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Abstract

Transformer with self-attention has led to the revolution-
izing of natural language processing field, and recently in-
spires the emergence of Transformer-style architecture de-
sign with competitive results in numerous computer vision
tasks. Nevertheless, most of existing designs directly em-
ploy self-attention over a 2D feature map to obtain the at-
tention matrix based on pairs of isolated queries and keys
at each spatial location, but leave the rich contexts among
neighbor keys under-exploited. In this work, we design
a novel Transformer-style module, i.e., Contextual Trans-
former (CoT) block, for visual recognition. Such design
fully capitalizes on the contextual information among input
keys to guide the learning of dynamic attention matrix and
thus strengthens the capacity of visual representation. Tech-
nically, CoT block first contextually encodes input keys via a
3×3 convolution, leading to a static contextual representa-
tion of inputs. We further concatenate the encoded keys with
input queries to learn the dynamic multi-head attention ma-
trix through two consecutive 1× 1 convolutions. The learnt
attention matrix is multiplied by input values to achieve
the dynamic contextual representation of inputs. The fu-
sion of the static and dynamic contextual representations
are finally taken as outputs. Our CoT block is appealing in
the view that it can readily replace each 3 × 3 convolution
in ResNet architectures, yielding a Transformer-style back-
bone named as Contextual Transformer Networks (CoT-
Net). Through extensive experiments over a wide range of
applications (e.g., image recognition, object detection and
instance segmentation), we validate the superiority of CoT-
Net as a stronger backbone. Source code is available at
https://github.com/JDAI-CV/CoTNet.

1. Introduction
Convolutional Neural Networks (CNN) [8, 11, 22, 29,

43, 46, 47] demonstrates high capability of learning dis-
criminative visual representations, and convincingly gen-
eralizes well to a series of Computer Vision (CV) tasks,
e.g., image recognition, object detection, and semantic seg-
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Figure 1. Comparison between conventional self-attention and
our Contextual Transformer (CoT) block. (a) Conventional self-
attention solely exploits the isolated query-key pairs to measure
attention matrix, but leaves rich contexts among keys under-
exploited. Instead, (b) CoT block first mines the static context
among keys via a 3×3 convolution. Next, based on the query and
contextualized key, two consecutive 1×1 convolutions are utilized
to perform self-attention, yielding the dynamic context. The static
and dynamic contexts are finally fused as outputs.

mentation. The de-facto recipe of CNN architecture design
is based on discrete convolutional operators (e.g., 3×3 or
5×5 convolution), which effectively impose spatial local-
ity and translation equivariance. However, the limited re-
ceptive field of convolution adversely hinders the model-
ing of global/long-range dependencies, and such long-range
interaction subserves numerous CV tasks [37, 39]. Re-
cently, Natural Language Processing (NLP) field has wit-
nessed the rise of Transformer with self-attention in power-
ful language modeling architectures [14, 49] that triggers
long-range interaction in a scalable manner. Inspired by
this, there has been a steady momentum of breakthroughs
[3, 5, 15, 32, 38, 40, 58] that push the limits of CV tasks by
integrating CNN-based architecture with Transformer-style
modules. For example, ViT [15] and DETR [5] directly pro-
cess the image patches or CNN outputs using self-attention
as in Transformer. [40, 58] present a stand-alone design of
local self-attention module, which can completely replace
the spatial convolutions in ResNet architectures. Never-
theless, previous designs mainly hinge on the independent
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pairwise query-key interaction for measuring attention ma-
trix as in conventional self-attention block (Figure 1 (a)),
thereby ignoring the rich contexts among neighbor keys.

In this work, we ask a simple question - is there an ele-
gant way to enhance Transformer-style architecture by ex-
ploiting the richness of context among input keys over 2D
feature map? For this purpose, we present a unique design
of Transformer-style block, named Contextual Transformer
(CoT), as shown in Figure 1 (b). Such design unifies both
context mining among keys and self-attention learning over
2D feature map in a single architecture, and thus avoids
introducing additional branch for context mining. Techni-
cally, in CoT block, we first contextualize the representa-
tion of keys by performing a 3×3 convolution over all the
neighbor keys within the 3×3 grid. The contextualized key
feature can be treated as a static representation of inputs,
that reflects the static context among local neighbors. Af-
ter that, we feed the concatenation of the contextualized key
feature and input query into two consecutive 1× 1 convolu-
tions, aiming to produce the attention matrix. This process
naturally exploits the mutual relations among each query
and all keys for self-attention learning with the guidance
of the static context. The learnt attention matrix is further
utilized to aggregate all the input values, and thus achieves
the dynamic contextual representation of inputs to depict
the dynamic context. We take the combination of the static
and dynamic contextual representation as the final output of
CoT block. In summary, our launching point is to simul-
taneously capture the above two kinds of spatial contexts
among input keys, i.e., the static context via 3×3 convolu-
tion and the dynamic context based on contextualized self-
attention, to boost visual representation learning.

Our CoT can be viewed as a unified building block, and
is an alternative to standard convolutions in existing ResNet
architectures without increasing the parameter and FLOP
budgets. By directly replacing each 3×3 convolution in a
ResNet structure with CoT block, we present a new Con-
textual Transformer Networks (dubbed as CoTNet) for im-
age representation learning. Through extensive experiments
over a series of CV tasks, we demonstrate that our CoTNet
outperforms several state-of-the-art backbones. Notably,
for image recognition on ImageNet, CoTNet obtains a 0.9%
absolute reduce of the top-1 error rate against ResNeSt (101
layers). For object detection and instance segmentation on
COCO, CoTNet absolutely improves ResNeSt with 1.5%
and 0.7% mAP, respectively.

2. Related Work

2.1. Convolutional Networks

Sparked by the breakthrough performance on ImageNet
dataset via AlexNet [29], Convolutional Networks (Con-
vNet) has become a dominant architecture in CV field. One

mainstream of ConvNet design follows the primary rule in
LeNet [30], i.e., stacking low-to-high convolutions in se-
ries by going deeper: 8-layer AlexNet, 16-layer VGG [43],
22-layer GoogleNet [46], and 152-layer ResNet [22]. After
that, a series of innovations have been proposed for Con-
vNet architecture design to strengthen the capacity of visual
representation. For example, inspired by split-transform-
merge strategy in Inception modules, ResNeXt [53] up-
grades ResNet with aggregated residual transformations in
the same topology. DenseNet [27] additionally enables
the cross-layer connections to boost the capacity of Con-
vNet. Instead of exploiting spatial dependencies in Con-
vNet [28, 37], SENet [26, 25] captures the interdependen-
cies between channels to perform channel-wise feature re-
calibration. [47] further scales up an auto-searched Con-
vNet to obtain a family of EfficientNet networks, which
achieve superior accuracy and efficiency.

2.2. Self-attention in Vision

Taking the inspiration from self-attention in Transformer
that continuously achieves the impressive performances in
various NLP tasks, the research community starts to pay
more attention to self-attention in vision scenario. The orig-
inal self-attention mechanism in NLP domain [49] is de-
vised to capture long-range dependency in sequence mod-
eling. In vision domain, a simple migration of self-attention
mechanism from NLP to CV is to directly perform self-
attention over feature vectors across different spatial loca-
tions within an image. In particular, one of the early at-
tempts of exploring self-attention in ConvNet is the non-
local operation [51] that severs as an additional building
block to employ self-attention over the outputs of convo-
lutions. [3] further augments convolutional operators with
global multi-head self-attention mechanism to facilitate im-
age classification and object detection. Instead of using
global self-attention over the whole feature map [3, 51] that
scale poorly, [24, 40, 58] employ self-attention within local
patch (e.g., 3×3 grid). Such design of local self-attention
effectively limits the parameter and computation consumed
by the network, and thus can fully replace convolutions
across the entirety of deep architecture. Recently, by re-
shaping raw images into a 1D sequence, a sequence Trans-
former [7] is adopted to auto-regressively predict pixels for
self-supervised representation learning. Next, [5, 15] di-
rectly apply a pure Transformer to the sequences of local
features or image patches for object detection and image
recognition. Most recently, [44] designs a powerful back-
bone by replacing the final three 3×3 convolutions in a
ResNet with global self-attention layers.

2.3. Summary

Here we also focus on exploring self-attention for the
architecture design of vision backbone. Most of exist-
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(a) Conventional self-attention block (b) Contextual Transformer (CoT) block
Figure 2. The detailed structures of (a) conventional self-attention block and (b) our Contextual Transformer (CoT) block. +© and ∗©
denotes the element-wise sum and local matrix multiplication, respectively.

ing techniques directly capitalize on the conventional self-
attention and thus ignore the explicit modeling of rich con-
texts among neighbor keys. In contrast, our Contextual
Transformer block unifies both context mining among keys
and self-attention learning over feature map in a single ar-
chitecture with favorable parameter budget.

3. Our Approach
In this section, we first provide a brief review of the

conventional self-attention widely adopted in vision back-
bones. Next, a novel Transformer-style building block,
named Contextual Transformer (CoT), is introduced for im-
age representation learning. This design goes beyond con-
ventional self-attention mechanism by additionally exploit-
ing the contextual information among input keys to facil-
itate self-attention learning, and finally improves the rep-
resentational properties of deep networks. After replacing
3×3 convolutions with CoT block across the whole deep ar-
chitecture, two kinds of Contextual Transformer Networks,
i.e., CoTNet and CoTNeXt deriving from ResNet [22] and
ResNeXt [53], respectively, are further elaborated.

3.1. Multi-head Self-attention in Vision Backbones

Here we present a general formulation for the scalable
local multi-head self-attention in vision backbones [24, 40,
58], as depicted in Figure 2 (a). Formally, given an input 2D
feature map X with the size of H×W ×C (H: height, W :
width, C: channel number), we transform X into queries
Q = XWq , keys K = XWk, and values V = XWv via
embedding matrix (Wq , Wk, Wv), respectively. Notably,
each embedding matrix is implemented as 1×1 convolution
in space. After that, we obtain the local relation matrix R ∈
RH×W×(k×k×Ch) between keys K and queries Q as:

R = K©∗ Q, (1)

where Ch is the head number, and ©∗ denotes the local
matrix multiplication operation that measures the pairwise

relations between each query and the corresponding keys
within the local k×k grid in space. Thus, each feature R(i)

at i-th spatial location of R is a k×k×Ch-dimensional vec-
tor, that consists of Ch local query-key relation maps (size:
k × k) for all heads. The local relation matrix R is further
enriched with the position information of each k × k grid:

R̂ = R+ P ©∗ Q, (2)

where P ∈ Rk×k×Ck represents the 2D relative position
embeddings within each k × k grid, and is shared across
all Ch heads. Next, the attention matrix A is achieved by
normalizing the enhanced spatial-aware local relation ma-
trix R̂ with Softmax operation along channel dimension for
each head: A = Softmax(R̂). After reshaping the feature
vector at each spatial location of A into Ch local attention
matrices (size: k× k), the final output feature map is calcu-
lated as the aggregation of all values within each k× k grid
with the learnt local attention matrix:

Y = V ©∗ A. (3)

Note that the local attention matrix of each head is only uti-
lized for aggregating evenly divided feature map of V along
channel dimension, and the final output Y is the concatena-
tion of aggregated feature maps for all heads.

3.2. Contextual Transformer Block

Conventional self-attention nicely triggers the feature in-
teractions across different spatial locations depending on
the inputs themselves. Nevertheless, in the conventional
self-attention mechanism, all the pairwise query-key re-
lations are independently learnt over isolated query-key
pairs, without exploring the rich contexts in between. That
severely limits the capacity of self-attention learning over
2D feature map for visual representation learning. To alle-
viate this issue, we construct a new Transformer-style build-
ing block, i.e., Contextual Transformer (CoT) block in Fig-
ure 2 (b), that integrates both contextual information mining
and self-attention learning into a unified architecture. Our



Table 1. The detailed structures of ResNet-50 (left) and CoTNet-
50 (right). The shapes and operations within a residual building
block are shown inside the brackets and the number of stacked
blocks in each stage is listed outside. CoTNet-50 has a slightly
smaller number of parameters and FLOPs than ResNet-50.

stage ResNet-50 CoTNet-50 output
res1 7×7 conv, 64, stride 2 7×7 conv, 64, stride 2 112×112

res2 3×3 max pool, stride 2 3×3 max pool, stride 2 56×56 1×1, 64

3×3, 64

1×1, 256

×3

 1×1, 64

CoT, 64
1×1, 256

×3

res3

 1×1, 128

3×3, 128

1×1, 512

×4

 1×1, 128

CoT, 128
1×1, 512

×4 28×28

res4

 1×1, 256

3×3, 256

1×1, 1024

×6

 1×1, 256

CoT, 256
1×1, 1024

×6 14×14

res5

 1×1, 512

3×3, 512

1×1, 2048

×3

 1×1, 512

CoT, 512
1×1, 2048

×3 7×7

global average pool
1000-d fc, softmax

global average pool
1000-d fc, softmax 1×1

# params 25.56×106 22.21×106

FLOPs 4.12×109 3.28×109

launching point is to fully exploit the contextual informa-
tion among neighbour keys to boost self-attention learning
in an efficient manner, and strengthen the representative ca-
pacity of the output aggregated feature map.

In particular, suppose we have the same input 2D fea-
ture map X ∈ RH×W×C . The keys, queries, and values
are defined as K = X , Q = X , and V = XWv , respec-
tively. Instead of encoding each key via 1×1 convolution
as in typical self-attention, CoT block first employs k × k
group convolution over all the neighbor keys within k × k
grid spatially for contextualizing each key representation.
The learnt contextualized keys K1 ∈ RH×W×C naturally
reflect the static contextual information among local neigh-
bor keys, and we take K1 as the static context representation
of input X . After that, conditioned on the concatenation of
contextualized keys K1 and queries Q, the attention matrix
is achieved through two consecutive 1×1 convolutions (Wθ

with ReLU activation function and Wδ without activation
function):

A = [K1, Q]WθWδ. (4)

In other words, for each head, the local attention matrix
at each spatial location of A is learnt based on the query
feature and the contextualized key feature, rather than the
isolated query-key pairs. Such way enhances self-attention
learning with the additional guidance of the mined static
context K1. Next, depending on the contextualized atten-
tion matrix A, we calculate the attended feature map K2 by
aggregating all values V as in typical self-attention:

K2 = V ©∗ A. (5)

In view that the attended feature map K2 captures the dy-
namic feature interactions among inputs, we name K2 as
the dynamic contextual representation of inputs. The final

Table 2. The detailed structures of ResNeXt-50 with a 32×4d
template (left) and CoTNeXt-50 with a 2×48d template (right).
The shapes and operations within a residual building block are
shown inside the brackets and the number of stacked blocks in
each stage is listed outside. C denotes the number of groups within
grouped convolutions. Compared to ResNeXt-50, CoTNeXt-50
has a slightly larger number of parameters but similar FLOPs.

stage ResNeXt-50 (32×4d) CoTNeXt-50 (2×48d) output
res1 7×7 conv, 64, stride 2 7×7 conv, 64, stride 2 112×112

res2 3×3 max pool, stride 2 3×3 max pool, stride 2 56×56 1×1, 128

3×3, 128, C=32

1×1, 256

×3

 1×1, 96

CoT, 96, C=2

1×1, 256

×3

res3

 1×1, 256

3×3, 256, C=32

1×1, 512

×4

 1×1, 192

CoT, 192, C=2

1×1, 512

×4 28×28

res4

 1×1, 512

3×3, 512, C=32

1×1, 1024

×6

 1×1, 384

CoT, 384, C=2

1×1, 1024

×6 14×14

res5

 1×1, 1024

3×3, 1024, C=32

1×1, 2048

×3

 1×1, 768

CoT, 768, C=2

1×1, 2048

×3 7×7

global average pool
1000-d fc, softmax

global average pool
1000-d fc, softmax 1×1

# params 25.03×106 30.05×106

FLOPs 4.27×109 4.33×109

output of our CoT block (Y ) is thus measured as the fusion
of the static context K1 and dynamic context K2 through
attention mechanism [31].

3.3. Contextual Transformer Networks

The design of our CoT is a unified self-attention building
block, and acts as an alternative to standard convolutions in
ConvNet. As a result, it is feasible to replace convolutions
with their CoT counterparts for strengthening vision back-
bones with contextualized self-attention. Here we present
how to integrate CoT blocks into existing state-of-the-art
ResNet architectures (e.g., ResNet [22] and ResNeXt [53])
without increasing parameter budget significantly. Table
1 and Table 2 shows two different constructions of our
Contextual Transformer Networks (CoTNet) based on the
ResNet-50/ResNeXt-50 backbone, called CoTNet-50 and
CoTNeXt-50, respectively. Please note that our CoTNet is
flexible to generalize to deeper networks (e.g., ResNet-101).

CoTNet-50. Specifically, CoTNet-50 is built by directly
replacing all the 3×3 convolutions (in the stages of res2,
res3, res4, and res5) in ResNet-50 with CoT blocks. As
our CoT blocks are computationally similar with the typical
convolutions, CoTNet-50 has similar (even slightly smaller)
parameter number and FLOPs with ResNet-50.

CoTNeXt-50. Similarly, for the construction of
CoTNeXt-50, we first replace all the 3×3 convolution ker-
nels in group convolutions of ResNeXt-50 with CoT blocks.
Compared to typical convolutions, the depth of the ker-
nels within group convolutions is significantly decreased
when the number of groups (i.e., C in Table 2) is increased.
In ResNeXt-50, the computational cost of group convolu-
tions is thus reduced by a factor of C. Therefore, in or-



der to achieve the similar parameter number and FLOPs
with ResNeXt-50, we additionally reduce the scale of in-
put feature map of CoTNeXt-50 from 32×4d to 2×48d.
Finally, CoTNeXt-50 requires only 1.2× more parameters
and 1.01× more FLOPs than ResNeXt-50.

3.4. Connections with Previous Vision Backbones

In this section, we discuss the detailed relations and dif-
ferences between our Contextual Transformer and the pre-
vious most related vision backbones.

Blueprint Separable Convolution [18] approximates
the conventional convolution with a 1×1 pointwise convo-
lution plus a k×k depthwise convolution, aiming to reduce
the redundancies along depth axis. In general, such design
has some commonalities with the transformer-style block
(e.g., the typical self-attention and our CoT block). This
is due to that the transformer-style block also utilizes 1×1
pointwise convolution to transform the inputs into values,
and the followed aggregation computation with k × k local
attention matrix is performed in a similar depthwise man-
ner. Besides, for each head, the aggregation computation in
transformer-style block adopts channel sharing strategy for
efficient implementation without any significant accuracy
drop. Here the utilized channel sharing strategy can also be
interpreted as the tied block convolution [52], which shares
the same filters over equal blocks of channels.

Dynamic Region-Aware Convolution [6] introduces a
filter generator module (consisting of two consecutive 1×1)
to learn specialized filters for region features at different
spatial locations. It therefore shares a similar spirit with the
attention matrix generator in our CoT block that achieves
dynamic local attention matrix for each spatial location.
Nevertheless, the filter generator module in [6] produces the
specialized filters based on the primary input feature map.
In contrast, our attention matrix generator fully exploits the
complex feature interactions between contextualized keys
and queries for self-attention learning.

Bottleneck Transformer [44] is the contemporary
work, which also aims to augment ConvNet with self-
attention mechanism by replacing 3×3 convolution with
Transformer-style module. Specifically, it adopts global
multi-head self-attention layers, which are computation-
ally more expensive than local self-attention in our CoT
block. Therefore, with regard to the same ResNet backbone,
BoT50 in [44] only replaces the final three 3×3 convolu-
tions with Bottleneck Transformer blocks, while our CoT
block can completely replace 3×3 convolutions across the
whole deep architecture. In addition, our CoT block goes
beyond typical local self-attention in [24, 40, 58] by ex-
ploiting the rich contexts among input keys to strengthen
self-attention learning.

4. Experiments
In this section, we verify and analyze the effectiveness of

our Contextual Transformer Networks (CoTNet) as a back-
bone via empirical evaluations over multiple mainstream
CV applications, ranging from image recognition, object
detection, to instance segmentation. Specifically, we first
undertake experiments for image recognition task on Ima-
geNet benchmark [13] by training our CoTNet from scratch.
Next, after pre-training CoTNet on ImageNet, we further
evaluate the generalization capability of the pre-trained
CoTNet when transferred to downstream tasks of object de-
tection and instance segmentation on COCO dataset [34].

4.1. Image Recognition

Setup. We conduct image recognition task on the Im-
ageNet dataset, which consists of 1.28 million training
images and 50,000 validation images derived from 1,000
classes. Both of the top-1 and top-5 accuracies on the val-
idation set are reported for evaluation. For this task, we
adopt two different training setups in the experiments, i.e.,
the default training setup and advanced training setup.

The default training setup is the widely adopted setting in
classic vision backbones (e.g., ResNet [22], ResNeXt [53],
and SENet [26]), that trains networks for around 100 epochs
with standard preprocessing. Specifically, each input image
is cropped into 224×224, and only the standard data aug-
mentation (i.e., random crops and horizontal flip with 50%
probability) is performed. All the hyperparameters are set
as in official implementations without any additional tuning.
Similarly, our CoTNet is trained in an end-to-end manner,
through backpropagation using SGD with momentum 0.9
and label smoothing 0.1. We set the batch size as B = 512
that enables applicable implementations on an 8-GPU ma-
chine. For the first five epochs, the learning rate is scaled
linearly from 0 to 0.1·B

256 , which is further decayed via co-
sine schedule [36]. As in [1], we adopt exponential moving
average with weight 0.9999 during training.

For fair comparison with state-of-the-art backbones
(e.g., ResNeSt [57], EfficientNet [47] and LambdaNet-
works [1]), we additionally involve the advanced training
setup with longer training epochs and improved data aug-
mentation & regularization. In this setup, we train our CoT-
Net with 350 epochs, coupled with the additional data aug-
mentation of RandAugment [10] and mixup [55], and the
regularization of dropout [45] and DropConnect [50].

Performance Comparison. We compare with several
state-of-the-art vision backbones with two different train-
ing settings (i.e., default and advanced training setups)
on ImageNet dataset. The performance comparisons are
summarized in Tables 3 and 4 for each kind of training
setup, respectively. Note that we construct several variants
of our CoTNet and CoTNeXt with two kinds of depthes
(i.e., 50-layer and 101-layer), yielding CoTNet-50/101 and



Table 3. Performance comparisons with the state-of-the-art vision
backbones for image recognition on ImageNet (default training
setup). Models with same depth (50-layer/101-layer) are grouped
for efficiency comparison. ? indicates the use of exponential mov-
ing average during training.

Backbone Res. ParamsGFLOPs Top-1 Acc.Top-5 Acc.
ResNet-50 [22] 224 25.5M 4.1 77.3 93.6

Res2Net-50 [17] 224 25.7M 4.3 78.0 93.9
ResNeXt-50 [53] 224 25.0M 4.2 78.2 93.9

SE-ResNeXt-50 [26] 224 27.6M 4.3 78.6 94.2
LR-Net-50 [24] 224 23.3M 4.3 77.3 93.6

Stand-Alone? [40] 224 18.0M 3.6 77.6 -
AA-ResNet-50 [3] 224 25.8M 4.2 77.7 93.8
BoTNet-S1-50 [44] 224 20.8M 4.3 77.7 -

ViT-B/16 [15] 384 - - 77.9 -
SAN19 [58] 224 20.5M 3.3 78.2 93.9

LambdaResNet-50?[1] 224 15.0M - 78.4 -
CoTNet-50 224 22.2M 3.3 79.2 94.5
CoTNet-50? 224 22.2M 3.3 79.8 94.9
CoTNeXt-50 224 30.1M 4.3 79.5 94.5
CoTNeXt-50? 224 30.1M 4.3 80.2 95.1

SE-CoTNetD-50 224 23.1M 4.1 79.8 94.7
SE-CoTNetD-50? 224 23.1M 4.1 80.5 95.2
ResNet-101 [22] 224 44.6M 7.9 78.5 94.2

ResNeXt-101 [53] 224 44.2M 8.0 79.1 94.4
Res2Net-101 [17] 224 45.2M 8.1 79.2 94.4

SE-ResNeXt-101 [26] 224 49.0M 8.0 79.4 94.6
LR-Net-101 [24] 224 42.0M 8.0 78.5 94.3

AA-ResNet-101 [3] 224 45.4M 8.1 78.7 94.4
CoTNet-101 224 38.3M 6.1 80.0 94.9
CoTNet-101? 224 38.3M 6.1 80.9 95.3
CoTNeXt-101 224 53.4M 8.2 80.3 95.0
CoTNeXt-101? 224 53.4M 8.2 81.3 95.6

SE-CoTNetD-101 224 40.9M 8.5 80.5 95.1
SE-CoTNetD-101? 224 40.9M 8.5 81.4 95.6

CoTNeXt-50/101. In advanced training setup, as in Lamb-
daResNet [1], we additionally include an upgraded version
of our CoTNet, i.e., SE-CoTNetD-101, where the 3×3 con-
volutions in the res4 and res5 stages are replaced with CoT
blocks under SE-ResNetD-50 [23, 2] backbone. Moreover,
in default training setup, we also report the performances of
our models with the use of exponential moving average for
fair comparison against LambdaResNet.

As shown in Table 3, under the same depth (50-layer
or 101-layer), the results across both top-1 and top-5 ac-
curacy consistently indicate that our CoTNet-50/101 and
CoTNeXt-50/101 obtain better performances against exist-
ing vision backbones with favorable parameter budget, in-
cluding both ConvNets (e.g., ResNet-50/101 and ResNeXt-
50/101) and attention-based models (e.g., Stand-Alone and
AA-ResNet-50/101). The results generally highlight the
key advantage of exploiting contextual information among
keys in self-attention learning for visual recognition task.
Specifically, under the same 50-layer backbones, by ex-
ploiting local self-attention in the deep architecture, LR-
Net-50 and Stand-Alone exhibit better performance than

Table 4. Performance comparisons with the state-of-the-art vision
backbones for image recognition on ImageNet (advanced training
setup). Models with similar top-1/top-5 accuracy are grouped for
efficiency comparison.

Backbone Res. Params GFLOPs Top-1 Acc.Top-5 Acc.
ResNet-50 [22] 224 25.5M 4.1 78.3 94.3

CoaT-Lite Mini [54] 224 11M 2.0 78.9 -
EfficientNet-B1 [47] 240 7.8M 0.7 79.1 94.4
SE-ResNet-50 [26] 224 28.1M 4.1 79.4 94.6

XCiT-T24 [16] 224 12.1M 2.3 79.4 -
EfficientNet-B2 [47] 260 9.2M 1.0 80.1 94.9
BoTNet-S1-50 [44] 224 20.8M 4.3 80.4 95.0

ResNeSt-50-fast [57] 224 27.5M 4.3 80.6 -
ResNeSt-50 [57] 224 27.5M 5.4 81.1 -

Twins-PCPVT-S [9] 224 24.1M 3.7 81.2 -
Swin-T [35] 224 28.3M 4.5 81.3 -
CoTNet-50 224 22.2M 3.3 81.3 95.6

CoTNeXt-50 224 30.1M 4.3 82.1 95.9
SE-CoTNetD-50 224 23.1M 4.1 81.6 95.8
ResNet-101 [22] 224 44.6M 7.9 80.0 95.0
ResNet-152 [22] 224 60.2M 11.6 81.3 95.5

SE-ResNet-101 [26] 224 49.3M 7.9 81.4 95.7
TNT-S [19] 224 23.8M 5.2 81.5 95.7

EfficientNet-B3 [47] 300 12.0M 1.8 81.6 95.7
BoTNet-S1-59 [44] 224 33.5M 7.3 81.7 95.8

CoaT-Lite Small [54] 224 19.8M 4.0 81.9 -
ResNeSt-101-fast [57] 224 48.2M 8.1 82.0 -

ResNeSt-101 [57] 224 48.3M 10.2 82.3 -
LambdaResNet-101[1] 224 36.9M - 82.3 -

XCiT-S24 [16] 224 47.6M 9.1 82.6 -
CaiT-S-24 [48] 224 46.9M 9.4 82.7 -

Twins-PCPVT-B [9] 224 56.0M 8.3 82.7 -
CoTNet-101 224 38.3M 6.1 82.8 96.2

CoTNeXt-101 224 53.4M 8.2 83.2 96.4
SE-CoTNetD-101 224 40.9M 8.5 83.2 96.5

SE-ResNet-152 [26] 224 66.8M 11.6 82.2 95.9
ConViT-B [12] 224 86.5M 16.8 82.4 95.9

BoTNet-S1-110 [44] 224 54.7M 10.9 82.8 96.3
TNT-B [19] 224 65.6M 14.1 82.9 96.3

XCiT-L24 [16] 224 189.1M 36.1 82.9 -
EfficientNet-B4 [47] 380 19.0M 4.2 82.9 96.4

CaiT-S-36 [48] 224 68.2M 13.9 83.3 -
Twins-PCPVT-L [9] 224 99.2M 14.8 83.3 -

Swin-B [35] 224 87.7M 15.4 83.3 -
BoTNet-S1-128 [44] 256 75.1M 19.3 83.5 96.5
EfficientNet-B5 [47] 456 30.0M 9.9 83.6 96.7
SE-CoTNetD-152 224 55.8M 17.0 84.0 97.0

SENet-350 [26] 384 115.2M 52.9 83.8 96.6
EfficientNet-B6 [47] 528 43.0M 19.0 84.0 96.8
BoTNet-S1-128 [44] 320 75.1M 30.9 84.2 96.9

Swin-B [35] 384 87.7M 47.0 84.2 -
EfficientNet-B7 [47] 600 66.0M 37.0 84.3 97.0
SE-CoTNetD-152 320 55.8M 26.5 84.6 97.1

ResNet-50, which ignores long-range feature interactions.
Next, AA-ResNet-50 and LambdaResNet-50 enable the ex-
ploration of global self-attention over the whole feature
map, and thereby boost up the performances. However,



Table 5. Performance comparisons across different ways on the ex-
ploration of contextual information, i.e., using only static context
(Static Context), using only dynamic context (Dynamic Con-
text), linearly fusing static and dynamic contexts (Linear Fusion),
and the full version of CoT block. The backbone is CoTNet-50 and
we adopt the default setup for training on ImageNet.

Params GFLOPs Top-1 Acc. Top-5 Acc.
Static Context 17.1M 2.7 77.1 93.5

Dynamic Context 20.3M 3.3 78.5 94.1
Linear Fusion 20.3M 3.3 78.7 94.2

CoT 22.2M 3.3 79.2 94.5

the performances of AA-ResNet-50 and LambdaResNet-
50 are still lower than the stronger ConvNet (SE-ResNeXt-
50) that strengthens the capacity of visual representation
with channel-wise feature re-calibration. Furthermore, by
fully replacing 3×3 convolutions with CoT blocks across
the entirety of deep architecture in ResNet-50/ResNeXt-
50, CoTNet-50 and CoTNeXt-50 outperform SE-ResNeXt-
50. This confirms that unifying both context mining among
keys and self-attention learning into a single architecture is
an effective way to enhance representation learning and thus
boost visual recognition. When additionally using exponen-
tial moving average as in LambdaResNet, the top-1 accu-
racy of CoTNeXt-50/101 will be further improved to 80.2%
and 81.3% respectively, which is to-date the best published
performance on ImageNet in default training setup.

Similar observations are also attained in advanced train-
ing setup, as summarized in Table 4. Note that here we
group all the baselines with similar top-1/top-5 accuracy or
network depth. In general, our CoTNet-50 & CoTNeXt-50
or CoTNet-101 & CoTNeXt-101 perform consistently bet-
ter than other vision backbones across both metrics for each
group. In particular, the top-1 accuracy of our CoTNeXt-
50 and CoTNeXt-101 can achieve 82.1% and 83.2%, mak-
ing the absolute improvement over the best competitor
ResNeSt-50 or ResNeSt-101/LambdaResNet-10 by 1.0%
and 0.9%, respectively. More specifically, the attention-
based backbones (BoTNet-S1-50 and BoTNet-S1-59) ex-
hibit better performances than ResNet-50 and ResNet-101,
by replacing the final three 3×3 convolutions in ResNet
with global self-attention layers. LambdaResNet-101 fur-
ther boosts up the performances by leveraging the compu-
tationally efficient global self-attention layers (i.e., Lambda
layer) to replace the convolutional layers. Nevertheless,
LambdaResNet-101 is inferior to CoTNeXt-101 which cap-
italizes on the contextual information among input keys to
guide self-attention learning. Even under the heavy set-
ting with deeper networks, our SE-CoTNetD-152 (320) still
manages to outperform the superior backbones of BoTNet-
S1-128 (320) and EfficientNet-B7 (600), sharing the similar
(even smaller) FLOPs with BoTNet-S1-128 (320).

Inference Time vs. Accuracy. Here we evaluate our
CoTNet models with regard to both inference time and top-
1 accuracy for image recognition task. Figure 3 and Figure
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Figure 4. Inference Time vs. Accuracy Curve on ImageNet (ad-
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4 show the inference time-accuracy curve under both de-
fault and advanced training setups for our CoTNet and the
state-of-the-art vision backbones. As shown in the two fig-
ures, we can see that our CoTNet models consistently obtain
better top-1 accuracy with less inference time than other vi-
sion backbones across both training setups. In a word, our
CoTNet models seek better inference time-accuracy trade-
offs than existing vision backbones. More remarkably,
compared to the high-quality backbone of EfficientNet-B6,
our SE-CoTNetD-152 (320) achieves 0.6% higher top-1 ac-
curacy, while runs 2.75× faster at inference.

Ablation Study. In this section, we investigate how each
design in our CoT block influences the overall performance
of CoTNet-50. In CoT block, we first mine the static con-
text among keys via a 3×3 convolution. Conditioned on the
concatenation of query and contextualized key, we can also
obtain the dynamic context via self-attention. CoT block
dynamically fuses the static and dynamic contexts as the
final outputs. Here we include one variant of CoT block
by directly summating the two kinds of contexts, named as
Linear Fusion.

Table 5 details the performances across different ways
on the exploration of contextual information in CoTNet-50
backbone. Solely using static context (Static Context) for
image recognition achieves 77.1% top-1 accuracy, which



Table 6. Effect of utilizing different replacement settings on the four stages (res2→res3→res4→res5) in the basic backbone of ResNet-50
and two widely adopted architecture changes, ResNet-D [23] and Squeeze-and-Excitation [26] (D-SE). X denotes the stage is replaced
with our CoT blocks. ? denotes the use of architecture changes (D-SE). We adopt the default setup for training on ImageNet.

res2 res3 res4 res5 D-SE Params GFLOPs Infer Top-1 Acc. Top-5 Acc.
ResNet-50 25.5M 4.1 508 ex/s 77.3 93.6

CoTNet-50

X 23.5M 4.0 491 ex/s 78.5 94.1
X X 22.4M 3.7 443 ex/s 79.0 94.3

X X X 22.3M 3.4 390 ex/s 79.0 94.4
X X X X 22.2M 3.3 331 ex/s 79.2 94.5

SE-ResNetD-50 ? 35.7M 4.4 444 ex/s 79.1 94.5
SE-CoTNetD-50 X X ? 23.1M 4.1 414 ex/s 79.8 94.7

can be interpreted as one kind of ConvNet without self-
attention. Next, by directly exploiting the dynamic context
via self-attention, Dynamic Context exhibits better perfor-
mance. The linear fusion of static and dynamic contexts
leads to a boost of 78.7%, which basically validates the
complementarity of the two contexts. CoT block is fur-
ther benefited from the dynamic fusion via attention, and
the top-1 accuracy of CoT finally reaches 79.2%.

Effect of Replacement Settings. In order to show the
relationship between performance and the number of stages
replaced with our CoT blocks, we progressively replace
the stages with our CoT blocks in ResNet-50 backbone
(res2→res3→res4→res5), and compare the performances.
The results shown in Table 6 indicate that increasing the
number of stages replaced with CoT blocks can generally
lead to performance improvement, and meanwhile the pa-
rameter number & FLOPs are slightly decreased. When
taking a close look on the throughputs and accuracies of dif-
ferent replacement settings, the replacement of CoT blocks
in the last two stages (res4 and res5) contributes to the most
performance boost. The additional replacement of CoT
blocks in the fist stages (res1 and res2) can only lead to a
marginal performance improvement (0.2% top-1 accuracy
in total), while requiring 1.34× inference time. Therefore,
in order to seek a better speed-accuracy trade-off, we fol-
low [1] and construct an upgraded version of our CoTNet,
named SE-CoTNetD-50, where only the 3×3 convolutions
in the res4 and res5 stages are replaced with CoT blocks un-
der SE-ResNetD-50 backbone. Note that the SE-ResNetD-
50 backbone is a variant of ResNet-50 with two widely
adopted architecture changes (ResNet-D [23] and Squeeze-
and-Excitation in all bottleneck blocks [26]). As shown in
Table 6, compared to the SE-ResNetD-50 counterpart, our
SE-CoTNetD-50 achieves better performances at a virtually
negligible decrease in throughput.

4.2. Object Detection

Setup. We next evaluate the pre-trained CoTNet for the
downstream task of object detection on COCO dataset. For
this task, we adopt Faster-RCNN [41, 42] and Cascade-
RCNN [4] as the base object detectors, and directly replace
the vanilla ResNet backbone with our CoTNet. Following
the standard setting in [53], we train all models on COCO-

Table 7. Performance comparisons with the state-of-the-art vision
backbones on the downstream task of object detection (Base detec-
tors: Faster-RCNN and Cascade-RCNN). Average Precision (AP)
is reported at different IoU thresholds and for three different object
sizes: small, medium, large (s/m/l).

Backbone AP AP50 AP75 APs APm APl

Fa
st

er
-R

C
N

N

ResNet-50 [22] 39.34 59.47 42.76 23.57 42.42 51.30
ResNeXt-50 [53] 41.31 62.23 44.91 25.33 44.52 53.20
ResNeSt-50 [57] 42.39 63.73 46.02 26.25 45.88 54.24

CoTNet-50 43.50 64.84 47.53 26.36 47.54 56.49
CoTNeXt-50 44.06 65.76 47.65 27.08 47.70 57.21

ResNet-101 [22] 41.46 61.99 45.38 25.31 44.75 54.62
ResNeXt-101 [53] 42.91 63.77 46.89 25.96 46.42 55.47
ResNeSt-101 [57] 44.13 61.91 47.67 26.02 47.69 57.48

CoTNet-101 45.35 66.80 49.18 28.65 49.47 58.82
CoTNeXt-101 46.10 67.50 50.22 29.44 49.84 59.26

C
as

ca
de

-R
C

N
N

ResNet-50 [22] 42.45 59.76 46.09 24.90 45.64 55.86
ResNeXt-50 [53] 44.53 62.45 48.38 27.29 48.01 57.87
ResNeSt-50 [57] 45.41 63.92 48.70 28.77 48.69 58.43

CoTNet-50 46.11 64.68 49.75 28.71 49.76 60.28
CoTNeXt-50 46.79 65.54 50.53 29.74 50.49 61.04

ResNet-101 [22] 44.13 61.91 47.67 26.02 47.69 57.48
ResNeXt-101 [53] 45.83 63.61 49.89 27.75 49.53 59.14
ResNeSt-101 [57] 47.51 66.06 51.35 30.25 50.96 61.23

CoTNet-101 48.19 67.00 52.17 30.00 52.32 62.87
CoTNeXt-101 49.02 67.67 53.03 31.44 52.95 63.17

2017 training set (∼118K images) and evaluate them on
COCO-2017 validation set (5K images). The standard AP
metric of single scale is adopted for evaluation. During
training, for each input image, the size of the shorter side
is sampled from the range of [640, 800]. All models are
trained with FPN [33] and synchronized batch normaliza-
tion [56]. We utilize the 1x learning rate schedule for train-
ing. For fair comparison with other vision backbones in this
task, we set all the hyperparameters and detection heads as
in [57].

Performance Comparison. Table 7 summarizes the
performance comparisons on COCO dataset for object de-
tection with Faster-RCNN and Cascade-RCNN in differ-
ent pre-trained backbones. We group the vision back-
bones with same network depth (50-layer/101-layer). From
observation, our pre-trained CoTNet models (CoTNet-
50/101 and CoTNeXt-50/101) exhibit a clear performance
boost against the ConvNets backbones (ResNet-50/101 and
ResNeSt-50/101) for each network depth across all IoU
thresholds and object sizes. The results basically demon-
strate the advantage of integrating self-attention learning
with contextual information mining in CoTNet, even when
transferred to the downstream task of object detection.



Table 8. Performance comparisons with the state-of-the-art vision
backbones on the downstream task of instance segmentation (Base
models: Mask-RCNN and Cascade-Mask-RCNN). The bounding
box and mask Average Precision (AP bb, APmk) are reported at
different IoU thresholds. Note that BoTNet-50/101 is fine-tuned
with larger input size 1024×1024 and longer epochs (36).

Backbone AP bb AP bb
50 AP bb

75 APmk APmk
50 APmk

75

M
as

k-
R

C
N

N

ResNet-50 [22] 39.97 60.19 43.73 36.05 57.02 38.54
ResNeXt-50 [53] 41.74 62.32 45.60 37.41 59.24 39.98
ResNeSt-50 [57] 42.81 63.93 46.85 38.14 60.54 40.69
BoTNet-50 [44] 43.6 65.3 47.6 38.9 62.5 41.3

CoTNet-50 44.06 64.99 48.29 39.28 62.12 42.17
CoTNeXt-50 44.47 65.74 48.71 39.62 62.70 42.35

ResNet-101 [22] 41.78 61.90 45.80 37.50 58.78 40.21
ResNeXt-101 [53] 43.25 63.61 47.23 38.60 60.74 41.37
ResNeSt-101 [57] 45.75 66.88 49.75 40.65 63.76 43.68
BoTNet-101 [44] 45.5 - - 40.4 - -

CoTNet-101 46.17 67.17 50.63 40.86 64.18 43.64
CoTNeXt-101 46.66 67.70 50.90 41.21 64.45 44.27

C
as

ca
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-M
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k-
R

C
N

N

ResNet-50 [22] 43.06 60.29 46.55 37.19 57.61 40.01
ResNeXt-50 [53] 44.91 62.66 48.80 38.57 59.83 41.59
ResNeSt-50 [57] 46.23 64.62 50.15 39.64 61.86 42.88

CoTNet-50 46.94 65.36 50.69 40.25 62.37 43.38
CoTNeXt-50 47.63 65.93 51.64 40.76 63.32 44.01

ResNet-101 [22] 44.79 62.31 48.46 38.51 59.33 41.53
ResNeXt-101 [53] 46.24 64.01 49.92 39.77 61.19 43.06
ResNeSt-101 [57] 48.44 66.80 52.60 41.52 64.03 45.02

CoTNet-101 48.97 67.42 53.10 41.98 64.81 45.39
CoTNeXt-101 49.35 67.88 53.53 42.20 65.00 45.69

4.3. Instance Segmentation

Setup. Here we evaluate the pre-trained CoTNet in an-
other downstream task of instance segmentation on COCO
dataset. This task goes beyond the box-level understand-
ing in object detection by additionally predicting the object
mask for each detected object, pursuing the pixel-level un-
derstanding of visual content. Specifically, Mask-RCNN
[20, 21] and Cascade-Mask-RCNN [4] are utilized as the
base models for instance segmentation. In the experiments,
we replace the vanilla ResNet backbone in Mask-RCNN
with our CoTNet. Similarly, all models are trained with
FPN and synchronized batch normalization. We adopt the
1x learning rate schedule during training, and all the other
hyperparameters are set as in [57]. For evaluation, we re-
port the standard COCO metrics including both bounding
box and mask AP (AP bb and APmk).

Performance Comparison. Table 8 details the perfor-
mances of Mask-RCNN with different pre-trained vision
backbones for the downstream task of instance segmen-
tation on COCO dataset. Similar to the observations for
object detection downstream task, our pre-trained CoTNet
models yields consistent gains against both ConvNets back-
bones (ResNet-50/101 and ResNeSt-50/101) and attention-
based model (BoTNet-50/101) over the most IoU thresh-
olds. This generally highlights the generalizability of our
CoTNet in the challenging instance segmentation task. In
particular, BoTNet-50 achieves better performances than
the best ConvNets (ResNeSt-50). This might attribute to the
additional modeling of global self-attention in BoTNet plus
the more advanced fine-tuning setup with larger input size
(1024×1024) and longer training epochs (36). However,

by uniquely exploiting the contextual information among
neighbor keys for self-attention learning, our CoTNet-50
manages to lead the performance boosts over the most met-
rics, even when fine-tuned with smaller input size and less
epoches (12). The results again confirm the merit of si-
multaneously performing context mining and self-attention
learning in our CoTNet for visual representation learning.

5. Conclusions
In this work, we propose a new Transformer-style ar-

chitecture, termed Contextual Transformer (CoT) block,
which exploits the contextual information among input keys
to guide self-attention learning. CoT block first captures
the static context among neighbor keys, which is further
leveraged to trigger self-attention that mines the dynamic
context. Such way elegantly unifies context mining and
self-attention learning into a single architecture, thereby
strengthening the capacity of visual representation. Our
CoT block can readily replace standard convolutions in ex-
isting ResNet architectures, meanwhile retaining the favor-
able parameter budget. To verify our claim, we construct
Contextual Transformer Networks (CoTNet) by replacing
the 3×3 convolutions in ResNet architectures (e.g., ResNet
or ResNeXt). The CoTNet architectures learnt on ImageNet
validate our proposal and analysis. Experiments conducted
on COCO in the context of object detection and instance
segmentation also demonstrate the generalization of the vi-
sual representation pre-trained by our CoTNet.
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