2D Network. We use a modified version of U-Net [12]
with ResNet34 [59] encoder and a decoder with trans-
posed convolutions and skip connections. To lift the 2D
features to 3D, we subsample the output feature map of size
(H,W,F2D) at the pixel locations where the N 3D points
project. Hence, the 2D network takes an image x2D as input
and outputs features of size (N,F2D).

3D Network. We use the official SparseConvNet [13]
implementation and a U-Net architecture with 6 times
downsampling. The voxel size is set to 5cm which is small
enough to only have one 3D point per voxel. Thus, the
3D network takes a point cloud x3D as input and outputs
features of size (N,F3D).

Training. We employ standard 2D/3D data augmen-
tation and log-smoothed class weights to address class-
imbalance. In PyTorch, to compute the KL divergence for the
cross-modal loss, we detach the target variable to only back-
propagate in either the 2D or the 3D network. We train with
a batch size of 8, Adam optimizer with β1 = 0.9, β2 = 0.999,
and train 30k iterations for the scenario with the small Vir-
tualKITTI dataset and 100k iterations for all other scenarios.
At each iteration we compute and accumulate gradients on
the source and target batch, jointly training the 2D and 3D
stream. To fit the training into a single GPU with 11GB of
memory, we resize the images and additionally crop them
in VirtualKITTI and SemanticKITTI.

For the pseudo-label variants, xMUDAPL and
xMoSSDAPL, we generate the pseudo-labels offline as in [7]
with trained models xMUDA and xMoSSDA, respectively.
Then, we retrain from scratch, additionally using the
pseudo-labels, optimizing Eqs. 5 and 7, respectively.
Importantly, we only use the last checkpoint to generate the
pseudo-labels – as opposed to using the best weights which
would provide a supervised signal.

4.3 xMUDA

We evaluate xMUDA on four unsupervised domain adap-
tation scenarios and compare against uni-modal UDA
methods: Deep logCORAL [20], entropy minimization (Mi-
nEnt) [5], pseudo-labeling (PL) [7] and Fourier domain
adaptation (FDA) [14]. For [7] the image-2-image translation
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nuScenes-Lidarseg [10]:
USA/Singapore

nuScenes-Lidarseg [10]:
Day/Night

Virt.KITTI [56]/
Sem.KITTI [2]

A2D2 [57]/
Sem.KITTI [2]

Waymo OD [58]:
SF,PHX,MTV/KRK

Source

Target

xMUDA

xMoSSDA (in App.)

Fig. 5: Overview of the five proposed DA scenarios. We generate the nuScenes-Lidarseg [10] splits using metadata.
The third and fourth DA scenarios use both SemanticKITTI [2] as target-domain dataset and either the synthetic
VirtualKITTI [56] or the real A2D2 dataset [57] as source-domain dataset. Note that we show the A2D2/SemanticKITTI
scenario with LiDAR overlay to visualize the density difference and resulting domain gap. Last, Waymo OD [58] features a
source-domain dataset in the cities of San Francisco (SF), Phoenix (PHX) and Mountain View (MTV) and a target-domain
dataset in Kirkland (KRK). We evaluate xMUDA on scenarios 1-4 and xMoSSDA on scenarios 1, 4, 5 and 3 in Appendix E

nuSc-Lidarseg: USA/Singap. nuSc-Lidarseg: Day/Night Virt.KITTI/Sem.KITTI A2D2/Sem.KITTI

Method 2D 3D 2D+3D 2D 3D 2D+3D 2D 3D 2D+3D 2D 3D 2D+3D

Baseline (src only) 58.4 62.8 68.2 47.8 68.8 63.3 26.8 42.0 42.2 34.2 35.9 40.4

Deep logCORAL [20] 64.4 63.2 69.4 47.7 68.7 63.7 41.4* 36.8 47.0 35.1* 41.0 42.2
MinEnt [5] 57.6 61.5 66.0 47.1 68.8 63.6 39.2 43.3 47.1 37.8 39.6 42.6
PL [7] 62.0 64.8 70.4 47.0 69.6 63.0 21.5 44.3 35.6 34.7 41.7 45.2
FDA [14] 60.8 - - 48.4 - - 32.8* - - 37.6* - -

xMUDA 64.4 63.2 69.4 55.5 69.2 67.4 42.1 46.7 48.2 38.3 46.0 44.0
xMUDAPL 67.0 65.4 71.2 57.6 69.6 64.4 45.8 51.4 52.0 41.2 49.8 47.5

Oracle 75.4 76.0 79.6 61.5 69.8 69.2 66.3 78.4 80.1 59.3 71.9 73.6

Domain gap (O-B) 17.0 13.3 11.5 13.6 1.1 5.9 39.5 36.4 37.9 25.1 36.0 33.2
* The 2D network is trained with batch size 6 instead of 8 to fit into GPU memory.

TABLE 2: xMUDA experiments on 3D semantic segmentation. We report the mIoU result (with best and 2nd best)
on the target set for each network stream (2D and 3D) as well as the ensembling result taking the mean of the 2D
and 3D probabilities (‘2D+3D’). We provide the lower bound ‘Baseline (src only)’ which is trained on the source set
S , but not on the target set T , as well as the upper bound ‘Oracle’ which is trained supervisedly on the target set T
using labels. We further indicate the ‘Domain gap’ which is the difference between the Oracle and Baseline score. ‘Deep
logCORAL’ [20], ‘MinEnt’ [5] and ‘PL’ [7] are 2D/3D uni-modal UDA baselines, whereas ‘FDA‘ is 2D-only. The two
variants ‘xMUDA’ and ‘xMUDAPL’ are our methods. We evaluate on four UDA scenarios (see Fig. 5). For the nuScenes-
Lidarseg dataset [10] (‘nuSc-Lidarseg’), we generate the splits with different locations (USA/Singapore) and different time
(Day/Night). VirtualKITTI [56] (‘Virt.KITTI’) to SemanticKITTI [2] explores challenging synthetic-to-real adaptation. The
domain gap between the two real datasets A2D2 [57]/SemanticKITTI [2] (‘Sem.KITTI’) lies mainly in sensor resolution.

part was excluded due to its instability, high training com-
plexity and incompatibility with LiDAR data. Regarding the
three other uni-modal techniques, we adapt the published
implementations to our settings. For all, we searched for the
best respective hyperparameters. For the 2D-only baseline
FDA [14], we implement the full MTB method, i.e. with
entropy, ensembling of three models to generate pseudo-
labels and re-training. We found no 3D-only UDA baseline
directly applicable to our scenarios. Instead, we compare
against LiDAR transfer [21] – largely outperformed on their
own scenario – in Appendix C.

We report mean Intersection over Union (mIoU) of the
target test set for 3D segmentation in Tab. 2. We evaluate
on the test set using the checkpoint that achieved the best
score on the validation set. In addition to the scores of
the 2D and 3D model, we show the ensembling result

(‘2D+3D’) which is obtained by taking the mean of the
predicted 2D and 3D probabilities after softmax. The uni-
modal UDA baselines [5], [7], [20] are applied separately on
each modality, and FDA [14] is a 2D-only UDA baseline.

Furthermore, we provide the results of a lower bound,
‘Baseline (src only)’, which is not domain adaptation as it
is only trained on the source-domain dataset and an upper
bound, ‘Oracle’, trained only on target with labels1. We also
indicate the ‘Domain gap (O-B)’, computed as the differ-
ence between Oracle and Baseline. It shows that the intra-
dataset domain gaps (nuScenes-Lidarseg: USA/Singapore,
Day/Night) , in [1.1, 17.0], are much smaller than the
inter-dataset domain gaps (A2D2/SemanticKITTI, Virtu-

1. Except for the Day/Night oracle, where we use 50%/50%
source/target batches to prevent overfitting due to the small target size.
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alKITTI/SemanticKITTI), in [25.1, 39.5]. It suggests that a
change in sensor setup (A2D2/SemanticKITTI) is actually
a very hard domain adaptation problem, similar to the
synthetic-to-real case (VirtualKITTI/SemanticKITTI). Im-
portantly, note that the scores are not comparable between
A2D2/SemanticKITTI and VirtualKITTI/SemanticKITTI, as
they use a different number of classes, 10 and 6 respectively.

xMUDA –using the cross-modal loss but not PL– brings
a significant adaptation effect on all four UDA scenarios
compared to ‘Baseline’ and most often outperforms all uni-
modal UDA baselines. xMUDAPL achieves the best score
everywhere with the only exception of Day/Night 2D+3D
where xMUDA is better. Further, cross-modal learning and
self-training with pseudo-labels (PL) are complementary as
their combination in xMUDAPL typically yields a higher
score, up to +4, 7, than each separate technique. The 2D/3D
oracle scores indicate that overall LiDAR (3D) is always
the strongest modality, which resonates with the choice
of 3D segmentation task. However, xMUDA consistently
improves both modalities (2D and 3D) i.e., even the strong
modality can learn from the weaker one. A notable example
for 3D is at Night where xMUDA (69.2) outperforms ‘Base-
line’ (68.8), despite a narrow Domain gap (1.1) related to the
active LiDAR sensing capability. The dual-head architecture
might be key here: each modality can improve its main
segmentation head independently from the other modality,
because the consistency is achieved indirectly through the
mimicking heads.

We also observe a regularization effect thanks to
xMUDA. For example on VirtualKITTI/SemanticKITTI, the
methods ‘Baseline’ and ‘PL’ perform very poorly on the 2D
modality (26.8 and 21.5) due to overfitting on the very small
VirtualKITTI dataset, while 3D is more stable (42.0 and 44.3).
In contrast, xMUDA performs better as 3D can regularize
2D. This regularization even enables the benefit of pseudo-
labels, because xMUDAPL achieves an even better score.

Qualitative results are presented in Fig. 6, showing
the versatility of xMUDA across all proposed UDA sce-
narios. Here, the benefit of xMUDAPL over uni-modal
PL baseline is evident in inter-dataset scenarios (last two
rows), and more subtly on the nuScenes scenarios (first
two rows) looking at the vehicle class. We provide addi-
tional qualitative results in Appendix D and a video at
http://tiny.cc/cross-modal-learning.

We also successfully experiment our method in some
opposite adaptation directions, with details in Appendix B.

4.4 xMoSSDA
In this section, we evaluate xMoSSDA on domain
adaptation scenarios nuSc-Lidarseg: USA/Singap.,
A2D2/SemanticKITTI and Waymo OD. To create practically
relevant SSDA conditions, we make sure that the unlabeled
target dataset Tu is much larger than the labeled target
dataset T`. Hence, splits differ from UDA (see Tab. 1).

We compare xMoSSDA against eight baselines. Three
baselines are purely supervised, either trained on source
only (S), labeled target only (T`) or on source and labeled
target2 (S + T`). Additionally we report two UDA baselines,

2. The latter is trained with 50%/50% examples from S and T`, i.e., a
training batch of size 8 has 4 random samples from S and 4 from T`.

xMUDA and xMUDAPL, which use source and unlabeled
target (S + Tu). Last, we report three SSDA baselines
(trained on S + T` + Tu) adapted from uni-modal UDA
baselines [5], [7], [20] as follows: we train similarly to the
supervised baseline on S + T` with 50%/50% batches, but
add the respective domain adaptation loss on Tu. Our semi-
supervised proposals, xMoSSDA and xMoSSDAPL, are also
trained in this manner.

To achieve |Tu| � |T`|, we include unannotated data for
Waymo OD and SemanticKITTI (we use hidden test set)
into Tu. Hence, it is impossible to train an Oracle like in
Tab. 2. Instead, we answer the question: “How much can we
improve over the supervised baseline by additionally train-
ing on Tu?”. We coin it the ‘unsupervised advantage’ com-
puted as the difference between xMoSSDAPL (S + Tu + T`)
and supervised baseline (S + T`). Note that we exclude
nuSc-Lidarseg: Day/Night and Virt.KITTI/Sem.KITTI due
to small target/source datasets respectively, but still eval-
uate Virt.KITTI/Sem.KITTI in Appendix E.

We report the mIoU for 3D segmentation in Tab. 3.
Note that the latter results cannot be compared to Tab. 2
since splits differ. We observe in Tab. 3, similar to Tab. 2,
that the domain gap is much larger in the inter-dataset
adaptation A2D2/SemanticKITTI (max. 29.5) than in intra-
dataset adaptation on nuSc-Lidarseg: USA/Singap. (max.
13.5) and Waymo OD, (max. 4.5). As expected, xMUDA and
xMUDAPL (S + Tu) improve over the baseline (S), but are
(with the exception of Waymo OD) worse than the baseline
(S + T`). We also observe that xMoSSDA improves 2D and
3D more (max. 2.0) than ensemble result 2D+3D (max. 0.4),
w.r.t. to Baseline (S + T`). We ascribe this behavior to the
ensembling (2D+3D) performing best when 2D and 3D pre-
dictions differ, though our cross-modal loss aligns 2D/3D
predictions. In xMoSSDAPL, the separate 2D/3D pseudo-
labels act as counterweight to this alignment, resulting in
comparable 2D, 3D and 2D+3D improvement.

Finally, xMoSSDAPL outperforms all baselines by up
to +2.2 in 8 out of 9 cases. Results in Fig. 7 show better
segmentation of thin structures (bush, bike, pedestrian).

4.5 Extension to Fusion
So far, we used an architecture with independent 2D/3D
streams. However, can xMUDA also be applied in a fusion
setup where both modalities make a joint prediction?

A common fusion architecture is late fusion where
the features from different sources are concatenated (see
Fig. 8a). However, when merging the main 2D/3D branches
into a unique fused head, we can no longer apply cross-
modal learning (as in Fig. 3a). To address this problem,
we propose ‘xMUDA Fusion’ where we add an additional
segmentation head to both 2D and 3D network streams prior
to the fusion layer with the purpose of mimicking the central
fusion head (see Fig. 8b). Note that this idea could also be
applied on top of other fusion architectures.

In Tab. 4 we show results for different fusion approaches
where we specify which architecture was used (Vanilla late
fusion from Fig. 8a or xMUDA Fusion from Fig. 8b). We
observe that the xMUDA fusion architecture leads to better
results than the UDA baselines with the Vanilla architecture.
This demonstrates how cross-modal learning can be applied
effectively in fusion setups.

http://tiny.cc/cross-modal-learning
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Fig. 6: Qualitative results for xMUDA. We show the ensembling result (2D+3D) on the target test set for UDA Baseline
(PL) and xMUDAPL.
– nuScenes-Lidarseg: USA/Singapore: UDA Baseline (PL) fails to correctly classify the bus while xMUDAPL succeeds.
– nuScenes-Lidarseg: Day/Night: A motorcycle in oncoming traffic. The visual appearance is very different during the day
(motorcycle visible) than during the night (only the headlight visible). The uni-modal UDA baseline is not able to learn
this new appearance. However, if information between camera and robust-at-night LiDAR is exchanged in xMUDAPL, it is
possible to detect the motorcycle correctly at night.
– A2D2/SemanticKITTI: xMUDAPL helps to stabilize and increase segmentation performance when there are sensor
changes (3x16-layer LiDAR with different angles to 64-layer LiDAR).
– VirtualKITTI/SemanticKITTI: The UDA baseline (PL) poorly segments the building and road while xMUDAPL succeeds.
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Fig. 7: Qualitative results for xMoSSDA. We show the ensembling result (2D+3D) on the target test set for the supervised
baseline (trained on S + T`), xMUDAPL (trained on S + Tu) and xMoSSDAPL (trained on S + T` + Tu).
– nuScenes-Lidarseg: USA/Singapore: A bush is mistakenly classified as vehicle by the supervised baseline and xMUDAPL,
but correctly classified as vegetation by xMoSSDAPL.
– A2D2/SemanticKITTI: The bike in the center is not distinguished from ‘Nature’ background by the supervised baseline,
but is so by xMUDAPL, although still wrongly classified, while xMoSSDAPL is correct.
– Waymo OD: SF,PHX,MTV/KRK: Segmentation of the pedestrian with xMUDAPL is better than with the supervised
baseline while it is best with xMoSSDAPL.
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nuSc-Lidarseg:
USA/Singap. A2D2/Sem.KITTI

Waymo OD:
SF,PHX,MTV/KRK

Method Train set 2D 3D 2D+3D 2D 3D 2D+3D 2D 3D 2D+3D

Baseline (src only) S 58.8 63.2 68.5 37.9 32.8 43.3 61.4 50.8 64.4
Baseline (lab. trg only) T` 70.5 74.1 74.2 51.3 57.7 59.2 56.5 57.1 60.3
Baseline (src and lab. trg) S + T` 72.3 73.1 78.1 54.8 62.4 66.2 64.5 56.3 69.3

Domain gap (S vs. S + T`) 13.5 9.9 9.6 16.9 29.5 22.9 3.2 5.5 4.9

xMUDA S + Tu 63.1 64.2 67.8 38.6 44.5 44.4 61.8 54.0 66.7
xMUDAPL S + Tu 66.2 65.1 70.1 41.4 49.5 48.6 68.3 55.2 71.9

Deep logCORAL [20] S + T` + Tu 71.7 73.1 78.2 55.1* 62.2 64.7* 61.4 56.5 66.1
MinEnt [5] S + T` + Tu 72.6 73.3 76.6 56.3 62.5 65.0 64.3 56.6 69.1
PL [7] S + T` + Tu 73.6 74.4 79.3 57.2 66.9 68.5 67.4 56.7 70.2

xMoSSDA S + T` + Tu 74.3 74.1 78.5 56.5 63.4 65.9 65.2 57.4 69.4
xMoSSDAPL S + T` + Tu 75.5 74.8 78.8 59.1 68.2 70.7 70.1 58.5 73.1

Unsupervised advantage 3.1 1.7 0.7 4.3 5.8 4.5 5.6 2.2 3.8
(relative) (+4.3%) (+2.3%) (+0.9%) (+7.8%) (+9.3%) (+6.8%) (+8.7%) (+3.9%) (+5.5%)

* The 2D network is trained with batch size 6 instead of 8 to fit into GPU memory.

TABLE 3: xMoSSDA experiments on 3D semantic segmentation. We report the mIoU (with best and 2nd best) on the
target set for each network stream (2D and 3D) as well as the ensembling result taking the mean of the 2D and 3D
probabilities (2D+3D). In semi-supervised adaptation (SSDA), we have a source dataset S like in UDA, while, unlike UDA,
the target dataset has a small labeled part T` and a large unlabeled part Tu. We provide three baselines where we train
either on source only (S), on labeled target only (T`) or on both (S + T`) with ratio 50%/50% in each batch. For comparison,
we report ‘xMUDA’ and ‘xMUDAPL’ results that do not use T`. The three uni-modal SSDA baselines ‘Deep logCORAL’ [20],
‘MinEnt’ [5] and ‘PL’ [7] as well as our cross-modal methods ‘xMoSSDA’ and ‘xMoSSDAPL’ are trained supervisedly on
S + T` with ratio 50%/50% in each batch and unsupervisedly on Tu. We report the domain gap and the ‘Unsupervised
advantage’, i.e. the difference between xMoSSDAPL and ‘Baseline (src and lab. trg)’ and relative improvement. We evaluate
on SSDA scenarios: nuScenes-Lidarseg [10] (USA/Singapore), A2D2 [57]/SemanticKITTI [2] and Waymo OD [58].

2D
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3D
Features

concat
�fuse

(a) Vanilla Fusion

2D
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3D
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�2D→fuse

concat

( || )�KL �fuse �2D→fuse

( || )�KL �fuse �3D→fuse

(b) xMUDA Fusion

Fig. 8: Architectures for fusion. (a) In Vanilla Fusion the 2D
and 3D features are concatenated, fed into a linear layer
with ReLU to mix them and followed by another linear
layer and softmax to obtain a fused prediction Pfuse. (b) In
xMUDA Fusion, we add two uni-modal outputs P2D→fuse
and P3D→fuse that are used to mimic the fusion output Pfuse.

5 ABLATION STUDIES

5.1 Single vs. Dual Segmentation Head

Here we justify our dual head over the simpler single-head
architecture, shown in Fig. 3. In the single-head architecture
(Fig. 3a), the cross-modal loss LxM is directly applied be-
tween the 2D and 3D main heads. This enforces consistency
by aligning the two outputs in addition to the supervised
segmentation loss Lseg. Thus, the heads must satisfy the two
objectives –segmentation and consistency– at the same time.
To showcase the disadvantage of this architecture, we train
xMUDA (as in Eq. 4) and vary the weight λt for the cross-

Method Arch. nuSc-Lidarseg:
USA/Singap.

A2D2/
Sem.KITTI

Baseline (src only) Vanilla 66.5 34.2

Deep logCORAL [20] Vanilla 64.0 36.2
MinEnt [5] Vanilla 65.4 39.8
PL [7] Vanilla 70.1 38.6

xMUDA Fusion xMUDA 69.3 42.6
xMUDAPL Fusion xMUDA 70.7 42.2

Oracle xMUDA 80.6 65.7

TABLE 4: Comparison of the fusion methods. Performance
in mIoU for the two UDA scenarios: nuScenes-Lidarseg [10]:
USA/Singapore and A2D2 [57]/SemanticKITTI [2]. We
adapt the supervised baseline ‘Baseline (src only)’ and the
UDA baselines (‘Deep logCORAL’, ‘MinEnt’, ‘PL’) to the
vanilla fusion architecture depicted in Fig. 8a. We propose
‘xMUDA Fusion’ which uses the architecture of Fig. 8b.
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Fig. 9: Single vs. Dual Head Architecture. mIoU of both
architectures on nuScenes-Lidarseg [10]: USA/Singapore for
different values of the target loss weight λt, with λs = 1.0.
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nuScenes-Lidarseg: Singap. (T ) Waymo OD: KRK (T`)

Loss 2D 3D 2D+3D 2D 3D 2D+3D

Lseg 75.4 76.0 79.6 51.3 57.7 59.2
Lseg + LxM 75.8 76.2 79.8 57.4 57.6 61.1

TABLE 5: Benefit of the proposed cross-modal loss
in supervised learning. Performance in mIoU of super-
vised learning with and without cross-modal loss LxM on
nuScenes-Lidarseg [10] (Singapore) and on Waymo OD [58]
(KRK), using only the labeled target-domain dataset T`. In
Singapore experiment, the model trained with the cross-
modal loss amounts to the oracle on this dataset in Tab. 2.

modal loss LxM on target, which is the main driver for UDA.
The results in Fig. 9 for the single-head architecture (Fig. 3a)
show that increasing λt from 0.001 to 0.01 slightly improves
the mIoU, but that increasing λt further to 0.1 and 1.0, has
a hugely negative effect. In the extreme case λt = 1.0, 2D
and 3D always predict the same class, thus only satisfying
the consistency, but not the segmentation objective.

The dual-head architecture (Fig. 3b) addresses this prob-
lem by introducing a secondary mimicking head which
purpose is to mimic the main head of the other modality
during the training and can be discarded afterwards. This
effectively disentangles the mimicking objective which is
applied to the mimicking head from the segmentation ob-
jective which is applied to the main head. Fig. 9 shows that
increasing λt to 0.1 for dual-head produces the best results
overall –better than any value for λt for single head– and
that the results are robust even at λt = 1.0.

5.2 Cross-Modal Learning on Source
In Eq. 4, the cross-modal loss LxM is applied on source and
target domains, although we already have the supervised
segmentation loss Lseg on source domain. We observe a gain
of 1.6 mIoU on 2D and 1.3 on 3D when adding LxM on
source domain as opposed to applying it on target domain
only. This shows that it is important to train the mimicking
head on source-domain data, stabilizing predictions, which
can be exploited during adaptation on target-domain inputs.

5.3 Cross-modal Supervised Learning
To evaluate the possible benefits of cross-modal learning for
purely supervised settings, we conducted experiments with
and without adding the cross-modal loss LxM on two dif-
ferent target-domain datasets: nuScenes-Lidarseg [10] and
Waymo OD [58]. The results are shown in Tab. 5 and show
a performance gain when adding LxM. We hypothesize that
the extra cross-modal objective can be beneficial, similar to
multi-task learning. On the Waymo OD dataset, we observe
a strong improvement on 2D. We observe in the training
curve (validation) that cross-modal learning reduces over-
fitting in 2D. We hypothesize that 3D, which suffers less
from overfitting, can have a regularizing effect on 2D.

6 CONCLUSION

In this work, we proposed cross-modal learning for domain
adaptation in unsupervised (xMUDA) and semi-supervised
(xMoSSDA) settings. To this end, we designed a two-stream,

dual-head architecture and applied a cross-modal loss to
the image and point-cloud modalities in the task of 3D
semantic segmentation. The cross-modal loss consists of
KL divergence applied between the predictions of the two
modalities and thereby enforces consistency.

Experiments on four unsupervised and four semi-
supervised domain adaptation scenarios show that cross-
modal learning outperforms uni-modal adaptation base-
lines and is complementary to learning with pseudo-labels.

We think that cross-modal learning could generalize to
many tasks that involve multi-modal input data and is not
constrained to DA or to image and point-cloud modalities.

Here we provide more details of the dataset splits used
in our experiments and additional qualitative results.

APPENDIX A
DATASET SPLITS

A.1 nuScenes (UDA)
The nuScenes dataset [10] consists of 1000 driving scenes,
each of 20 seconds, which corresponds to 40k annotated
keyframes taken at 2Hz. The scenes are split into train
(28,130 keyframes), validation (6,019 keyframes) and hid-
den test set. The point-wise 3D semantic labels are pro-
vided by nuScenes-Lidarseg. We propose the following
splits destined for domain adaptation with the respective
source/target domains: Day/Night and Boston/Singapore.
Therefore, we use the official validation split as test set and
divide the training set into train/val for the target set. As
the number of points in the target split (e.g. for night) can
be very small for some classes, we group the classes bicy-
cle, bus, car, construction vehicle, motorcycle, trailer, truck
under vehicle, ignore the classes barrier, pedestrian, traffic
cone, other flat, but keep the classes driveable surface,
sidewalk, terrain, manmade and vegetation as is. Hence,
there are 6 classes in total after the class mapping.

A.2 VirtualKITTI/SemanticKITTI (UDA)
VirtualKITTI (v.1.3.1) [56] consists of 5 driving scenes which
were created with the Unity game engine by real-to-virtual
cloning of the scenes 1, 2, 6, 18 and 20 of the real KITTI
dataset [60], i.e. bounding box annotations of the real dataset
were used to place cars in the virtual world. Different
from real KITTI, VirtualKITTI does not simulate LiDAR,
but rather provides a dense depth map, alongside seman-
tic, instance and flow ground truth. Each of the 5 scenes
contains between 233 and 837 frames, i.e. in total 2126
for the 5 scenes. Each frame is rendered with 6 different
weather/lighting variants (clone, morning, sunset, overcast,
fog, rain) which we use all. Note that we do not use the
renderings with different horizontal rotations. We use the
whole VirtualKITTI dataset as source training set.

The SemanticKITTI dataset [2] provides 3D point cloud
labels for the Odometry dataset of KITTI [60] which features
large-angle front camera and a 64-layer LiDAR. The annota-
tion of the 28 classes has been carried out directly in 3D.

We use scenes {0, 1, 2, 3, 4, 5, 6, 9, 10} as train set, 7 as
validation and 8 as test set.

We select 6 shared classes between the 2 datasets by
merging or ignoring them (see Tab. 6). The 6 final classes
are vegetation terrain, building, road, object, truck, car.
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class VirtualKITTI mapped class class SemanticKITTI mapped class

Terrain vegetation terrain unlabeled ignore
Tree vegetation terrain outlier ignore
Vegetation vegetation terrain car car
Building building bicycle ignore
Road road bus ignore
TrafficSign object motorcycle ignore
TrafficLight object on-rails ignore
Pole object truck truck
Misc object other-vehicle ignore
Truck truck person ignore
Car car bicyclist ignore
Van ignore motorcyclist ignore
Don’t care ignore road road

parking ignore
sidewalk ignore
other-ground ignore
building building
fence object
other-structure ignore
lane-marking road
vegetation vegetation terrain
trunk vegetation terrain
terrain vegetation terrain
pole object
traffic-sign object
other-object object
moving-car car
moving-bicyclist ignore
moving-person ignore
moving-motorcyclist ignore
moving-on-rails ignore
moving-bus ignore
moving-truck truck
moving-other-vehicle ignore

TABLE 6: Class mapping for VirtualKITTI/SemanticKITTI UDA scenario.

A.3 A2D2/SemanticKITTI (UDA+SSDA)

The A2D2 dataset [57] features 20 drives, which corresponds
to 28,637 frames. The point cloud comes from three 16-
layer front LiDARs (left, center, right) where the left and
right front LiDARS are inclined. The semantic labeling was
carried out in the 2D image for 38 classes and we compute
the 3D labels by projection of the point cloud into the labeled
image. We keep scene 20180807 145028 as test set and use
the rest for training.

Please refer to Sec. A.2 for details on SemanticKITTI.
For UDA, we use the same split as in Virtu-
alKITTI/SemanticKITTI, i.e. scenes {0, 1, 2, 3, 4, 5, 6, 9, 10}
as train set, 7 as validation and 8 as test set. For SSDA, we
use the scenes {0, 1} as labeled train set T`, {2 . . . 6, 9 . . . 21}
as unlabeled train set Tu, 7 as validation and 8 as test set.

We select 10 shared classes between the 2 datasets by
merging or ignoring them (see Tab. 7). The 10 final classes
are car, truck, bike, person, road, parking, sidewalk, build-
ing, nature, other-objects.

A.4 Waymo OD (SSDA)

The Waymo Open Dataset (v.1.2.0) provides 1150 scenes of
20s each. For simplicity and consistency with other UDA
scenarios, we only use the top, but not the 4 side LiDARs,
and only the front, but not the 4 side cameras. Similar to
nuScenes (Sec. A.1), we obtain segmentation labels from 3D
bounding boxes.

There is a main dataset which we use as source dataset
and a partially labeled domain adaptation dataset of which
we use the labeled part as labeled target set T` and the
unlabeled part as unlabeled target set Tu.

We ignore the cyclist class, because there are no cyclist
labels available in the target data, i.e. we only keep the
classes vehicle, pedestrian, sign, unknown.

APPENDIX B
OPPOSITE ADAPTATION DIRECTION

In order to test if our proposed method also works in the
opposite direction, i.e. Night/Day instead of Day/Night,
we run the experiments for ‘Baseline (src only)’ and our
methods ‘xMUDA’ and ‘xMUDAPL’ on nuScenes-Lidarseg:
Night/Day and Singapore/USA, and report the results in
Tab. 8. The results show no surprises. When comparing
2D+3D results, our xMUDAPL improves mIoU by +3.5
and +8.8 mIoU with respect to ‘Baseline (src only)’, on
Singapore/USA and Night/Day, respectively. These new
results are aligned – if not better – with their xMUDAPL
counterparts from Tab. 2 of the main paper (+3 and +1.1
mIoU on USA/Singapore and Day/Night, respectively).

APPENDIX C
3D UDA BASELINE: LIDAR TRANSFER

LiDAR transfer [21] is a 3D UDA baseline that aligns source
and target LiDAR data in point-cloud input space. It is
specifically designed to adapt from 64-layer LiDAR data to
32-layer LiDAR, i.e. from high to low LiDAR resolution.

In the following we evaluate LiDAR transfer [21]
and xMUDA/xMUDAPL on the UDA scenario Se-
manticKITTI/nuScenes proposed in [21]. To accommodate
to our setup, we replaced the 2D CNN from [21] by a
sparse 3D CNN [13] and applied a class mapping resulting
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A2D2 class mapped class SemanticKITTI class mapped class

Car 1 car unlabeled ignore
Car 2 car outlier ignore
Car 3 car car car
Car 4 car bicycle bike
Bicycle 1 bike bus ignore
Bicycle 2 bike motorcycle bike
Bicycle 3 bike on-rails ignore
Bicycle 4 bike truck truck
Pedestrian 1 person other-vehicle ignore
Pedestrian 2 person person person
Pedestrian 3 person bicyclist bike
Truck 1 truck motorcyclist bike
Truck 2 truck road road
Truck 3 truck parking parking
Small vehicles 1 bike sidewalk sidewalk
Small vehicles 2 bike other-ground ignore
Small vehicles 3 bike building building
Traffic signal 1 other-objects fence other-objects
Traffic signal 2 other-objects other-structure ignore
Traffic signal 3 other-objects lane-marking road
Traffic sign 1 other-objects vegetation nature
Traffic sign 2 other-objects trunk nature
Traffic sign 3 other-objects terrain nature
Utility vehicle 1 ignore pole other-objects
Utility vehicle 2 ignore traffic-sign other-objects
Sidebars other-objects other-object other-objects
Speed bumper other-objects moving-car car
Curbstone sidewalk moving-bicyclist bike
Solid line road moving-person person
Irrelevant signs other-objects moving-motorcyclist bike
Road blocks other-objects moving-on-rails ignore
Tractor ignore moving-bus ignore
Non-drivable street ignore moving-truck truck
Zebra crossing road moving-other-vehicle ignore
Obstacles / trash other-objects
Poles other-objects
RD restricted area road
Animals other-objects
Grid structure other-objects
Signal corpus other-objects
Drivable cobbleston road
Electronic traffic other-objects
Slow drive area road
Nature object nature
Parking area parking
Sidewalk sidewalk
Ego car car
Painted driv. instr. road
Traffic guide obj. other-objects
Dashed line road
RD normal street road
Sky ignore
Buildings building
Blurred area ignore
Rain dirt ignore

TABLE 7: Class mapping for A2D2/SemanticKITTI UDA and SSDA scenario.

nuSc-Lidarseg: Singap./USA nuSc-Lidarseg: Night/Day

Method 2D 3D 2D+3D 2D 3D 2D+3D

Baseline (src only) 62.2 68.4 71.3 55.1 70.3 64.7

xMUDA 69.2 70.0 73.5 67.4 71.1 71.9
xMUDAPL 70.8 73.0 74.8 68.9 72.6 73.5

TABLE 8: Opposite UDA performance of xMUDA on
nuScenes-Lidarseg [10]. We report the ‘Baseline (src only)’,
xMUDA and xMUDAPL, observing that our proposals are
also effective in the opposite adaptation direction, i.e. Sin-
gapore/USA instead of USA/Singapore in the main experi-
ments and analogous for Night/Day instead of Day/Night.

in 6 classes (vehicle, driveable surface, sidewalk, terrain,
manmade and vegetation), as can be seen in Tab. 10.

In Tab. 9, we provide the results of ‘Baseline (src only)’,
‘LiDAR transfer (re-style)’ which is trained on the down-
sampled (64 to 32 layers) source dataset, ‘LiDAR transfer

(full)’ which additionally applies Deep logCORAL [20] and
finally our methods xMUDA and xMUDAPL.

We observe that both LiDAR transfer methods (re-style
and full) perform worse than ‘Baseline (src only)’, while
xMUDA and xMUDAPL have a considerable domain adap-
tation effect.

APPENDIX D
ADDITIONAL QUALITATIVE RESULTS (UDA)

We provide additional qualitative results for UDA for the
scenarios nuScenes: Day/Night and A2D2/SemanticKITTI
in Fig. 10, where we show the output of the 2D and 3D
stream individually to illustrate their respective strengths
and weaknesses, e.g. that 3D works much better at night.
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Fig. 10: Qualitative results on A2D2/SemanticKITTI (UDA). For UDA Baseline (PL) and xMUDAPL, we separately show
the predictions of the 2D and 3D network stream.
For the uni-modal UDA baseline (PL), the 2D prediction lacks consistency on the road and 3D is unable to recognize
the bike and the building on the left correctly. In xMUDAPL, both modalities can stabilize each other and obtain better
performance on the bike, the road, the sidewalk and the building.

Sem.KITTI/nuSc-Lidarseg

Method 2D 3D 2D+3D

Baseline (src only) 47.6 54.9 61.5

LiDAR transfer (re-style) [21] - 53.1 -
LiDAR transfer (full) [21] - 54.2 -

xMUDA 57.6 57.7 63.2
xMUDAPL 61.0 61.4 67.5

TABLE 9: Comparison of Lidar Transfer [21] with
xMUDA. Performance in mIoU for the UDA scenario:
SemanticKITTI/nuScenes-Lidarseg. ‘LiDAR transfer (re-
style) [21]’ restyles the source (64 layers) as target by sub-
sampling (32 layers) and ‘LiDAR transfer (full) [21]’ adds
Deep logCORAL [20] on top.

APPENDIX E
SSDA EXAMPLE: NO GAIN FROM SOURCE DATA

Before applying domain adaptation techniques, it is benefi-
cial to first study the data situation.

In the UDA case, when no labeled target data is avail-
able, even a small amount of labeled source data represents
a great benefit, because labels on a different domain are still
better than no labels at all.

However, the SSDA case is more complex. As a small
amount of labeled target data T` is available, one must
rely less on the (labeled) source dataset S . The impact of
domain adaptation is most significant when the source-
target domain gap is small and the amount of labeled source
data S is significant in comparison to the amount of labeled
target data T`.

It is impossible to say in general when the inclusion of
source data is beneficial. However, in this section, we still
want to give an example to the reader where the inclusion
of source data for the training is arguable. We present the
results of the VirtualKITTI [56]/SemanticKITTI [2] SSDA
scenario in Tab. 11.

In this scenario, the number of frames in the training
sets accounts to 2,126 in the source dataset S , to 5,642 in
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SemanticKITTI class mapped class nuScenes-LidarSeg class mapped class

unlabeled ignore ignore ignore
outlier ignore barrier ignore
car vehicle bicycle vehicle
bicycle vehicle bus vehicle
bus ignore car vehicle
motorcycle vehicle construction vehicle vehicle
on-rails ignore motorcycle vehicle
truck vehicle pedestrian ignore
other-vehicle ignore traffic cone ignore
person ignore trailer vehicle
bicyclist vehicle truck vehicle
motorcyclist vehicle driveable surface driveable surface
road driveable surface other flat ignore
parking driveable surface sidewalk sidewalk
sidewalk sidewalk terrain terrain
other-ground ignore manmade manmade
building manmade vegetation vegetation
fence manmade
other-structure ignore
lane-marking driveable surface
vegetation vegetation
trunk vegetation
terrain terrain
pole manmade
traffic-sign manmade
other-object manmade
moving-car vehicle
moving-bicyclist vehicle
moving-person ignore
moving-motorcyclist vehicle
moving-on-rails ignore
moving-bus ignore
moving-truck vehicle
moving-other-vehicle ignore

TABLE 10: Class mapping for SemanticKITTI/nuScenes-Lidarseg UDA scenario. Note that the mapping on nuScenes-
Lidarseg (right side of the table) is the same as described in Sec. A.1.

Virt.KITTI/Sem.KITTI

Method Train set 2D 3D 2D+3D

Baseline (src only) S 26.8 42.0 42.2
Baseline (lab. trg only) T` 63.4 69.3 71.2
Baseline (src and lab. trg) S + T` 62.7 71.5 71.0

Domain gap (S vs. S + T`) 35.9 29.5 28.8

xMUDA S + Tu 46.7 46.1 52.4
xMUDAPL S + Tu 49.5 54.6 54.4

Deep logCORAL [20] S + T` + Tu 61.7* 69.4 70.1
MinEnt [5] S + T` + Tu 61.1 71.0 70.6
PL [7] S + T` + Tu 62.1 71.4 70.9

xMoSSDA S + T` + Tu 63.0 72.9 72.2
xMoSSDAPL S + T` + Tu 62.8 76.1 71.4

Unsupervised advantage 0.1 4.6 0.4
(relative) (+0.2%) (+6.4%) (+0.5%)

* The 2D network is trained with batch size 6 instead of 8 to fit into
GPU memory.

TABLE 11: xMoSSDA experiments for the SSDA scenario
VirtualKITTI [56]/SemanticKITTI [2] where the benefit of
the source dataset S is arguable. As in the main paper in
Tab. 3, we report the mIoU result (with best and 2nd best)
on the target set for each network stream (2D and 3D) as
well as the ensembling result taking the mean of the 2D and
3D probabilities (2D+3D).

the labeled target dataset T` and to 32,738 in the unlabeled
target dataset Tu. Hence, there are 2.65x more labeled frames
in T` than in S which poses the question if the small source
dataset S is useful.

Tab. 11 shows that for 2D, ‘Baseline (lab. trg only)‘
trained only on T` performs better (63.4 mIoU) than ‘Base-
line (src and lab. trg)‘ trained on S + T` (62.7 mIoU). Hence,
the inclusion of source training data harms performance. We
hypothesize that the mIoU decrease stems from the large
(2D) image virtual-to-real domain gap. Instead, for 3D, we
observe a small improvement, i.e. from 69.3 mIoU, training
on T`, to 71.5 mIoU, training on S + T`. This might be thanks
to the fact that the 3D point cloud domain gap (29.5) is
smaller than for 2D images (35.9).

Still, xMoSSDA outperforms baselines [5], [7], [20] show-
ing the benefit of cross-modal learning on Tu.
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self-supervised learning for domain adaptation in semantic seg-
mentation,” in CVPR Workshop, 2020.

[17] L. T. Triess, M. Dreissig, C. B. Rist, and J. M. Zöllner, “A survey on
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