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Abstract—In this paper, we reveal the discriminant capacity of orthogonal data projection onto the generalized difference subspace
(GDS), both theoretically and experimentally. In our previous work, we demonstrated that the GDS projection works as a
quasi-orthogonalization of class subspaces, which is an effective feature extraction for subspace based classifiers. Here, we further
show that GDS projection also works as a discriminant feature extraction through a similar mechanism to the Fisher discriminant
analysis (FDA). A direct proof of the connection between GDS projection and FDA is difficult due to the significant difference in their
formulations. To circumvent the complication, we first introduce geometrical Fisher discriminant analysis (gFDA) based on a simplified
Fisher criterion. It is derived from a heuristic yet practically plausible assumption: the direction of the sample mean vector of a class is
largely aligned to the first principal component vector of the class, given that the principal component analysis (PCA) is applied without
data centering. gFDA works stably even under few samples, bypassing the small sample size (SSS) problem of FDA. We then prove
that gFDA is equivalent to GDS projection with a small correction term. This equivalence ensures GDS projection to inherit the
discriminant ability from FDA via gFDA. Furthermore, we discuss two useful extensions of these methods, 1) a nonlinear extension by
kernel trick, 2) a combination with CNN features. The equivalence and the effectiveness of the extensions have been verified through
extensive experiments on the extended Yale B+, CMU face database, ALOI, ETH80, MNIST, and CIFAR10, mainly focusing on image

recognition under small samples.

Index Terms—Discriminant analysis, Fisher criterion, subspace representation, PCA without data centering

1 INTRODUCTION

In this paper, we reveal the discriminant ability of
orthogonal projection of data onto the generalized differ-
ence subspace (GDS) [1], called GDS projection. GDS is a
mathematical concept that represents the difference between
multiple subspaces, and it is defined as a natural extension
of the difference vector between two vectors.

GDS projection can be seen with two natures in feature
extraction and they can be alternatively exploited. One is
to enlarge the angles between class subspaces to make
their relationship closer to the orthogonal status [1]. As
a result, GDS projection works as quasi-orthogonalization,
and is an effective feature extraction technique for subspace
based classifiers such as the subspace method and the
mutual subspace method [2], [3], [4], [5], [6]. The other
nature, on which we focus in this paper, is to serve for
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discriminative feature extraction, through a mechanism sim-
ilar to the Fisher discriminant analysis (FDA) [7], [8]; we
approach its mechanism from both theoretical and empirical
aspects, by exploring the close connection between GDS
projection and FDA. However, a direct proof of their close
connection would not be straightforward due to the sig-
nificant difference in their formulations. To circumvent the
complication, we introduce geometrical Fisher discriminant
analysis (gFDA) that is a discriminant analysis based on a
simplified Fisher criterion in terms of class representation.
We indirectly prove the close connection via gFDA, where
gFDA serves as an intermediate concept as it inherits the
discriminant ability from FDA and the intrinsic mechanism
from GDS projection, respectively.

The simplification starts by considering that the lengths
of data are normalized to a unit, i.e. all data are on a sphere,
which is a quite common setting in image recognition; the
data normalization is widely used as standard preprocess-
ing as it can effectively reduce the influence of changes in
brightness; it also contributes to recent advances of image
feature representation in convolutional neural networks [9],
[10]. In the following, we focus on image recognition under
the data normalization as our primary target task to make
the discussion concrete. Nevertheless, we expect that our
methods can also work effectively on other data types.

For the simplification, we first introduce a heuristic
assumption that the directions of the sample mean vector
and the first principal component vector of a class are nearly
equivalent, given that the principal component analysis
(PCA) without data centering (subtracting the mean) is
applied to calculate the principal component vectors. This
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heuristic relationship enables us to reasonably represent
the original Fisher criterion using the principal component
vectors and their weights (eigenvalues) of all the classes
involved in the classification task. Based on this represen-
tation, we simplify the original Fisher criterion in terms of
class representation by introducing the assumptions that all
the class distributions on a unit sphere have equal prior
probability and isotropic variance, and finally approximate
the original Fisher criterion compactly with only several
principal component vectors for each class. Since a set
of the principal component vectors of each class spans a
class subspace, our simplified criterion can be considered
as a method based on the geometrical relationship between
the class subspaces. This new type of Fisher discriminant
analysis is hence named geometrical Fisher discriminant
analysis (gFDA).

The discriminant criterion of gFDA leads to a general-
ized eigenvalue problem for the matrix product of between-
class and within-class matrices like FDA. This formulation
makes it difficult to examine the connection between gFDA
and GDS projection. Thus, we transform the generalized
eigenvalue problem to a simpler regular eigenvalue problem
for the linear combination of between-class and within-
class matrices. The formation of the linear combination
leads us to an observation that gFDA is equivalent to GDS
projection with a small correction term under a condition
of no overlaps between class subspaces. As a consequence,
we can verify the close connection between FDA and GDS
projection via gFDA, as gFDA can be regarded as an ap-
proximation of FDA.

The subspace representation also enables gFDA to deal
with the situation where only a few samples are available.
In this case, the within-class matrix becomes singular so
that FDA cannot in principle be computed. This problem
is called the small size sample (SSS) problem of FDA [8].
To address the SSS problem, many types of extensions of
FDA have been proposed [8], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20]. gFDA is very different from these
conventional methods in that it bypasses the SSS problem of
FDA by representing the discriminant criterion in a form of
linear combination, which can be solved without depending
on the number of samples. gFDA can work even with only
one sample without any specific modification, unlike most
of the above extensions.

We can find that in many cases it is difficult and costly to
collect and label sufficient learning samples for each object
class in image recognition tasks such as face and medical
image recognitions. In several applications, a class subspace
can be stably generated even from few data; for example,
in 3D object recognition, it is well known that a set of the
images of a 3D convex object with Lambertian reflectance
under various illumination conditions can be represented by
a subspace with low dimension (from 3 to 9), which is called
illumination subspace [21], [22], [23]. This means that an
illumination subspace of a 3D object like face can be stably
and accurately estimated from only a small number (from 3
to 9) of the object images under different illuminations. This
characteristic of subspace representation works effectively
to handle the small sample image recognition.

The main goal of the paper is to prove the close re-
lationship between GDS projection and FDA theoretically

and experimentally via gFDA, and further verify the ro-
bustness of our methods against the small sample size
experimentally, as mentioned above. It is highly valuable
to rebuild the essential mechanism of FDA by the quite
different formulation using a subspace representation, con-
sidering high significance of FDA in pattern recognition and
machine learning. However, we are also interested in further
exploring the framework of gFDA and GDS projection, and
thus discuss two useful extensions: 1) a nonlinear extension
using kernel trick, and 2) a combination with CNN features.

For the first extension, our previous work [1] on the
orthogonalization of class subspaces demonstrated that the
nonlinear extension of GDS, Kernel GDS (KGDS), can deal
with the case that each class has a nonlinear complicated
structure that cannot be naively represented by a linear
subspace. Motivated by this, we demonstrate that the non-
linear extension with Gaussian kernel function is also valid
in terms of the discriminant ability of gFDA and GDS
projection, where all samples are mapped on a unit sphere
due to the kernel function.

For the second one, to achieve higher performance in
difficult tasks like general object recognition with compli-
cated background and without segmentation, we consider
the usage of powerful features called CNN features, which
are extracted from a fully connected layer of convolutional
neural networks (CNN), as an input of our methods. We
show that the combination of our methods and CNN fea-
tures can achieve competitive performance in comparison
with various types of state-of-the-art methods, suggesting
the possibility of incorporating the mechanism of GDS
projection into the framework of deep neural networks.

Our main contributions are summarized as follows:

o Wereveal that the projection of data onto the general-
ized difference subspace, GDS projection, works as a
discriminant analysis through a mechanism similar
to the Fisher discriminant analysis. To show the
above nature,

— We propose a new discriminant analysis, geo-
metrical Fisher discriminant analysis (gFDA),
which maximizes a simplified Fisher criterion
under the common setting that all data are
normalized to a unit in terms of length.

-  We prove that gFDA is equivalent to GDS
projection with a small correction term.

- We show the close connection between GDS
projection and FDA indirectly by regarding
gFDA as an intermediate concept between
them.

o We discuss two useful extensions: 1) a nonlinear
extension using kernel trick, and 2) a combination
with CNN features, in which they are used as an

br\ljput of our methods.
e demonstrate that gFDA, GDS projection and their

nonlinear extensions have equivalent or better per-
formance than the original FDA and its extensions on
various public databases: the extended Yale B+, CMU
Multi-PIE face, and ALOI (illumination direction col-
lection), mainly focusing on the small sample image
recognition. Besides, we show the effectiveness of the
combination with CNN features on ETH80, MNIST,
and CIFAR10.
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The rest of this paper is organized as follows. Section 2
and Section 3 provide preliminary concepts. In Section 2, we
describe the concept and the definition of the generalized
difference subspace (GDS). In Section 3, we overview the
fundamentals of FDA with the Fisher criterion. In Section 4,
we introduce a heuristic assumption on the relationship
between the first principal component vector and the mean
vector of a class. Then, we simplify the Fisher criterion by
using the heuristic relationship and construct the geometri-
cal Fisher discriminant analysis (gFDA) with the simplified
criterion. In Section 5, we describe the geometrical mech-
anism of gFDA and prove that gFDA has dual forms of
objective function. In Section 6, we show the close con-
nection between FDA and GDS projection via gFDA. We
describe the nonlinear extension of our methods in Section 7.
In Section 8, we demonstrate the effectiveness of gFDA
through evaluation experiments, focusing on the situation
of a small sample size. Section 9 concludes the paper.

2 GENERALIZED DIFFERENCE SUBSPACE

In this section, we describe the concept of generalized differ-
ence subspace (GDS). As a preliminary to its definition, we
describe how to generate a class subspace from the data set
for each class. We then define the difference subspace (DS)
for two subspaces and extend DS to GDS.

2.1 Generation of class subspace

The principal component vectors of a class are obtained by
applying the principal component analysis (PCA) without
data centering to a set of data from the class.
Given a set of n. L-dimensional data {x$};*, of class ¢
(¢ =1,...,C), where an image with wxh pixels is regarded
as an L(= wxh) dimensional vector x, the principal compo-
nent vectors {¢¢}%< | of class c are obtained by the following

procedure:

1. An LxL auto-correlation matrix is computed as
R, = ni e xex¢T from {x¢}ie .

2. The principal component vectors {¢$}% of class ¢
are obtained as the unit eigenvectors corresponding
to the d, largest eigenvalues of R.. If we use all the
eigenvalues, we obtain the spectral decomposition of

the matrix R..

Throughout the whole paper, the principal component vec-
tors of a class are used as the orthonormal basis vector
of the corresponding class subspace. In the following, we
will interchangeably use the terms of principal component
vector and orthonormal basis vector as of the same meaning.

2.2 Geometrical definition of DS

The difference subspace (DS) is a natural extension of a
difference vector d between two vectors u and v as shown
in Figs.1a and 1b [1].

We formulate the difference subspace between M-
dimensional subspace P; and N-dimensional subspace P
in L-dimensional vector space. In the case that there is
no overlap between these subspaces, N canonical angles
{0;}}, (for convenience N < M) can be obtained between
them [24], [25]. Let d; be the difference vector, v; — u;,

il Subspace P; —  Subspace P.

d2

Difference subspace D,

(a) (b)

Fig. 1. Basis concept of difference subspace: (a) difference vector, (b)
canonical angles, vectors and difference subspace.

Principal component
subspace M»

Sum subspace S,

Orthogonal

Difference subspace
subspace D,

Fig. 2. Direct sum decomposition of sum subspace Sz into principal
component subspace M- and difference subspace Ds.

between canonical vectors u; € P; and v; € Py, which are
obtained through the framework of the canonical correlation
analysis and form the ith canonical angle 6; [24], [25]. All
d; are orthogonal to each other. Thus, after normalizing
the length of each difference vector d; to 1, we regard
the normalized difference vectors d; = ﬁ as the
orthonormal basis vectors of the difference subspace Ds.
Thus, Ds is defined as < dy,dg, -+ ,dy >.

2.3 Analytical definition of DS

The difference subspace geometrically defined in Sec.2.2
can also be analytically defined by using the orthogonal
projection matrices of two class subspaces [1].

Theorem. Assuming that there is no overlap between M-
dimensional subspace Py and N-dimensional subspace P2, and
G P £ 06 = 1,...,M,j = 1,...,N), the i-th basis
vector d; of the difference subspace D is equal to the normalized
eigenvector x; of Py 4 Py that corresponds to the i-th smallest
eigenvalue smaller than 1, where Py and Py € RIXL gre

S . . T
the orthogonal projection matrices, defined by Zf\il o d; and
T )
Zﬁil dig7, respectively.

e N eigenvectors of matrix P; + P, correspond-
ing to eigenvalues smaller than 1 span the
difference subspace Ds.

e N eigenvectors of matrix P; + P, correspond-
ing to eigenvalues larger than 1 span the
principal component subspace Ma.

The relations lead to the conclusion that the sum sub-
space Sy of Py and Py, spanned by all the eigenvectors of
matrix P; 4 Py, is represented by the orthogonal direct
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Principal component subspace
M

Fig. 3. Conceptual diagram of generalized difference subspace for ¢
subspaces.

sum of the principal component subspace My and the
difference subspace Dy as So = Mo@PDs. Fig.2 shows the
conceptual diagram of this direct sum decomposition. This
means that the difference subspace D5 can be defined as the
subspace that is produced by removing the principal com-
ponent subspace My from the sum subspace Si. Hence,
the difference subspace can be regarded as the subspace
that does not include the principal information of the two
subspaces, that is, it contains only the difference component
between them.

2.4 Definition of GDS

To deal with the difference between two or more subspaces,
the concept of the difference subspace was generalized under
the analytical definition [1]. Fig.3 shows the conceptual
diagram of the generalized difference subspace (GDS) D for C'
subspaces.

Given C(>2) d.-dimensional subspaces {P.}¢ ; in L-
dimensional vector space, a generalized difference subspace
D can be defined as such a subspace that is produced by
removing the principal component subspace M, of all the
subspaces, from the sum subspace S of {P.}¢ ;. Thus, the
generalized difference subspace D is spanned by N, eigenvec-
tors, {di}f.v:dl corresponding to the Ny smallest eigenvalues,
of the following sum matrix G:

C C d.
G=>P.=> > 4", (1)
c=1

c=11i=1

where P, € REXL denotes the orthogonal projection matrix
of the class c subspace.

The generalized difference subspace D contains only the
essential component for discriminating all the classes, since
it is the orthogonal complement of the principal component
subspace M that represents the principal information of all
the class subspaces.

3 FISHER DISCRIMINANT ANALYSIS

Fisher discriminant analysis (FDA) is a method for obtaining
a discriminant space H, which can distinguish multiple
classes effectively [7], [8]. Such a discriminant space can
be found out by maximizing the Fisher criterion of the
projected data on the discriminant space H.

The Fisher criterion consists of within-class covari-
ance matrix and between-class covariance matrix. Given C'

classes, each of which contains the data set {x{};; (¢ =

RLXL i

1,...,C), the within-class covariance matrix Xy € s
defined as
C 1 Ne -
Yw = Zp(@(; Z(Xf —m.)(x; —m,) )» )
c=1 ¢i=1

where p(c) is the prior probability of class ¢, n, and m,
indicate the number of samples and the mean vector of class
¢, respectively. The between-class covariance matrix Xp €
RL*L js defined as

3B

C
> p(e)(m, — m)(m, —m)", 3)

c-1 C
> > pi)p()(m; — my)(m; —my)”, @)

i=1 j=i+1

where p(i) and p(j) are the prior probabilities of the i-th
and j-th classes, and m indicates the mean vector over all
the classes.

The Fisher criterion f(d) of the data projected on a 1-
dimensional subspace spanned by vector d is defined as

d’xpd
d = ———— 5
@) = ey ©
where the vector d that maximizes function f can be ob-
tained by solving the generalized eigenvalue problem

Ypd = 22y d. (6)

Discriminant space H is spanned by C' — 1 eigenvectors,
{d;}%, corresponding to the C' — 1 largest eigenvalues of
the above eigenvalue problem.

4 GEOMETRICAL FISHER DISCRIMINANT ANALYSIS

In this section, we first approximate the Fisher criterion,
f(d) in Eq.(5), based on a heuristic relationship between the
mean vector m. and the first principal component vector
¢] of class ¢ on a unit sphere. We then simplify it by
using the following assumptions across class distributions:
1) equal prior probability, 2) approximately equal covariance
matrices before the data normalization, and 3) isotropic
variance after the data normalization. Finally, we construct
the proposed gFDA by maximizing the simplified Fisher
criterion.

4.1 Equivalence between the class mean and first prin-
cipal component vector

Heuristic relationship: For each class subspace, the first
principal component vector ¢] and the mean vector m, can
be in a very close correspondence with each other in terms
of their directions, under the condition that ||/m,||* is com-
paratively larger than o2, , where o2, is the maximum

variance of the class distribution among all the dimensions.

The heuristic relationship can be explained as follows.
Given a data set on a unit sphere, {xf}?;l, of class ¢, the
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autocorrelation matrix R, and the covariance matrix X, are
defined as

R.

7ZXC T
— Z(Xg —m.)(x; — mC)T-
e i

@)

P ®)

Between the two matrices and the mean vector there is a
relationship that R, = ¥, + m.m?.

It holds that ||m,||* is more than four times larger than
02, .. for a class distribution in almost all object classes on
standard large scale datasets such as ALOI [26], CIFAR10
[27], CMU Multi-PIE Face Database [28] and MNIST [29].
This condition ensures that m. is dominant in calculating
the first principal component vector ¢ corresponding to
the largest eigenvalue (mean squared projection) of R, as
the projection of m, on the direction of m, is sufficiently
larger than the projections of {x{ — m.} on any remaining
directions measured with reference to the origin. Thus, the
direction of the first principal component vector ¢ almost
coincides with that of the class mean vector m..

We confirmed this via simulation, in which we ran-
domly generated Gaussian distributions with various mean
vector m,. and X. on the condition that each simulated
multivariate Gaussian data has only nonnegative elements
to represent an image. Then, we projected them onto a
unit sphere in vector spaces. Accordmg to the simulation
under the above condition that M = 4, and changing
the dimension L, from 2 to 500, o? the vector space, the
directions of ¢{ and m, coincided with high correlation of
over 0.999 for all the dimensions. Moreover, the simulation
demonstrated that the heuristic assumption can still work

with high correlation of over 0.999 even under the extreme

condition that M = 1.5. In fact, the heuristic relationship

work with high correlation of over 0.999 on all the datasets
used in this paper, as experimentally confirmed in Section 8.

4.2 Simplification of the Fisher criterion

The within-class covariance matrix Xy € REXL defined in
Eq.(2) can be rewritten by the autocorrelation matrix R. and
the mean vectors m,. of the c-th class as follows:

- mcch)7 (9)

C
= ZP(C) (R,

By using the spectral decomposition of R., 3w can be
rewritten as

all
dg

(X xeiel™) -

i=1

C
=> pl (10)
c=1

T
mceme )»

where d*! = min(n,, L), and \¢ and ¢¢ indicate the i-th
eigenvalue of the autocorrelation matrix R, of the class ¢
and its corresponding eigenvector, respectively.
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Furthermore, by using the heuristic relationship, m, ~
mc@], where ||¢5|| = 1 and m. = ||m.||, we replace Xy,
with 2[/{/1:

all
dc

C
Swi = op(e)((O NiiesT) - migt
c=1 =1

7). ay

all
dc

2 >, cT
Zo—c,i(pg(ﬁg )

=1

(12)

C
ZP(C)

; represents the variance of the data pro]ected on
1 = \{ —m?2 and

where o2
the i-th pr1nc1pal component vector ¢;,

' With the heuristic relationship, the between-class covari-
ance X can be represented with ¢7 as follows:

_ 1 _ i _ - T
Xp1 = Z Z )3} — iy ) (i — )
i=1 j=i+1
(13)
We refer to an FDA based on the Fisher criterion of
d’xg,

Tid as approximated FDA (aFDA). We simplify the
representatron of ¥ p; and Xy in the following two steps.

Simplification-I: We assume that the prior probabilities p(c)
of all the classes are equal to . Besides, we use only d, prin-
cipal component vectors corresponding to the eigenvalues
larger than a specified threshold:

EWQ_ CZZ czd) ¢CT

c=1i=1

(14)

We also assume that all the classes have approximately
equal covariance matrices. Under the data normalization,
this assumption leads to that the mean vectors {m;} of all
the classes have almost the same length, Ve, m. ~ m. The
data normalization can project the data of a class onto a
small local region of the unit sphere. As a result, the mean
vectors of the normalized data sets can have similar lengths
across different classes. Based on this, we replace the norms
m; of the mean vectors of all the classes with m as follows:

,2C’ 1

QZZ¢1

1=1 j=i+1
We refer to the FDA based on the simplified Fisher
(é as simplified FDA (sFDA).

P l) (15)

sp
criterion of < TSy

Simplification-II: Next, assuming that all the class distri-
butions have the same isotropic variance on a unit sphere,
we replace all the values of {02} with 2,,,, where 62,
is the maximum variance of the class distribution across all
the dimensions. With this assumption, we further simplify
Swo to Xyys as

. C

de
Uma:v

> gie”

c=11i=1

S = (16)

We can regard this variance replacement as the estima-
tion of the within-class variance on the safe side, because
Yw3 is an upper bound of X2 as xTSwsx > xT Bwex,
Vx, which works on the safe side for the variance minimiza-
tion in FDA. Here, we should note that 3yy3 is compactly
represented by a set of C' d.-dimensional subspaces. Such



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. **, NO. **, APRIL 2022 6

FDA T

72572[}{ m, — m, —m)
d"sgd |
dTEwd (e .
LYy = x{ —m,)(x; —m,
W ZZ . m,)(x; — m)
. e=1 i=1
@ Equivalent
c-1 C
N T
FDA cmp =35 57 pi)p()(mi - my)(m; —m;)
dTZBd i= l] i+1
dTs, d

(R — mnmf)

- Bw ,Zp

! Approx:mat:on heunsttc assumption regarding mean, m,

- : i iT
aFDA g = Z Z p(i (i — ) ) (it — el
d"spd i=1 j=it1
AT wd | c dg

Q_ofel" - miatet")

i=1

L Xy = ZP(C‘)
c=1
@ Simplification-I: weak assumption regarding mean length, ||m. ||
2 O

U S ST

)'1]1+'l

sFDA

d”’®5.d
AT 2d T

T
- é1)
A6 — m?

< eT 75;:‘1 = 1 c?
EIH—CZZ “¢¢ ‘l o= XL, (1>2)

c=1i=1 52

u Simplification-li: assumpt:on of isotropic variance in term of 0, ,2 i

Yws = imr Z Z oy ¢(T

gFDA <

DA S 6 it o
M i=1 j=i+1

ATy ad p

de
Yy = Z Z b
c i

Fig. 4. The simplification process from FDA toward gFDA. the simplifica-
tion process from Eq.(5) to Eq.(21) is summarized.

subspaces can be stably estimated from even a small number
of samples. As a result, this assumption makes sense in
practice and effectively contributes to bypassing the SSS
problem of FDA and improving sFDA’s robustness against
the small sample size, as demonstrated in the paper.

Several types of Fisher-like criteria are available to define
as combinations of the above simplified matrices. In this
paper, we are interested in the simplest criterion defined by
Y gy and Xy 3 and consider the objective function f;:

d"¥p.d
fid) = m7 (17)
—2 T
C52,,, dATZyw,d
where
c-1 C o
py = Z Z —oD(@ -9, (19
i=1 j—it
C d.
c . cT
Swa o= Y oie5 . (20)

Since the term Cam - is constant, we ignore it and define

our final objective function f,(d) as

d7S p.d
1ol = 415,y ,d

We can finally obtain vector d by solving the following
generalized eigenvalue problem:

EB3d - )\EW4d

21

(22)

The process of the set of simplifications is summarized in
Fig.4. We define the FDA based on the above simplified
Fisher criterion as geometrical FDA (gFDA).

4.3 Criterion based on class subspaces

Our Fisher-like criterion f;(d) is defined by using only the
principal component vectors {¢¢}% . This can be inter-
preted as that f,(d) is determined based on the geometry
of the class subspaces, which are spanned by the principal
component vectors {¢$}%< | of each class c.

More specifically, the denominator of f,(d) indicates the
sum of the orthogonal projection matrices of all the class
subspaces and the numerator indicates the autocorrelation
matrix of all the difference vectors among the first orthogo-
nal basis vectors, namely, their mean vectors. This indicates
that the maximization of f;(d) can be realized, by minimiz-
ing the sum of projections of all the class subspaces while
maximizing the projections of the differences between the
mean vectors at the same time. Reflecting this mechanism,
we name the discriminant analysis based on our Fisher-like
criterion geometrical FDA (gFDA).

5 DISCRIMINATION MECHANISM OF gFDA
5.1 Two-steps process

It is well known that the whole process of FDA consists of
two steps: whitening and PCA. The process of gFDA in the

form of ﬁ can be also divided into these two steps as
shown in Flg 5.

We consider the case that C' N-dimensional class sub-
spaces in RV (L > N) are given, assuming that there is
no overlap between class subspaces. For the simplicity of
discussion, to make the matrix 3y, full rank, we assume
that the dimensionality of the vector space can be reduced
from L to L = CN by applying PCA-based dimension-
ality reduction. Thus, in the following, we consider C' N-
dimensional class subspaces in Rl (Input space 7). The
details of each step are as follows:

1) In the first step, whitening A such that AT Sy A =
I is applied to CN orthonormal basis vectors {¢;}
of C' N-dimensional class subspaces. As a result,
the orthonormal basis vectors of all the classes are
orthogonalized to each other. A subspace spanned
by these orthogonalized basis vectors in the first step
is called normalized space A in contrast with the
original 1nput space Z. Let the orthogonalized basis
vectors be {(b } in the normalized space N.

2) In the second step, PCA is applied to a set of
difference vectors {z/}(i = 1,...,C — 1,5 =
i+ 1,...,C) between the first principal component
vectors, {¢;}C_,, where z/=¢, — ¢]. We obtain
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" do Step2: PCA

Discriminant space
in Normalized space N

Fig. 5. Discrimination mechanism of gFDA, which consists of two pro-
cesses: 1) whitening: all the orthogonal basis vectors {¢; } of three class
subspaces are orthogonalized to each other in the normalized space
N, 2) PCA: only three first basis vectors {qﬁ}f:l of each class are
extracted and the difference vectors Z}’ between them are calculated.
Then, the orthogonal basis vectors,d; and d, of the discriminant # are
obtained by applying PCA to a set of the three difference vectors. Finally,
all the data are projected onto the discriminant space H.

C — 1 principal component vectors {d;}%5" from
i = chz_ll Z]C:Hl 272%", since the rank of X4
is ' — 1. Note that 34 can be also represented by
ATSpsA. {d;}" span the discriminant space H
in the normalized space N.

In the input space Z, the discriminant space H is spanned
by the linearly transformed principal component vectors,
{Adi(=d)}5"

i=1

5.2 Dual forms of the objective function

The objective function f,; of our simplified Fisher criterion
is represented as a generalized eigenvalue problem for the
matrix product Swi ' Eps. Inthe following, we prove that
the objective function can also be represented as a simpler
regular eigenvalue problem for the linear combination of
Y3 and Xy, under the same setting as in the previous
section. We _consider a set of C' N-dimensional class sub-
spaces in RL.
The flow of our proof is summarized as follows:

Cl. O —1 eigenvalues of matrix Xy, ' X g3 € RF*E are
all equal to C without depending on the dimension-
ality of each class subspace.

The characteristic C1 above leads to the following
equivalent relationship:

Swy 'Bp3d=Cd & (Swy— $Zp3)d =04,
where we note that in the former equation we need
to take the eigenvectors corresponding to C' — 1
largest eigenvalues, while in the latter we need to
take the eigenvectors corresponding to C' —1 smallest

eigenvalues (zero).

C2.
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The two sets of eigenvectors obtained from the two eigen-
value problems in C2 are different. In fact, those in the
first set are not orthogonal, since the matrix 2W4712 B3
is not symmetric. In contrast, the eigenvectors in the latter
are orthogonal to each other, since matrix X4 — 5253
is symmetric. However, the two subspaces spanned by
the respective sets of the eigenvectors coincide completely.
Therefore, we will confirm that gFDA has dual forms of
objective function.

Proof of C1. The characteristic C1 can be proved as follows:
Swa ' ps has the same eigenvalues as 34 = ATE5,A,
where A is the whitening such that ATEW4A =1, as
described in the previous section. X 4 is represented with
the difference vectors between the C first orthonormal basis
vectors, {¢; }, which are orthogonalized by whitening A:

C . . ) .
ST (-6 — )

1,7=1,1<j

T

>4 (23)

Let & 4 € RE*C be the autocorrelation matrix of the

difference vectors among the standard bases {ey,...,ec}
of R®:
c
S T
Ya= (e —ej)(e; —e;) (24)
4,J=1,i<jy

~c,C

Since both {¢;},_, and {ey, ..., ec} are orthonormal bases

of RL and RY, respectively, they span two C-dimensional
subspaces with the same geometrical structure. Therefore,
the two autocorrelation matrices X 4 and b)) 4 have the same
C eigenvalues, though their matrix sizes are different.

b)) 4 can be written as

C -1 -1 -1
R -1 C-1 -1
Yig= . : ) . ; (25)
-1 -1 Cc-1
1 0 0 1 1 1
0 1 0 1 1 1
—C - (26)

In the above equation, the first matrix has C' eigenvalues of
C and the second one has one C' and C' — 1 zeros as the
eigenvalues. Hence, matrix 3 4 has C' — 1 eigenvalues of C
as non-zero eigenvalue. Therefore, we can confirm that X 4
has C' — 1 eigenvalues of C' as well.

Proof of C2. Next, we shall prove characteristics C2. By
substituting A = C' into Eq.(22), we obtain

Yp3d = CXpy,d. (27)
Further, we can rewrite the equation as
1
(Sws— 5 Bsg)d = 0= 0d, 8)

where, by considering that d is not a zero vector, Xy, —
£33 has C — 1 zero eigenvalues.

This characteristic means that the eigenspace (null space)
of X4 — & X3 corresponding to zero eigenvalue is equiv-
alent to that of Xy 4 ' p; corresponding to the eigenvalue
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of C. In other words, the null space spanned by the C — 1
eigenvectors of Sy, — & & 23 corresponding to zero eigen-
values coincides with the d1scr1m1nant space H spanned by
the C' — 1 eigenvectors of Xy, ' Xp5.

In summary, we can generate a discriminant space H of
gFDA by solving a simpler regular eigenvalue problem of
Swa— % 3 p3. Here, we reiterate that the linear combination
form can mitigate the SSS problem of FDA, since it can be
stably calculated independently of the number of sample
data and the dimension of vector space, unlike the matrix
product form. In the following, we use G to indicate Ty, —
180,

5.3 Geometrical structure of gFDA

We describe the geometrical structure of gFDA, which can
explain the robustness of gFDA in dealing with the small
sample image recognition, and lead to natural introduction
of data normalization on discriminant space H.

Invariance to variation within class subspace: As described
in the two-step process, in a normalized space NV, only the
first basis vectors { (;51} are selected from the orthogonalized
basis vectors {(,bl} of all the class subspaces, and the re-

maining basis vectors {(Z)C}dc 5 are discarded. This operation
results in that all the data of class c are projected onto only
{¢1} in the normalized space A as shown in Fig.6a, when
all the data of class ¢ are completely contained within the
c-th class subspace spanned by {¢¢}%,

In the process above, the subspace representation pro-
vides the robustness against the small sample size to gFDA.
Consider that low d-dimensional class subspaces generate
the sample data of each class, respectively. In this case, we
can determine each class subspace from only d indepen-
dent samples of each class, which alleviates the difficulty
of the small sample image recognition. Such a situation
corresponds to that the illumination subspace of an ob-
ject contains any object images under various illumination
conditions as described in Sec.l. For a static object, the
minimum number of necessary sample data is from 3 to
9, corresponding to the dimensionality of the illumination
subspace of the object [21], [22], [23].

However, as it is in general difficult to generate such a
perfect illumination subspace in practical applications, the
projected data points of the c-th class in the normalized
space N can have nonzero components on the basis vectors

{¢3§ (' # ¢) of other classes As a result, they are projected
at a remove from {¢1} as shown in Fig.6c. Nevertheless,
we should note that the degrees of their deviations are
still very small. This geometrical relationship remains in the
discriminant space H as shown in Figs.6b and d.

Moreover, we note that the above geometrical mecha-
nism of gFDA holds without depending on selecting the
first basis vector (mean vector) of a class subspace. In other
words, the first basis vector does not necessarily need to
coincide with the true mean vector. This also contributes to
further enhancement of the robustness of gFDA against the
small sample size. However, we need data normalization
as described below, because the norms of the projections
can get shortened when the first basis vector is significantly
different from the true mean vector.

012

0.06

086 | 004 |

04 002 |

02 0 L
RN

05 o / \%ﬁ ‘

05 006

(a) Normalized space N/ (b) Discriminant space H

012

01
1.
0.08

0.06

-002

I .T&S\%_\-‘;_‘\‘?\ »"’* i -004 , h \Q!%

Sl 05 006

(c) Normalized space N/ (d) Discriminant space ‘H

Fig. 6. Effectiveness of normalization: (a) and (b) show the projections
of data of 3 classes in the normalized spaces and discriminant space,
respectively, where all data of each class are completely contained
within its class subspace. (c) and (d) show the projections of data of
the 3classes, where some component of data are not covered by the
class subspaces.

Normalization of projection data: In the above described
process, the variation of the projections in the direction of
¢, can necessarily remain even if we could generate an
exact illumination subspace of class c. Namely, we cannot
in principle remove them. A valid way for ignoring this
extra variation is to normalize the orthogonal projection
m(x) = (di"x,dy"x, -+ ,de_17x) € RE~! of data x on
the discriminant space H. To get the maximum performance
out of gFDA in a classification task, besides the data normal-
ization of input data, we essentially need to incorporate the
normalization of orthogonal projection 7(x) of data x on the
discriminant space H into the mechanism of gFDA, where
the normalization is defined as 7(x)/||7(x)||.

5.4 Generation of discriminant space

As stated in the prev10us section, all of C' — 1 discrimi-
nant vectors {d; } 1 ! have the same discriminant ability,
C; all the valid eigenvalues in Eq.(22) are C' according to
the characteristic C1. This characteristic suggests that each
individual vector of C' — 1 d; does not have much meaning,
rather a subspace spanned by them should be considered
to be essential. Hence, we define a subspace spanned by
C — 1 discriminant vectors as discriminant space H, where
the discriminant vectors are orthogonalized to each other by
using the Gram-Schmidt orthonormalization.

5.5 Small sample size problem of FDA

In many practical applications of image recognition, the
dimension L of data is much larger than the total number
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of data, n. In such a case, Eqgs.(6) and (22) cannot be solved
since Xy and Xy, are singular. This issue is called the
small sample size (SSS) problem [8] of FDA, which has been
well known as a critical limitation of FDA.

To overcome the SSS problem, various types of exten-
sions of FDA have been proposed [11]. There are two typical
solutions widely used due to their simple implementation.
One is to use PCA to reduce the dimension before applying
FDA [8]. The other is to add a regularization term to matrix

Yw [12] as f(d) = (ﬂg'g);ii‘gl)d , where ¢ is a parameter
that controls the strength of the regularization and I is the
identity matrix.

In addition to the above simple methods, many other
extensions based on the null and range spaces of the within-
class and between-class scatter matrices have been proposed
to circumvent the SSS problem [11], [14], [15], [16], [17],
[19], [20]. In particular, among them, nullLDA [13] has been
known as a useful method to avoid the SSS problem. In this
method, all the data are first projected onto the null space
of the within-class scatter matrix, and then a between-class
scatter matrix is calculated from the projections. Finally, a
discriminant space is obtained by solving the eigenvalue
problem of the between-class scatter matrix.

For gFDA, the objective function f,; can be rewritten in
the linear combination form of the two symmetric matrices
in Eq.(28). This enables gFDA to avoid the SSS problem and
work even with only one sample without any modification.
However, in terms of computational cost, it is desirable to
use the PCA based dimensionality reduction together, as
it can largely reduce the data dimension. For gFDA, the
dimension of the original dimension can be in fact reduced
to the number of the orthonormal basis vectors without
losing any structural information of the class subspaces,
since the orthonormal basis vectors over all the classes
are linearly independent, assuming no overlap among class
subspaces.

5.6 Comparison of FDA and gFDA

Fig.7 shows the comparisons of projections onto discrim-
inant spaces generated by FDA (left) and gFDA (right),
where we used sets of face images from the Yale face
database. In this database, each subject class contains 45
frontal face images which were collected under different
lighting conditions. It is known that all the possible images
of a face under various lighting conditions are contained in
an illumination cone [30]. The illumination cone of a subject
can be accurately approximated by a convex cone formed
by a set of nine frontal face images of the subject under nine
specific lighting conditions. These nine images are called the
9PL images [30] in the Yale face database. Further, the illu-
mination cone is contained in a 9-dimensional illumination
subspace, which can be generated by applying PCA to a
set of the 9PL images. Hence, a 9-dimensional illumination
subspace can in principle contain other 36 images under
different illumination conditions. For more details of the
Yale database, see Section 8.

We used the 9PL images as the learning data, and used
the remaining face images as the test data. The dimension
of each class subspace was set to 9. In Fig.7, a row rep-
resents the case of 2, 3 or 4 classes. We used FDA with
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Fig. 7. The projections of face classes from the Yale face database by
FDA (left) and gFDA (right), where a row represents the case of 2, 3 or
4 classes.

PCA dimensionality reduction [8], since the original FDA
cannot be used under this setting due to the SSS problem. In
contrast, gFDA avoids the SSS problem by using the linear
combination form. We can see that the distributions of the
projections by FDA and gFDA are similar in all the cases.

6 CONNECTION OF gFDA AND GDS PROJECTION

In this section, we show a close connection between gFDA
and GDS projection. To this end, we prove that gFDA is
equivalent to GDS projection with a small correction item.

6.1 GDS projection with a small correction term

According to the new form of Xy, — éE B3 for gFDA
presented in the previous section, we notice that gFDA is
closely related to GDS projection [1] that uses C' — 1 small-
est eigenvector of only G(= Xyy,), because ||Zwal|p >
[ESH

To prove this relationship, we introduce a pair of vectors,

J

k ik X .
z!" and z'!", between the i-th orthonormal basis vectors
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Fig. 8. Connection between gFDA and GDS projection.

@) and ¢* of classes j and k, where z/* = ¢! — ¢* and
7 h = d)j—i—d) Note that z/*z Jk —l—z’{kz’gk = 2(¢g¢)gT—|—
¢i o )
With {z} and {z'}, we rewrite matrix G(= Xy 4) in
Eq.(1) for GDS projection as follows:
G = Zws=)_ > ¢l¢] (29)
j=1i=1
< ik, kT ik kT
e X @ )
3.k, j<k
C d] . T
+> > ¢ll (30)
j=1i=2
- B @31)
= 20— B3 A-

- chk j<k Zjlkzik (Eq. (19)) and ¥4 =

s X g2 S Y, 6lgl IS ally >
||EB3HF and ||Zwallp > [|Zal[p- Hence, |[Swallp >
&l Z sl - For real data sets, for example, in the case
with three 9-dimensional subspaces of three face classes
shown in Fig.9, ||Zw4l||r = 7.2383 is about 143 times as
4[| Bsl|lr = 0.0504. They support the above magnitude
relationship.

From the standpoint of GDS projection, & ||X 3]| can be
regarded as a small correction on itself. Thus, we can regard
gFDA as GDS projection with a small correction term of
%E B3- Fig.8 summarizes the whole flow of the simplifica-
tion from gFDA to GDS projection that has been discussed
so far. The close connection suggests that GDS projection
has a discriminant ability and the robustness against the
SSS problem as well as gFDA. Fig.9 shows the comparison
between gFDA and GDS projection on the examples that
were used for the comparison of FDA and gFDA in Fig.7.
We can see high similarity between the results of these two
methods.

In Eq (31), X3

6.2 Geometry gap between gFDA and GDS

We now discuss the relationship between gFDA and GDS
projection in more detail. In the same form as Eq.(31), we
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Fig. 9. Visualization of the projections by gFDA and GDS projection in
the cases of two, three and four classes from the Yale face database.

rewrite G for gFDA as follows:
. 1 1
G=(7%"—"5

<2(C’ -1 C )

We notice that oan the weights on X3, that is, on the

difference vectors {z] } are different between Eq.(31) and

Eq.(32), which are 2(0 7y > 0and 57 < 0, respec-

tively. This difference in the weights procfuces a geometrical

gap between gFDA and GDS projection. We measure the
gap by using an index o, which is defined as follows:

Y3+ a1 (32)

sie— ~ (o= — @) 1

2(C-1 2(C—-1

— 2Aeh) Al =2(1- &) (33)
3(C—1D)

The value of o becomes larger starting from 1.0 in the case
of C=2 toward 2.0 as the class number C increases. Thus, we
can see that the gap increases as C' gets larger.

To show this characteristic more clearly, we compared
the distributions of eigenvalues of G and G, which were
generated from a set of C' 3-dimensional class subspaces.
The left column of Fig.10 shows the eigenvalues from G
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Fig. 10. Comparison of gFDA and GDS projection in terms of the
distribution of eigenvalues and our Fisher-like criterion.

and G in the ascending order. We can see that the C' — 1
smallest eigenvalues are zero for gFDA as described earlier.
The eigenvalue distributions in both cases are almost the
same when the number of classes, C, is small as three or
five. However, we can see that the difference between the
two distributions becomes larger as the number of class
increases. In conjunction with this observation, the value
of o also increases from 1.33 (3 classes) to 1.98 (100 classes).

We also compared the gap between these two methods
by using another index. The right column of Fig. 10 indicates
the Fisher’s ratio on each basis vector d; of the discriminant
spaces ‘H, which was calculated from the projections of the
basis vectors of all the class subspaces onto d;. gFDA has the
discriminant ability of C' x (C' — 1), since gFDA has C' — 1
eigenvalues of C according to the characteristic C1, which
corresponds to the area under the line over the interval from
1 to C — 1. In the same way, we regard the area under the
curve over the interval from 1 to C' — 1 as the discriminant
ability of GDS projection. We can see that the discriminant
ability of gFDA and GDS projection are almost equivalent
in terms of this index, when the class number C' is small.
However, as C becomes larger, the gap between them gets
larger, that is, the discriminant ability of GDS decreases.

This suggests that the discriminant ability of GDS projection
could be insufficient when the dimension of GDS is set to
C —1 as in gFDA, especially in the case with a large number
of classes. Thus, we propose to use a larger dimension than
C — 1 for GDS. To be concrete, we take the N4 basis vectors
such that the total sum of the Fisher’s ratios over them gets
larger than a specified threshold value, 5 = C(C — 1)x~,
where « is empirically set to a value in the range between
0.8 and 0.95.

7 NONLINEAR EXTENSION BY USING KERNEL
FUNCTION

In this section, we first review the nonlinear subspace with a
Gaussian kernel function. Then, we extend gFDA to kernel
gFDA (KgFDA).

7.1 Generation of nonlinear class subspace

Let 1 be the nonlinear function that maps a feature vector
x € RP onto a high dimensional feature space F. We
generate the c-th class subspace on the feature space F by
applying PCA without data centering to a set of n. data of
the c-th class, {x7};*¢;, mapped onto F.

The d. orthonormal basis vectors {eS}%, of the d.-
dimensional nonlinear subspace V., are represented by the
linear combination of {w(xl)}l L as € = >y af P(x)),
where the coefficient af; is the I-th component of the eigen-
vector a§ corresponding to the i-th largest eigenvalue \; of
the Gram matrix K € R"<*"<. The vector of aj € R™* is nor-
malized to satisfy \;(a$ - af)=1. The elements [kl ;| of matrix
K are defined as (¢(x{) - ¥(x}/)) = k(x{,x} ), where we

2
use a Gaussian kernel function k(x,y) = exp — =yl
[oa
so that the mapped data have a unit length.

7.2 Generation of Kernel gFDA

To extend gFDA to kernel gFDA (KgFDA), we consider the
eigenvalue problem of the matrix, G = Xy, — %E B3, ONn
the feature space F.

For the extension, we define D € RNTXNT 55 ETE,
where E is the matrix that contains all the basis vectors as
columns: E = [e]...e} ...ef ...ef ] and Ny = 9 d..
The element, D(4, j), of matrix D is denoted by the inner
product (ef - e?l) between the ¢-th orthonormal basis vector
ef of the subspace of class c and the j-th orthonormal basis
vector e of the subspace of class ¢’. The value of this inner
product can be calculated as Y >2;%, afas l,k(xl,xl,).

With the matrices D and E, the eigenvalue problem of G
can be written as the following generalized eigenvalue prob-
lem (see the supplemental material for detailed derivation):

Hb = /Db, (34)
= DD7T 73
o (35)
) c-1 C T
B = > (Dui) — Dug)) Do) — Dugy)” 5(36)
i=1 j=i
where D,;, = ETe} € RV, B € RN7*N: DD” ¢

RNTXNT and the eigenvector b € RV is normalized to
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satisfy that b"Db = 1. By comparing this eigenvalue prob-
lem with that of KGDS [1], Db = b = DD”b = 3Db,
we can see that the difference between them is the part of
%]:3) € RN7XN7 which can be regarded as a correction term
against KGDS.

The i-th orthonormal basis vector (Aij’ of a discrimi-
nant space DY produced by KgFDA can be represented as
(Ai;p = ZNT bi ;E;, where b;; indicates the j-th element of
the eigenvector b, corresponding to i-th smallest eigenvalue
(zero) of Eq.(34).

7.3 Projection onto KgFDA

Let E; be the n(j)-th basis vector of class {(j) in matrix
E. The projection of the mapped data ¢(x) onto the basis
vectors dg’ can be calculated from an input data x as

Nt .

> (b E; - (x)),
j=1

N7 "¢(j) G
>3 buan) (o
j=1 1=1

Nt "¢(5) G
= > > biaydk(x

j=1 i=1

(37)

x{7) (%)), (38)

x¢0) %), (39)

where we can easily compute k(XlC (j),

2
X—y
exp (— L3

mapped ¥(x) onto the C' — 1 dimensional discriminant
space produced by KgFDA is represented as m(¢(x)) =

(21, 22,.. ., z0-1)T, z = (A¥ - ¥(x)).

x) through k(x,y) =
). Finally, the projection m(1(x)) of the

8 [EVALUATION EXPERIMENTS

In this section, we first verify the validity of our heuristic
relationship on real data. We then evaluate the effectiveness
of gFDA, GDS projection and their nonlinear extensions
from the following aspects: 1) Fisher-like discriminant abil-
ity, 2) their performance on face and object recognition
under small samples, and 3) the validity of the combination
of our methods and CNN features. In all the subsequent
experiments, the length of data is always normalized to a
unit before applying a classification method.

8.1 Validity of our heuristic relationship

We verify the validity of the heuristic relationship: the
equivalence in terms of direction between the first orthonor-
mal basis vector ¢, and the mean vector m of a class
distribution. For this purpose, we measured the normalized
correlation coefficient between ¢, and m in each set of
9PL images of 29 subjects from the Yale face database B+,
which were used in Sec.5.6. The average of the correlation
coefficients of all the subjects was 0.99932. For the CMU
face database, which will be used for evaluation later, the
average value of 120 subject classes was 0.99998, where
each class consists of 20 frontal face images under different
illuminations. We confirmed that CNN features can also
satisfy the heuristic relationship with higher correlations
than 0.999 in all the cases with ResNet18 and ResNet50 in

TABLE 1
Comparison of the three discriminant spaces by FDA, sFDA and gFDA.

2 classes 3 classes
sFDA<FDA | gFDA—FDA | sFDA<FDA | gFDA<FDA
cos 01=0.988 cos 01=0.937 cos 61=0.970 cos 61=0.904

- - cos 02=0.904 cos 02=0.888

Secs.8.5 and 8.6. These high correlations support the validity
of our heuristic relationship.

In addition, we measured the degree of coincidence
between the discriminant spaces that were generated by

the original FDA, sFDA with de d, and gFDA with

ngiB?’d As the original FDA cannot work on our exper-
imental setting due to the small sample size problem, we
used regLDA [12] instead. Table 1 shows the cosines of
the canonical angles between them. We can see that gFDA
can be still regarded as a reasonable approximation of the
original FDA despite the considerable simplification of the

original Fisher criterion.

8.2 Fisher-like discriminant ability

We verify that gFDA and GDS projection have inherited
the high discriminant ability from FDA on the Yale face
database B+.

Experimental settings: The Yale face database B+ consists
of face images of 38 subjects, where these images were ac-
quired under 64 different lighting conditions in nine differ-
ent poses [31]. We selected 29 individuals from the database;
these individuals” images appear across the four subsets.
In the evaluation, we used only the frontal face images, so
that our data set contains 1,035 images of 29 subjects under
45 different lighting conditions. We converted the cropped
images of 640 x 480 pixels to images of 32 x 24 pixels and
normalized the image vectors.

We conducted evaluation experiments on this database.
The 9PL images of each subject, which were described
in Sec.5.6, were used for learning and the remaining 36
images were used for testing. To verify the robustness of
the methods against few sample data, we changed the
number of learning data from two to nine, where they were
randomly selected from the nine 9PL images. We repeated
this sampling 60 times and calculated the averages of all the
results obtained as the final one.

We conducted experiments under the above condition in
the cases of two and 29 classes, using a nearest neighbor
classifier with the /2 norm between an input data and each
class mean. In the case of two classes, we randomly selected
25 pairs of two classes from 29 subject classes and used the
average results as the final performance. We evaluated the
performances of the methods in terms of the recognition rate
(%) and equal error rate (EER) (%).

We used three typical variants of modified FDA: pcaLDA
[8], regLDA [12] and nullLDA [13], since the original FDA
cannot work on this experimental setting due to the SSS
problem. In the sequel, we will refer to these modified
LDAs as original LDAs for simplicity. We also evaluated
the performances of gFDA and GDS with the normalization
of the projected data, which we denote as gFDA+N and
GDS+N, respectively. The dimension of class subspace of
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Fig. 11. Performances of the different methods on the Yale face
database in terms of recognition rate and equal error rate (%).

gFDA and GDS projection was set to the number of learning
data of each class. For GDS projection, the value of
was set to 0.90 to determine the dimension of GDS. For
pcaLDA, the sum of squared residuals in PCA used for
dimension reduction were le-2 and 1le-9 for two and 29
classes, respectively. The value of § in regLDA was set to
le-4 for both. The parameters were empirically determined
using the learning data set. We used a nearest neighbor
classifier with the [ norm between an input data and each
class mean as a classifier.

Experimental results and consideration: Figs.1la and b
show the results of the different methods in the case of two
and 29 classes, respectively. In the figures, the horizontal
axis indicates the number of learning data and the vertical
axes in the left and right panels indicate the recognition
rate (%) and EER (equal error rate) (%), respectively. Table 2
shows the mean performances of different methods.

In the case of two classes, the performances of gFDA and
GDS projection are almost the same as those of regLDA and

TABLE 2
Mean performances (%) of different methods in terms of recognition
rate and equal error rate (%).

gFDA | GDS | pcaLDA | regLDA | nullLDA
Rate | 94.16 | 94.43 92.91 94.13 94.13
EER | 585 | 5.59 8.13 5.89 5.88
(a) 2 classes
gFDA [gFDA+N| GDS [GDS+N | pcal. DA [regLDA [nullLDA
Rate| 81.67 | 81.13 [81.00| 81.03 | 78.04 | 80.74 80.72
EER| 1143 | 828 [1572] 891 13.08 | 1218 12.20

(b) 29 classes

nullLDA, as shown in Fig.11a and Table 2a. This supports
that gFDA certainly inherits the discriminant ability of the
original FDA and furthermore GDS projection inherits the
discriminant ability from gFDA. Thanks to the character-
istic of the illumination subspaces generated from the 9PL
images, the recognition rates of all the methods were nearly
perfect when using all the 9PL images as learning data.

The performance of pcaLDA is slightly lower than the
other methods, especially when the number of learning
data is small. This can be ascribed to the fact that the
dimension reduction based on the PCA could not estimate a
meaningful within-class covariance from very few learning
data. For example, only six learning data were used for
conducting PCA when the number of learning data is three
for each class.

The close relationship among the methods can be also
observed in the case of 29 classes as shown in Fig.11b
and Table 2b. gFDA+N and GDS+N outperform the other
methods in terms of EER according to a statistical t-test
with a significance level of 0.01. Although the performance
of GDS projection was lower than those of the other meth-
ods in terms of EER, it has been visibly improved by the
normalization.

8.3 Performance evaluation on face recognition

We conducted the classification on larger scale data from the
CMU Multi-PIE face database.

Experimental settings: The CMU Multi-PIE face database
consists of face images of 337 subjects, captured from 15
viewpoints with 20 different lighting conditions in four
recording sessions [28]. In the experiment, we used frontal
face images of 128 subjects across all four sessions. We took
a sub-sampled image of size 36 x36 pixels from an original
image, where we cropped this image by reference to the
two inner corners of the eyes and the tip of the nose. The
vectorized images were normalized. In classification, we
used a nearest neighbor classifier with the [? norm between
an input and each class mean.

For each subject on a session, n images randomly sam-
pled from 20 images were used for learning and the remain-
ing 20 —n images for testing. We evaluated the performance
of the methods while increasing the number of learning
data, n, from two to ten. We repeated this evaluation 60
times for each n and then calculated the average of the
results. Further, we conducted the same evaluation on the
three remaining sessions and took the average of the results
on the four sessions as a final recognition performance. For
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Fig. 12. Comparison of different methods in terms of recognition rate
and equal error rate (%) in 128 classes from the CMU face database.

TABLE 3
Mean performances (%) of different methods on CMU dataset.

gFDA | GDS | pcalLDA [regLDA [nullLDA
Rate| 98.51 [98.55| 97.98 98.49 98.19
EER| 4.65 | 8.59 5.00 4.29 5.30

(a) Without the normalization of the projected data

gFDA+N | GDS+N | pcaLDA+N | regLDA+N | nullLDA+N
Rate| 98.83 98.95 97.90 97.34 98.17
EER| 0.56 0.43 0.99 1.23 0.92

(b) With the normalization of the projected data

gFDA and GDS projection, we set the dimension of class
subspace to the number of learning data, n. For GDS, the
value of v was set to 0.90. The sum of squared residuals of
PCA used in pcaLDA was 2e-4. For regLDA, 6 was le-4. The
other parameters were set to the same values that were used
in the previous experiment.

Experimental results and consideration: Table 3 shows the
mean performances of the methods in terms of recognition
rate and equal error rate (EER). The overall trend remains
more or less the same as the previous experiments: gFDA
is comparatively superior to FDAs when the number of
learning data is small (from two to four), the performance
of gFDA is slightly lower than those of the FDAs when n is
large (over 5), and GDS projection is poorer than the other
methods particularly in terms of EER. However, the effec-
tiveness of the normalization of projection data in this case
is much clearer in comparison with those in the previous
cases; gFDA+N and GDS+N significantly outperform the
other methods in both indexes. This result supports that the
normalization of projection data is intrinsically required to
get the best performance out of gFDA and GDS projection.
Moreover, in the extreme case that only one learning data is
available, pcaLDA and nullLDA cannot work in principle,
but gFDA+N and GDS+N can still work with the recogni-
tion rates of 53.2% and 47.8%, and the EERs of 15.9% and
17.1%, respectively.

0\
2 3 45 6 7 8 9 10

VOL. **, NO. **, APRIL 2022

I

IIECXTICE®
990090 90 0

Fig. 13. Examples of two objects under different eight illuminations from
our ALOI300 (illumination direction collection).

8.4 Performance evaluation on 3D object recognition

We verify the effectiveness of gFDA and GDS on ALOI
database (illumination direction collection), focusing on the
robustness against the small sample image recognition.

Experimental settings: The illumination direction collection
consists of one thousand small 3D object images captured
under different eight illumination conditions generated by
turning on five lights [26]. The five illumination conditions
of I1-I5 were yielded by turning on only one out of the
five lights. The conditions of 16 and 17 were yielded by
turning on two right and two left lights at the sides of the
object, respectively. I8 was yielded by turning on all the
lights. In this way, for each object, a total of eight images
were captured under the different illumination conditions
as shown in Fig.13. To consider the situation with small
sample size, we used only the first 300 objects, and refer
to it as ALOI300 in this paper.

The poses of objects were fixed during the capturing,
while the illumination condition changed. Thus, we can
expect that the subspace representation works effectively
as in the previous experiments on front face images, How-
ever, the database contains many objects with an image set
that cannot be accurately represented by a linear subspace,
because they do not satisfy the necessary conditions of
3D convex shape and Lambertian reflection for subspace
representation. To address this issue, we introduced KgFDA
and KGDS based on nonlinear subspace with more flexible
and richer representation ability.

We evaluated the performances of our methods with the
normalization including their nonlinear extensions in com-
parison with FDA and its various extensions for addressing
the SSS problem: regularized LDA (regLDA) [12], pcaLDA
[8], nullLDA [13], eigenfeature regularization method (EFR)
[16], maximum uncertainty LDA (mLDA) [18], improved
Direct LDA (idLDA) [17], approximate LDA (aLDA) [15].
For EFR, mLDA, idLDA and aLDA, we used the MATLAB
codes from the LDA-SSS package [11]. Besides the linear
methods, we evaluated the performance of kernel Fisher
discriminant analysis (KFDA) [32] to verify the advantage
of subspace representation in the nonlinear extensions. We
used a nearest neighbor classifier with the /2 norm between
an input data and each class mean in the classification.

In the experiment, for each object, n images of I1-In were
used for learning and the remaining 8 —n images were used
for testing, where n changed from two to five. Accordingly,
the dimensions of the subspaces of each object class was
n. The value of o2 for the Gaussian kernel function was
set to 30 for both KgFDA and KGDS. For KFDA, the value
of 02 and the regularization coefficient of J were set to 1.0
and 1le-6, respectively. These parameters were empirically
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Fig. 14. Performance shifts of different methods, depending on the
number of learning data on ALOI300.

TABLE 4
Performances of different methods on ALOI300, which are ranked in
descending order of the mean recognition rates.

Rates (%) EER (%)
2 3 4 |mean | 2 3 4 | mean
(1) KGDS [1] 85.0(9741998| 941 | 6.7 |1.3]0.1| 2.7
(2) KgFDA 84.6 9731998 939 | 6.8 |[1.5]0.2]| 2.8
(3) gFDA+N 84.1(9591995| 93.2 | 71 |23]05]| 3.3
(4) GDS+N [1] [84.2[954(994| 93.0 | 69 [24|04| 3.2
(5) KFDA [32] 81.8196.9199.8| 928 | 6.8 |1.2]0.1| 2.7
(6) regLDA [12] [754[91.5|98.7 | 885 |11.6 |47 |13| 59
(7) EFR [16] 75.7191.2198.7| 885 |124(63 21| 69
(8) pcaLDA [8] [75.6[90.3|98.7| 882 [129 84|24 79
(9) nullLDA [13] | 75.4(90.7 [98.0 | 88.0 [13.1|7.7[28]| 7.9
(10) mLDA [18] |74.7[90.5|98.3 | 87.8 [122[53|15| 6.3
(11) idLDA [17] [73.6 [ 88.3]|96.8| 86.2 [11.5[5.0(19| 6.1
(12) aLDA [15] 72918791963 | 85.7 |11.3|45]1.8| 59

determined using the learning set. KgFDA and KGDS used
the normalization of the projected data in all the subsequent
experiments, although we will indicate them without “+N".

Experimental results and consideration: Figure 14 shows
the performances of the different methods in terms of recog-
nition rates and equal error rate (EER). The overall trend
of the comparison result looks almost the same as that of
the front face images. The figure also clearly shows the
advantage of gFDA+N and GDS+N against FDA and its
various extensions. This indicates that our methods based
on the subspace representation can work effectively against
3D objects with more complicated shapes than face.

For the robustness against the small sample image recog-
nition, we can confirm the superiority of our method in
terms of both indexes, particularly when the number of
learning data is extremely small, 2 and 3, although all the
methods have achieved the perfect performance when using
five learning data. Moreover, we can see that KgFDA and
KGDS further improve the performances of gFDA+N and
GDS+N as expected. This improvement shows high repre-
sentation ability of nonlinear subspace over linear subspace.

TABLE 5
Performances of different methods when using image sets of five
objects for learning in terms of recognition rate and EER (%).

ResNet50 | KFDA | KgFDA | KGDS | FDA | gFDA | GDS
Rate| 90.81 91.98 | 92.08 | 92.09 [90.56 | 82.37 |91.14
EER 3.68 3.53 3.67 346 | 6.21 | 11.52 | 5.95

8.5 3D object recognition with CNN features

We have shown the validity of our methods in face and 3D
object classifications under a relatively simple setup where
each object has a fixed pose under varying illumination
condition. To achieve high performance in more complex
tasks like 3D object recognition from multi-view images,
however, it is preferred to utilize more powerful features
instead of raw images. For this purpose, we employed
CNN features extracted from a fully connected layer of
convolutional neural networks (CNN), ResNet50, which is
one of the popular CNNs, as an input of our methods.

We evaluated the performances of our methods and
KFDA using CNN features in comparison with that of
ResNet50 for classification of object category on ETHS80
dataset [33]. ETH80 dataset consists of eight different object
categories, each of which has ten types of objects. The
images of each object were captured from 41 viewpoints.
We resized the gray images to 32 x 32 pixels and converted
them to 1024-dimensional vectors. For each category, we
used randomly selected five objects for learning and the
remaining five for testing. That is, each category subspace
was generated from 205 = (41x5) images of the five
objects selected. The total number of testing images was
205 = (41x5). We repeated this process for 20 times.

To extract more discriminative CNN features from im-
ages, we slightly modified the architecture of the original
ResNet50 trained by the ImageNet database [34] as follows:
we replaced the final 1000-way fully connected (FC) layer
with a 1024-way FC layer and added a ReLU activation layer
behind the fc1024. Furthermore, we added a 8-way FC layer
that matches the number of categories and a softmax layer
to the 1024-way FC layer. We then fine-tuned the modified
ResNet50 using our learning set. Finally, by feeding an
image to our fine-tuned ResNet50, we extracted the output
of the 1024-way FC layer of it as a 1024-dimensional CNN
feature vector.

The parameters of the methods were empirically deter-
mined using the learning data set. First of all, for KFDA,
the parameter of Gaussian kernel function, 02, and the
regulation value, §, were set to 2.4 and le-6, respectively.
For KgFDA and KGDS, o2 was also set to 2.4 so that our
focus remains on evaluating the effectiveness of subspace
representation by using the same kernel mapping. Finally,
the dimensions of class subspaces were determined to be 20
for KgFDA and KGDS, and the dimension of the generalized
difference subspace of KGDS was set to 20. Note that the
dimensions of the discriminant spaces of KFDA and KgFDA
were automatically set to 7 (=the number of categories-
1). The classification was performed by using a nearest
neighbor classifier with the /> norm between an input data
and each class mean.

Table 5 shows the results of the different methods by
using five objects for learning. We can see that the nonlinear
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Fig. 15. Performances of KFDA, KgFDA and KGDS using CNN features
on ETH80 in terms of recognition rate and EER (%) for different numbers
of training objects.

methods, KFDA, KgFDA, and KGDS, have enhanced the
performance of the ResNet50. In contrast, the linear meth-
ods, FDA, gFDA and GDS could not noticeably improve the
performance of the ResNet50.

These results can be explained as follows: the prediction
layer of the fc1024 and fc8 layers with the softmax layer
work as a linear classification based on the least mean
square error when applying cross-entropy loss. Such a clas-
sification method is known to correspond to Fisher discrim-
inant analysis [35]. This correspondence implies that CNN
features extracted from the module are already optimized
with respect to the Fisher discriminant criterion. Thus, there
is little room for improving the performance of the ResNet50
even if we replaced the prediction layer with any other type
of linear classification module based on Fisher discriminant
criterion including our linear methods.

Next, we evaluated the robustness of our methods
against the small sample image recognition by changing n,
the number of objects used for learning from one to five.
In this case, nx41 images of randomly selected n objects
were used for generating each category class subspace. We
repeated this classification for 30 times. Figure 15 shows
the mean recognition rates and equal error rates (EER) of
different methods according to the number of objects, n.
The small circles there indicate the mean performance of our
fine-tuned ResNet50 using five objects, which was obtained
in the same way as the other methods. The difference
between the three methods is not remarkable when n is two
or larger. However, KgFDA and KGDS significantly outper-
form KFDA for both indexes when using only one object
for learning. This supports that the subspace representation
also provides high stability against the small sample image
recognition in the case of using CNN features.

8.6 General classification ability with CNN features

Finally, we verify the general versatility of our methods with
CNN features on a few standard datasets, MNIST [29] and
CIFAR10 [27], beyond the small sample image recognition.

TABLE 6
Performances of different methods on MNIST.

ResNet18 | FDA |gFDA | GDS | KFDA | KgFDA | KGDS
Rate(%)| 99.17 [99.14| 98.83 [98.83] 99.57 | 99.56 | 99.61
EER(%)| 0.28 0.36 | 0.58 | 0.60 | 0.16 0.16 0.15

(a) Performance comparison of FDA based methods with
ResNet18. For the parameters, gFDA and GDS: d.=2; KFDA:
02=0.7 and §=1e-6; KgFDA and KGDS: 52=0.6 and d.=700.

KFDA [KgFDA |[KGDS|[CKN [36] [ DSN [37][CapsNet [38]
Rate (%)| 99.70 | 99.67 | 99.72 || 99.60 | 99.60 99.75

EER (%)| 0.18 | 0.12 | 0.11 - . -
(b) Performances of our kernel methods with data compression and

typical DNNs without data augmentation. ’-’ indicates not available.
For the parameters, KFDA: 062=0.67 and §=1e-6; KgFDA and KGDS:

02=0.45 and d.=490.

The MNIST dataset consists of 70,000 images with 28
x 28 pixels of handwritten digits in 10 classes, where
each has 7,000 images. The sets of 6,000 images and 1,000
images were used for training and testing, respectively. The
CIFAR10 dataset consists of 60,000 color images with 32x32
pixels in ten object classes with complex background and
without segmentation. Each class has 6,000 images. The sets
of 5,000 and 1,000 images are used for learning and testing,
respectively.

To obtain the CNN features, we replaced the final 1000-
way FC layer of the pre-trained ResNet by using the Ima-
geNet with a 10-way FC layer. We used the ResNet18 and
ResNet50 for MNIST and CIFAR10, respectively. Then, we
fine-tuned our ResNets using the training images. In this
way, we extracted 512-dimensional and 2048-dimensional
CNN feature vectors by feeding an image to our fine-tuned
ResNet18 and ResNet50, respectively. The classification was
performed by using a nearest neighbor classifier with the
norm between an input data and each class mean.

Table 6a shows the performances of different methods
on MNIST. We can observe that the performances of our
linear methods are lower than that of the ResNetl18, while
that of FDA is at the similar level as the ResNet18. This can
be explained in the aspect of the optimization as described
earlier. On the other hand, our nonlinear methods, KFDA,
KgFDA, and KGDS have succeeded in further enhancing
the performance of ResNet18 in terms of both recognition
rate and EER. The recognition rates of 99.56% and 99.61%
of KgFDA and KGDS, respectively, are competitive with
typical methods based on DNN without data augmenta-
tion, such as convolutional kernel network (CKN) [36] and
deeply-supervised nets (DSN) [37], as shown in Table 6b.

Moreover, to reduce the computational cost of our kernel
methods, we decreased the number of learning data from
50,000 to 5,000 by using a method [39] based on the k-
means clustering before the kernel mapping. Interestingly,
their performances have further increased and achieved the
state-of-the-art accuracy [38] as shown in Table 6b.

Table 7 shows the performances of the different methods
on CIFAR10. The overall trend is similar to that on MNIST;
the linear methods do not work on this general object clas-
sification as the handwriting digits classification. However,
we can see the superiority of the nonlinear methods against
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TABLE 7
Performances of different methods on CIFAR10. For the parameters,
gFDA and GDS: d.=2; KFDA: 02=1.0 and 6=1e-6; KgFDA and KGDS:
02=0.7 and d.=700.

ResNet50 | FDA | gFDA | GDS | KFDA | KgFDA |KGDS

Rate (%)| 93.21 93.121 91.84 |91.78| 93.87 | 93.72 | 93.92

EER(%) 2.35 0.261| 0.340 [0.368| 2.21 2.58 2.34
the ResNet50.

The results on both MNIST and CIFAR10 imply that
there still remains a room for further enhancing the pre-
diction layer module based on the cross-entropy loss. This
also suggests that it is a promising research direction to
incorporate a combination of a nonlinear mapping and the
mechanism of gFDA/GDS projection into the architecture
of CNN in an end-to-end fashion. In fact, the validity of
this approach has been partly demonstrated in the work of
[40] where GDS projection is used as filter banks in a semi-
supervised shallow network without end-to-end learning.
More concrete discussion about how to implement this idea
in a form of end-to-end learning is beyond the scope of this
paper. However, a valid direction which we could take in
the future is suggested in several work [41], [42], [43] where
the discriminant mechanism based on Fisher criterion is
incorporated into learning of deep neural networks in an
end-to-end fashion.

On MNIST and CIFARI10, the performances of KgFDA
and KGDS are more or less on a par with that of KFDA.
This is because the amount of learning data is sufficient to
estimate the within-class variation, unlike in the previous
experiments with the small sample size. Nevertheless, we
should recall that our methods can work stably even with a
small number of samples, as clearly shown in the previous
experiments. This characteristic can be viewed as a signifi-
cant advantage in practical applications where collecting a
large amount of data is difficult.

9 CONCLUSION

In this paper, we revealed that the orthogonal projection of
data onto a generalized difference subspace (GDS), called
GDS projection, can function as a discriminant feature ex-
traction through a similar mechanism as the Fisher dis-
criminant analysis (FDA). In this process, we introduced
geometrical Fisher discriminant analysis (gFDA), which is a
discriminant analysis based on a simplified Fisher criterion.
We then proved that gFDA is equivalent to GDS projection
with a small correction term. This equivalence ensures GDS
projection to inherit the discriminant ability from FDA by
regarding gFDA as an intermediate concept between them.
To further enhance the performances of gFDA and GDS
projection, we proposed to normalize the projected vectors
onto the discriminant spaces. Moreover, we discussed two
useful extensions of our methods: 1) nonlinear extension by
using kernel trick, 2) the combination with CNN features.
Extensive experiments using the extended Yale B+
database,the CMU face database, and the ALOI with small
sample size showed that gFDA and GDS projection have
high discriminant ability as well as FDA, and further their
extensions with normalization have equivalent or higher
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performance than various types of variants of modified
FDA. Furthermore, experiments on ETH80, MNIST and
CIFAR10 demonstrated the effectiveness of using CNN fea-
tures as input of our methods.

As future work, we shall evaluate how much our meth-
ods are robust against imbalanced data in comparison with
FDA and its variants. Secondly, we shall explore how to
reduce the high computational cost for the kernelization
effectively. We consider the reduction method based on k-
means clustering used in Sec.8.6 as a good starting basis.
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