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Abstract

We propose a novel framework to learn the spatiotemporal variability in longitudinal 3D 

shape data sets, which contain observations of objects that evolve and deform over time. This 

problem is challenging since surfaces come with arbitrary parameterizations and thus, they 

need to be spatially registered. Also, different deforming objects, hereinafter referred to as 4D 
surfaces, evolve at different speeds and thus they need to be temporally aligned. We solve this 

spatiotemporal registration problem using a Riemannian approach. We treat a 3D surface as a 

point in a shape space equipped with an elastic Riemannian metric that measures the amount of 

bending and stretching that the surfaces undergo. A 4D surface can then be seen as a trajectory in 

this space. With this formulation, the statistical analysis of 4D surfaces can be cast as the problem 

of analyzing trajectories embedded in a nonlinear Riemannian manifold. However, performing 

the spatiotemporal registration, and subsequently computing statistics, on such nonlinear spaces 

is not straightforward as they rely on complex nonlinear optimizations. Our core contribution 

is the mapping of the surfaces to the space of Square-Root Normal Fields (SRNF) where the 

L2 metric is equivalent to the partial elastic metric in the space of surfaces. Thus, by solving 

the spatial registration in the SRNF space, the problem of analyzing 4D surfaces becomes the 

problem of analyzing trajectories embedded in the SRNF space, which has a Euclidean structure. 

In this paper, we develop the building blocks that enable such analysis. These include: (1) the 

spatiotemporal registration of arbitrarily parameterized 4D surfaces even in the presence of large 

elastic deformations and large variations in their execution rates; (2) the computation of geodesics 
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between 4D surfaces; (3) the computation of statistical summaries, such as means and modes 

of variation, of collections of 4D surfaces; and (4) the synthesis of random 4D surfaces. We 

demonstrate the performance of the proposed framework using 4D facial surfaces and 4D human 

body shapes.
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synthesis and generation; 4D surface; Human4D; Face4D; Motion; Growth

1 Introduction

Shape, an essential property of natural and man-made 3D objects, deforms over time as a 

result of many internal and external factors. For instance, anatomical organs such as bones, 

kidneys, and subcortical structures in the brain deform due to natural growth or disease 

progression; human faces deform as a consequence of talking, executing facial expressions, 

and aging. Similarly, actions and motions such as walking, jumping, and running are the 

result of a deformation, over time, of the human body shape. The ability to understand and 

model (1) the typical deformation patterns of a class of 3D objects, and (2) the variability 

of these deformations within and across object classes has many applications. For example, 

in medical diagnosis and biological growth modeling, one is interested in measuring the 

intensity of pain from facial deformations [1], and in distinguishing between normal growth 

and disease progression using the deformation of body shape over time. In computer vision 

and graphics, the ability to statistically model such spatiotemporal variability can be used to 

summarize collections of 3D animations, and simulate animations and motions. Similar 

to 3D morphable models [2], these tools can also be used in a generative model for 

synthesizing large corpora of labeled longitudinal 3D shape data, e.g., 4D faces, for training 

deep neural networks.

This paper proposes a novel framework for the statistical analysis of longitudinal 3D shape 

data composed of objects that deform over time. Each object is represented as a closed 

manifold surface. We refer to an object captured at different points in time, e.g., a 3D human 

face performing a facial expression or speaking a sentence, or a 3D human body shape 

growing or performing actions, as a 4D (or 3D + t) surface. Given a set of such 4D surfaces, 

our goals are to:

• Compute the mean deformation pattern, i.e., the statistical mean 4D surface. For 

example, the same person can smile in different ways. Similarly, different people 

smile differently. The goal is to learn, based on observed longitudinal shape data, 

the typical smile.

• Compute the main directions of variation, analogous to Principal Component 

Analysis (PCA) for modeling 3D shape variability [3], [4], but here we focus on 

modeling variability in 4D surface collections.

• Characterize a population of 4D surfaces using statistical models.

• Synthesize new 4D surfaces by sampling from these statistical models.
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We refer to these tasks as the process of constructing a 4D atlas. Achieving this goal requires 

solving important fundamental challenges. In fact, 3D objects such as faces, human body 

shapes, and anatomical organs, which come with arbitrary parameterizations, exhibit large 

elastic deformations within the same subject and across different subjects. This makes their 

spatial registration, i.e., finding one-to-one correspondences between each pair of shapes, 

very challenging. In the case of 4D surfaces, there is an additional temporal variability 

due to different execution rates (speeds) of evolution within and across subjects. For 

instance, a walking action can be executed at variable speeds even by the same person. 

Thus, the statistical analysis of the spatiotemporal variability in samples of 4D surfaces 

requires efficient spatiotemporal registration of these samples. Spatial registration refers 

to the process of finding a one-to-one correspondence between two 3D surfaces of the 

same individual, captured at different points in time, or of different individuals. Temporal 
registration refers to the problem of finding the optimal time warping that aligns 4D 

surfaces, e.g., walking actions, performed at different execution rates.

In this paper, we treat a 4D surface as a trajectory in a high-dimensional nonlinear space. 

We then formulate the problem of analyzing the spatiotemporal variability of 4D surfaces 

as the statistical analysis of elastic trajectories, where elasticity corresponds to variations 

in the execution rates of the 4D surfaces. However, performing statistics on trajectories 

embedded in nonlinear spaces of high dimension is computationally expensive since it 

relies on nonlinear optimizations. Our core contribution in this paper is the mapping of the 

surfaces to the space of Square-Root Normal Fields (SRNF) [4], [5], which has a Euclidean 

structure (see Section 3.1—in particular, the L2 metric in the space of SRNFs is equivalent 

to the partial elastic metric in the space of surfaces), meaning that the problem of analyzing 

4D surfaces becomes the problem of analyzing trajectories, or curves, embedded in the 

Euclidean space of SRNFs.

This paper develops the building blocks that enable such analysis. We then use these 

building blocks to compute statistical summaries, such as means and modes of variation 

of collections of 4D surfaces, and for the automatic synthesis of novel 4D surfaces. We 

demonstrate the utility and performance of the proposed framework using 4D facial surfaces 

from the VOCA dataset [6], 4D human body shapes from the Dynamic FAUST (DFAUST) 

dataset [7], and dressed 4D human body shapes from the CAPE dataset [8]. Our approach is, 

however, general and applies to all spherically-parameterized surfaces. In summary, the main 

contributions of this paper are as follows.

• We represent 4D surfaces as trajectories in the space of SRNFs, which has 

a Euclidean structure (Section 3.1). This key contribution enables the usage 

of standard computational tools for the analysis and modeling of 4D surfaces 

(Section 3.2).

• We propose efficient algorithms for the spatiotemporal registration of 4D 

surfaces and the computation of geodesics between such 4D surfaces, even in 

the presence of large elastic deformations and significant variation in execution 

rates (Sections 3.2.2 and 3.2.3).
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• The framework does not explicitly or implicitly assume that the correspondences 

between the surfaces are given. It simultaneously solves for the spatial and 

temporal registrations, and for the 4D geodesics that are optimal under the 

proposed metrics.

• We develop computational tools for (1) computing summary statistics of 4D 

surfaces and (2) synthesizing 4D surfaces from formal statistical models (Section 

4).

The remainder of this paper is organized as follows. We first discuss related work in 

Section 2. Section 3 describes the proposed mathematical framework. Section 4 discusses its 

application to various statistical analysis tasks. Section 5 presents the results and discusses 

the performance of the proposed framework. Section 6 summarizes the main findings of this 

paper and discusses future research directions. The Supplementary Material includes more 

technical details, additional results, and further performance analyses.

2 Related work

We classify the state-of-the-art into two categories. Methods in the first category focus 

on cross-sectional shape data (Section 2.1). Methods in the second category focus on 

longitudinal shape data (Section 2.2).

2.1 Statistical models of cross-sectional 3D shape data

Modeling shape variability in 2D and 3D objects has been studied extensively in the 

literature. Early methods use Principal Component Analysis (PCA) to characterize the shape 

space of objects. Initially introduced for the analysis of planar shapes, the active shape 

model of Cootes et al. [9] has been extended to 3D faces [10] and 3D human bodies [3]; see 

[2] for a detailed survey. These methods represent 3D objects as discrete sets of landmarks, 

e.g., vertices, which are assumed to be in correspondence across a population of objects, and 

use standard Euclidean metrics for their comparison. Thus, they are limited to 3D objects 

that undergo small elastic deformations.

To handle large nonlinear variations, e.g., elastic deformations such as the bending and 

stretching observed in 3D human body shapes, Anguelov et al. [11] introduced SCAPE, 

which represents body shape and pose-dependent shape in terms of triangle deformations 

instead of vertex displacements. Hasler et al. [12] learn two linear models: one for pose 

and one for body shape. Loper et al. [13] introduce SMPL, a vertex-based linear model 

for human body shape and pose-dependent shape variation. This model, which has been 

extensively used in the literature, has also been adapted to other types of objects such as 

animals [14] and human body parts [15]. While these models can capture large variations, 

they exhibit two fundamental limitations. First, they rely on separate models for pose-

independent shape, pose-dependent shape, and pose. Thus, they are limited to specific 

classes of objects, e.g., human bodies. Changing the target application, e.g., to animals 

[14] or infants [16], requires redefining the model. Second, they either assume a given 

registration between the surfaces of the 3D objects or solve for registration separately 

by matching vertices across the surfaces using an unrelated optimization criterion. To 

address this problem, some methods, e.g., [17], inspired by the minimum description length 
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approach, jointly learn the statistical model and the registration of the 3D scans used for 

training.

Recently, there has been a growing interest in analyzing variability in 3D shape collections 

using tools from differential and Riemannian geometry [4], [5], [18], [19], [20], [21], [22]; 

see [23] for a detailed survey. The work most relevant to ours is the Square-Root Normal 

Field (SRNF) representation introduced in [5]. In this work, parameterized surfaces are 

compared using a partial elastic Riemannian metric defined as a weighted sum of a bending 

term and a stretching term. More importantly, Jermyn et al. [5] show that by carefully 

choosing the weights of these two terms, the complex partial elastic metric reduces to 

the L2 metric in the space of SRNFs. Thus, by treating shapes of objects as points in the 

SRNF space, a straight line between two points in this space is equivalent to the geodesic 

(or shortest) curve in the original space of surfaces under the partial elastic metric, and 

represents the optimal deformation between them. As a result, one can perform statistical 

analysis in the SRNF space using standard vector calculus, and then map the results back 

to the space of surfaces (for visualization), using the approach of Laga et al. [4]. Another 

important property of SRNFs is that both registration and optimal deformation (geodesic) 

are computed jointly, using the same partial elastic metric.

One of the fundamental problems in statistical shape analysis is correspondence and 

registration; see [24]. Past methods do not define a shape space and a metric that enable 

the computation of geodesics and statistics. Also, correspondence methods that are based on 

the intrinsic properties of surfaces, e.g., Generalized Multidimensional Scaling [25], spectral 

descriptors [26], or functional maps (which rely on the availability of descriptors) [27], 

[28], are primarily suited for surfaces that deform in an isometric manner. They also require 

landmarks to resolve symmetry ambiguities.

2.2 Statistical models for longitudinal shape data

As stated in [7], we live in a 4D world of 3D shapes in motion. With the availability of a 

variety of range sensing devices that can scan dynamic objects at high temporal frequency, 

there is a growing interest in capturing and modeling the 4D dynamics of objects [29], [30], 

[31]. For instance, Wand et al. [29] and Tevs et al. [31] propose methods to reconstruct the 

deforming geometry of time-varying point clouds. Li et al. [32] use sequences of 4D scans 

to learn a statistical 3D facial model. This model, referred to as FLAME, has been later used 

by Cudeiro et al. [6] to capture, learn, and synthesize 3D speaking styles. Bogo et al. [7] 

build a 4D human data set by registering a 3D human template to sequences of 3D human 

scans performing various types of actions. These methods focus on the 3D reconstruction of 

deforming objects. The literature on the statistical analysis of their spatiotemporal variability 

is rather limited.

Early works focused on longitudinal 2D shape data. For instance, Anirudh et al. [33] 

represent the contour of planar shapes that evolve as trajectories on a Grassmann manifold. 

They then use the Transported Square-Root Vector Field (TSRVF) representation for their 

rate-invariant analysis. This approach was later extended to the analysis of the trajectories 

of sparse features or landmarks measured on the surface of a deforming 3D object. Akhter 

et al. [34] introduced a bilinear spatiotemporal basis to model the spatiotemporal variability 
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in 4D surfaces. The approach treats surfaces as N discrete landmarks and uses the L2 metric 

and PCA in ℝ4N for their analysis. Thus, the approch is not suitable for highly articulated 

shapes that undergo large articulated and elastic motion (e.g., human bodies). The approach 

also assumes that the landmarks are in correspondence, both spatially and temporally.

Anirudh et al. [33] and Ben Amor et al. [35] represent human body actions using 

dynamic skeletons. By treating each skeleton, represented by a set of landmarks, as a 

high-dimensional point on Kendall’s shape space [36], motions become trajectories in a 

high-dimensional Euclidean space. Thus, one can use the rich literature on the statistical 

analysis of high-dimensional curves [37] to build a framework for the statistical analysis of 

human motions and actions. This approach, however, has two fundamental limitations. First, 
the L2 metric on Kendall’s shape space is not suitable for large articulated motions. Second, 

skeletons and landmarks do not capture surface elasticity, and thus, cannot be used to model 

growth processes and surface deformations due to motion. While this can be addressed by 

using two separate models, one for shape and another for motion, it will fail to capture 

motion-dependent shape variations.

Using the LDDMM framework [38], Debavelaere et al. [39] and Bone et al. [40] represent 

a 4D surface as a flow of deformations of the 3D volume around each surface and then 

encode deformations as geodesics on a Riemannian manifold. However, in general, natural 

deformations do not correspond to geodesics but can be arbitrary paths on the shape 

space. Also, deforming 3D volumes is expensive in terms of computation and memory 

requirements. Finally, this approach relies on manually-specified landmarks to efficiently 

register the 3D volumes. Our approach, which can handle large articulated and elastic 

motions, works directly on surfaces, does not assume that deformations are (piecewise) 

geodesics, and does not rely on landmarks for the spatiotemporal registration.

3 Mathematical framework

In this section, we describe the proposed mathematical framework for the spatiotemporal 

registration and comparison of 4D surfaces. Section 4 discusses its application to various 

statistical analysis tasks. A 4D surface, where the fourth dimension refers to time, is a 3D 

surface that evolves over time. Examples of such 4D surfaces include facial expressions 

(e.g., a smiling face), a human body shape performing an action such as walking or jumping, 

or an anatomical organ that evolves over time due to natural growth or disease progression. 

A 4D surface can be represented as a path α(t), t ∈ [0, 1] such that α(0) and α(1) are the 

initial and final surfaces, respectively, and α(t), 0 < t < 1 are the intermediate surfaces. The 

main challenges posed by the statistical analysis of such 4D surfaces are two-fold. First, 
surfaces within the same 4D surface and across different 4D surfaces come with arbitrary 

poses and registrations. Second, 4D surfaces can have different execution rates, e.g., two 

smiling expressions performed at different speeds. Thus, to compare and perform statistical 

analysis on samples of 4D surfaces, we first need to spatiotemporally register them.

We solve the spatiotemporal registration problem using tools from differential geometry. We 

treat surfaces as points in a Riemannian shape space equipped with an elastic metric that 

captures shape differences using bending and stretching energies. We then formulate the 
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elastic registration problem, i.e., the problem of computing spatial correspondences, as that 

of finding the optimal rotation and reparameterization that align one surface onto another. 

This enables comparing and spatially registering surfaces, even in the presence of large 

elastic deformations (Section 3.1).

With this representation, a 4D surface becomes a time-parameterized trajectory in the 

above-referenced Riemannian shape space. Thus, the problem of analyzing 4D surfaces is 

reduced to the problem of analyzing curves. Similar to surfaces, we define a space of curves 

equipped with a Riemannian metric, which quantifies the amount of elastic deformation, or 

time warping, needed to align two 4D surfaces (Section 3.2).

3.1 The elastic shape space of surfaces

Fig. 1 overviews the proposed spatial registration framework. We consider a surface as a 

function f of the form:

f : Ω ℝ3; s f(s) = (X(s), Y (s), Z(s)), (1)

where Ω is a parameterization domain and s ∈ Ω is the parameter in this domain. The choice 

of Ω depends on the nature of the surfaces of interest. When dealing with closed surfaces of 

genus-0, Ω is a sphere, i.e., Ω = S2, and s = (u, v), where u ∈ [0, π] and v ∈ [0, 2π[ are the 

spherical coordinates. In practice, surfaces come as unregistered triangular meshes, which 

we map to a spherical domain using the spherical parameterization algorithm of [41].

To remove shape-preserving transformations, we first translate the surfaces so that their 

center of mass is located at the origin, and then scale them to have unit surface area. The 

space of such normalized surfaces, denoted by ℱ, is called the preshape space.

Having removed translation and scale, we still need to account for rotations and 

reparameterizations. Those are handled algebraically. For any surface f ∈ ℱ and for any 

rotation O ∈ SO(3), Of and f have equivalent shapes. Similarly, any reparameterization 

of a surface with an orientation-preserving diffeomorphism preserves its shape. Let Γ be 

the space of all orientation-preserving diffeomorphisms of Ω. Then, ∀ γ ∈ Γ, f and f ◦ 
γ, i.e., the reparameterization of f using γ, have the same shape. (Here, ◦ refers to the 

composition of two functions.) Note that reparameterizations provide dense correspondences 

across surfaces. If one wants to put a surface f2 in correspondence with another surface f1, 

then we need to find a rotation O* and a reparameterization γ* such that O*(f2◦γ*) is as 

close as possible to f1. This is precisely the process of 3D surface registration. It is defined 

mathematically as:

O*, γ* = argmin
O ∈ SO(3), γ ∈ Γ

dℱ f1, O f2 ∘ γ , (2)

where dℱ is a distance in ℱ.

3.1.1 SRNF representation of surfaces—For efficient registration and comparison of 

surfaces, the distance measure, or metric, dℱ should quantify interpretable shape differences, 

i.e., the amount of bending and stretching one needs to apply to one surface to deform 
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it into another. It should also be simple enough to facilitate efficient computation of 

correspondences and geodesic paths. Jermyn et al. [5] introduced a partial elastic metric 

that measures differences between surfaces as a weighted sum of the amount of bending 

and stretching that one needs to apply to a surface to align it to another. In this approach, 

bending is measured in terms of changes in the orientation of the unit normal vectors, 

while stretching is measured in terms of changes in the infinitesimal surface areas. More 

importantly, Jermyn et al. [5] showed that by using a special representation of surfaces, 

called the Square-Root Normal Field (SRNF), the complex partial elastic metric reduces to 

the simple L2 metric on the SRNF space.

Definition 3.1 (Square-Root Normal Field (SRNF)).: The SRNF map H(f) of a surface 

f ∈ ℱ is defined as the normal vector field of the surface scaled by the square-root of the 

local area around each surface point:

H:ℱ Cℎ

f H(f) = ℎ, such that ℎ(u, v) = n(u, v)
‖n(u, v)‖2

1
2
, (3)

where Cℎ is the space of all SRNFs, n = ∂f
∂u × ∂f

∂v  is the normal field to f and ‖ · ‖2 is the 

Euclidean norm in ℝ3.

The SNRF representation of surfaces has nice properties that make it suitable for the various 

analysis tasks at hand:

• It is translation invariant. Also, the SRNF of a rotated surface is simply the 

rotation of the SRNF of that surface, i.e., H(Of) = OH(f).

• ∀γ ∈ Γ, H(f ∘ γ) = Jγ (ℎ ∘ γ) ≡ ℎ * γ, where Jγ is the Jacobian of γ and |·| is its 

determinant.

• Under the L2 metric on the space of SRNFs, the action of Γ is by isometries, i.e., 
∀ γ ∈ Γ and ∀f1, f2 ∈ ℱ, ‖h1 − h2‖ = ‖h1*γ − h2*γ‖, where hi = H(fi), i = 1, 2.

• The space of SRNFs is a subset of L2 Ω, ℝ3 . In addition, the L2 metric in Cℎ

is equivalent to the partial elastic metric in the space of surfaces. As such, 

geodesics in ℱ become straight lines in the SRNF space Cℎ; see Fig. 1.

• Currently, there is no analytical expression for the inverse SRNF map, and 

in fact, the injectivity and surjectivity of the SRNF remain open questions. 

However, Laga et al. [4] showed that, for a given SRNF of a valid surface, one 

can always numerically estimate the original surface, up to translation [4].

The last three properties are critical for comparison and atlas construction of 4D surfaces. 

One can perform elastic registration of surfaces using the standard L2 metric in the space 

of SRNFs, which is computationally very efficient compared to using the complex elastic 

metric in the space of surfaces (Section 3.1.2). Further, temporal evolutions of surfaces 

can be interpreted as curves in the Euclidean space of SRNFs, making them amenable to 

statistical analysis. Thus, the problem of constructing 4D atlases becomes the problem of 
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statistical analysis of elastic curves in the space of SRNFs using standard statistical tools 

developed for Euclidean spaces. After analysis, the results can be mapped back to the 

original space of surfaces using efficient SRNF inversion procedures [4] (Section 3.2).

3.1.2 Spatial elastic registration of surfaces—Under the SRNF representation, the 

elastic registration problem in Eqn. (2) can be reformulated using the L2 metric on Cℎ, the 

space of SRNFs, instead of the complex partial elastic metric on the preshape space ℱ. Let 

f1 and f2 be two surfaces in the preshape space ℱ, and h1 and h2 their SRNFs. Then, the 

rotation and reparameterization that optimally register f2 to f1 are given by:

O*, γ* = argmin
O ∈ SO(3), γ ∈ Γ

ℎ1 − O ℎ2 * γ , (4)

where * is the composition operator between an SRNF and a diffeomorphism γ ∈ Γ. 

This joint optimization over SO(3) and Γ can be solved by alternating, until convergence, 

between the two marginal optimizations (this is allowed due to the product structure of 

SO(3) × Γ) [42]:

• Assuming a fixed parameterization, solve for the optimal rotation using 

Procrustes analysis via Singular Value Decomposition (SVD).

• Assuming a fixed rotation, solve for the optimal reparameterization using a 

gradient descent algorithm.

To solve for the optimal reparameterization, we represent the space Γ of diffeomorphisms 

γ, which are functions on the sphere, using gradients of the spherical harmonic basis 

{Bi}i=1,...,n. This way, every γ ∈ Γ can be written as a weighted sum of the harmonic basis 

gradients: γ = ∑i = 1
n aiBi. Thus, the search for the optimal diffeomorphism is reduced to the 

search for the optimal weights {ai}. This procedure is described in detail in Section 2.1 of 

the Supplementary Material.

Although this approach converges to a local optimum, in practice, it can be used in a very 

efficient way. Since a 4D surface α is a sequence of discrete realizations ℱ, i = 0, · · ·, n, 

with t0 = 0 and tn = 1, one can perform the elastic registration sequentially. Let β = H(α) 

be the SRNF map of the 4D surface α, i.e., ∀ t ∈ [0, 1], β(t) = H(α(t)). Also, let α0 be a 

reference surface randomly chosen from the population of surfaces being analyzed, and β0 

its SRNF map (α0 can be, for example, α(0)). Then, the spatial registration procedure is as 

follows.

1. Find O0 ∈ SO(3) and γ0 ∈ Γ that register β(t0) (the start point of the SRNF path) 

to the SRNF of the reference surface β0, by solving Eqn. (4).

2. For i = 0, . . ., n,

• β(ti) ← O0(β(ti) * γ0) and α(ti) ← O0α(ti) ◦ γ0.

3. For i = 0, . . ., n,

• Find, by solving Eqn. (4), Oi ∈ SO(3) and γi ∈ Γ that register β(ti) to 

β(ti−1).
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• β(ti) ← Oi(β(ti) * γi) and α(ti) ← Oiα(ti) ◦ γi.

The first step ensures that, when given a collection of 4D surfaces αj, j = 1, · · ·, n, the 

surfaces αj(0), j = 1, · · ·, n are registered to each other. The subsequent steps ensure that 

∀t, αj(t) is registered to αj(0). This sequential approach is efficient since, in general, elastic 

deformations between two consecutive frames in a 4D surface are relatively small. In what 

follows, we assume that all surfaces within a 4D surface and across 4D surfaces are correctly 

registered, i.e., they have been normalized for translation and scale, and optimally rotated 

and reparameterized using the approach described in this section.

3.2 The shape space of 4D surfaces

Under the setup of Section 3.1, a 4D surface becomes a curve α: [0, 1] ℱ. However, since 

ℱ is endowed with the partial elastic metric, which is non-Euclidean, we propose to further 

map the 4D surfaces to the SRNF space, which has a Euclidean structure. Thus, 4D surfaces 

become curves of the form β: [0, 1] Cℎ. With this representation, all statistical tasks are 

carried out in Cℎ under the L2 metric with results mapped back to the space of surfaces ℱ for 

visualization.

3.2.1 TSRVF representation of SRNF trajectories—Let α be a curve (path) in ℱ
and β its image under the SRNF map, i.e., ∀ t ∈ [0, 1], β(t) = H(α(t)); β is also a curve, 

but in Cℎ. Let ℳℱ be the space of all paths in ℱ, and ℳℎ be the space of all paths in 

Cℎ:ℳℎ = β:[0, 1] Cℎ ∣ β = H(α), α ∈ ℳℱ .

To temporally register, compare, and summarize samples of such curves, we need to define 

an appropriate metric on ℳℱ, or ℳℎ, that is invariant to the rate (or speed) of the 4D 

surfaces. For example, facial expressions that only differ in the rate of their execution 

should be deemed equivalent under such a metric. Let Ξ = {ξ : [0, 1] → [0, 1] such that 

0 < ξ̇ < ∞, ξ(0) = 0 and ξ(1) = 1} denote all reparameterizations of the temporal domain 

[0, 1]. Here, ξ̇ = dξ
dt . Then, for any ξ ∈ Ξ, β ◦ ξ and β only differ in the rate of execution 

and are thus equivalent. The function ξ is often referred to as a time warping of the domain 

[0, 1]. Temporal registration of two 4D surfaces α1 and α2 then becomes the problem of 

registering their corresponding curves β1 and β2 in Cℎ. This requires solving for an optimal 

reparameterization ξ* ∈ Ξ that minimizes an appropriate distance d(·,·) between β1 and β2:

ξ* = argmin
ξ ∈ Ξ

d β1, β2 ∘ ξ . (5)

The optimization over Ξ in Eqn. (5) ensures rate invariance. Thus, we are left with defining 

a distance d(·,·) that is invariant to time warping of the temporal domain [0, 1]. To this end, 

we borrow tools from Srivastava et al. [37] for analyzing shapes of curves in ℝn, n ≥ 2. The 

associated elastic metric defined therein is invariant to reparameterizations of curves, and 

quantifies the amount of bending and stretching of the curves in terms of changes in the 

orientations and lengths of their tangent vectors, respectively. However, instead of directly 

working with such a complex elastic metric, Su et al. [43] introduced the Transported 
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Square-Root Vector Field (TSRVF) representation, which simplifies the complex elastic 

metric into the simple L2 metric.

Definition 3.2 (Transported Square-Root Vector Field (TSRVF)1).: For any smooth 

trajectory β ∈ ℳℎ, the transported square-root vector field (TSRVF) is a parallel transport of 

a scaled velocity vector field of β to a reference point c ∈ Cℎ according to

Q(β)(t) = q(t) =
β̇(t) β(t) c

β̇(t)
, (6)

where β̇ = ∂β
∂t  is the tangent vector field on β and ‖·‖ is the L2 metric on Cℎ.

Note that the parallel transport β̇(t) β(t) c is performed along the geodesic from β(t) to c. The 

TSRVF representation has nice properties that facilitate efficient temporal registration of 4D 

surfaces. Let β1 and β2 be two trajectories on ℳℎ, and let q1 and q2 be their respective 

TSRVFs.

• The elastic metric on the space of trajectories ℳℎ reduces to the L2 metric on the 

space of their TSRVFs. Thus, one can use the L2 metric to compare two paths:

d β1, β2 = q1 − q2 = ∫
0

1

q1(t) − q2(t) 2dt
1
2

, (7)

where ‖ · ‖ is again the L2 norm on Cℎ.

• For any ξ ∈ Ξ, Q(β ∘ ξ) = (q ∘ ξ) ξ̇(t) ≡ q ⊙ ξ.

• Under the L2 metric, the action of the reparameterization group Ξ on the space of 

TSRVFs is by isometries, i.e., ‖q1 − q2‖ = ‖(q1 ⊙ ξ) − (q2 ⊙ ξ)‖, ∀ ξ ∈ Ξ.

• Given a TSRVF q and an initial trajectory point, one can reconstruct the 

corresponding path β, such that Q(β) = q, by solving an ordinary differential 

equation [43].

As we will see next, these properties enable efficient temporal registration of trajectories 

and subsequent rate-invariant statistical analysis. In what follows, let Q denote the space of 

TSRVFs equipped with the L2 metric defined in Eqn. 7.

3.2.2 Temporal registration—Under the TSRVF representation, the temporal 

registration problem in Eqn. (5), which involved optimization over Ξ, can now be 

reformulated using the standard L2 metric on the space of TSRVFs:

ξ* = argmin
ξ ∈ Ξ

q1 − q2 ⊙ ξ . (8)

1.Although, in this paper, we consider curves β in the space ℳℎ, TSRVFs are general and can be defined on any curves, e.g., curves in 

ℝd, d ≥ 1.
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This problem can be solved efficiently using a Dynamic Programming algorithm [43], [44]. 

Then, the rate-invariant distance d(β1, β2) between two trajectories β1 and β2 is given by:

d β1, β2 = inf
ξ ∈ Ξ

q1 − q2 ⊙ ξ . (9)

3.2.3 Geodesics between 4D surfaces—Let α1, α2 ∈ ℳℱ be two 4D surfaces. The 

pipeline to spatiotemporally register them and compute the geodesic path between them can 

be summarized as follows.

(1) Proposed spatial registration.: The goal is to spatially register the surfaces in α1 and 

α2 to the same reference surface, which can be any arbitrary surface. For simplicity, we 

choose it to be α1(0), the first surface in the sequence α1. The spatial registration can then 

be performed in two steps:

• Compute the SRNF maps: ∀ t ∈ [0, 1], β1(t) = H(α1(t)) and β2(t) = H(α2(t)).

• Spatially register β1 and β2, and thus α1 and α2, to the reference surface, using 

the algorithm described in Section 3.1.2.

For simplicity of notation, we also use β1 and β2 to denote the spatially-registered 

trajectories.

(2) Proposed temporal alignment.: β1 and β2 are elements of ℳℎ. We perform temporal 

registration in three steps:

• Map β1 and β2 to the TSRVF space Q:q1 = Q β1  and q2 = Q(β2).

• Find ξ*, the optimal reparameterization that registers q2 to q1 by solving Eqn. 

(8).

• q2
* q2 ⊙ ξ* and β2

* β2 ∘ ξ*.

(3) Proposed geodesic computation.: Since Q is Euclidean, the geodesic path Λq between 

q1 and q2
* is a straight line:

Λq(τ) = (1 − τ)q1 + τq2
*, τ ∈ [0, 1] . (10)

Next, we map Λq back to ℳℎ using the inverse TSRVF map, i.e., ∀ τ, Λβ(τ) = Q−1(Λq(τ)). 

The computation of the inverse mapping uses the starting point on the trajectory and has a 

closed-form solution, making it computationally efficient. This is described in detail in [43]. 

After applying the inverse mapping to the entire geodesic path, we have Λβ(0) = β1, Λβ(1) = 

β2, and βτ = Λβ(τ), τ ∈ (0,1), i.e., a geodesic path between the SRNF curves β1 and β2.

(4) Visualization.: To visualize geodesic paths between 4D surfaces (and not their 

SRNFs), we need to further map all SRNFs on the trajectory Λβ(τ) to their corresponding 

surfaces in ℱ. This is done using the inverse SRNF map, i.e., ∀ τ ∈ [0, 1], t ∈ [0, 1], Λ(τ)

(t) = H−1(Λβ(τ)(t)). Unlike the TSRVF map whose inverse can be computed analytically, 
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inversion of the SRNF map, whose injectivity and surjectivity are yet to be determined, has 

to be accomplished numerically using the approach of Laga et al. [4].

Now, Λ is the geodesic path between the 4D surfaces α1 and α2
*, i.e., Λ(1) = α2

*, and ατ 
= Λ(τ) is a 4D surface at time τ along the geodesic path. Fig. 3 shows an example of 

a geodesic between two 4D surfaces representing talking faces. Each row corresponds to 

one 4D surface. The top row is the source, the bottom row is the target after optimal 

spatiotemporal registration, and the highlighted row in the middle corresponds to the mean 

4D surface. The temporal registration is further illustrated in Fig. 4, where we show the 

source 4D surface, the target 4D surface before the spatiotemporal registration, and the 

target 4D surface after the spatiotemporal registration. Section 5 provides more examples of 

geodesics computed between various types of 4D surfaces.

4 Statistical analysis of 4D surfaces

Now that we have devised all of the required mathematical tools for comparing 4D surfaces, 

we shift our focus to how these tools can be used to build a 4D atlas from a sample of 4D 

surfaces. Let α1, · · · ,αn be a set of 4D surfaces and β1, · · ·, βn be their corresponding 

trajectories in Cℎ. We assume that all of the surfaces, and their corresponding SRNFs, have 

been spatially registered to a common reference; see Section 3.1.2. We proceed to map 

all of the 4D surfaces to their corresponding TSRVFs, hereinafter denoted by q1, · · ·, qn, 

and compute statistics in that space. As before, all results are mapped at the end to the 

original space of surfaces ℱ for visualization. We will use this framework to compute means 

and modes of variation, and to synthesize novel 4D surfaces by sampling from probability 

distributions fitted to a set of exemplar 4D surfaces.

Mean of 4D surfaces.

Intuitively, the mean of a collection of 4D surfaces is the 4D surface that is as close as 

possible to all of the 4D surfaces in the collection, under the specified distance measure (or 

metric). It is also called the Karcher mean and is defined as the 4D surface that minimizes 

the sum of squared distances to all of the 4D surfaces in the given sample. In other words, 

we seek to solve the following optimization problem, defined in the space of TSRVFs:

q = argmin
q ∈ Q

∑
i = 1

n
min

ξi ∈ Ξ
q − qi ⊙ ξi

2 . (11)

Algorithm 3 in the Supplementary Material describes the proposed procedure for solving 

this optimization problem. It outputs the TSRVF Karcher mean q, the optimal temporal 

reparameterizations ξi
*, i = 1, . . ., n, and the temporally registered TSRVFs qi

* = qi ⊙ ξi
*; 

again, for simplified notation we simply use ξi and qi to denote the optimal temporal 

reparameterizations and the temporally registered TSRVFs. The mean 4D surface can be 

obtained by TSRVF inversion of the mean TSRVF followed by SRNF inversion [4].
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Principal directions of variation.

Since the TSRVF space is Euclidean, the principal directions of variation can also be 

computed in a standard way, i.e., using the Singular Value Decomposition (SVD) of the 

covariance matrix. In the following, we assume that the TSRVFs are sampled using a finite 

set of points and appropriately vectorized. Let K = 1
n − 1 ∑i qi − q qi − q ⊤ be the covariance 

matrix of the input sample, σi, i = 1, . . ., k its k-leading eigenvalues, and Σi, i = 1, . . ., k 
the corresponding eigenvectors. Then, one can explore the variability in the i–th principal 

direction using qτ = q + τ σiΣi, where τ ∈ ℝ. To visualize this principal direction of variation, 

we again use TSRVF inversion followed by SRNF inversion to compute the 4D surface ατ, 

such that Q H ατ = q + τ σiΣi, τ ∈ ℝ.

Random 4D surface synthesis.

Given the mean and the k-leading principal directions of variation, any TSRVF q of a 4D 

surface α can be approximately represented, in a parameterized form, as:

q = q + ∑
i = 1

k
τi σiΣi, τi ∈ ℝ . (12)

Thus, to generate a random TSRVF, we only need to generate k random values τi ∈ ℝ and 

plug them into Eqn. (12). Then, to compute the corresponding random 4D surface, we apply 

the inverse TSRVF map followed by the inverse SRNF map. Also, by enforcing each τi to be 

within a certain range, e.g., [−1, 1], we can ensure that the generated random 4D surfaces are 

similar to the given samples and thus plausible.

This procedure allows the generation of new random 4D surfaces. However, it does not offer 

any control over the generation process, which is entirely random. In many situations, we 

would like to control this process using a set of parameters. For instance, when dealing with 

4D facial expressions, these parameters can be the degree of sadness, facial dimensions, etc. 

This type of control can be implemented using regression in the TSRVF space, a problem 

that we plan to explore in the future.

5 Results

This section demonstrates some results of the proposed framework and evaluates its 

performance. Section 5.1 focuses on spatiotemporal registration and geodesic computation 

between 4D surfaces. Section 5.2 focuses on the computation of statistical summaries 

while Section 5.3 focuses on the random synthesis of 4D surfaces. Finally, Section 5.4 

provides an ablation study to demonstrate the importance of each component of the 

proposed framework. We use three data sets: (1) VOCA [6], which contains 4D facial 

scans, captured at 60fps, of 12 subjects speaking various sentences; (2) MPI DFAUST [7], 

which contains high-resolution 4D scans of 10 human subjects in motion, captured at 60fps, 

with a total of 129 dynamic performances; and (3) MPI 4D CAPE [8], which contains 

high-resolution 4D scans of 10 male and 5 female subjects in clothing. These data sets 

come as polygonal meshes with consistent triangulation and given registration across the 

meshes. We spherically parameterize them using Kurtek et al.’s implementation [18] of 
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the spherical parameterization approach of [41]. We also apply randomly generated spatial 

diffeomorphisms to simulate non-registered surfaces. Our framework does not use, either 

explicitly or implicitly, the provided vertex-wise correspondences.

5.1 Spatiotemporal registration and 4D geodesics

We consider pairs of 4D facial expressions from the VOCA dataset. We first reparameterize 

each 4D surface using randomly generated time-warping functions to simulate facial 

expressions performed at different execution rates. We then apply the framework proposed 

in this paper to spatiotemporally register them. Fig. 4 shows an example of such 

spatiotemporal registration. In this example, we show (a) the source 4D surface, (b) the 

target 4D surface before spatiotemporal registration, and (c) the target 4D surface after 

spatiotemporally registering it to the source. We also highlight some key frames. As one 

can see, the original 4D surfaces differ significantly in their execution rates. The proposed 

spatiotemporal registration framework synchronizes the source and target expressions, 

thus enabling their comparison, interpolation and averaging. We also perform a similar 

experiment on the human body shapes in the DFAUST [7] and CAPE [8] data sets; see Figs. 

5, 6, and 12(a)–(c). Compared to faces, human body shapes are very challenging to analyze 

since they perform complex articulated motions, which result in large bending and stretching 

of their surfaces.

4D geodesics.—Fig. 7 shows geodesics between 4D human body shapes. In this example, 

both the source and the target perform a punching action but at different rates. We show 

the geodesic before and after the spatiotemporal registration of the target 4D surface onto 

the source. Unlike the jumping action in Fig. 5, the left hand of the target surface does not 

perform the same action as the left hand of the source surface. Nevertheless, our framework 

can bring these two 4D surfaces as close as possible to each other. The Supplementary 

Material includes a video of the sequence and more examples of geodesics between 4D faces 

(from VOCA), 4D human bodies (from DFAUST), and clothed 4D human bodies (from 

CAPE).

Evaluation of the spatial registration.—We quantitatively evaluate the accuracy of 

the proposed spatial registration method and compare it to the latest functional map-based 

techniques such as MapTree [45] and Fast Sinkhorn filters [46]. Similar to our method, 

functional maps operate on clean manifold surfaces and do not use any form of (deep) 

learning. We take the surfaces of COMA [47], CAPE [8], and DFAUST [7] data sets, which 

come with ground-truth correspondences, and apply random spatial diffeomorphisms to 

them to simulate unregistered surfaces. We then compute the correspondence map between 

each pair of surfaces in the dataset. We measure the spatial registration error in terms of 

the geodesic distance, on the parameterization domain, between the ground-truth and the 

computed correspondence. Table 1 reports the mean, standard deviation, and median of the 

registration errors computed across all of the models in each data set. As one can see, the 

proposed SRNF-based spatial registration method significantly outperforms state-of-the-art 

algorithms [45], [46]. We refer the reader to the Supplementary Material, which includes 

visual examples of pairs of surfaces before and after spatial registration. It also includes 
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additional spatial registration experiments using the quadruped animal data set of Kulkarni 

et al. [48].

An important property of the proposed approach is that it finds a one-to-one mapping 

between the source and target surfaces. This is not the case with functional map-based 

methods, which can map a point on the source to multiple points on the target. Thus, they 

cannot be used to compute geodesics and statistical summaries.

Evaluation of the temporal registration.—We perform an ablation study in which 

we evaluate the contribution of each component of the proposed temporal registration 

framework. We use the FLAME fitting framework [32] to generate random 4D facial 

surfaces with known ground-truth temporal registrations. We first generate two random 

SMPL [13] parameters, each corresponding to a 3D surface, and then linearly interpolate 

them to simulate a deforming 4D facial surface. Let αi, i ∈ {1, . . ., 5} be the resulting 4D 

surfaces. Next, we generate 100 random temporal diffeomorphisms ξi; see Fig. 12(b) in the 

Supplementary Material.

Now, given a pair of 4D surfaces αi and αj, and for each pair of temporal diffeomorphims ξk 

and ξl, αi◦ξk and αj◦ξl can be seen as a pair of 4D surfaces with different execution rates. 

We then compute the distance between:

• the perfectly registered 4D surfaces αi and αj; see the green curves in the plots 

(a) to (e) in Fig. 8. Note that, since these 4D surfaces correspond to different 

subjects performing different animations, then the original distance between 

them is not 0, but it is the lower bound.

• the perturbed 4D surfaces, i.e., αi ◦ ξk and αj ◦ ξl before temporal registration; 

see Fig. 8(a);

• the registered 4D surfaces but without SRNF and without TSRVF; see Fig. 8(b). 

For this, we use a dynamic programming-based time warping algorithm;

• the registered 4D surfaces, without SRNF but with TSRVF; see Fig. 8(c);

• the registered 4D surfaces, with SRNF but without TSRVF; see Fig. 8(d);

• the registered 4D surfaces using the full framework, i.e., with SRNF and with 

TSRVF; see Fig. 8(e).

Figs. 8(a) to (e) report statistics of these errors for each of the 20 pairs of 4D surfaces, 

but aggregated over the 100 random temporal diffeomorphisms. As one can see, the median 

distance between the 4D surfaces after registration using the full pipeline (Fig. 8(e)) is 

significantly lower than the ablated methods. The former is significantly closer to the 

ground-truth shown with green curves in Fig. 8 than the ablated methods.

Computation time.—Our approach runs entirely on the CPU. The Matlab implementation 

of the spatiotemporal registration process takes less than 31.43 seconds on 4.2 GHz Intel 

Core i7 with 32 GB of RAM. The visualization, which is needed when computing geodesics, 

means, and directions of variation, and when synthesizing random 4D surfaces, relies on the 

inversion of the SRNF maps. It requires 6 seconds per frame and a total of 30 minutes for 
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the 300 temporal frames used in this paper. All of the experiments were performed using a 

spherical resolution of 256×256 for the DFAUST and CAPE data sets, and of 128 × 128 for 

the COMA data set.

5.2 Summary statistics

We now consider a set of unregistered 4D surfaces and compute their mean and principal 

directions of variation. Fig. 9 shows the 4D mean (highlighted with a blue box) computed 

from six 4D human shapes performing different types of actions. The figure also shows the 

input 4D surfaces after their spatiotemporal registration; see the video in the Supplementary 

Material for an illustration of the input 4D surfaces before spatiotemporal registration. 

Despite the large articulated motion, the large differences in the type of actions, and the 

significant differences in the execution rates of the 4D surfaces, our framework is able to 

co-register them and generate a plausible average 4D surface.

Fig. 10(a) and (b), on the other hand, show the mean and the first two principal directions of 

variation computed on input 4D facial surfaces. As we can see, the computed mean captures 

the main features of the dataset. The principal directions of variation further capture relevant 

variability in the given data. The Supplementary Material includes the input 4D surfaces 

prior to their registration. Please also refer to the videos in the Supplementary Material for 

additional results.

5.3 4D surface synthesis

Fig. 10(c) shows five 4D facial expressions randomly sampled from a Gaussian distribution 

with parameters estimated from the VOCA data set using the method described in Sec. 4. To 

ensure that the synthesized 4D surfaces are plausible, we only consider those that are within 

1.5 standard deviations along each principal direction of variation. We refer the reader to 

the Supplementary Material for videos of all of the randomly generated 4D surfaces. The 

ability to synthesize novel 4D surfaces can benefit many applications in computer vision and 

graphics. It can be used to augment data sets for efficient training of deep learning models.

5.4 Ablation study

We undertake an ablation study to demonstrate the importance of each component of the 

proposed framework.

Importance of the SRNF representation.—In this experiment (Fig. 11), we take two 

challenging 3D human body models, which undergo a large articulated motion, perform 

their spatial registration using the proposed SRNF approach, and then compute their 

statistical mean using the L2 metric (1) in the original surface space (Fig. 11(a)) and (2) 

in the SRNF space (Fig. 11(b)). Fig. 11(a) shows that the articulated parts of the mean 

computed in the original surface space unnaturally shrink. This is predictable since, under 

the L2 metric, geodesics correspond to straight lines. However, in the SRNF space, the 

L2 metric is equivalent to the optimal bending and stretching of the surfaces. Thus, the 

computed mean is more natural; see Fig. 11(b).
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Next, we consider two full 4D surfaces of deforming human body shapes (Fig. 12(a) and 

(b)) and show their mean 4D surface obtained:

• with the SRNF representation, with spatial registration, and without temporal 

registration (Fig. 12(d)),

• with the SRNF representation, with spatial registration, and with temporal 

registration (Fig. 12(e)),

• without SRNF representation, with spatial registration, and without temporal 

registration (Fig. 12(f)), and

• without SRNF representation, with spatial registration, and with temporal 

registration (Fig. 12(g)).

The last two cases are equivalent to a linear interpolation in the original surface space, 

after spatial registration. In all cases, we perform the spatial registration using the SRNF 

framework.

First, we can see that the temporally-aligned target 4D surface (Fig. 12(c)) is very close 

to the source 4D surface in Fig. 12(a). We observe that the right hands became fully 

synchronized. As such, the mean 4D surface obtained after temporal registration (Fig. 12(e)) 

is fully synchronized with the source and the aligned target, unlike the mean 4D surface 

in Fig. 12(d), which has been obtained without temporal registration. Second, in the mean 

4D surfaces obtained without the SRNF framework (Figs. 12(f) and (g)), we can observe 

that the parts that undergo large articulated motion (e.g., the arms) unnaturally shrink. This 

shrinkage is stronger in Fig. 12(f) since the mean is obtained without temporal registration. 

The bottom row of Fig. 12 shows a zoom-in on the time frame highlighted in Fig. 12(a) to 

(g).

Finally, we quantitatively evaluate the importance of the SRNF representation by comparing 

the expressive power of PCA on the original space of spatially registered surfaces and on 

the space of SRNFs. We randomly divide a data set into a training set and a testing set, 

using an 80% – 20% split. We then fit a PCA model to the training set (both in the original 

space and in the space of SRNFs), project each surface in the test set onto the PCA model, 

reconstruct it, and measure the error between the original and the reconstructed surfaces. 

Let P = {p1, . . ., pn} be the set of points on the original surface (after centering the surface 

to its center of mass), and Q = {q1, . . ., qn} the corresponding points on the reconstructed 

surface (after centering the reconstructed surface to its center of mass). We measure the 

reconstruction error as:

E = 1
n

∑ pi − qi 2
2

∑ pi 2
2

0.5

. (13)

Note that while the normalization in Equation (13) is not necessary, it allows comparison 

of the reconstruction errors on the same scale. We perform 10-fold cross-validation. Table 2 

reports the mean, median, and standard deviation of the error over the test set and averaged 

over the 10 runs. In this experiment, we use 95% of the cumulative energy, i.e., the ratio 
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between the sum of the eigenvalues of the selected leading eigenvectors and the sum of all 

of the eigenvalues is 95%. As one can see, PCA on the SRNF space has a significantly 

lower reconstruction error than PCA in the original space of surfaces. This demonstrates that 

the former is more suitable to characterize variability in the shape of 3D objects that bend 

and stretch. Section 5 in the Supplementary Material provides an in-depth analysis of the 

expressive power of PCA in the SRNF space.

Importance of the TSRVF representation for 4D surfaces.

We perform a similar ablation study, but on 4D surfaces, to compare the expressive power 

of PCA on the original space of curves and on the space of TSRVFs. Table 3 shows that 

PCA error on the TSRVF space is lower than the error in the original space. We compute 

the reconstruction error using Equation (13), but this time the points are sampled from 

the curves. This experiment demonstrates that the former is more suitable to characterize 

variability in 4D surfaces. In this experiment, we use 95% of the cumulative energy, i.e., the 

ratio between the sum of the eigenvalues of the selected leading eigenvectors and the sum 

of all of the eigenvalues is higher or equal to 95%. Section 5 in the Supplementary Material 

provides a more detailed analysis.

6 Conclusion

We have proposed a new framework for the statistical analysis of longitudinal 3D shape 

data (or 4D surfaces, i.e., surfaces that deform over time), e.g., 3D human body shapes 

performing actions at different execution rates or 3D human faces pronouncing sentences 

at different speeds. Unlike traditional techniques, which only consider how features such 

as landmarks or measurements vary over time, the proposed framework considers the 

deformation of the entire surface of a 3D object. Our key contribution is in representing 

4D surfaces as trajectories in the space of SRNFs, and the use of Transported Square-

Root Vector Fields to analyze such trajectories statistically. The proposed framework can 

spatiotemporally register 4D surfaces, even in the presence of large elastic deformations and 

significant variation in the execution rates. It is also able to compute geodesics and summary 

statistics, which in turn can be used to randomly synthesize new, unseen 4D surfaces.

In contrast to SMPL-based representations, which are specialized for human body shapes, 

this paper’s focus is on generic statistical models that are applicable to a wide range of 

object classes. Comparing generic statistical models vs. specialized ones such as SMPL 

(and its variants) is a very important problem, which requires an in-depth analysis that is 

well beyond the scope of this paper. We note that generic models can always be applied 

to specific classes of objects. However, each class of objects would require its specialised 

SMPL, e.g., one for faces, one for hands, one for the body, one for animals, etc.. They all 

lie on different subspaces and thus cannot be used for inter-class analysis. This, however, is 

not the case with our SRNF-based representation. In fact, although we have demonstrated 

the proposed 4D analysis framework on human body shapes and facial surfaces, it is general 

and can be applied to other classes of surfaces. Note also that our current implementation is 

limited to surfaces that are homeomorphic to a sphere, but we plan to extend the framework 

to higher-genus surfaces by exploring different parameterization methods, including mesh-
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based representations [49]. Also, the approach uses the numerical SRNF inversion procedure 

of Laga et al. [4], which is sometimes not accurate near the poles of the parameterization 

domain; we plan to improve its performance via the use of charts.

The framework deals with surfaces that bend and stretch but do not change in topology; 

as such, it does not apply to tree-like shapes, e.g., botanical trees or roots. However, 

the concept of representing deformations as trajectories in a shape space also applies to 

tree-shape spaces such as those used in [50], [51]. The framework is also limited to clean 

surfaces that are free of geometric and topological noise; as such, the proposed spatial 

registration method cannot be used to register partial scans to each other, or to register a 

template to partial scans. However, similar to statistical shape models such as 3D morphable 

models and SMPL, the proposed 4D atlas can be used as a prior; in conjunction with a data 

generation model, it can thereby be applied to noisy or partial data, e.g., to reconstruct entire 

4D surfaces. The statistical analysis presented in this paper assumes that the population of 

the 4D surfaces follows a Gaussian distribution. We plan to extend the approach to other 

types of distributions, e.g., Gaussian Mixture Models, which can represent populations that 

follow multimodal distributions.

The proposed framework has various applications in computer vision, graphics, biology, and 

medicine. In computer vision, collecting large animations to train deep neural networks, 

e.g., for 3D reconstruction or action recognition [52], [53], is complex and time-consuming. 

Our framework can contribute to solving this problem by automatically synthesizing new 

samples from a small dataset. Our current implementation has only considered random 

synthesis, which is very important for populating virtual environments and for data 

augmentation to train deep learning networks. However, there are many situations where 

we would like to control this process using a set of parameters. For instance, when dealing 

with 4D facial expressions, these parameters can be the degree of sadness, facial dimensions, 

etc. This type of control can be implemented efficiently using regression in the TSRVF 

space. Finally, our framework can be used to statistically analyze how anatomical organs 

deform due to growth or disease progression.

The code for (1) the spherical parameterization, (2) the spatial registration of genus-0 

surfaces using SRNFs, (3) the SRNF map inversion, and (4) the temporal registration of 

high-dimensional curves are available by request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of the proposed spatial registration framework. Surfaces are first mapped onto the 

space of Square-Root Normal Fields (SRNF) and spatially registered using the L2 metric, 

which is equivalent to the partial elastic metric in the original space of surfaces. 4D surfaces 

can then be treated as curves embedded in the L2 space of SRNFs. The operator ⋆ refers to 

the composition of functions in the SRNF space.
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Fig. 2. 
In the proposed temporal registration framework, 4D surfaces, represented as curves in 

the SRNF space, are first mapped to the space of Transported Square-Root Vector Fields 

(TSRVFs) for their temporal registration. Points in the TSRVF space are mapped back to the 

space of SRNFs and then to the original space of surfaces for visualization. The operator ⊙ 
refers to the composition of functions in the TSRVF space.
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Fig. 3. 
Example of a geodesic between the source 4D surface (top row) and the target 4D surface 

(bottom row) after spatiotemporal registration. The highlighted row corresponds to the mean 

4D surface. A video of the figure is included in the Supplementary Material.
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Fig. 4. 
Examples of the spatiotemporal registration of two facial expressions (4D faces). In each 

example, we show (a) the source 4D face, (b) the target 4D face, and (c) the target 

4D face after spatiotemporal registration using the proposed framework. Note how the 

spatiotemporally registered target 4D surface became fully synchronised with the source 4D 

surface. The full video sequence is provided in the Supplementary Material.
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Fig. 5. 
Example of the spatiotemporal registration, using the proposed algorithm, of two 4D human 

body shapes (from the DFAUST dataset) performing a jumping action at different speeds. 

Note how the spatiotemporally registered target 4D surface in (c) became synchronised with 

the source 4D surface in (a). The full video sequence is provided in the Supplementary 

Material.
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Fig. 6. 
Example of the spatiotemporal registration, using the proposed algorithm, of two 4D body 

shapes with different clothing (from the CAPE dataset). Note how the spatiotemporally 

registered target 4D surface in (c) became fully synchronised with the source 4D surface in 

(a). The full video sequence is provided in the Supplementary Material.
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Fig. 7. 
Example of a geodesic between 4D surfaces corresponding to punching actions: (a) the 4D 

surfaces before registration and (b) after registration. In each example, we show the source 

4D surface in the first row, the target 4D surface in the last row, and three intermediate 

4D surfaces along the geodesic between the source and the target. Observe how misaligned 

are the highlighted frames before registration, and how synchronised they became after 

registration. A video illustrating these sequences is included in the Supplementary Material.
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Fig. 8. 
Boxplots of errors between 20 pairs of 4D surfaces. In all of the plots, the red lines represent 

the median error and the boxes represent its spread. The green curve is the ground-truth 

distance, i.e., the distance between the perfectly registered 4D surfaces. (a) Unregistered 

4D surfaces generated using 100 random diffeomorphic transformations, (b) temporally 

registered surfaces, using dynamic programming-based time warping, without SRNF and 

without TSRVF, (c) temporally registered surfaces using TSRVF but without SRNF, 

(d) temporally registered surfaces using SRNF but without TSRVF, and (e) temporally 

registered surfaces using the full framework, i.e., using TSRVF in the space of SRNFs.
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Fig. 9. 
Co-registration of multiple 4D surfaces. In this example, we consider four human body 

shapes performing a jumping action (first four rows) and two others performing a punching 

action (rows 5 and 6). Here, we show the spatiotemporally co-registered 4D surfaces and the 

4D mean (last row) computed using the proposed algorithm. The Supplementary Material 

includes the input 4D surfaces before their spatiotemporal registration. It also includes the 

full video sequences. The surfaces are from the DFAUST dataset.
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Fig. 10. 
First (a) and second (b) principal directions of variation (the mean 4D surface is highlighted 

in the middle). Each row corresponds to one 4D surface sampled between −1.5 to 1.5 

times the standard deviation along the principal direction of variation. We refer the reader 

to the Supplementary Material and Video, which show the input 4D faces (before their 

spatiotemporal registration) and the animated sequences of the modes of variation as well as 

the randomly synthesized faces. The Supplementary Material and Video also include more 

modes of variation and randomly synthesized samples.
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Fig. 11. 
The mean shape between the left and right surfaces, computed (a) in the original surface 

space without the SRNF representation, and (b) in the SRNF space. In (a), the mean shape is 

distorted due to the use of the L2 metric in the original space of surfaces. In both cases, the 

spatial registration is performed using the proposed registration method.
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Fig. 12. 
Illustration of the effect of the different components of the proposed framework on the 

quality of the computed mean 4D surface, which is the middle point along the geodesic 

between the source and target 4D surfaces. The bottom row is a zoom-in on the frame 

highlighted in (a) to (g). The 4D surfaces are from the DFAUST dataset. A video illustrating 

these sequences is included in the Supplementary Material.
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TABLE 2

Comparison of the expressive power of PCA on the original space of surfaces and on the space of SRNFs. The 

lower the values are, the better. These results are obtained using 95% of the cumulative energy.

PCA on surfaces PCA on SRNFs

Mean Std Median Mean Std Median

DFAUST 0.083 0.022 0.083 0.047 0.012 0.046

VOCA 0.031 0.011 0.029 0.009 0.004 0.008

CAPE 0.098 0.035 0.097 0.052 0.019 0.049
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TABLE 3

Comparison of the expressive power of PCA on the original space of curves and on the space of TSRVFs. The 

lower the values are, the better. These results are obtained using 95% of the cumulative energy; see Section 5 

in the Supplementary Material.

PCA on curves PCA on TSRVFs

Mean Std Median Mean Std Median

DFAUST 0.770 0.123 0.758 0.602 0.051 0.617

VOCA 0.690 0.127 0.662 0.486 0.318 0.603

CAPE 0.787 0.123 0.800 0.500 0.152 0.471
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