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Salient Objects in Clutter
Deng-Ping Fan, Jing Zhang, Gang Xu, Ming-Ming Cheng, and Ling Shao, Fellow, IEEE

Abstract—In this paper, we identify and address a serious design bias of existing salient object detection (SOD) datasets, which
unrealistically assume that each image should contain at least one clear and uncluttered salient object. This design bias has led to a
saturation in performance for state-of-the-art SOD models when evaluated on existing datasets. However, these models are still far from
satisfactory when applied to real-world scenes. Based on our analyses, we propose a new high-quality dataset and update the previous
saliency benchmark. Specifically, our dataset, called Salient Objects in Clutter (SOC), includes images with both salient and non-salient
objects from several common object categories. In addition to object category annotations, each salient image is accompanied by
attributes that reflect common challenges in common scenes, which can help provide deeper insight into the SOD problem. Further, with
a given saliency encoder, e.g., the backbone network, existing saliency models are designed to achieve mapping from the training image
set to the training ground-truth set. We therefore argue that improving the dataset can yield higher performance gains than focusing only
on the decoder design. With this in mind, we investigate several dataset-enhancement strategies, including label smoothing to implicitly
emphasize salient boundaries, random image augmentation to adapt saliency models to various scenarios, and self-supervised learning
as a regularization strategy to learn from small datasets. Our extensive results demonstrate the effectiveness of these tricks. We also
provide a comprehensive benchmark for SOD, which can be found in our repository: https://github.com/DengPingFan/SODBenchmark.

Index Terms—Salient object detection, SOD, SOC, survey, dataset, benchmark.
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1 INTRODUCTION

T HIS paper considers the task of salient object detection (SOD),
which aims to detect the most attention-grabbing objects in

a scene and then extract pixel-accurate silhouettes for them. The
merit of SOD lies in its many applications, including foreground
map evaluation [1], [2], [3], visual tracking [4], [5], [6], action
recognition [7], image retrieval [8], [9], information discovery [10],
[11], image contrast enhancement [12], person re-identification [13]
image segmentation [14], [15], video segmentation [16], photo syn-
thesis [17], content-aware image editing [18], image caption [19],
and video compression [20], [21], style transfer [22], [23], image
matching [24], autonomous underwater robots [25], camouflaged
object detection [26], [27], aesthetic scoring [28], self-driving
vehicles [29], plant species identification [30], dichotomous image
segmentation1, VR/AR [31]2, Sony’s BRAVIA XR TV3, etc.
However, existing SOD datasets [32], [33], [34], [35], [36], [37],
[38], [39], [40], [41], [42] are flawed either in their data collection
procedure or data quality. Specifically, most datasets assume that
an image should contain at least one salient object, and thus they
discard images that do not contain any salient objects. We call this
data selection bias [43].

Moreover, existing datasets typically contain images with a
single object or several uncluttered objects. These datasets do not
adequately reflect the complexity of real-world images, where
scenes usually contain multiple objects amidst significant clutter.
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Figure 1. Examples from our new SOC dataset, including non-salient (first
row) and salient object images (rows 2 to 4). For salient object images,
an instance-level ground-truth map (different color), object attributes (Attr)
and category labels are provided.

As a result, all top-performing models trained on the existing large-
scale datasets (e.g., DUTS [41]) have nearly saturated performance
(e.g., SCRN [44] has an S-measure > 0.9 on ECC [37]), but still
achieve unsatisfactory results on realistic images (e.g., S-measure<
0.8 on SOC [45]). As the current SOD models are biased towards
ideal conditions, their effectiveness may be impaired once they are
applied to real-world scenes. To solve this problem, it is important
to introduce a dataset with more realistic conditions.

Another issue faced by the RGB SOD community is that only
the overall performance of the models can be analyzed using
existing datasets. This is because none of the datasets contain
attributes that reflect different challenges. Having such attributes
would help i) provide deeper insight into the SOD problem, ii)
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Figure 2. Taxonomy of the saliency detection task. We highlight the scope of this study in gray. See § 2 for details.

enable the pros and cons of the SOD models to be investigated, and
iii) allow the model performances to be objectively assessed from
different perspectives. Finally, with a given saliency encoder, e.g.,
the backbone network, existing saliency models are designed to
achieve mapping from the training image set to the training ground-
truth set. We thus argue that efforts on improving the dataset, e.g.,
fixing the data bias issue, can yield higher performance gains than
focusing only on the decoder design. Towards this, we investigate
several dataset-enhancement strategies, including label smoothing
to highlight salient boundaries, random image augmentation to
adapt saliency models to various scenarios, and self-supervised
learning as a form of regularization to learn from small datasets.
Extensive experiments validate the effectiveness of these tricks.

Our contributions are summarized as follows:

1) Dataset. We collect a new high-quality SOD dataset, named
“Salient Objects in Clutter,” or SOC. SOC is the largest
instance-level SOD dataset to date, containing 6,000 images
from more than 80 common categories. It differs from existing
datasets in three aspects: i) Salient objects have category
annotations, which can be used for new research problems,
such as weakly supervised SOD. ii) The inclusion of non-
salient images and objects makes this dataset more realistic
and challenging than the existing ones. iii) Salient objects
have attributes that reflect various situations encountered in
the real world, such as motion blur, occlusion and background
clutter. As a consequence, SOC narrows the gap between
existing datasets and real-world scenes.

2) Review & Benchmark. We present the largest scale RGB
SOD study, reviewing 203 representative models including 84
algorithms using handcrafted features and 119 deep learning
based models. Besides, we also maintain an online benchmark
(i.e., https://github.com/DengPingFan/SODBenchmark.) to
dynamically trace the development of this field. In addition,
we provide the most comprehensive benchmark of the 100
representative SOD models. To evaluate the models, for the
first time, we not only present the overall but also an attribute
performance evaluation. This allows a deeper understanding
of the models and provides a more complete benchmark.

3) Strategy. We investigate the biased dataset issue and introduce

three dataset-enhancement strategies; namely, label smoothing
to make the model aware of the salient boundaries, random
image augmentation to adapt the saliency models to various
common scenarios, and self-supervised learning as a regu-
larization technique to learn from small datasets. Despite
the apparent simplicity of our strategies, we can achieve an
average absolute improvement of 1.14% Sα over nine existing
cutting-edge models.

4) Discussions & Future Directions. Based on our SOC, we
present the pros and cons of the current SOD algorithms,
discuss several under-investigated open issues, and provide
potential future directions at six levels, e.g., the dataset level,
task level, model level, supervision level, evaluation level, and
application level.

This work extends our previous conference version [45] in
the following aspects. First, we provide more details on our SOC,
including sample images without salient objects, images with
attributes, and statistics of the attributes. Second, we study three
novel training dataset related strategies to fully utilize the non-
salient object data and achieve the new state-of-the-art performance.
Third, we conduct the largest-scale (46 traditional and 54 deep
learning models) benchmarking of SOD models on our SOC.
Finally, based on our benchmarking results, we highlight several
fundamental research directions and challenges in the SOD.

2 RELATED WORK

2.1 Scope

Salient object detection originated from the task of fixation
prediction (FP) [53], [54], switching attention regions for accurate
object-level regions. SOD can be traced back to the seminal
works [55], [56]. Current algorithms have been developed for 2D
images of limited resolution (width or height < 500 pixels), high-
resolution (i.e., 1080p, 4K) [57], [58] and even remote sensing
data [59]. According to the supervision strategy, there are five
types of SOD models: fully supervised [60], semi-supervised [61],
weakly supervised [62], [63], [64], unsupervised [65], [66], [67],
and self-supervised [67], [68].

https://github.com/DengPingFan/SODBenchmark
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Table 1
Summary of popular SOD datasets. Our SOC is the only one meeting all requirements. According to [46], these datasets can be grouped into three

types: early (N), popular/modern (�), and special (♦). See § 2.2 for more details.

# Dataset Year Publ. High-Quality ≥ 5k Non-Salient Attribute Category Bounding Box Object Instance

1 MSRA-A, -B [32] N 2007 CVPR X X - - - X X -
2 SED1, SED2 [33] N 2007 CVPR X - - - - - X -
3 ASD [47] N 2009 CVPR X - - - - - X -
4 SOD [48] � 2010 CVPRW X - - - - - X -
5 M10K [35] � 2011 CVPR X X - - - - X -
6 Judd-A [36] N 2012 ECCV X - - - - - X -
7 DU-O [38] � 2013 CVPR X X - - - X X -
8 ECC [37] � 2013 CVPR X - - - - - X -
9 PASCAL-S [39] � 2014 CVPR X - - - - - X -
10 HKU [40] � 2015 CVPR X - - - - - X -
11 SOS [49] ♦ 2015 CVPR X X - - - X - -
12 MSO [49] ♦ 2015 CVPR X - - - - X - -
13 XPIE [50] ♦ 2017 CVPR X X - - - - X -
14 ILSO [51] ♦ 2017 CVPR - - - - - - X X
15 JOT [52] ♦ 2017 FCS X X X - - - X -
16 DUTS [41] � 2017 CVPR X X - - - - X -
17 SOC (OUR) � 2022 – X X X X X X X X

Recently, several interesting extensions of SOD have also
been introduced, such as salient instance detection (SID) [51],
[69], salient object subitizing (SOS) [49], [70], [71], and saliency
ranking [72], [73]. A taxonomy of the saliency detection task is
shown in Fig. 2. Different from previous SOD reviews [46], [74],
[75], [76], [77], [78], [79], [80], [81], we mainly focus on 2D salient
object detection in a fully supervised manner. We highlight the
scope of this study in gray. For other closely related 3D/4D SOD
tasks, we refer readers to recent survey and benchmarking works
such as RGB-D SOD [82], [83], Event-RGB SOD (ERSOD) 4,
Light Field SOD [84], Co-SOD [85], 360◦Video SOD [86], and
Video SOD [16].

2.2 SOD Datasets
In this section, we briefly discuss existing datasets designed for
SOD tasks, focusing in particular on aspects including annotation
type, number of salient objects per image, number of images, and
image quality. These datasets are listed in Table 1.

Early datasets are either limited in their numbers of images
or in their coarse annotations of salient objects. For example,
salient objects in the original version of MSRA-A [32] and MSRA-
B [32] are only roughly annotated in the form of bounding boxes.
ASD [47], SED1 [33] and M10K [35] contain only one salient
object in most images, while the SED2 [33] dataset provides
two objects per image but contains only 100 images. In order
to improve the quality of datasets, researchers in recent years
have started to collect images with multiple objects in relatively
complex and cluttered backgrounds. The new datasets include
ECC [37], DU-O [38], Judd-A [36], and PASCAL-S [39]. These
datasets are improved in terms of both annotation quality and
number of images, compared to their predecessors. To resolve
the shortcomings still present, some datasets (e.g., HKU [40],
XPIE [50], and DUTS [41]) provide large amounts of pixel-wise
labeled images (Fig. 3.b) with more than one salient object per
image. However, they ignore non-salient objects (1st row in Fig. 1)
and do not offer instance-level annotations (Fig. 3.c). Jiang et
al. [52] collected roughly 6K simple background images (most of
them are pure texture images) to cover non-salient scenes. However,
their dataset, named JOT, falls short in capturing the complexity of
real-world scenes. The dataset of ILSO [51] contains instance-level
salient object annotations but only roughly labeled boundaries, as
shown in Fig. 7. Beyond the “standard” SOD datasets, there are
also several other special datasets that introduce new tasks, such as
salient object subitizing (i.e., SOS [49] and its subset MSO [49]).

4. ERSOD: https://github.com/jxr326/ERSOD-Net.

(a) Image (b) Previous (c) Ours (d) Segmentation
Figure 3. Previous SOD datasets only annotate the images by drawing
pixel-accurate silhouettes around salient objects (b). Different from
object segmentation datasets [87] (d) where (objects are not necessarily
salient), our SOC provides salient instances (c). We provide a high-
quality and large-scale annotated dataset comprised of images that
better capture the properties of real-world scenes.

To sum up, as discussed above, existing datasets mostly focus
on images with clear salient objects and simple backgrounds.
Considering the aforementioned limitations of existing datasets,
a more realistic dataset, containing non-salient objects, textures
“in the wild”, and salient objects with attributes, is needed for
future investigations in this field. Such a dataset could offer deeper
insight into the strengths and weaknesses of SOD models, and help
overcome performance saturation. Our SOC is unique in that it
provides various high-quality annotations, as shown in Table 1.

2.3 SOD Models
We have noticed that, from 1998 to the end of Feb. 2021, more
than 10,000 papers on saliency detection or related field have been
published. In this section, we try our best to summarize those
published in top conferences (e.g., NeurIPS, CVPR) and journals
(e.g., TPAMI, TIP), as well as some high-quality open-access (i.e.,
arXiv) works. Instead of briefly describing the pipeline of each
model, we summarize key components to provide a global view.

As shown in Table 2, a number of different approaches have
been designed to tackle SOD using super-pixel, proposal, or
edge/boundary annotations under different levels of supervision,
such as unsupervised, semi-supervised, and fully supervised. Using
common aggregation strategies (e.g., linear, non-linear), these
methods mainly focus on pixels, regions, and patches to design
more powerful models. Besides, we note that certain priors (e.g., the
center-surround prior, local/global contrast prior, fore/background
prior, and boundary prior) are frequently used in these methods.
Some models also utilize different post-processing steps (e.g.,
conditional random field, morphology, watershed, and max-flow
strategies) to further improve the performance.

More recently, many deep learning SOD models based on
different network architectures, such as multi-layer perceptrons,
fully convolutional networks (FCNs), hybrid networks and capsules,
have been proposed and achieve higher performance than traditional

https://github.com/jxr326/ERSOD-Net
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Table 2
Summary of popular SOD models using handcrafted features. Agg.: Aggregation strategy, e.g., LN = linear, NL = non-linear, HI = hierarchical, BA =

Bayesian, AD = adaptive, LS = least-square solver, EM = energy minimization, and GMRF = Gaussian MRF. SL.: Supervision level, e.g.,
unsupervised (F), semi-supervised (•), weakly supervised ($), fully supervised (◦), active learning (A). Sp.: Whether or not superpixel

over-segmentation is used. Pr.: Whether or not proposal methods are used. Ed.: Whether or not edge cues are used. Post-Pros.: Whether
post-processing methods (e.g., CRF [88], graph-cut [89], GrabCut [90], Ncut [91]), morphology, max-flow (MF) [92] or only thresholding are used.

# Model Publ. Scholar Prior. Uniqueness Component Agg. SL. Sp. Pr. Ed. Post-Pros

20
10

-
19

98

1 Itti [53] TPAMI link center-surround pixel Color, Intensity, Orientation LN F - - - -
2 GBVS [93] NeurIPS link - pixel Markovian - F - - - -
3 FT [47] CVPR link frequency domain pixel Color, Luminance - F - - - -
4 SR [94] CVPR link spectral residual pixel Log Spectrum - F - - - -
5 AIM [95] NeurIPS link maximizing information patch Shannon’s Self-information - F - - - -
6 SUN [96] JOV link self-information pixel DoG, ICA-derived features - F - - - -
7 FG [97] MM link local contrast pixel Fuzzy Growing - F - - - -
8 AC [98] ICVS link local contrast multi-patch Color, Luminance LN F - - - -
9 SEG [99] ECCV link local contrast pixel Conditional Probabilistic - F - - - CRF
10 MSSS [100] ICIP link symmetric surround pixel Color, Luminance - F - - - graph-cut
11 ICC [101] ICCV link isophote global structure curvedness, isocenters, color LN F - - - graph-cut
12 EDS [102] PR link - pixel threshold, distance, multi-DoG - F - - X -
13 RE [103] ICME link local contrast pixel/patch Contrast pyramid - F - - - -
14 RSA [104] MM link global contrast patch Polar transfer, NN-GPCA [104] - F - - - -
15 RU [105] TMM link rule based pixel denoising, geometric - F - - - -
16 CSM [106] MM link frequency&contrast pixel Envelope, Skeleton - F - - - -

20
14

-
20

11

17 LSSC [107] TIP link bayesian pixel/region convex hull, subspace clustering NL F X - - -
18 COV [108] JOV link - pixel/patch covariance matrices NL F - - - -
19 GR [109] SPL link contrast, center, smooth - convex hull, continuous pair NL F X - - -
20 MSS [110] SPL link local, integrity, center - various gaussian, convex hull NL F X - - -
21 LSMD [111] AAAI link texture, edge, color pixel/region hierarchical clustering, gaussian - F X X - threshold
22 BSF [112] ICIP link boundary-based region convex hull, soft-segmentation - F X - - -
23 HC [113] CVPR link global contrast region Histogram-based Contrast - F - - - graph-cut
24 RC [113] CVPR link global contrast region Region-based Contrast - F - - - graph-cut
25 CA [113] CVPR link context-aware patch Four principles - F - - - -
26 MR [38] CVPR link fore/back-ground pixel/region graph-based manifold ranking - F X - - -
27 SF [114] CVPR link element contrast region uniqueness, spatial NL F - - - -
28 HS [37] CVPR link global contrast hi-region Region-scale, Location heuristic HI F - - - -
29 DRFI [115] CVPR link background descriptor region region vector, multi-level LN ◦ X - - -
30 RBD [116] CVPR link background weighted region background connectivity LS F X - - -
31 LR [117] CVPR link location, semantic, color pixel/region Low rank matrix NL ◦ X - - threshold
32 PCA [118] CVPR link center-bias priors patch color, pattern, gaussian NL F X - - -
33 HDCT [119] CVPR link high-dimensional color pixel Trimap, color transform LN F X - - -
34 CRFM [120] CVPR link aggregation pixel GIST descriptor NL ◦ - - - CRF
35 STD [121] CVPR link statistical textural region Graph, sparse texture - F - - - GrabCut
36 PDE [122] CVPR link representative elements region color, background, center - F X - - -
37 SUB [123] CVPR link Submodular region color, spatial, center - ◦ X - - threshold
38 PISA [124] CVPR link spatial pixel/region color, structure, orientation NL F - - X -
39 DSR [125] ICCV link reconstruction errors multi-region background, obj./centerGaussian BA F X - - -
40 MC [126] ICCV link markov random walks region Markov Chain - F X - - -
41 GC [127] ICCV link global cue region GMM, appearance, spatial AD F - - - -
42 SVO [128] ICCV link center-surround patch/region Graph, Obj. EM F X X - -
43 CSD [129] ICCV link center-surround multi-patch color, orientation, intensity LN F - - - -
44 UFO [130] ICCV link focus, objectness pixel/region Uniqueness, Focusness, Obj. NL F X X X threshold
45 CHM [131] ICCV link center-surround, local mRegion/patch SVM, hyperedge LN • X - X threshold
46 CIO [132] ICCV link objectness Region Graph, frequency, Obj. GMRF F X - - -
47 CC [133] ICCV link convexity context mRegion concavity, bounding box - F X - - graph-cut
48 GS [134] ECCV link boundary, connectivity patch/region Geodesic distance transform - F X - X -
49 CB [135] BMVC link context, shape, center mRegion Iterative energy minimization LN F X X - -
50 SLMR [136] BMVC link low-rank matrix Region sparse noise - F X - - -

20
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51 SMD [137] TPAMI link texture, edge, color pixel/region hierarchical clustering, gaussian - F X X - threshold
52 RS [138] TPAMI link fore/back-ground region manifold ranking, grouping cue - F X - - -
53 BFS [139] NC link fore/back-ground seed region Gaussian falloff, threshold NL F X - - -
54 GLC [140] PR link global/local contrast region HOG, LBP, codebook,graph-cut LN F X - - -
55 DSP [141] PR link propagation region sink points, chi-square distance NL F X - X -
56 LPS [142] TIP link label propagation-base pixel/region three-cue-center, affinity matrix NL F X - - -
57 MAPM [143] TIP link background region Markov absorption probability F X - - -
58 MIL [144] TIP link instance region multi-instance learning, SVM - • X X - -
59 RCRR [145] TIP link reversion correction pixel/region regular-random walks ranking - F X - - -
60 FCB [146] TIP link fore/back-ground, center region color difference, color volume NL F X - - -
61 NCS [147] TIP link center bias pixel/region Ncut, merging scheme EM F X - X Ncut
62 MDC [148] TIP link direction contrast pixel OTSU, morphological filter NL F - - - watershed
63 HCCH [149] TIP link closure completeness & reliability object hierarchical segmentation NL F - - X -
64 JLSE [150] TIP link exemplar-aided region joint latent space embedding - ◦ X - - -
65 IFC [151] TMM link boundary homogeneity pixel/region linear feedback control system - F X - - -
66 NIO [152] TNNLS link smoothness, boundary region graph, iterative optimization BA • X - - -
67 MBS [153] ICCV link barrier distance pixel backgroundness cue - F - - - morphology
68 GP [154] ICCV link diffusion based region/pixel diffusion/laplacian matrix - F X - - -
69 BSCA [155] CVPR link color/space contrast region/pixel cellular automata, bayesian - F X - - OTSU [156]
70 BL [157] CVPR link image prior mRegion SVM, MKB [158], LBP LN ◦ X - - -
71 MST [159] CVPR link geometry information pixel minimum spanning tree - F X - - morphology
72 RRWR [160] CVPR link error-boundary removal pixel/region regular-random walks ranking - F X - - -
73 TLLT [161] CVPR link propagation,boundary region convex hull, teach-to-learn - F X - - -
74 WSC [162] CVPR link weighted sparse coding region color histogram, dictionary NL F X - - -
75 PM [163] ECCV link propagation region extended random walk LN F X - - -

20
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76 TSG [164] TCSVT link regionally spatial consistency region Sparse Representation, graph LN F X - - MF
77 LFCS [61] TCSVT link smoothness, boundary region Discrete Linear Control System LN • X - - -
78 AIGC [165] TCSVT link contrast, object region irregular graph - F X - - -
79 FTOE [166] TMM link contrast, center, distribute pixel/region fuzzy theory, object enhancement LN F X X - -
80 MSGC [167] TMM link fore/back-ground seed region multi-scale, global cue NL F X - - -
81 SIA [168] TMM link boundary, dhs [169] - Cellular Automation BA F X - - -
82 KSR [170] TIP link trained on [32] region R-CNN, Rank-SVM, subspace - A - X - -
83 MSR [171] TIP link boundary connectivity region MBD [172] - F X - - OTSU
84 LRR [173] TIP link background pixel/region Celluar Automata [155], FCN32 Metric F X - - -

methods. According to the learning paradigm, most deep SOD
models can be roughly split into two types: single-task learning
and multi-task learning methods. We summarize the training data,
backbones, and other components in Tables 3 and 4.

We mainly focus on macro-level statistics rather than micro-

level descriptions. We kindly refer readers to the recent architecture
review [46]. We hope this comprehensive review can serve as
guidance5 for future researchers in this fast-growing field.

5. Research group: https://github.com/DengPingFan/Saliency-Authors.
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Table 3
Summary of popular deep learning based SOD models. See Table 2 for more detailed descriptions. MB = MSRA-B dataset [32]. M10K =

MSRA-10K [35] dataset. P-VOC2010 = PASCAL VOC 2010 semantic segmentation dataset [174]. CRF = Conditional random fields. Clicking the
scholar will link to the specific author’s google scholar.

# Model Publ. Scholar #Training Training Dataset Backbone SL. Sp. Pr. Ed. CRF

20
15

1 SupCNN [175] IJCV link 800 ECC [37] - ◦ X - - -
2 LEGS [176] CVPR link 340+3,000 PASCAL-S [39]+MB [32] - ◦ - X - -
3 MDF [40] CVPR link 2,500 MB [32] - ◦ X - X -
4 MC [177] CVPR link 8,000 M10K [35] GoogLeNet [178] ◦ X - - -

20
16

5 DSL [179] TCSVT link (5,168+10,000)*80% DU-O [38]+M10K [35] LeNet [180]/VGGNet16 ◦ X - - -
6 DISC [181] TNNLS link 9,000 M10K [35] - ◦ X - - -
7 DS [182] TIP link 10,000 M10K [35] VGGNet [183] ◦ X - X X
8 SSD [184] ECCV link 2,500 MB [32] AlexNet [185] ◦ X X - -
9 CRPSD [186] ECCV link 10,000 M10K [35] VGGNet ◦ X - - -
10 RFCN [187] ECCV link 10,103+10,000 P-VOC2010 [174]+M10K [35] VGGNet ◦ X - X -
11 MAP [188] CVPR link ∼5,500 SOS [49] VGGNet ◦ - X - -
12 SU [189] CVPR link 15,000+10,000 SALI [190]+M10K [35] VGGNet ◦ - - - X
13 RACD [191] CVPR link 10,565 DU-O [38]+NJU [192]+NLP [193] VGGNet ◦ - - - -
14 ELD [194] CVPR link 9,000 M10K [35] VGGNet ◦ X - - -
15 DHS [169] CVPR link 3,500+6,000 DU-O [38]+M10K [35] VGGNet ◦ - - - -
16 DCL [195] CVPR link 2,500 MB [32] VGGNet ◦ X - - X

20
17

17 DLS [196] CVPR link 10,000 M10K [35] VGGNet ◦ X - - -
18 MSRNet [51] CVPR link (500+)2,500+2,500 (ILSO [51]+)MB [32]+HKU [40] VGGNet ◦ - X X X
19 SRM [197] CVPR link 10,553 DUTS [41] ResNet50 [198] ◦ - - - -
20 NLDF [199] CVPR link 2,500 MB [32] VGGNet ◦ - - X X
21 WSS [41] CVPR link 456K ImageNet [200] VGGNet ◦ X - X X
22 DSS [201] CVPR link 2,500 HKU [40]+MB [32] VGGNet ◦ - - X X
23 FSN [202] ICCV link 10,000 M10K [35] VGGNet ◦ - - - -
24 SVF [203] ICCV link 10,000 M10K [35] VGGNet $ X - - -
25 UCF [204] ICCV link 10,000 M10K [35] VGGNet ◦ - - - -
26 AMU [205] ICCV link 10,000 M10K [35] VGGNet ◦ - - X -

20
18

27 EAR [206] TCYB link 2,500+2,500 HKU [40]+MB [32] VGGNet16 ◦ - - - -
28 Refinet [207] TMM link 3,000 MB [32] VGGNet16 ◦ X - X X
29 LICNN [208] AAAI link 456K ImageNet [200] VGGNet ◦ - - - -
30 ASMO [62] AAAI link 82,783+2,500+2,500 MsCO [87]+ HKU [40]+MB [32] ResNet101 ◦ - - - X
31 RADF [209] AAAI link 10,000 M10K [35] VGGNet ◦ - - - X
32 R3Net [210] IJCAI link 10,000 M10K [35] ResNeXt [211] ◦ - - - X
33 C2SNet [212] ECCV link 20,000+10,000 Web [212]+M10K [35] VGGNet ◦ X X - -
34 RAS [213] ECCV link 2,500 MB [32] VGGNet ◦ - - - -
35 LPSNet [214] CVPR link 10,553 DUTS [41] VGGNet16 ◦ - - - -
36 RSOD [215] CVPR link 425 PASCAL-S [39] ResNet101 ◦ - X - -
37 DUS [66] CVPR link 2,500 MB [32] ResNet101 $ - - - -
38 ASNet [216] CVPR link 15,000+10,000+5,168 SALI [190]+M10K [35]+DU-O [38] VGGNet ◦ - - - -
39 BMPM [217] CVPR link 10,553 DUTS [41] VGGNet ◦ - - - -
40 DGRL [218] CVPR link 10,553 DUTS [41] ResNet50 ◦ - - - -
41 PiCA [219] CVPR link 10,553 DUTS [41] VGGNet16/ResNet50 ◦ - - - X
42 PAGRN [220] CVPR link 10,553 DUTS [41] VGGNet19 ◦ - - - -

20
19

43 SE2Net [221] arXiv link 10,553 DUTS [41] VGGNet/ResNeXt101 ◦ - - - -
44 DRMC [222] arXiv link 10,533 DUTS [41] VGGNet/ResNet101 ◦ - - - X
45 RDSNet [223] arXiv link 10,000+10,553 M10K [35]+DUTS [41] VGGNet/ResNet-152 ◦ - - - X
46 AADF [224] TCSVT link 10,553 DUTS [41] DenseNet161 [225] ◦ - - - -
47 CCAL [226] TMM link 9,000 M10K [35] VGGNet ◦ - - - -
48 DeepUSPS [67] NeurIPS link 2,500 MB [32] DRN-network [227] $ - - - -
49 FBG [228] TIP link 2,500 MB [32] VGGNet16 ◦ - - X -
50 SPA [229] TIP link 4,000 HKU [40] - ◦ X - - X
51 ConnNet [230] TIP link 2,500+2,500 MB [32]+ HKU [40] ResNet50 ◦ - - - -
52 LFRWS [231] TIP link 10,000 M10K [35] VGGNet16 ◦ - - X -
53 RSR [72] TPAMI link 425 Extended of PASCAL-S [39] ResNet101 ◦ - - - -
54 SSNet [232] TPAMI link 10,000 M10K [35] VGGNet16 $ X - - -
55 LVNet [233] TGRS link 600 ORSSD [233] - ◦ - - - -
56 Deepside [234] NC link 2,500+10,553 MB [32]+DUTS [41] VGGNet16 ◦ X - - -
57 SuperVAE [235] AAAI link - - VGGNet19 $ X - - -
58 DEF [236] AAAI link 10,553 DUTS [41] ResNet101 ◦ - - - -
59 CapSal [63] CVPR link 82,783+5,265 MsCO [87]+COCO-CapSal [63] ResNet101 $ - - - -
60 MWS [237] CVPR link 300,000+10,553 ImageNet [200]+DUTS [41] - $ X - - X
61 MLMS [238] CVPR link 10,553 DUTS [41] VGGNet16 ◦ - - X -
62 ICNet [239] CVPR link 10,000 M10K [35] VGGNet16/ResNet50 ◦ - - - X
63 AFNet [240] CVPR link 10,533 DUTS [41] VGGNet16 ◦ - - X -
64 PFANet [241] CVPR link 10,553 DUTS [41] VGGNet16 ◦ - - X -
65 PAGE [242] CVPR link 10,000 M10K [35] VGGNet16 ◦ - - X X
66 CPD [243] CVPR link 10,533 DUTS [41] VGGNet/ResNet50 ◦ - - - -
67 PoolNet [244] CVPR link 10,533 DUTS [41] VGGNet/ResNet ◦ - - X -
68 BASNet [245] CVPR link 10,553 DUTS [41] ResNet34/Xavier [246] ◦ - - X -
69 JDF [247] ICCV link 2,500 MB [32] VGGNet16 ◦ - - X -
70 DPOR [248] ICCV link 10,533 DUTS [41] VGGNet16 ◦ - - - -
71 JLNet [249] ICCV link 10,582+10,533 P-VOC2010 [174]+DUTS [41] DenseNet169 ◦ - - - X
72 GLFN [58] ICCV link 1,600+10,533 HRSOD [58]+DUTS [41] VGGNet ◦ - - - X
73 SIBA [250] ICCV link 10,533 DUTS [41] ResNet50 ◦ - - X -
74 SCRNet [44] ICCV link 10,533 DUTS [41] ResNet50 ◦ - - X -
75 EGNet [251] ICCV link 10,533 DUTS [41] VGGNet/ResNet ◦ - - X -

20
20

76 HUAN [252] TIP link 10,553 DUTS [41] VGGNet/ResNet/ResNetXt ◦ - - - X
77 ALM [253] TIP link 10,000+4,447 M10K [35]+ HKU [40] DenseNet ◦ X - - -
78 HFFNet [254] TIP link 10,553 DUTS [41] VGGNet16 ◦ - - X -
79 DFI [255] TIP link 10,553 DUTS [41] ResNet50 ◦ - - X -
80 R2Net [256] TIP link 10,553 DUTS [41] VGGNet16 ◦ - - - -
81 MRNet [257] TIP link 10,553 DUTS [41] ResNet50 ◦ - - - -
82 CIG [258] TIP link 10,000 M10K [35] VGGNet16 ◦ - - X -
83 RASNet [259] TIP link 2,500 MB [32] VGGNet16 ◦ - - - -
84 ASNet [260] TPAMI link 15,000+10,000+5,168 SALI [190]+M10K [35]+DU-O [38] VGGNet ◦ - - - -
85 DNNet [261] TCYB link 2,500+2,500 MB [32]+ HKU [40] - ◦ - - - -
86 CAANet [262] TCYB link 10,553 DUTS [41] VGGNet16 ◦ - - - -
87 ROSA [263] TCYB link 2,500+5,168+2,500 HKU [40]+DU-O [38]+MB [32] FCN [264] ◦ X - - -
88 DSRNet [265] TCSVT link 10,553 DUTS [41] DenseNet ◦ - - - -
89 EGNL [266] TCSVT link 2,500 MB [32] VGGNet16 ◦ - - X -
90 SACNet [267] TCSVT link 10,553 DUTS [41] ResNet101 ◦ - - - -
91 FLGC [268] TMM link 10,553 DUTS [41] VGGNet16 ◦ - - - -
92 TSNet [269] TMM link 4,000 MD4K [269] ResNet50/VGGNet16 ◦ - - - -

2.4 Dataset-Enhancement Strategies for Deep Models

Existing deep SOD models focus on designing effective decoders
[44], [59], [261], [262], [265], [279], [286] to aggregate features
from different levels of the backbone network [198], [211], [293].

We argue that, as they employ a mapping function from the input
training image set to the output training ground-truth set, deep
models should also focus on dataset-enhancement strategies to
improve model generalization ability. Three different strategies
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Table 4
Summary of popular deep learning based SOD models. See Tables 2 & 3 for more detailed descriptions.

# Model Publ. Scholar #Training Training Dataset Backbone SL. Sp. Pr. Ed. CRF

20
20

93 SUCA [270] TMM link 10,553 DUTS [41] ResNet50 ◦ - - - -
94 MIJR [271] TMM link 2,500+5,000 MB [32]+DUTS [41] VGGNet16 ◦ X X - X
95 CAGVgg [272] PR link 10,553 DUTS [41] VGGNet/ResNet/NASNet [273] ◦ - - - -
96 U2Net [274] PR link 10,553 DUTS [41] UNet ◦ - - - -
97 SalGAN [275] TII link 10,000 M10K [35] VGGNet16 ◦ - - - -
98 ADA [276] AAAI link 2,500+780 MB [32]+NIR [276] VGGNet16 ◦ - - - -
99 PFPNet [277] AAAI link 10,553 DUTS [41] ResNet101 ◦ - - - -
100 GCPANet [278] AAAI link 10,553 DUTS [41] ResNet50 ◦ - - - -
101 F3Net [279] AAAI link 10,553 DUTS [41] ResNet50 ◦ - - X -
102 LDF [280] CVPR link 10,553 DUTS [41] ResNet50 ◦ - - X -
103 ITSD [281] CVPR link 10,553 DUTS [41] VGGNet16/ResNet50 ◦ - - X -
104 SANet [64] CVPR link 10,553 DUTS [41] VGGNet16 $ - - X X
105 MINet [282] CVPR link 10,553 DUTS [41] VGGNet16/ResNet50 ◦ - - - -
106 ABPNet [283] ECCV link 10,553 DUTS [41] VGGNet16 ◦ - - X -
107 CSNet [284] ECCV link 10,553 DUTS [41] - ◦ - - - -
108 GateNet [285] ECCV link 10,553 DUTS [41] VGGNet16 ◦ - - - X

20
21

109 DNA [286] TCYB link 10,553 DUTS [41] VGGNet16/ResNet50 ◦ - - - -
110 DAFNet [59] TIP link 1,400 EORSSD [59] VGGNet16 ◦ - - X -
111 HGA [287] TIP link 10,553 DUTS [41] VGGNet16 ◦ - - X -
112 HIRN [288] TIP link 10,553 DUTS [41] VGGNet16 ◦ - - X -
113 SCWS [289] AAAI link 10,553 SDUTS [64] ResNet50 $ - - - -
114 PFS [290] AAAI link 10,553 DUTS [41] ResNet50 ◦ - - X -
115 KRNet [291] AAAI link 10,553 DUTS [41] ResNet50 ◦ - - X -
116 BAS [31] arXiv link 10,553 DUTS [41] ResNet34 ◦ - - X -
117 ICON [60] arXiv link 10,553 DUTS [41] ResNet50 ◦ - - - -
118 ABP [292] TPAMI link 10,553 DUTS [41] ResNet50 ◦ - - - -
119 CVAE [292] TPAMI link 10,553 DUTS [41] ResNet50 ◦ - - - -

have been widely studied, including label smoothing [294], image
augmentation [295], [296], and self-supervised learning [297].

Instead of training directly with one-hot supervision, “label
smoothing” techniques learn from smoothed supervision, and can
thus relax the supervision signals using the generated smoothing
labels [294] or disturbed labels [298]. Miyato et al. [299] applied
local perturbations to data points to increase the smoothness of
the model distribution. Thulasidasan et al. [300] discovered
that mix-up training [296] with label smoothing can significantly
improve model calibration. To obtain a more robust and generative
model, Xie et al. [298] randomly replaced a portion of labels
with incorrect values in each iteration. In addition, Wager et
al. [301] demonstrated that corrupting training examples with noise
from known distributions within the exponential family can inject
appropriate generative assumptions into discriminative models,
thus reducing generalization errors. Peterso et al. presented a
soft-label dataset (CIFAR10H [302]) aiming at reflecting human
perceptual uncertainty by providing label distributions across
categories instead of hard one-hot labels.

Image augmentation [295] is an effective technique for ex-
tending the diversity of a training dataset, thus improving model
generalization ability. Existing data augmentation techniques can
be roughly divided into two categories: 1) human-designed policies,
e.g., rotation or scale transformation, and 2) learned policies [303],
[304]. For the former, a predefined data augmentation policy
is applied to the dataset. Beside the widely used rotation and
scale transformations, other extensively studied methods in this
category are erasing techniques [305], [306], which achieve data
augmentation by randomly erasing part of the image patch. Further,
mix-up methods [307], [308] utilize the mix-up data augmentation
strategy to generate new samples from an existing training dataset
to mitigate the uncertainty in prediction. For the latter [303], the
network learns an image-conditioned data augmentation policy,
which is usually parameterized by a deep neural network. In this
way, the input image is fed to the data augmentation network to
generate augmented samples with hyperparameters that control the
degree of data augmentation.

Self-supervised learning [297], [309], also termed as consis-
tency learning, defines an annotation-free pretext task to provide a
surrogate supervision signal for feature learning. Conventionally,
self-supervised learning is used for unsupervised representation

learning to learn the feature embedding of the image or video.
Recently, works have defined self-supervised learning as an
auxiliary task, and used it within a weakly supervised [289] or
semi-supervised learning framework [310]. Several recent and
representative arts can be found in [311], [312], [313].

As far as we know, no existing salient object detection works
have focused on exploring the dataset bias issue with dataset-
enhancement strategies. In this paper, we claim that efforts on
developing dataset-improvement strategies can also yield significant
performance gains. Further, these solutions are general and can be
easily applied to existing saliency detection networks.

3 SOC DATASET

In this section, we present details of our new challenging
SOC dataset. Sample images from SOC are shown in Fig. 1, while
statistics regarding the categories and attributes are shown in Fig. 4
(a) and Fig. 6, respectively. Based on the strengths and weaknesses
of existing datasets, we identify seven crucial requirements that a
comprehensive and balanced dataset should fulfill.

1) Presence of Non-Salient Objects. Most existing SOD
datasets assume that an image should contain at least one salient
object and thus discard images without salient objects [52].
However, this assumption is only true under ideal settings, which
leads to data selection bias. In realistic settings, images do not
always contain salient objects. For example, some images of
amorphous backgrounds, such as sky, grass or textures, contain no
salient objects at all [314]. The non-salient objects or background
“stuff” may occupy the entire scene, and hence heavily constrain
the possible locations of a salient object. Xia et al. [50] proposed
a state-of-the-art SOD model the determines what is or is not a
salient object, indicating that non-salient objects are crucial for
reasoning salient objects. This suggests that non-salient objects
deserve equal attention in SOD. Incorporating images containing
non-salient objects makes a dataset more realistic, and hence more
challenging. We define “non-salient objects” as images without
salient objects or images with “stuff” categories. As suggested
in [50], [314], the “stuff” categories include (a) densely distributed
similar objects, (b) fuzzy shapes, and (c) regions without semantics,
as illustrated in Fig. 5 (a)-(c), respectively.

To avoid data selection bias, we selected images randomly and
automatically, as suggested by Torralba and Efros [43]. Based on
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Figure 4. (a) Number of annotated instances per category in our SOC dataset. (b, c) Global and local color contrast statistics, respectively. (d) A set
of saliency maps from our dataset and their overlay map. (e) Location distribution of the salient objects in SOC. (f) Distribution of instance sizes in the
SOC and ILSO [51] datasets. (g) Visual examples of attributes. Best view on screen and zoomed-in for details.

the characteristics of non-salient objects, we randomly collected
783 texture images from the DTD [315] dataset. To enrich the
diversity, 2,217 images including aurora, sky, crowds, store and
many other kinds of realistic scenes were gathered from the Internet
and other datasets [34], [39], [52], [87].

2) Number and Categories of Images. Providing a large
number of images is essential for capturing the diversity and
abundance of real-world scenes. Moreover, with large amounts of
data, SOD models can avoid overfitting and enhance generalization.
To this end, we first randomly gathered 3,000 images from the MS-
COCO dataset [87], which contains ‘everyday scenes of common
objects in their natural context.’ Then, more than 80 object
categories (see supplementary materials) were annotated. Note
that we separated the process of data selection and labeling to

(a) (b) (c)

Figure 5. Examples of non-salient objects in our dataset. a) Crowded
scene, b) motion blur, and c) background with non-interesting regions.

avoid data selection bias, as discussed in [43]. Please refer to the
subsection “7) High-Quality Salient Object Labeling” for details
on this. Fig. 4 (a) shows the number of salient objects in each
category. As can be seen, the “person” category accounts for a
large proportion of the data, which is reasonable as people usually
appear in daily scenes along with other objects. We divided our
dataset (3k non-salient images and 3k salient images) into training,
validation and test sets in the ratio of 6:2:2.

3) Global vs. Local Color Contrast of Salient Objects. As
described in [39], the term “salient” is related to the global/local
contrast of the foreground and background. It is essential to confirm
whether the salient objects are easy to detect. For each object, we
compute separate RGB color histograms for the foreground and
background. Then, χ2 distance is utilized to measure the distance
between the two histograms. The global and local color contrast
distributions are shown in Fig. 4 (b) and (c), respectively. Compared
to ILSO, the SOC dataset has a higher proportion of objects with
low global and local color contrast.

4) Locations. Center bias has been identified as one of the
most significant and challenging biases pertaining to saliency
detection datasets [39], [75], [316]. Fig. 4 (d) illustrates a set
of images and their overlay map (i.e., average mask map). As can
be seen, although salient objects are located at different positions,
the overlay map shows that somehow these images are still center
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Table 5
List of salient object image attributes and their corresponding descriptions. These attributes are derived by studying the characteristics of existing

datasets. Some visual examples can be found in Fig. 1 and Fig. 4 (g). For more examples, please refer to the supplementary materials.

Attribute Description

AC (Appearance Change) Obvious illumination change in the object region.
BO (Big Object) The ratio between the object area and the image area is larger than 0.5.
CL (Clutter) Foreground and background regions around the object have similar colors. We labeled images with a global

color contrast value larger than 0.2 and local color contrast value smaller than 0.9 as cluttered images (§ 3).
HO (Heterogeneous Objects) Objects composed of visually distinctive/dissimilar parts.
MB (Motion Blur) Objects have fuzzy boundaries due to camera shaking or motion.
OC (Occlusion) Objects are partially or fully occluded.
OV (Out-of-View) Part of the object is clipped by the image boundaries.
SC (Shape Complexity) Objects have complex boundaries, such as thin parts (e.g., the foot of animal) and holes.
SO (Small Object) The ratio between the object area and the image area is smaller than 0.1.

AC BO CL HO MB OC OV SC SO

AC

BO

CL

HO

MB

OC

OV

SC

SO
AC

BO
C
L

HO

MB

OC

O
V

SC SO

Figure 6. Left: Attribute distribution over salient object images in our SOC
dataset. Each number in the grid indicates the number of occurrences.
Right: The dominant dependencies among attributes based on the
frequency of occurrences. A larger link width indicates a higher probability
of an attribute occurring with other ones.

biased. Unfortunately, previous benchmarks have often adopted this
incorrect approach to analyze the positional distribution of salient
objects. To avoid this misleading phenomenon, in Fig. 4 (e), we
plot the statistics of two quantities, ro and rm, which denote how far
an object center and its farthest (margin) point are from the image
center, respectively. Both ro and rm are divided by half the diagonal
length of the image for normalization, such that ro,rm ∈ [0,1]. From
these statistics, we observe that the salient objects in our dataset
do not suffer from center bias.

5) Size of Salient Objects. The size of an instance-level salient
object is defined as the proportion of its pixels to those in the overall
image [39]. As shown in Fig. 4 (f), the sizes of salient objects in our
SOC vary greatly compared with the only other existing instance-
level dataset, ILSO [51]. Further, there is a higher proportion of
medium-sized objects in SOC.

6) Salient Objects with Attributes. Having attribute infor-
mation for the images in a dataset helps objectively assess the
performance of models over different types of parameters and
variations. It also allows for the inspection of model failures. To
this end, we define a set of attributes to represent specific situations
encountered in common scenes, such as motion blur, occlusion and
cluttered background (summarized in Table 5). Note that an image
can be annotated with multiple attributes as these attributes are not
exclusive.

Inspired by [317], we present the distribution of attributes over
the dataset in the left of Fig. 6. The SO attribute makes up the
largest proportion due to our accurate instance-level annotations
(e.g., the tennis racket in Fig. 3). The HO attribute also accounts for
a large proportion, because the real-world scenes are composed of
different constituent materials. Motion blur (MB) is more common
in video frames, but also sometimes occurs in still images. Thus,
MB images make up a relatively small proportion of our dataset.

Since a realistic image usually contains multiple attributes, we
show the dominant dependencies among attributes based on the
frequency of occurrence on the right of Fig. 6. For example, a
scene containing several heterogeneous objects is likely to have a
large number of objects occluding each other and forming complex
spatial structures. Thus, the HO attribute has a strong dependency
with OC, OV, and SO.

7) High-Quality Salient Object Labeling. As noted in [318],
training on the ECC dataset (1,000 images) yields better results than
when using other datasets (e.g., M10K with 10,000 images). This is
because, besides the scale, dataset quality is also an important. To
obtain a large number of high-quality images, we randomly selected
images from the MS-COCO dataset [87], which is a large-scale
challenging dataset whose objects are annotated with polygons
(i.e., coarse labeling). High-quality labels also play a critical role
in improving the accuracy of SOD models [47]. Towards this end,
we re-labeled the dataset with pixel-wise annotations. Following
other famous task-oriented SOD benchmark datasets [32], [33],
[34], [35], [37], [40], [41], [47], [50], [51], [52], we did not use
an eye tracking device. We took two steps to ensure high-quality
annotations: (i) We asked five viewers to annotate objects that they
thought were salient in each image with bounding boxes (bboxes),
and (ii) we kept the images in which the majority (≥ 3) of viewers
annotated the same objects (IOU of the bbox > 0.8). After this first
stage, we had 3,000 salient object images annotated with bboxes. In
the second stage, we further manually labeled accurate silhouettes
of the salient objects according to the bboxes. Note that we had
10 volunteers involved in both steps to cross-check the quality of
annotations. In the end, we kept 3,000 images with high-quality,
instance-level labeled salient objects. As shown in Fig. 7 (b & d),
the boundaries of our object labels are precise, sharp and smooth.
During the annotation process, we also added some new categories
(e.g., computer monitor, hat, pillow) that are not labeled in the
MS-COCO dataset [87].

4 OUR DATASET-ENHANCEMENT STRATEGIES

Instead of focusing on designing a strong decoder for feature
aggregation, we introduce three simple dataset-enhancement strate-
gies to achieve better model generalization ability. We argue
that the proposed strategies are easy to implement by existing
fully supervised SOD models, and yield good performance with
little effort. Let us define the RGB saliency training dataset as
D = {xi,yi}N

i=1, where xi,yi are an input RGB image and its
corresponding ground-truth (GT) saliency map, i indexes the
training images, and N is the size of the training dataset. As
SOD is a binary prediction task, the GT saliency map y is usually
a binary map, and most existing SOD techniques employ a binary
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(a) ILSO (b) SOC

(c) MS-COCO (d) SOC
Figure 7. Compared with the recent instance-level ILSO dataset [51] (a),
which is labeled with discontinuous coarse boundaries, and MS-COCO
dataset [87] (c), which is labeled with polygons, our SOC dataset (b & d)
is labeled with smooth fine boundaries.

(or weighted) cross-entropy loss function to evaluate the saliency
prediction. In this paper, instead of defining the GT saliency map
as a binary segmentation map, we first introduce “label smoothing”
[294] as an effective technique to achieve both efficient model
training and high model performance. Then, we adopt random
image augmentation to generate diverse samples for better model
generalization ability. Finally, as a widely studied technique in
semi-supervised or unsupervised learning [297], [309], we extend
the self-supervised learning solution to fully supervised SOD to
achieve a robust model.

4.1 Label Smoothing

Label Smoothing and Knowledge Distillation. One of the most
important scenarios in which to apply label smoothing is the
teacher-student net [319] for knowledge distillation. Typically, in
a teacher-student net, the teacher model has a strong learning
capacity, while the student model has a lower one. The teacher
model then teaches the student model by providing the latter with
a “soft target”. As discussed in [320], the “soft target” contains
a rich similarity structure over the data, which is essential for
producing an enhanced student model. Further, label smoothing
can be treated as a form of output distribution regularization that
prevents the network from overfitting. As pointed out in [294],
hard labels may lead to the overfitting as the model will assign full
probability to each category, which is not guaranteed to generalize
well. With soft labels, the model learns the structure of the data,
thus preventing it from being over-confident. Following the same
data setting, e.g., employing label smoothing, [321] introduced
online label smoothing solution to gradually update the soft labels
based on the model’s prediction.

Conventional Setting. Given an input image x and the
corresponding ground-truth saliency map y, the conventional
deep saliency model fθ is trained to achieve saliency prediction
s = fθ (x) by minimizing the cross-entropy loss: Lce(y,s) =
−∑

N
i=1 ∑u,v yu,v

i logsu,v
i , where (u,v) index pixels. For the hard label

based framework, we have y ∈ {0,1}, where 1 indicates the salient
foreground and 0 represents the background.

Label Smoothing Setting. Different from the above hard label
setting, in label smoothing regularization (LSR) [294], a smoothed
label y′ is used instead of y, which is formulated as:

y′ = (1− ε)y+ εu(x). (1)

Here, ε is the smoothing parameter, and u(x) is a fixed distribution,
which is usually defined as a uniform distribution. The smoothed

label with a uniform distribution u(x) is then defined as:

y′ = (1− ε)y+
ε

K
, (2)

where K is the number of categories.
Loss Function. Given smoothed label y′ and hard label y, the

loss function with LSR is defined as:

Lls = (1−α)Lce(y,s)+αLce(y′,s), (3)

where α is used to balance the contribution of the smoothed and
hard labels, and the smoothed label related loss is defined as
Llsr = Lce(y′,s). Note that, if there exist other loss functions, the
smoothed label can only be used in cross-entropy loss.

What Does Label Smoothing Really Do? The conventional
cross-entropy loss can be rewritten as:

Lce =− logs. (4)

Here, s is the model prediction after sigmoid activation (for binary
classification), which is defined as:

s j = ez j/
K

∑
k=1

ezk = 1/(1+ ∑
k 6= j

ezk−z j ). (5)

We then substitute s in (Eq. 4) and obtain:

Lce = log(1+ ∑
k 6= j

ezk−z j ). (6)

Let us define the gap between the correct class and others as
M = zk− z j. We can then conclude that the conventional cross-
entropy loss aims to maximize this gap.

For label smoothing setting, as in (Eq. 2), we rewrite the
smoothed label related loss Llsr as:

Llsr =− ((1− ε)y+ ε/K) logs− (1− (1− ε)y− ε/K) log(1− s)

=− (y logs+(1− y) log(1− s))+(εy− ε

K
) log(

s
1− s

).

(7)
Using the definition of s in (Eq. 5), we have:

s j

1− s j
=

1

∑
K
k=1 ezk−z j −1

. (8)

We can then combine (Eq. 8) with (Eq. 7) and obtain:

Llsr = Lce(y,s)+(εy− ε

K
)∗ 1

∑
K
k=1 ezk−z j −1

. (9)

The first part of (Eq. 9) aims to maximize the gap between the
correct class and the others, which is same as the conventional
binary-cross entropy loss as in (Eq. 6). The second part works
in the opposite direction (compared with (Eq. 6)) to narrow the
gap. In this way, the smoothed label related loss works to balance
the gap between the correct class and others, which serves as an
regularization to prevent the model from being over-confident.

4.2 Data Augmentation
As an effective data pre-processing technique, data augmentation
aims to generate new samples from an existing dataset, thus
producing a model with good generalization ability. Given the
training dataset D = {xi,yi}N

i=1, data augmentation produces a new
dataset D′ = {x′i,y′i}N′

i=1. As discussed previously, two main types of
data augmentation have received particular attention. These include
the handcrafted policies and learned policies [303], [304]. For the
learned policies, we observe that the augmented data can change
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drastically depending on the context, which may not be an issue
for image classification, but will change the salient attributes of an
image. We thus focus only on handcrafted policies.

For handcrafted data augmentation policies, existing works
[305], [306], [307], [308] focus on three main directions: 1) image
transformation, e.g., scale or rotation transformation; 2) mix-up to
generate new samples, which are neighbors of the existing samples;
and 3) adding noise to the ground-truth. Similar to learned policies,
the mix-up strategy change the context information of an image,
which is harmful for context-based tasks, such as salient object
detection. In this paper, we therefore focus on two very simple data
augmentation techniques, namely image transformation and adding
noise to the ground-truth. For image transformation, we randomly
scale, rotate and crop part of the image (85% of the original image
to keep the context information). For the additive noise solution,
we randomly add Gaussian noise of distribution N (0.1,0.3) to
the ground-truth saliency map, leading to a noisy ground-truth
map. Note that, for image transformation, we transform image and
ground-truth at the same time, while when adding noise to the
ground-truth, we only process the ground-truth saliency maps.

4.3 Self-Supervised Learning

Self-supervised learning learns from an image without knowing
the task itself or the ground-truth, making it an unsupervised rep-
resentation learning technique. Conventionally, for the supervised
learning setting, the loss function is defined as Lce(y,s), where
s is the model’s prediction, and y is the ground-truth map. For
self-supervised learning, the final loss function usually includes
two main parts: the conventional cross-entropy loss Lce(y,s) and
an unsupervised loss that serves as a regularizer, i.e., L (g(x),s),
where g(x) is the transformation of the original input image x. The
two studies [297], [310] introduced a self-supervised loss with
rotation estimation as a pretext task.

Similarly, we introduce a scale/rotation consistency loss func-
tion to achieve scale/rotation invariant predictions. Specifically,
given an input image x, we define its prediction as s. Then, we
apply an image transformation (scale or rotation transformation)
and obtain xt . We then perform the same transformation on the
prediction s and obtain s′. We feed xt to the same salient object
detection network to get the saliency prediction as st . We assume
that s′ and st should be similar. Then, we adopt the single scale
structural similarity index measure (SSIM) [322], [323] as a
similarity measure, and define the self-supervised loss as:

Lss = 1−SSIM(s′,st). (10)

4.4 Loss Function with the Proposed Strategies.

With the three introduced data-enhancement strategies, we first
apply random data augmentation to both our training image set
and training ground-truth set, as in Section 4.2. Then we generate
the smoothed label following (Eq. 1), with K = 2 in this paper
to represent the salient foreground and background regions. In
addition to the loss function in (Eq. 3), we also introduce a self-
supervised loss Lss. Our final loss function is then defined as:

L = Lls + γLss, (11)

where γ is introduced to balance the self-supervised loss, and is
empirically set to γ = 0.3 in this paper.

5 SOC BENCHMARK

Based on three criteria (i.e., representative pipeline, open-sourced,
and state-of-the-art performance), we select 46 traditional SOD
methods and 54 deep learning models from 203 reviewed methods
(see § 2) to conduct our benchmark. To the best of our knowledge,
this benchmark is the most comprehensive study in the RGB SOD.

5.1 Experimental Setup
5.1.1 Evaluation Metrics
Note that the GTs of non-salient images in our SOC dataset are
all-zero matrices, so directly using the traditional F-measure [47]
will result in very low and inaccurate scores. Thus, we utilize three
golden metrics (i.e., MAE [324], maximum E-measure [3], and
S-measure [2]) to avoid this issue and to provide a more reliable
assessment. Evaluation toolboxes are now publicly available.6

• MAE (M) is the mean absolute error metric, which is
widely used to measure the pixel-level difference between
the prediction and the GT.

• E-measure (Emax
ξ

) is a new perceptual metric that takes both
local and global similarity into consideration.

• S-measure (Sα ) is a standard metric that quantizes the
structural similarity at a region and object level.

Table 6
SOC dataset used in the benchmarking experiments.

SOC train SOC val SOC test Total
Salient Objects (Sal) 1,800 600 600 3,000
Non-Salient Objects (NonSal) 1,800 600 600 3,000
Total 3,600 1,200 1,200 6,000

5.1.2 Training and Testing Protocols
The statistics of the SOC dataset used in the benchmark are
summarized in Table 6. For traditional algorithms, we directly
test their performance on the SOC-test set (1,200 images). For deep
learning models, we first adopt the pre-trained models with their
recommended training parameter settings under the default training
dataset (see Tables 3 & 4) and then evaluate them on the SOC test
set to roughly obtain the 100 representative models (see Table 7
& 8). Finally, we provide a quantitative comparison and detailed
analysis of 15 SOTA approaches, including the top-5 traditional
methods and top-10 deep learning models.

5.2 Quantitative Comparisons
To build a standardized leaderboard (i.e., same image resolution,
thresholding step, and evaluation tool), we provide three golden
metrics, i.e., Sα , Emax

ξ
, and M.

Table 7 shows the performance of 46 SOTA traditional SOD
algorithms on our SOC test set. In terms of both S-measure (i.e.,
Sα ) and max E-measure (Emax

ξ
), the HCCH method surpasses

all competitors by a large margin. RBD, COV, and DRFI obtain
comparable performance in terms of Sα score. Meanwhile, COV
ranks third in terms of Sα measure, but ninth in Emax

ξ
. In terms

of MAE (i.e., M), the top-5 approaches are: SF, COV, HCCH,
SR, and MSSS. It is worth mentioning that SF reduces M and
outperforms all the recent traditional SOD methods. Based on their
overall scores, the top-5 methods are HCCH, RBD, COV, DRFI,
and WSC.

6. https://github.com/mczhuge/SOCToolbox.

https://github.com/mczhuge/SOCToolbox
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Table 7
Comparison of the traditional SOD algorithms on our SOC test set

(1,200 images) in terms of Sα ↑, Emax
ξ
↑, and M ↓ The top-3 results are

highlighted in red, blue and green, respectively. The superscript of each
score is the corresponding ranking. Details of these methods are

summarized in Table 2. The overall rank index indicates the average
ranking of the three metrics. These results are available at: Google Drive.

# Model Code Sα ↑ Emax
ξ
↑ M ↓ Rank

20
14

-b
ef

or
e

1 SUN [96] Matlab 0.47546 0.68844 0.43646 46
2 LSSC [107] Matlab + C 0.55245 0.71443 0.36545 45
3 BSF [112] Matlab 0.55444 0.72838 0.35344 44
4 GR [109] Matlab + C 0.58841 0.71542 0.33242 43
5 HS [37] EXE 0.60140 0.72937 0.32141 42
6 Itti [53] Matlab 0.58742 0.73630 0.31139 41
7 AIM [95] Matlab 0.60539 0.67045 0.25024 39
8 GBVS [93] Matlab 0.61536 0.73335 0.29337 39
9 LR [117] Matlab 0.64231 0.72340 0.25327 36
10 CA [325] Matlab + C 0.60638 0.75022 0.29136 35
11 MR [38] Matlab + C 0.64529 0.73433 0.25931 32
12 SEG [99] Matlab + C 0.57643 0.7657 0.35243 32
13 FT [47] C 0.62634 0.73829 0.23620 28
14 MC [126] Matlab + C 0.65623 0.73630 0.25125 26
15 CB [135] Matlab + C 0.65325 0.75813 0.26833 23
16 SR [94] Matlab/C++ 0.65821 0.66146 0.1564 23
17 PCA [118] Matlab + C 0.67018 0.74128 0.20913 17
18 MSS [110] Matlab 0.68212 0.7764 0.23119 10
19 SF [114] C 0.6996 0.74726 0.1301 8
20 DSR [125] Matlab + C 0.7025 0.75120 0.1848 8
21 MSSS [100] C 0.68311 0.75714 0.1645 7
22 HDCT [119] Matlab 0.6967 0.7745 0.20112 6
23 DRFI [115] C 0.7094 0.7912 0.19711 4
24 COV [108] Matlab 0.7113 0.7619 0.1462 2
25 RBD [116] Matlab 0.7162 0.7843 0.1869 2

20
21

-2
01

5

26 WMR [326] Matlab + C 0.64032 0.73335 0.26934 38
27 MAPM [143] Matlab + C 0.64430 0.72241 0.25629 37
28 BL [157] Matlab + C 0.62335 0.75120 0.29638 32
29 RRWR [160] Matlab 0.64727 0.73532 0.25830 31
30 WLRR [327] Matlab + C 0.61437 0.75911 0.31240 30
31 RCRR [145] Matlab 0.65026 0.73433 0.25528 29
32 GP [154] Matlab + C 0.63233 0.75911 0.28735 27
33 TLLT [161] Matlab 0.65623 0.72539 0.21415 25
34 BSCA [155] Matlab + C 0.65722 0.75516 0.25931 22
35 SMD [137] Matlab 0.66220 0.74825 0.24622 21
36 MDC [148] C 0.67516 0.74427 0.21917 20
37 DSP [141] Matlab + C 0.66419 0.75417 0.24823 17
38 MIL [144] Matlab + C 0.67117 0.75022 0.23620 17
39 MST [159] C 0.64727 0.7736 0.25125 16
40 GLC [140] Matlab + C 0.67615 0.75615 0.22318 15
41 MBS [153] Matlab 0.67814 0.75318 0.21415 14
42 LPS [142] Matlab + C 0.6949 0.74924 0.1837 13
43 WFD [328] C 0.68013 0.76010 0.21314 12
44 BFS [139] Matlab + C 0.6967 0.75318 0.19510 10
45 WSC [162] Matlab 0.69310 0.7657 0.1796 5
46 HCCH [149] Matlab 0.7361 0.7941 0.1493 1

The quantitative results of the 54 deep learning SOD models on
our SOC test dataset are shown in Table 8. In terms of Sα , EGNet,
R2Net, and CPDVgg are the top-3 models, with scores of more than
0.85. Roughly 46% (i.e., 21/45) of model scores are between 0.650
and 0.800. Compared with the traditional model, which achieves
an Sα score of 0.736, we can see continuous improvement over
the past few years, with the exception of four early models (i.e.,
DISC, DSL, LEGS, and UCF). At the same time, 30 out of 45
models achieve high performance (e.g., 0.800≤ Sα ≤0.850) and
the average performance is nearly 0.820. Interestingly, in terms of
Emax

ξ
, the multi-task learning framework DFI and integrity learning

model have the best and second-best scores of 0.903 and 0.896,
respectively. Consistent with S-measure, in terms of MAE, we
obtain the same top-3 models EGNet, CPDVgg, and R2Net. From
our 54 benchmarked models, we find that models that perform well
in terms of S-measure also do well in MAE. Overall, the top-10
approaches are EGNet, CPDVgg, CVAE, R2Net, DFI, ABP, BAS,
CAGVgg, RASNet, and LDF. In the following section (§ 6), we
will provide a more detailed analysis of these models.

Table 8
Evaluation of 54 deep learning based SOD models on our SOC test set
(1,200 images). We adopt the default implementations listed in Table 3

and Table 4 to test their generalization capability. These results are
available at: Google Drive.

# Model Code Sα ↑ Emax
ξ
↑ M ↓ Rank

20
15

1 LEGS [176] Caffe 0.67953 0.76554 0.22853 54
2 MDF [40] Caffe 0.73949 0.76853 0.14443 49
3 MC [177] Caffe 0.75747 0.82343 0.13835 43

20
16

4 DSL [179] Caffe 0.72452 0.81047 0.19452 51
5 DISC [181] Caffe 0.73551 0.81047 0.17550 50
6 DCL [195] Caffe 0.77144 0.83639 0.15748 45
7 ELD [194] Caffe 0.77442 0.83639 0.13835 40
8 DS [182] Caffe 0.77940 0.86024 0.15546 37
9 DHS [169] Pytorch 0.80032 0.84833 0.12230 33
10 RFCN [187] Caffe 0.81423 0.85827 0.11323 25

20
17

11 UCF [204] Caffe 0.65454 0.80551 0.28554 53
12 AMU [205] Caffe 0.73750 0.80850 0.18551 51
13 SVF [203] Caffe 0.76145 0.81645 0.15647 47
14 WSS [41] Caffe 0.77841 0.82144 0.14039 42
15 DSS [201] Caffe 0.80730 0.85827 0.11120 27
16 SRM [197] Caffe 0.82216 0.85926 0.11120 21
17 MSRNet [51] Caffe 0.81619 0.87116 0.11725 20
18 NLDF [199] Tensorflow 0.81619 0.86024 0.10413 16

20
18

19 RAS [213] Pytorch 0.75946 0.81346 0.15144 46
20 R3Net [210] Pytorch 0.77343 0.82542 0.13835 41
21 LPSNet [214] Pytorch 0.79535 0.83838 0.14342 39
22 DGRL-GLN [218] Caffe 0.79436 0.84536 0.14140 38
23 C2SNet [212] Caffe 0.79137 0.84536 0.13835 36
24 PiCA-Res [219] Pytorch 0.81028 0.85827 0.12831 31
25 BMPM [217] Tensorflow 0.81028 0.85330 0.11927 29
26 ASNet [216] Keras 0.81718 0.86520 0.11120 17

20
19

27 MWS [237] Pytorch 0.75747 0.82841 0.17249 47
28 AFNet [240] Caffe 0.81224 0.85032 0.12029 29
29 SIBA [250] Caffe 0.80032 0.88410 0.13033 26
30 Deepside [234] Caffe 0.81521 0.86123 0.11927 24
31 PFANet [241] Tensorflow 0.81521 0.84635 0.1018 22
32 PoolNet [244] Pytorch 0.82913 0.86818 0.10616 14
33 SCRNet [44] Pytorch 0.83311 0.87215 0.10514 13
34 CPDVgg [243] Pytorch 0.8563 0.8896 0.0792 2
35 EGNet [251] Pytorch 0.8581 0.8962 0.0781 1

20
20

36 ABPNet [283] Pytorch 0.78338 0.81047 0.15345 44
37 U2Net [274] Pytorch 0.78039 0.79552 0.10514 35
38 GCPANet [278] Pytorch 0.80730 0.84833 0.13334 34
39 ITSD [281] Pytorch 0.79834 0.87017 0.14241 32
40 MINet [282] Pytorch 0.81917 0.86422 0.11725 22
41 SANet [64] Pytorch 0.81224 0.86818 0.10616 17
42 GateNetVgg [285] Pytorch 0.82715 0.86520 0.10818 15
43 F3Net [279] Pytorch 0.82814 0.8915 0.10919 12
44 CSNet [284] Pytorch 0.83410 0.87614 0.10310 11
45 LDF [280] Pytorch 0.8359 0.87812 0.10310 10
46 RASNet [259] Pytorch 0.83212 0.8878 0.10310 9
47 CAGVgg [272] Keras 0.8378 0.87812 0.0884 8
48 DFI [255] Pytorch 0.8387 0.9031 0.1018 5
49 R2Net [256] Pytorch 0.8572 0.8859 0.0843 4

20
21

50 SCWS [289] Pytorch 0.81126 0.85131 0.11524 28
51 ICON [60] Pytorch 0.81126 0.8962 0.12831 19
52 BAS [31] Pytorch 0.8425 0.88211 0.0927 7
53 ABP [292] Pytorch 0.8425 0.8896 0.0916 6
54 CVAE [292] Pytorch 0.8494 0.8924 0.0895 3

5.3 Qualitative Comparisons

Two qualitative comparisons are presented in Fig. 8 and Fig. 9. As
can be seen from Fig. 8, deep models generate saliency maps that
are similar to the GTs, to varying degrees. Specifically, for ASNet,
C2SNet, BMPM, DCL, DHS, DSS, DS, DISC, SVF, RFCN, and
PFANet, the position of the object can be well-identified. However,
all these methods generate blurred responses on object boundaries.
PFANet, MDF, MC and LEGS even nearly destroy the integrity of
the object. To better highlight these results, we introduce yellow
rectangles to mark the high-quality segmentation regions and utilize
red arrows to point out the errors. We observe that eight models
(ABPNet, AFNet, AMU, NLDF, RAS, SCWS, UCF, and WSS)
can localize the human object but introduce additional noise. We
also notice that CAGNet, CSNet, MINet, DGRL, EGNet, F3Net,
ICON, PoolNet, and R3Net can even capture the small structure of
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https://github.com/wuzhe71/SCRN
https://github.com/wuzhe71/CPD
https://github.com/JXingZhao/EGNet
https://github.com/JingZhang617/Noise-aware-ABP-Saliency
https://github.com/NathanUA/U-2-Net
https://github.com/JosephChenHub/GCPANet
https://github.com/moothes/ITSD-pytorch
https://github.com/lartpang/MINet
https://github.com/JingZhang617/Scribble_Saliency
https://github.com/Xiaoqi-Zhao-DLUT/GateNet-RGB-Saliency
https://github.com/weijun88/F3Net
https://github.com/MCG-NKU/SOD100K/tree/master/CSNet
https://github.com/weijun88/LDF
https://github.com/ShuhanChen/RAS-pytorch
https://github.com/Mehrdad-Noori/CAGNet
https://github.com/backseason/DFI
https://github.com/ArcherFMY/R2Net
https://github.com/siyueyu/SCWSSOD
https://github.com/mczhuge/ICON
https://github.com/NathanUA/BASNet
https://github.com/JingZhang617/UCNet
https://github.com/JingZhang617/UCNet
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Figure 8. Visualization results of deep learning models.

the human elbow. Moreover, saliency maps from R2Net, Deepside,
SIBA, and MSRNet demonstrate better results than the above-
mentioned methods. Amazingly, BAS, U2Net, ABP, CPD, GateNet,
GCPANet, ITSD, LDF, SCRN, and CAVE perform very close to
the GT and result in knife-edge-shaped boundaries in the yellow
rectangle region without any additional noise.

In sharp contrast to the deep learning models, the traditional
models (Fig. 9) all fail without exception. WSC, HCCH, and RBD
are the three most promising approaches. However, their results
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Figure 9. Qualitative results of state-of-the-art traditional approaches.

are still far from the GT map, since they are mainly based on
various prior features extracted from color, orientation, contrast,
etc. Further, the center bias prior is not suitable in this case, since
the human is located close to the image boundary, thus making this
example more challenging for these approaches.

6 FURTHER BENCHMARKING

6.1 Attribute-Based Evaluation
Based on the top-ranked models presented in Tables 7 & 8, we
further re-train the top-107 deep learning models (using their
default settings) on the SOC-Sal train set (1,800 images) and then
test them on the SOC-Sal test set for attribute-based evaluation.
In Table 9, we show the performance on subsets of our dataset
characterized by a particular attribute. Due to space limitations,
in the following discussion, we only select a few representative
attributes for further analysis.

7. DFI mode has only released the test code, so we cannot evaluate it.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

Table 9
Comparison of 14 state-of-the-art approaches in terms of attribute-level performance. For deep learning models, we re-train them on our

SOC-Sal train set (i.e., 1,800 images). Please refer to Tables 2, 3, & 4 for more details. These results are available at: Google Drive.

AC BO CL HO MB OC OV SC SO Avg.

Model
Attribute Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓

Tr
ad

iti
on

al COV [108] 0.505 0.216 0.277 0.577 0.453 0.280 0.508 0.229 0.494 0.219 0.484 0.246 0.423 0.314 0.535 0.174 0.525 0.172 0.467 0.270
WSC [162] 0.541 0.205 0.356 0.517 0.517 0.252 0.556 0.211 0.536 0.210 0.529 0.227 0.475 0.292 0.567 0.170 0.535 0.181 0.512 0.252

HCCH [149] 0.585 0.199 0.354 .0.525 0.537 0.254 0.615 0.197 0.547 0.202 0.552 0.225 0.468 0.298 0.595 0.165 0.588 0.162 0.538 0.247
DRFI [115] 0.598 0.229 0.391 0.513 0.570 0.274 0.618 0.230 0.556 0.230 0.577 0.248 0.527 0.304 0.614 0.188 0.585 0.197 0.560 0.268
RBD [116] 0.589 0.225 0.429 0.481 0.575 0.260 0.625 0.216 0.557 0.213 0.583 0.235 0.521 0.295 0.602 0.191 0.579 0.192 0.562 0.256

D
ee

p
L

ea
rn

in
g ABP [292] 0.767 0.092 0.592 0.315 0.742 0.125 0.787 0.101 0.742 0.095 0.740 0.112 0.746 0.132 0.759 0.083 0.741 0.080 0.735 0.126

EGNet [251] 0.791 0.088 0.593 0.307 0.739 0.137 0.788 0.110 0.763 0.115 0.743 0.120 0.750 0.138 0.800 0.076 0.753 0.088 0.747 0.131
CPDVgg [243] 0.806 0.076 0.626 0.278 0.765 0.118 0.808 0.096 0.786 0.097 0.765 0.103 0.760 0.127 0.801 0.070 0.765 0.076 0.765 0.116
CAGVgg [272] 0.795 0.080 0.700 0.208 0.782 0.115 0.808 0.098 0.764 0.102 0.751 0.120 0.763 0.127 0.795 0.081 0.744 0.093 0.767 0.114
RASNet [259] 0.821 0.066 0.626 0.276 0.785 0.106 0.816 0.087 0.788 0.086 0.776 0.096 0.779 0.113 0.810 0.066 0.774 0.070 0.772 0.107

CVAE [292] 0.813 0.075 0.688 0.217 0.790 0.107 0.816 0.092 0.784 0.091 0.771 0.104 0.776 0.115 0.820 0.069 0.767 0.080 0.781 0.106
LDF [280] 0.819 0.071 0.697 0.212 0.796 0.105 0.824 0.088 0.792 0.085 0.781 0.098 0.790 0.107 0.780 0.073 0.801 0.072 0.787 0.101

R2Net [256] 0.827 0.071 0.656 0.257 0.802 0.107 0.826 0.092 0.794 0.097 0.789 0.099 0.791 0.112 0.807 0.072 0.788 0.073 0.787 0.109
BAS [31] 0.831 0.060 0.723 0.166 0.785 0.110 0.814 0.093 0.797 0.072 0.780 0.101 0.781 0.114 0.820 0.072 0.787 0.075 0.791 0.096

Avg. 0.721 0.125 0.551 0.346 0.688 0.168 0.729 0.139 0.693 0.137 0.687 0.152 0.668 0.185 0.722 0.111 0.693 0.115 - -

Big object (BO) scenes typically occur when objects are close
to the camera, enabling tiny text and patterns to be seen clearly.
In this case, models that prefer to focus on local information are
seriously misled, leading to a considerable decrease in performance
(e.g., 8.6% Sα reduction for BAS, 8.7% reduction for CAGVgg,
11.4% reduction for LDF, and 40.7% reduction for COV) compared
with their average performance (Avg.). Among all attributes, BOs
are the most difficult for both traditional and deep learning models.

Small objects (SOs) are tricky for some SOD models. Four
models (i.e., BAS, CVAE, CAGVgg, and RASNet) encounter
performance degradation (e.g., from BAS-0.5% to RASNet-3.6%)
because SOs are easily ignored during the downsampling of CNNs.
Other models instead have enhanced performance on SOs, but
significant reduction in performance on BOs.

Heterogeneous objects (HOs) commonly appear in natural
scenes. The performance of all models on HOs improves to some
degree, fluctuating from 2.9% to 14.3%. We suspect this is because,
as shown in Fig. 6, HO images make up a significant proportion of
all datasets, so the models are more familiar with this attribute.

Occlusion (OC) scenes occur when objects are partly obscured.
Thus, SOD models must capture global semantics to make up for
the incomplete information of objects. As observed, traditional
models obtain improved performance compared with their average
performance. For deep learning models, in contrast, this situation
is reversed.

As can be seen in the last row of Table 9 (average performance
of each attribute), MB and SO have the same Sα score. Moreover,
the average scores of AC and SC are very similar. It seems that
existing deep learning based SOD models can effectively address
appearance change and shape complexity. Similar to the attributes
of OV and OC, CL and MB remain challenging for existing methods,
generating mid-level (i.e., 0.65< Sα <0.70) S-measure scores.

6.2 Comparison with Baselines

We introduce three dataset-enhancement strategies to prevent
networks from being overconfident as a result of dataset bias.
These include label smoothing, random data augmentation and
self-supervised learning. We argue that our strategies can be easily
used in existing salient object detection frameworks as general
data processing techniques. We thus introduce our strategies to
nine benchmark salient object detection models and show the
performance in Table 10, where “Our-” represents the benchmark
models with our dataset-enhancement strategies. Further, we
investigate the contribution of each data-enhancement strategy, and

Table 10
The contribution of our dataset-enhancement strategies.

Method
Metric Sα ↑ Emax

ξ
↑ M ↓

ABP [292] 0.752 0.836 0.097
Our-ABP 0.769 0.842 0.093

EGNet [251] 0.756 0.823 0.105
Our-EGNet 0.759 0.831 0.100

CPDVgg [243] 0.775 0.842 0.090
Our-CPDVgg 0.789 0.850 0.087

CAGVgg [272] 0.748 0.811 0.103
Our-CAGVgg 0.759 0.823 0.097
RASNet [259] 0.832 0.887 0.103

Our-RASNet 0.841 0.897 0.096
CVAE [292] 0.849 0.892 0.089

Our-CVAE 0.863 0.902 0.086
LDF [280] 0.835 0.878 0.103

Our-LDF 0.845 0.891 0.097
R2Net [256] 0.857 0.885 0.084

Our-R2Net 0.868 0.899 0.080
BAS [31] 0.842 0.882 0.092
Our-BAS 0.856 0.895 0.086

Table 11
The contribution of each dataset-enhancement strategy.

Method
Metric Sα ↑ Emax

ξ
↑ M ↓

CVAE [292] 0.849 0.892 0.089
LS 0.851 0.895 0.088
SS 0.852 0.894 0.088

RDA 0.855 0.896 0.086
Our-CVAE 0.863 0.902 0.086

show the performance in Table 11, where we choose CVAE [292]
as the base model.

Training & Testing Protocols. We retrain the five models in
Table 10 with their corresponding training dataset, e.g., MB [32]
for RASNet [259], and DUTS [41] for all the other four models.
We follow their original training and testing settings, e.g., same
maximum epoch, learning rate, training and testing image sizes.

Discussion. Table 10 shows consistent better performance of
models with our strategies, which illustrates effectiveness of our
solutions. Further, in Table 11, “LS”, “RDA”, “SS” represent
adding label smoothing strategy, random data augmentation and
self-supervised learning to the base model respectively. It shows
that the random data augmentation achieves the largest performance
gain, while label smoothing and self-supervised learning achieves
comparable performance improvement. The main reason is that
data augmentation introduce diverse samples to the initial training
dataset, which is effective in improving model generalization
ability. For the self-supervised learning strategy, as the CVAE
model [292] has already adopt the multi-scale image as input
strategy, we observe slightly improved performance. However, the
better performance in general can still validate the effectiveness of
the proposed strategy. Label smoothing [294] was introduced to

https://drive.google.com/drive/folders/1c4CgQICbRKg0Hzj4XhBRHr0o9OKu2MSf?usp=sharing
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Table 12
Results for cross-dataset generalization in § 6. UC-Net (CVPR’20) [330]
is trained on one dataset and tested on all others. “Sel.”: diagonal score

(training and testing on the same dataset). “Oth.”: mean score on all
except for self.

Measure Sα ↑ [2] Drop↓

Train
Test SOC M10K DU-O DUTS ECC HKU ILSO Sel. Oth.

SOC [45] .884 .768 .686 .834 .749 .774 .841 .884 .775 12%
M10K [35] .800 .921 .784 .894 .881 .882 .884 .921 .854 7%
DU-O [38] .833 .898 .854 .877 .862 .867 .886 .854 .871 -2%
DUTS [41] .795 .882 .793 .910 .890 .903 .900 .910 .861 5%

ECC [37] .791 .886 .800 .901 .901 .898 .903 .901 .863 4%
HKU [40] .818 .892 .787 .904 .883 .910 .905 .910 .865 5%
ILSO [51] .841 .888 .790 .898 .882 .896 .920 .920 .866 6%

Oth. .813 .869 .773 .885 .858 .870 .887

prevent model from over-confidence, thus achieve well-calibrated
model. However, there exists no saliency metrics to explain the
calibration error of the saliency models. We will investigate in
expected calibration error [329] and extend it to saliency detection
task in the future to better explain the calibration error issue.

6.3 Cross-Dataset Generalization

To study the difficulty of existing SOD datasets, we adopt the CDA
(cross-data analysis) method [43]. Given N candidate datasets
{Dn}N

n=1, we first train a model on the Di dataset, and then test it
on the other datasets (i.e., {Dn}N

n=1,n6=i). Following [46], [331], we
randomly select 800 images and 200 images from each dataset as
the training set and testing set, respectively.

We train the representative UC-Net [330] (CVPR2020 Best
Paper Nomination) on existing popular datasets that contain
more than 1,000 images. Table 12 shows the Sα score on each
dataset. Each column provides the score of UC-Net tested on a
specific dataset and trained on all others. Each row indicates the
performance of UC-Net trained on one dataset and tested on all
others, demonstrating the generalizability of the dataset adopted for
training. We find that when testing on our SOC (e.g., Oth. = 0.813)
and DU-O (Oth. = 0.773) datasets, the model performs worse than
other datasets. It shows larger differences between SOC/DU-O and
the other datasets.

7 FUTURE DIRECTIONS

Human attention can be influenced by four key factors:
• Visual properties. Our attention may be drawn by basic

objects’ unique visual properties [332].
• Memory. If one knows an object well, it is easier for that

object to attract one’s attention.
• Goal. For example, eye fixation records are quite different

from attention maps, with a specific goal for viewers.
• Emotion. In addition to the above-mentioned factors, we

argue that human attention toward the same scene may be
affected by one’s emotion, e.g., happiness, sadness, anger.

As demonstrated by Cave [332], attentional control is de-
termined by a combination of these factors. Unfortunately, the
annotations of existing SOD datasets do not clearly describe which
factor they address. Differently, the ground-truth annotations of our
SOC are based on the salicon (free-view task) dataset8, or so-call
meaning maps which are used in recent studies [332], [333], [334].
As concluded by Kalash et al. [72], the work to date has addressed

8. http://salicon.net/

a relatively ill-posed problem. Thus, we recommend several future
directions to re-think SOD tasks at six main research levels:

(1) Data Level: Recently, visual saliency detection tasks have
attracted significant interest using 2D (RGB SOD) and 3D (i.e.,
RGB-D, RGB-T) input data. However, light field SOD (4D),
LIDAR SOD, and 360◦ SOD are still not well-studied. Establishing
new datasets for these types of data will largely promote the
development of this field. Another interesting avenue for examining
saliency detection is to study fine-grained tasks, such as salient
instance detection [51], [69], [335], [336] and part-object visual
saliency detection [337].

(2) Task Level: Multi-task learning has demonstrated strong
performance in recent works [338]. Existing schemes mainly
focus on vision tasks, such as joint salient object detection and
camouflaged object detection [339], detection of salient objects,
edges and skeletons simultaneously [255], and simultaneous
detection, ranking, and subitizing of multiple salient objects [70].
With the success of the transformer technique in natural language
processing (NLP), introducing multi-modality learning into the
saliency detection field may be a feasible way to further incorporate
other types of information, such as CV+NLP (similar to [340]),
CV+Audio [341], and CV+other modality.

(2) Model Level: A huge number of algorithms have been
developed to improve detection accuracy. However, there are
several promising directions that could be further studied such
as data augmentation techniques [342], efficient SOD models
(e.g., lightweight models [284], [343]), new loss functions [287],
[344], ranking-based models [70], [138], and transformer-based
models [345], [346].

(4) Supervision Level: In addition to the most common fully
supervised learning of current SOD models, other supervision strate-
gies, e.g., weakly supervised (i.e., scribble [64], category [347],
and polygon), semi-supervised [61], self-supervised [68], [348],
and unsupervised [66] learning are also interesting to study.

(5) Evaluation Level: Evaluation metrics are important for
model training, testing, and benchmarking. However, the SOD
community still utilizes classical metrics such as IoU, F-measure,
and MAE. These metrics were designed for universal evaluation
rather than for assessing SOD tasks specifically. As a consequence,
they do not work well for certain specific applications, such as
those with high-quality requirements. We envision that introducing
a new metric (e.g., based on the gradient or connectivity error
used in [349]) for SOD tasks, such as weighted F-measure [1] and
S-measure [2], will be another important research direction.

(6) Application Level: The SOD task belongs to a more
general task called class-agnostic object detection (CAOD) [132].
For simple scenes (e.g., those containing only one or two clear
objects), SOD is identical to CAOD. From this point of view,
SOD models have many potential applications in the real-world
(e.g., Alibaba’s fashion search system [340]), despite their currently
limited number of representative cases [30], [31], [201].

8 CONCLUSION

In this survey, we identified and addressed the long-ignored data
selection bias issue in SOD. Different from previous studies, we
aimed to explore the SOD task in the wild. To achieve this
goal, we collected a new challenging and densely annotated
SOC dataset; analyzed a large number (∼200) of representative
models; conducted the most complete (i.e., 100) benchmarking;
devised a series of simple learning strategies to efficiently utilize

http://salicon.net/
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negative samples and training data; and identified several current
challenges and future directions. We hope that these contributions
will provide the SOD community an opportunity to explore novel
techniques in an open environment. We have tried to cover the
most important works. Nevertheless, it is impractical to thoroughly
investigate all models in this vast field. We will continue to
incorporate new techniques on our website.
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