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Evaluation for Weakly Supervised Object
Localization: Protocol, Metrics, and Datasets
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Abstract—Weakly-supervised object localization (WSOL) has gained popularity over the last years for its promise to train localization
models with only image-level labels. Since the seminal WSOL work of class activation mapping (CAM), the field has focused on how to
expand the attention regions to cover objects more broadly and localize them better. However, these strategies rely on full localization
supervision for validating hyperparameters and model selection, which is in principle prohibited under the WSOL setup. In this paper,
we argue that WSOL task is ill-posed with only image-level labels, and propose a new evaluation protocol where full supervision is
limited to only a small held-out set not overlapping with the test set. We observe that, under our protocol, the five most recent WSOL
methods have not made a major improvement over the CAM baseline. Moreover, we report that existing WSOL methods have not
reached the few-shot learning baseline, where the full-supervision at validation time is used for model training instead. Based on our

findings, we discuss some future directions for WSOL. Source code and dataset are available at

https://github.com/clovaai/wsolevaluation.

Index Terms—Weakly supervised object localization, Object localization, Weak supervision, Dataset, Validation, Benchmark,

Evaluation, Evaluation protocol, Evaluation metric, Few-shot learning

1 INTRODUCTION

As human labeling for every object is too costly and weakly-
supervised object localization (WSOL) requires only image-level
labels, the WSOL research has gained significant momentum
recently [1], [2], [3], [4], [5], [6].

Among these, class activation mapping (CAM) [1] uses the
intermediate classifier’s activations for producing score maps. The
score maps represent the importance of each pixel for classifi-
cation, and used for extracting bounding boxes. However, the
classifier focuses only on the most discriminative parts of the
target objects. As the aim in object localization is to cover the
full extent of the object, focusing only on the most discriminative
parts of the objects is a limitation. WSOL techniques since
CAM have focused on this limitation and have proposed different
architectural [2], [3], [4] and data-augmentation [5], [6] solutions.
The reported state-of-the-art WSOL performances have made a
significant improvement over the CAM baseline, from 49.4% to
62.3% [4] and 43.6% to 48.7% [4] top-1 localization perfor-
mances on Caltech-UCSD Birds-200-2011 [7] and ImageNet [&],
respectively. However, these techniques have introduced a set of
hyperparameters for suppressing the discriminative cues of CAM
and different ways for selecting these hyperparameters. One of
such hyperparameters is the operating threshold 7 for generating
object bounding boxes from the score maps. Among others, the
mixed policies for selecting 7 has contributed to the gradual
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Fig. 1. WSOL 2016-2019. Recent improvements in WSOL perfor-
mances may be an overestimation of the actual advances due to (1)
different amount of implicit full supervision through validation and
(2) a fixed score-map threshold (usually 7 = 0.2) to generate object
boxes. Under our evaluation protocol with the same validation set
sizes and oracle 7 for each method, CAM is still the best. In fact, our
few-shot learning baseline, i.e. using the validation supervision (10
samples/class) at training time, outperforms existing WSOL methods.
These results are obtained from ImageNet.

increase in WSOL performances over the years. We argue that
the actual qualities of score maps have not improved significantly;
see Figure 1.

Due to the lack of a unified definition of the WSOL task, we
revisit the problem formulation of WSOL and show that WSOL
problem is ill-posed in general without any localization supervi-
sion. Towards a well-posed setup, we propose a new WSOL setting
where a small held-out set with full supervision is available to the
learners.

Our contributions are as follows. (1) Propose new experi-
mental protocol that uses a fixed amount of full supervision for
hyperparameter search and carefully analyze six WSOL methods
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on three architectures and three datasets. (2) Propose new eval-
uation metrics as well as data, annotations, and benchmarks for
the WSOL task at https://github.com/clovaai/wsolevaluation. (3)
Show that WSOL has not progressed significantly since CAM,
when the calibration dependency and the different amounts of full
supervision are factored out. Moreover, searching hyperparameters
on a held-out set consisting of 5 to 10 full localization supervision
per class often leads to significantly lower performance than the
few-shot learning (FSL) baselines that use the full supervision
directly for model training. Finally, we suggest a shift of focus
in future WSOL research: consideration of learning paradigms
utilizing both weak and full supervisions, and other options
for resolving the ill-posedness of WSOL (e.g. background-class
images).

This paper is an extended version of CVPR 2020 [9]. Com-
pared to the above mentioned contributions for CVPR 2020 [9],
this journal paper includes the following additional contributions:
(a) Improved metric (MaxBoxAccV2) for the box-based WSOL
evaluation, which considers various aspects of localization per-
formance. (b) WSOL results for saliency-based explainability
methods. (c) Analysis of classification results for WSOL methods,
which shows that the classification and localization are less corre-
lated. (d) Further hyperparameter analysis. (e) Few-shot learning
experiments with validation.

2 RELATED WORK

By model output. Given an input image, semantic segmentation
models generate pixel-wise class predictions [10], [11], object
detection models [10], [12] output a set of bounding boxes with
class predictions, and instance segmentation models [13], [14],
[15] predict a set of disjoint masks with class and instance labels.
Object localization [8], on the other hand, assumes that the image
contains an object of single class and produces a binary mask or a
bounding box around that object coming from the class of interest.

By type of supervision. Since bounding box and mask labels cost
significantly more than image-level labels, e.g. categories [160],
researchers have considered different types of localization supervi-
sion: image-level labels [17], gaze [18], points [16], scribbles [19],
boxes [20], or a mixture of multiple types [21]. Our work is
concerned with the object localization task with only image-level
category labels [1], [22].

By amount of supervision. Learning from a small amount of
labeled samples per class is referred to as few-shot learning
(FSL) [23]. We recognize the relationship between our new
WSOL setup and the FSL paradigm; we consider FSL methods
as baselines for future WSOL methods.

WSOL works. Class activation mapping (CAM) [1] turns a fully-
convolutional classifier into a score map predictor by considering
the activations before the global average pooling layer. Vanilla
CAM has been criticized for its focus on the small discriminative
part of the object. Researchers have considered dropping regions
in inputs at random [5], [6] to diversify the cues used for
recognition. Adversarial erasing techniques [2], [4] drop the most
discriminative part at the current iteration. Self-produced guidance
(SPG) [3] is trained with auxiliary foreground-background masks
generated by its own activations. Geometry Constrained Network
(GC-Net) [24] trains a detector with synthesized geometric-shape
masks to predict the object location directly. Other than object
classification in static images, there exists work on localizing
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Fig. 2. WSOL as MIL. WSOL is interpreted as a patch classification
task trained with multiple-instance learning (MIL). The score map
s(X) is thresholded at 7 to estimate the mask T.

informative video frames for action recognition [
but they are beyond the scope of our analysis.

1, (261, [27],
Relation to explainability. WSOL methods share similarities with
the model explainability [28], specifically the input attribution
task: analyzing which pixels have led to the image classification
results [29]. There are largely two streams of work on visual input
attribution: variants of input gradients [30], [31], [32], [33], [34],
[35], [36], [37] and counterfactual reasoning [38], [39], [40], [41],
[42], [43]. While they can be used for object localization [31], they
are seldom evaluated quantitatively in WSOL benchmarks. Hence,
we have included them in our studies to analyze their potential as
WSOL methods.

Our scope. We study the WSOL task, rather than weakly-
supervised detection, segmentation, or instance segmentation. The
terminologies tend to be mixed in the earlier works of weakly-
supervised learning [44], [45], [46], [47]. Extending our analysis
to other weakly-supervised learning tasks is valid and will be a
good contribution to the respective communities.

3 PROBLEM FORMULATION OF WSOL

We define and formulate the weakly-supervised object localization
(WSOL) task as an image patch classification and show the ill-
posedness of the problem. We will discuss possible modifications
to resolve the ill-posedness in theory.

3.1 WSOL task as multiple instance learning

Given an image X € RHEXW object localization is the task to
identify whether or not the pixel belongs to the object of interest,
represented via dense binary mask T = (731, , Tyw ) where
T;; € {0,1} and (4,7) indicate the pixel indices. When the
training set consists of precise image-mask pairs (X, T'), we refer
to the task as fully-supervised object localization (FSOL). In
this paper, we consider the case when only an image-level label
Y € {0, 1} for global presence of the object of interest is provided
per training image X. This task is referred to as the weakly-
supervised object localization (WSOL).

One can treat an input image X as a bag of stride-1
sliding window patches of suitable side lengths, h and w:
(X11,-++ , Xpw) with X;; € R"*®_ The object localization
task is then the problem of predicting the object presence 7T;; at the
image patch X;;. The weak supervision imposes the requirement
that each training image X, represented as (X1, -, Xgw),
is only collectively labeled with a single label Y € {0,1}
indicating whether at least one of the patches represents the object.
This formulation is an example of the multiple-instance learning
(MIL) [48], as observed by many traditional WSOL works [17],
[44], [45], [47].

Following the patch classification point of view, we formulate
WSOL task as a mapping from patches X to the binary labels
T (indices dropped). We assume that the patches X, image-level
labels Y, and the pixel-wise labeling T in our data arise in an i.i.d.
fashion from the joint distribution p(X, Y, T'). See Figure 2 for an
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overview. The aim of WSOL is to produce a scoring function
$(X) such that thresholding it at 7 closely approximates the
binary label 7.

3.2 Case study: CAM as MIL

In light of the above discussion, we re-interpret CAM [1] and its
variants, a representative class of methods for WSOL, as a patch
classifier trained under the MIL objective.

CAM [1] use the scoring rules based on the posterior
s(X) = p(Y|X). Originally, CAM is a technique applied on
a convolutional neural network classifier i : R3*ZxW _, RC,
where C' is the number of classes, of the following form:

1
he(X) =3 Wea | 2757 2 9415(X) )
d 17

where ¢, d are the channel-dimension indices and i, j are spatial-
dimension indices. In other words, h is a fully convolutional neural
network, followed by a global average pooling (GAP) and a linear
(fully-connected) layer into a C'-dimensional vector. We may swap
the GAP and linear layers without changing the representation:

he(X) = ﬁ <Z chgdz—j(X)> )
ij d

1
= HW E feij (X) 3)
iJ

where f is now a fully-convolutional network. Each pixel (4, j)
in the feature map, (f1,;(X),- -, fci; (X)), corresponds to the
classification result of the corresponding field of view in the input
X, written as X;;. Thus, we equivalently write

1
he(X) = T E Je(Xij) )
i

where f is now re-defined as a image patch classifier with 1-
dimensional feature output (not fully convolutional).

The bag of patch-wise classification scores f.(X;;) is then
supervised by the error between the mean outputs h.(X) and the
ground truth label Y, measured by the softmax cross-entropy loss:

1
log p(Y|X) := log softmax”’ oW Z f(Xi)) . &
j

In other words, CAM trains the network for patch-wise scores
fe(Xi;) to estimate the image-wide posterior p(Y'|X).

At inference time, CAM estimates the pixel-wise posterior
p(Y'|X;;) approximately by performing a score normalization for
fr(Xi;) (Table 1).

3.3 When is WSOL ill-posed?

We show that if background cues are more strongly associated
with the target labels T than some foreground cues, the localiza-
tion task cannot be solved, even when we know the exact posterior
p(Y|X) for the image-level label Y. We will make some strong
assumptions in favor of the learner, and then show that WSOL still
cannot be perfectly solved.

We assume that there exists a finite set of cue labels M
containing all patch-level concepts in natural images. For ex-
ample, patches from a duck image are one of {duck’s head,
duck’s feet, sky, water, } (see Figure 3). We further assume

M p(YIM) T Evaluation

duck’s head 0.8 1 TP

duck’s body 0.7 1 TP

duck’s body 0.7 1 TP

water 0.4 0 FP

duck’s feet 03 1 FN  threshold
T =0.35

dirt 0.1 0 TN

Fig. 3. Ill-posed WSOL: An example. Even the true posterior
s(M) = p(Y|M) may not lead to the correct prediction of T
if background cues are more associated with the class than the
foreground cues (e.g. p(duck|water) > p(duck|feet)).

that every patch X is equivalently represented by its cue label
M(X) € M. Therefore, from now on, we write M instead of
X in equations and examine the association arising in the joint
distribution p(M, Y, T'). We write M8, M € M for foreground
and background cues.

We first define an evaluation metric for our score map for an
easier argumentation.

Definition 3.1. For a scoring rule s and a threshold T, we
define the pixel-wise localization accuracy PxAcc(s,T) as the
probability of correctly predicting the pixel-wise labels:

PxAcc(s,7) =Pxr(s(X)>7|T=1)-Pxr(T =1)
+PX7T(S(X) <T | T = 0) . PX,T(T = O)

We argue that, even with access to the joint distribution
p(Y, M), it may not be possible to make perfect predictions for
the patch-wise labels T'(M).

Lemma 3.2. Assume that the true posterior p(Y |M) with a
continuous pdf is used as the scoring rule s(M) = p(Y|M).
Then, there exists a scalar 7 € R such that s(M) > 7 is
identical to T’ lf and only if the foreground-background posterior
ratio % > 1 almost surely, conditionally on the event

{T(M#) =1 and T(M") = 0}.

Proof. We write E := {T'(M"®) = 1 and T'(M"®¢) = 0}.
(Proof for “if”’) Assume the posterior ratio o > 1 almost surely,
given E. Let

= i Y =1M = 6
T cpcaltim-op-o me P =M =m) 6

where A is the set XOR operation: AAB := (AUB)\ (ANB).
Then, for almost all M, MP¢ following F,
p(Y =1|M%) > 7 > p(Y = 1|M™). @)

Therefore,

P(p(Y =1|M*) > 7| T(M®) =1)

= P(p(Y =1|M*) <7 [T(M™)=0)=1 (8
and so PxAcc(p(Y|M),7) = 1.
(Proof for “only if””) Assume PxAcc(p(Y|M),7) = 1 for
some 7. W.L.O.G., we assume that P(T(M) = 1) # 0 and
P(T(M) = 0) # 0 (otherwise, P(E) = 0 and the state-
ment is vacuously true). Then, Equation 8 must hold to ensure

pxAcc(p(Y|M),7) = 1. Equation 7 then also holds almost
surely, implying o > 1 almost surely. |
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Fig. 4. Ducks. Random duck images on Flickr. They contain more
lake than feet pixels: p(water|duck) > p(feet|duck).

In other words, if the posterior likelihood for the image-level
label Y given a foreground cue M is less than the posterior
likelihood given background M "¢ for some foreground and back-
ground cues, no WSOL method can make a correct prediction.
This pathological scenario is described in Figure 3: Duck’s feet
are less seen in duck images than the water background. Such
cases are abundant in user-collected data (Figure 4).

Foreground-background posterior ratio We have described the
the pathological scenario for WSOL as when the foreground-
background posterior ratio « is small. We discuss in greater detail
what it means and whether there are data-centric approaches to
resolve the issue. For quick understanding, assume the task is
the localization of duck pixels in images. The foreground cue of
interest M@ is “feet” of a duck and background cue of interest
M2 is “water”. Then, we can write the posterior ratio as

~ p(duck|feet)
" p(duck|water)

p(feet|duck) ( p(feet) )’

p(water|duck) \ p(water)

a < 1 implies that lake patches are more abundant in duck images
than are duck’s feet (see Figure 4) for an illustration.

To increase «, two approaches can be taken. (1) Increase the
likelihood ratio 240 Thig can be done by collecting more

. p(water|duck) .
images where duck’s feet have more pixels than lake does. (2)

Decrease the prior ratio 20 Note that the prior ratio can be
p(water)
written
plfeet)  p(feet|duck)p(duck) + p(feet|duck®)p(duck®)
p(water) p(water|duck)p(duck) + p(water|duckc)p(duck0)

With fixed likelihoods p(feet|duck) and p(water|duck), one can
decrease the prior ratio by increasing the likelihood of lake cues
in non-duck images p(water|duck®). We can alter WSOL into a
more well-posed task also by including many background images
containing confusing background cues.

These data-centric approaches are promising future research
directions for turning WSOL into a well-posed task.

How have WSOL methods addressed the ill-posedness? Pre-
vious solutions for WSOL have sought architectural modifica-
tions [2], [3], [4] and data augmentation [5], [6] schemes that typ-
ically require heavy hyperparameter search and model selection,
which are a form of implicit full supervision. For example, [5] has
found the operating threshold 7 via “observing a few qualitative
results”, while others have evaluated their models over the test set
to select reasonable hyperparameter values (Table 1 of [5], Table 6
of [2], and Table 1 of [4]). [3] has performed a “grid search” over
possible values. We argue that certain level of localization labels
are inevitable for WSOL. In the next section, we propose to allow
a fixed number of fully labeled samples for hyperparameter search

Method Paper Code
CAM [1] S5 > 0.2 55 > 0.2
HasS [5] Follow CAM' Follow CAM
ACoL [2] Follow CAM Si; > unknown
SPG [3] Grid search threshold ~ §;; > unknown
ADL [4] Not discussed 5 >0.2f
CutMix [6] Si; > 0.15 Si; > 0.15
Our protocol Si; > T" Si; > T"

S = Si I ming; Sk

e maxg; Skl E maxg; Ski — minkl Skl

TABLE 1. Calibration and thresholding in WSOL. Score calibra-
tion is done per image: max (S;;) or min-max (S;;) normalization.
Thresholding is required only for the box evaluation. 7* is the optimal
threshold (§4.1 in main paper). Daggers () imply that the threshold
depends on the backbone architecture.

and model selection for a more realistic evaluation.

4 EVALUATION PRoTOCOL FOR WSOL

We reformulate the WSOL evaluation based on our observation
of the ill-posedness. We define performance metrics, benchmarks,
and the hyperparameter search procedure.

4.1 Evaluation metrics

The aim of WSOL is to produce score maps, where their pixel
value s;; is higher on foreground 7;; = 1 and lower on
background T;; = 0 (§3.1). We discuss how to quantify the
above conditions and how prior evaluation metrics have failed
to clearly measure the relevant performance. We then propose
the MaxBoxAcc and PxAP metrics for bounding box and mask
ground truths, respectively.

The localization accuracy [8] metric entangles classification
and localization performances by counting the number of images
where both tasks are performed correctly. We advocate the mea-
surement of localization performance alone, as the goal of WSOL
is to localize objects (§3.1) and not to classify images correctly.
To this end, we only consider the score maps s;; corresponding to
the ground-truth classes in our analysis. Metrics based on such are
commonly referred to as the GT-known metrics [2], [3], [4], [5].

A common practice in WSOL is to normalize the score
maps per image because the maximal (and minimal) scores differ
vastly across images. Prior WSOL papers have introduced either
max normalization (dividing through by max;; s;;) or min-max
normalization (additionally mapping min;; s;; to zero). We sum-
marize how prior work calibrates and thresholds the score maps in
Table 1. In this paper, we mainly use the min-max normalization.

After normalization, WSOL methods threshold the score map
at T to generate a tight box around the binary mask {(¢, j) | s;; >
7}. WSOL metrics then measure the quality of the boxes. T is
typically treated as a fixed value [1], [2], [6] or a hyperparameter
to be tuned [3], [4], [5]. We argue that the former is misleading
because the ideal threshold 7 depends heavily on the data and
model architecture and fixing its value may be disadvantageous
for certain methods. To fix the issue, we propose new evaluation
metrics that are independent of the threshold 7.

Masks: mPxAP. When masks are available for evaluation, we
measure the pixel-wise precision and recall [49]. Unlike single-
number measures like mask-wise IoU, those metrics allow users

to choose the preferred operating threshold 7 that provides the
best precision-recall trade-off for their downstream applications.



Statistics ImageNet CUB Openlmages
#Classes 1000 200 100
#images/class

train-weaksup ~1.2K ~30 ~ 300
train-fullsup 10 ~b5 25
test 10 ~29 50

TABLE 2. Dataset statistics. “~” indicates that the number of images
per class varies across classes and the average value is shown.

We define the pixel precision and recall at threshold 7 and
class c as:

(s > 7} n {15V =1}
[{s{) > 7}

{s&) > {1 =1}
HTY =1}

C)]

PxPrec(T) =

PxRec(7) = (10)

For threshold independence, we define and use the pixel
average precision, PxAP := > PxPrec(7)(PxRec(7) —
PxRec(7;—1)), the area under curve of the pixel precision-recall
curve. Finally, to ensure that all the classes contribute equally to
the final performance, we define mean pixel average precision
(mPxAP) by taking the mean of the class-wise PxAP values. We
use the mPxAP as the final metric in this paper.

Bounding boxes: MaxBoxAccV2. Pixel-wise masks are expen-
sive to collect; many datasets only provide box annotations. Since
it is not possible to measure exact pixel-wise precision and recall
with bounding boxes, we suggest a surrogate in this case. Given

the ground truth box B, we define the box accuracy at score map
threshold 7 and IoU threshold ¢, BoxAccVv2 (7,0) [1], [8], as:

1
BoxAccV2 (T7 5) = N Z lloU(boxes(s(X(n)),‘r),B("))25 (an
n

where boxes(s(X (™)), 7) is the set of tightest boxes around each
IoU (boxes 4, boxesp) is defined as the best (maximal) value
among the IoUs across the sets boxes 4 and boxes g. For score map
threshold independence, we report the box accuracy at the optimal
threshold 7, the maximal box accuracy MaxBoxAccV2(d) :=
max, BoxAccV2(T,d), as the final performance metric. We
average the performance across § € {0.3,0.5,0.7} to address
diverse demands for localization granularity.

connected component of the mask {(i,7) | S(Xgl)) > 7}

Comparison with the previous MaxBoxAcc. The previous
version presented in the conference paper [9] is deprecated.
MaxBoxAccV2 is better in two aspects. (1) MaxBoxAcc mea-
sures the performance at a fixed IoU threshold (§ = 0.5), only
considering a specific level of granularity for localization outputs.
(2) MaxBoxAcc takes the largest connected component for es-
timating the box, assuming that the object of interest is usually
large. MaxBoxAccV2 removes this assumption by considering
the best matched box. For future WSOL researches, we encourage
using MaxBoxAccV2.

4.2 Data splits

For a fair comparison of the WSOL methods, we fix the
amount of full supervision for hyperparameter search. As
shown in Table 2 we propose three disjoint splits for every
dataset: train-weaksup, train-fullsup, and test. The
train-weaksup contains images with weak supervision (the
image-level labels). The t rain—fullsup contains images with
full supervision (either bounding box or binary mask). It is left
as freedom for the user to utilize it for hyperparameter search,
model selection, ablative studies, or even model fitting. The test

5

split contains images with full supervision; it must be used only
for the final performance report. For example, checking the test
results multiple times with different model configurations violates
the protocol as the learner implicitly uses more full supervision
than allowed.

As WSOL benchmark datasets, ImageNet [8] and Caltech-
UCSD Birds-200-2011 (CUB) [7] have been extensively used.
For ImageNet, the 1.2M “train” and 10K “validation” images for
1000 classes are treated as our t rain-weaksup and test, re-
spectively. For train-fullsup, we use the ImageNetV2 [50].
We have annotated bounding boxes on those images. For Ima-
geNet we use the oracle box accuracy BoxAcc.

CUB has 5994 “train” and 5794 “test” images for 200
classes. We treat them as our train-weaksup and test,
respectively. For train-fullsup, we have collected 1000
extra images (~ 5 images per class) from Flickr. In addition,
we have manually annotated bounding boxes. and automatically
annotated foreground-background masks.

We contribute a new WSOL benchmark based on the Open-
Images instance segmentation subset [51]. It provides a fresh
WSOL benchmark to which the models have not yet overfitted.
To balance the original Openlmages dataset, we have sub-sampled
100 classes and have randomly selected 29 819, 2 500, and 5 000
images from the original “train”, “validation”, and “test” splits
as our train-weaksup, train-fullsup, and test splits,
respectively. For CUB and Openlmages we use the mask metric
mPxAP. A summary of dataset statistics is in Table 2.

We summarize the following dataset contributions in this paper
(contributions bolded):

e CUB: New data (5 images x 200 classes) with bounding
box and mask annotations.

e ImageNet: ImageNetV2 [
annotations.

e Openlmages: Organized the train-weaksup,
train-fullsup, and test splits for its use as a
WSOL benchmark.

] with new bounding box

4.2.1 ImageNet

The test set of ImageNet-1k dataset [8] is not available. Therefore,
many researchers report the accuracies on the validation set for
their final results [6]. Since this practice may let models overfit
to the evaluation split over time, ImageNetV2 [50] has been
proposed as the new test sets for ImageNet-1k trained models. We
use the Threshold0.7 split with 10000 images (10 images
per class) as our train-fullsup. Since ImageNetV2 does
not contain localization supervision, we have annotated 18532
bounding boxes around each object.

4.22 CUB

We have collected 5 images for each of the 200 CUB fine-grained
bird classes from Flickr. The overall procedure is summarized as
follows. Crawl images from Flickr; de-duplicate images against
the original CUB dataset; manually prune irrelevant images (three
people); prune with model classification scores; resize images;
annotate bounding boxes. Sample images in Figure 5. For the
automatically annotated masks, we have used the fully-supervised
instance segmentation model, Cascade Mask R-CNN [15], [52],
trained on MS-COCO dataset [13] with 3,362 bird samples to
acquire segmentation masks for birds on the 1,000 CUB validation
samples. We visualize random segmentation outputs in Figure 6;
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Fig. 6. Masks for CUBV2. We automatically annotate the CUBV2
dataset using Cascade Mask R-CNN [15], [52].

their qualities are close to human annotations (89.0 PxAP on the
test split against the ground-truth masks).

4.2.3 Openlmages

There are three significant differences between Openlm-
agesV5 [51] and CUB or ImageNet that make the Openlmages not
suitable as a WSOL benchmark in its original form. (1) Images are
multi-labeled; it is not sensible to train classifiers with the standard
softmax cross-entropy loss assuming single label per image. (2)
Openlmages has less balanced label distributions. (3) There are
nice instance segmentation masks, but they have many missing
instances.

We have therefore processed a subset of Openlmages into a
WSOL-friendly dataset where the above three issues are resolved.
The procedure is as follows. Prune multi-labeled samples; exclude
classes with not enough samples; randomly sample images for
each class; prepare binary masks; introduce ignore regions.

4.3 Hyperparameter search

To make sure that the same amount of localization supervision is
provided for each WSOL method, we refrain from employing any
source of human prior outside the t rain—fullsup split. If the
optimal hyperparameter for an arbitrary dataset and architecture
is not available by default, we subject it to the hyperparameter
search algorithm. For each hyperparameter, its feasible range, as
opposed to sensible range, is used as the search space, to minimize
the impact of human bias.

We employ the random search hyperparameter optimiza-
tion [53]; it is simple, effective, and parallelizable. For each
WSOL method, we sample 30 hyperparameters to train models
on train-weaksup and validate on train—-fullsup. The
best hyperparameter combination is then selected.

To validate if the found hyperparameter rankings transfer well
between the splits, we show the preservation of ranking statistics in

Ranking (Kendall's tau: 0.743)
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Fig. 7. Proxy ImageNet ranking. Ranking of hyperparameters
is largely preserved between the models trained on the full
train-weaksup and its 10% proxy. Kendall’s tau is 0.743.

Table 3. We observe that the rankings are relatively well-preserved
(with Kendall’s tau values > 0.7).

Since running 30 training sessions is costly for ImageNet
(1.2M training images), we use 10% of images in each class
for fitting models during the search. We examine how much this
reduction affects the rankings of hyperparameters; see Figure 7.
We observe again that the two rankings are largely preserved
(Kendall’s tau 0.743).

5 EXPERIMENTS

Based on the evaluation protocol in §4, we evaluate six previous
weakly-supervised object localization (WSOL) methods (intro-
duced in §5.1). We compare the performances (§5.2) and analyze
the results (§5.3 and §5.4). In addition to the above conference ex-
periments, we provide experimental results for saliency methods,
which may be considered methods for the WSOL task yet have
seldom been evaluated as such (§5.5). The analysis with few-shot
learning (FSL) baselines has been updated since the conference
version (§5.6), now with proper validation procedures.

5.1 Evaluated methods

We evaluate six widely used WSOL methods published in peer-
reviewed venues. We describe each method in chronological order
and discuss the set of hyperparameters. The full list of hyperpa-
rameters is in Table 4.

Class activation mapping (CAM) [1] trains a classifier of fully-
convolutional backbone with the global average pooling structure.
At test time, CAM uses the logit outputs before GAP as the
score map s;;. CAM has the learning rate and the score-map
resolution as hyperparameters and all five methods below use
CAM in the background. learning rate is sampled log-uniformly
from [1075,10°], where end points correspond roughly to “no
training” and “training always diverges” cases. Score-map res-
olution is sampled from Categorical{14, 28}, two widely used
resolutions in prior WSOL methods. All five methods below use
CAM technique in the background, and have learning rate and
score-map resolution as design choices.

Hide-and-seek (HaS) [5] is a data augmentation technique that
divides an input image into grid-like patches, and then randomly
select patches to be dropped. The hyperparameters of HaS are drop
rate and drop area. Specifically, the size of each patch is decided
by drop area, and the probability of each patch to be selected
for erasing is decided by drop rate. Drop area is sampled from
a uniform distribution U0, 1], where O corresponds to “no grid”
and 1 indicates “full image as one patch”.

Adversarial complementary learning (ACoL) [2] proposes an
architectural solution: a two-head architecture where one adver-
sarially erases the high-scoring activations in the other. From one



ImageNet CUB Openlmages Total
Methods VGG Inception ResNet Mean VGG Inception ResNet Mean VGG Inception ResNet Mean Mean
CAM [1] 0936 0949 0922 0936 0951 0945 0913 0.936 0966 0922 0926 0.938 0.927
HasS [5] 0942 0.867 0949 0919 0.899 0.894 0963 0919 0952 0936 0963 0.950 0.927
ACoL [2] 0968 1.000 0950 0973 0988 0924 0984 0965 0930 0959 0952 0947 0.938
SPG [3] 0941 0977 0968 0.962 0961 0933 0983 0959 0949 0.945 0960 0.951 0.930
ADL [4] 0945 0954 0995 0.965 0941 0903 0945 0.930 0957 0936 0913 0.935 0.917
CutMix [6] 0963 0945 0936 0948 0.963 0908 0954 0942 0957 0.890 0.968 0.938 0.929

TABLE 3. In-distribution ranking preservation. Kendall’s tau for the hyperparameter rankings between train-fullsup and test.

Methods Hyperparameter Distribution
Common Learning rate LogUniform[10~2, 109)
Score-map resolution Categorical{14, 28}
HaS [5] Drop rate Uniform|[0, 1
Drop area Uniform[0, 1
ACoL [2] Erasing threshold Uniform[0, 1
SPG [3] Threshold 671 Uniform|[0, 1]
Threshold 67! Uniform[§ 21, 1]
Threshold 52 Uniform|[0, 1]
Threshold 672 Uniform[672, 1]
Threshold 67 Uniform(0, 1]
Threshold 6,? Uniform[élc, 1]
ADL [4] Drop rate Uniform|[0, 1
Erasing threshold Uniform[0, 1
CutMix [0] Size prior W(Oﬂ] — %
Mix rate Uniform|0, 1]
GC-Net Larea Categorical{ Yes, No}

Lbuckground Categorical { Yes, NO}

TABLE 4. Hyperparameter search spaces.

head, ACoL finds the high-score region using CAM and erases
it from an internal feature map. The other head learns remaining
regions using the erased feature map. We sample erasing threshold
from a uniform distribution U[0, 1], where 0 means “erasing
whole feature map” and 1 means “do not erase”.

Self-produced guidance (SPG) [3] is another architectural solu-
tion where internal pseudo-pixel-wise supervision is synthesized
on the fly. SPG utilizes spatial information about fore- and
background using three additional branches (SPG-B1, B2, C). To
divide foreground and background from score-map, they introduce
two hyperparameters, d; and Jy,, per each branch. When the score
is lower than d;, the pixel is considered as background, and the
pixel is considered as foreground when the score is higher than dy,.
The remaining region (higher than 9;, lower than ¢j) is ignored.
We first sample J; from U[0, 1], and then Jj is sampled from
Ul 1].

Attention-based dropout layer (ADL) [4] has proposed a module
that, like ACoL, adversarially produces drop masks at high-scoring
regions, while not requiring an additional head. ADL produces a
drop mask by finding the high-score region to be dropped using
another scoring rule [54]. Also, ADL produces an importance map
by normalizing the score map and uses it to increase classification
power of the backbone. At each iteration, only one component is
applied between the drop mask and importance map. The hyper-
parameters of ADL are drop rate that indicates how frequently
the drop mask is selected and erasing threshold that means how
large regions are dropped. We sample both hyperparameters from
uniform distributions U [0, 1].

CutMix [0] is a data augmentation technique, where patches in
training images are cut and pasted to other images and target
labels are mixed likewise. Its hyperparameters consist of the size
prior 3 (used for sampling sizes according to ~Beta(s3, 3)) and

the mix rate r (Bernoulli decision for “CutMix or not”). The
size prior is sampled from the positive range m — %; then,
Var(Beta(3, 3)) follows the uniform distribution between 0 and
0.25 (maximal variance; two Dirac deltas at 0 and 1).

Geometry Constrained Network (GC-Net) [24] is a WSOL
method of different nature. Unlike other WSOL methods that
predict object locations as pixel-wise score maps, GC-Net predicts
parametrized shapes (e.g. rectangles and ellipses) that tightly
contain the foreground object. The tightness of the shapes are
regularized by the area loss L, that penalizes shapes of greater
areas. To make sure the shapes fully cover the object area, back-
ground loss Ebackgmund has been proposed to penalize confident
predictions on the image where the shape is cropped out; it tends
to enlarge the shape.

Few-shot learning (FSL) baseline. The full supervision in
train-fullsup used for validating WSOL hyperparameters
can be used for training a model itself. Since only a few fully
labeled samples per class are available, we refer to this setting as
the few-shot learning (FSL) baseline.

As a simple baseline, we consider a foreground saliency mask
predictor [55]. We alter the last layer of a fully convolutional
network (FCN) into a 1 X 1 convolutional layer with H x W
score map output. Each pixel is trained with the binary cross-
entropy loss against the target mask, as done in [11], [56], [57].
For Openlmages, the pixel-wise masks are used as targets; for
ImageNet and CUB, we build the mask targets by labeling pixels
inside the ground truth boxes as foreground [58]. At inference
phase, the H x W score maps are evaluated with the box or mask
metrics.

Center-gaussian baseline. The Center-gaussian baseline gener-
ates isotropic Gaussian score maps centered at the images. We set
the standard deviation to 1, but note that it does not affect the
MaxBoxAcc and PxAP measures. This provides a no-learning
baseline for every localization method.

Which checkpoint is suitable for evaluation? We observe in
our preliminary experiments that, unlike for classification perfor-
mances, localization performances go through significant amount
of fluctuations in the earlier epochs, resulting in unstable maximal
performances. We thus compare the last checkpoints from each
method, after the training has sufficiently converged. We recom-
mend following this practice for future WSOL researchers.

5.2 Comparison of WSOL methods

We evaluate the six WSOL methods over three backbone ar-
chitectures, i.e. VGG-GAP [1], [59], InceptionV3 [60], and
ResNet50 [61], and three datasets, i.e. CUB, ImageNet and
Openlmages. For each (method, backbone, dataset) tuple, we
have randomly searched the optimal hyperparameters over the
train-fullsup with 30 trials, totalling about 9000 GPU
hours. Since the sessions are parallelizable, it has taken only about



ImageNet CUB ImageNet CUB Openlmages
Top-1 loc Top-1 loc MaxBoxAcc MaxBoxAcc mPxAP
Methods V 1 R V 1 R V 1 R V 1 R V 1 R
CAM [1] 428 - 463 37.1 437 494 - 627 - - - - - - -
- Has[3] - - - - - - - - - - - - - - -
S ACoL [] 458 - - 459 - - - - - - - -
g SPG[3] - 486 - - 466 - - 647 - - - - - - -
g ADL [4] 449 487 - 524 530 - - - - 754 - - - -
CutMix [6] 435 - 473 - 525 548 - - - - - - - - -
GC-Net [24] - 491 - 589 - - - - - 749 - - - - -
CAM [1] 455 488 51.8 458 404 56.1 61.1 653 642 71.1 621 732 583 632 585
g HaS[5] 46.3 49.7 499 556 41.1 607 619 655 63.1 762 57.7 78.1 58.1 58.1 55.9
S ACoL [2] 455 499 474 448 468 57.8 603 64.6 61.6 723 595 727 543 572 573 )
B SPG [3] 44.6 48.6 485 429 449 515 616 655 63.4 637 627 714 583 623 567 ___ _Architecture
S ADL[4] 444 450 S1.5 392 352 41.1 608 61.6 64.1 756 633 73.5 58.1 626 577 V. VGG-GAP [59]
& CutMix [6]  46.1 49.2 51.5 47.0 483 545 639 62.2 654 719 655 678 58.7 632 585 I InceptionV3 [60]
GC-Net [24] - - - 593 - - - - - 74.1 - - - - - R ResNet50 [61]

TABLE 5. Previously reported WSOL results. The first six rows

are reported results in prior WSOL papers. When there are different

performance reports for the same method in different papers, we choose the greater performance.

ImageNet (MaxBoxAccV2) CUB (mPxAP) Openlmages (mPxAP) Total
Methods VGG Inception ResNet Mean VGG Inception ResNet Mean VGG Inception ResNet Mean Mean
CAM [1] 60.0 63.4 63.7 624 754 70.4 66.6 70.8 59.2 63.6 58.7 60.5 64.5
HaS [5] +0.6 +0.3 -0.3 +0.2 -4.2 -4.9 +3.5  -19 -0.2 -4.1 29 | 24 -1.4
ACoL [2] -2.6 +0.3 -14 -1.2  -100 -6.7 +0.1 =~ -5.5 -5.2 -7.1 -04 42 -3.7
SPG [3] -0.1 -0.1 -04 02 -1.5 +0.3 +3.1  -14 -0.6 -0.7 -1.8 | -1.0 -0.9
ADL [4] -0.2 -2.0 +0.0 = -0.7 +1.9 -1.2 44 -12 -0.4 -6.6 -3.0 | -33 -1.8
CutMix [6] -0.6 +0.5 -04 02 -2.1 -1.6 +0.8  -1.0 -0.4 -0.4 -0.3 | -04 -0.5
GC-Net [24] -5.6 -15.1 -89 99 - - - - - - - - -
Best WSOL 60.6 63.9 63.7 626 713 70.7 70.1 70.8 59.2 63.6 58.7 60.5 64.5
FSL baseline 61.6 68.8 663 656 76.6 89.2 89.1 85.0 60.0 71.0 68.3 664 72.3
Center baseline  48.9 48.9 489 489 559 55.9 559 559 467 46.7 46.7  46.7 50.5

TABLE 6. Re-evaluating WSOL. How much have WSOL methods improved upon the vanilla CAM model? test split results are shown,
relative to the vanilla CAM performance (increase or decrease). Hyperparameters have been optimized over the identical train-fullsup
split for all WSOL methods and the FSL baseline: (10,5,25) full supervision/class for (ImageNet,CUB,Openlmages).

ImageNet CUB Openlmages Total
Methods VGG Inception ResNet Mean VGG Inception ResNet Mean VGG Inception ResNet Mean Mean
CAM [1] 66.5 70.6 75.0 70.7 50.1 70.7 71.5 64.1 70.2 56.9 745 672 67.3
HaS [5] 68.3 69.1 754 709 75.9 64.5 69.7  70.0 68.3 66.2 73.8 694 70.1
ACoL [2] 64.5 71.8 73.1  69.8 71.8 71.5 71.1 714 70.2 61.9 70.8  67.6 69.6
SPG [3] 67.8 71.1 733 70.7 72.1 46.2 504  56.3 66.8 69.0 70.8  68.9 65.3
ADL [4] 67.6 61.2 720 669 55.0 41.0 66.6 542 68.5 63.0 629 64.8 62.0
CutMix [6] 66.4 69.2 757 704 48.4 71.0 73.0 64.1 69.6 54.4 74.1  66.0 66.9
GC-Net [24]  70.0 67.3 74.5  70.7 - - - - - - - - -

TABLE 7. Classification performance of WSOL methods. Classification accuracies of the models in Table 6. Hyperparameters for each

model are optimal for the localization performances on train-full

200 hours over 50 P40 GPUs to obtain the results. The results are
shown in Table 6. We use the same batch sizes and training epochs
to enforce the same computational budget. The last checkpoints
are used for evaluation.

Reported performances for prior WSOL methods. Before
studying the unified evaluation, we examine the reported pro-
gresses in the WSOL task in previous papers. The numbers
are summarized in Table 5. The score reports indicate a strong
trend for improvement in localization scores (both in top-1 and
GT-known localization metrics). For example, the (GT-known,
ImageNet, GoogleNet) case shows an improvement from 58.7
(CAM; 2016) to 60.6 (HaS; 2017) and 63.0 (ACoL; 2018). At the
same time, we observe that the metrics, datasets, and architectures
have not been unified in those papers; every paper since CAM has

sup split; they may be sub-optimal for classification accuracies.

considered a hardly overlapping set of architecture-dataset pair
against the prior arts. Our paper prepares a ground for comparing
WSOL method on the same set of architecture-dataset pairs with
the rectified evaluation protocols and metrics.

Reproducibility of our implementation. Table 5 summarizes
the reported performances and our re-implemented results for
each method on each dataset-architecture pair. Note that our re-
implementations have reproduced the results generally well, with
often better performances than previously reported (e.g. 62.7% to
65.3% for CAM on ImageNet with InceptionV3). One exception is
ADL with the reported result of 52.4% top-1 localization accuracy
on CUB with VGG backbone; our re-implementation results in
39.2%. This is attributable to the reduced training epochs for our
unified, fair training setup.



Comparison under unified evaluation framework. The results
are shown in Table 6. WSOL methods have actually not improved
significantly since CAM [1], when validated in the same data
splits and same evaluation metrics. On ImageNet, methods after
CAM are generally struggling: only HaS has seen a boost of
+0.2pp on average. We observe that GC-Net surpasses the center
baseline, but has significantly worse localization performances
than CAM and other WSOL methods. On CUB and the new
WSOL benchmark, Openlmages, no method has improved over
CAM. In general, we observe a random mixture of increases
and decreases in performance over the baseline CAM, depending
on the architecture and dataset. Overall, CAM achieves the best
averaged performance of 64.5%. An important result in the table to
be discussed later is the comparison against the few-shot learning
baseline (§5.6).

Why are there discrepancies? There are many reasons for the
differences in the conclusions between the previous reported re-
sults (Table 5) and our re-evaluations (Table 6). (1) Our evaluation
metric is based on GT-known localization performances, while
many prior papers have adopted the top-1 localization accuracies
that confound the classification and localization performances. (2)
We resolve another confounding factor: the boost from the actual
score map improvement and that from the score normalization and
thresholding. We make our evaluation independent of the latter.
(3) Different types and amounts of full supervision employed
under the hood; we assign the same number of fully-supervised
validation samples per method. (4) The use of different training
settings (e.g. batch sizes and epochs). Since those settings are
not published for many WSOL methods, we decide to match
the training budget for fair comparisons: training epochs are (10,
50, 10) for (ImageNet, CUB, Openlmages) and the batch size is
always 32.

Classification results of WSOL models. We do not report the
widely-used “top-1 localization accuracy”, as it confounds the
classification and localization performances. We suggest the “GT-
known” type of metrics like MaxBoxAcc and PxAP that measures
the localization performances given perfect classification. We
separately report the classification performances in Table 7, for
a complete analysis.

Unlike localization performances, HaS and ACoL improves
the classification performances over CAM (+2.8pp and +2.3pp
total mean accuracies, respectively). We argue that these methods
should be separately acknowledged as valuable regularization
methods for classifiers. We observe in general that the classifi-
cation performances do not correlate with the localization perfor-
mances. The apparent improvements shown in previous papers in
terms of the “top-1 localization scores” may partly be explained
by the improvements in classification performances. The result
signifies that the two performances must be separately measured.

5.3 Score calibration and thresholding

WSOL evaluation must focus more on score map evaluation,
independent of the calibration. As shown in Figure § the min-
max normalized score map for CAM predicts a peaky foreground
score on the duck face, While HaS and ACoL score maps show
more distributed scores in body areas, demonstrating the effects
of adversarial erasing during training. However, the maximal IoU
performances do not differ as much. More visual examples are
shown in Figures 11, 12, and 13.

Score maps

Mask and box
@ optimal T

CAM (CVPR'16)  HaS (ICCV'17)  ACoL (CVPR'18)
T*=0.15 T*=0.25 T*=0.35
loU = 0.73 loU = 0.86 loU = 0.66

Fig. 8. Selecting 7. Measuring performance at a fixed threshold 7 can
lead to a false sense of improvement. Compared to CAM, HaS and
ACoL expand the score maps, but they do not necessarily improve
the box qualities (IoU) at the optimal 7*. Predicted and ground-truth
boxes are shown as green and yellow boxes.

This is because WSOL methods exhibit different score distri-
butions. In Figure 10, ADL in particular tends to generate flatter
score maps. Comparing datasets, we observe that Openlmages
tends to have more peaky score distributions. It is therefore
important to find the optimal operating point for each method and
dataset for fair comparison.

In Figure 9, we show the performances of the considered
methods at different operating thresholds 7. We observe that the
optimal operating thresholds 7* are vastly different across data
and architectures, while the threshold-independent performances
(MaxBoxAccV2 and PxAP) are not significantly different. Fixing
the operating threshold 7 at a pre-defined value, therefore, can
lead to an apparent increase in performance without improving
the score maps.

Max normalization. We have mainly used the min-max normal-
ization for post-processing the score maps (Table 1). We show
results when max normalization is used instead [1], [62]. Similarly
for min-max normalization results in Table 6, we show that the
methods since CAM do not significantly improve over the CAM
baseline. CutMix is the only method that improves over CAM
(+0.2%p); others are generally worse than CAM; in particular,
ACoL is significantly worse (-5.4%p). We thus confirm the same
conclusion for max normalization.

5.4 Hyperparameter analysis

Different types and amounts of full supervision used in WSOL
methods manifest in the form of model hyperparameter selec-
tion (§3). Here, we measure the impact of the validation on
train-fullsup by observing the performance distribution
among 30 trials of random hyperparameters. We then study the
effects of feature-erasing hyperparameters, a common hyperpa-
rameter type in WSOL methods.

Performance with 30 hyperparameter trials. To measure the
sensitivity of each method to hyperparameter choices, we plot
the performance distribution of the intermediate models in the
30 random search trials. We say that a training session is non-
convergent if the training loss is nan at the last epoch. We show
the performance distributions of the converged sessions, and report
the ratio of non-convergent sessions separately.

Our results in Figure 14 indicate the diverse range of per-
formances depending on the hyperparameter choice. Specifically,
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ImageNet (MaxBoxAccV2) CUB (mPxAP) Openlmages (mPxAP) Total
Methods VGG Inception ResNet Mean VGG Inception ResNet Mean VGG Inception ResNet Mean Mean
CAM [1], [62] 60.9 64.8 649 635 76.2 72.9 67.7 723 60.0 64.4 58.8 61.2 65.7
HaS [5] -1.4 -1.8 -0.2 | -1.1 +0.9 -2.8 +3.6  +0.5 -0.4 -2.6 -3.3 -2.1 -0.9
ACoL [2] -5.2 -2.8 -4.7 -4.2 -10.8 -9.2 -1.0 = -7.0 -6.0 -7.9 -1.0 49 -5.4
SPG [3] -0.5 -0.2 -0.8 -0.5 -2.6 +0.2 +3.0  +0.2 -0.7 +0.0 2.2 -0.9 -0.4
ADL [4] +2.3 -1.9 -03 | +0.1 +1.9 -1.1 -4.4 -1.2 -0.6 -6.9 -3.6 -3.7 -1.6
CutMix [0] -0.6 +0.6 -0.3 -0.1 +3.3 -0.8 +0.8  +1.1 -0.5 -0.2 +0.1 -0.2 +0.2
Best WSOL 63.1 64.9 649 63.6 79.5 73.1 713 734 60.0 64.4 594 612 65.9
FSL baseline 61.6 68.8 663 65.6 76.6 89.2 89.1 85.0 60.0 71.0 683 66.4 72.3
Center baseline  48.9 48.9 489 489 55.9 55.9 559 559 46.7 46.7 46.7  46.7 50.5

TABLE 8. WSOL results with max normalization. While we focus on min-max normalization throughout the paper, we show the results
with max normalization. As in Table 6, we show the relative performances against CAM.

=== CAM (CVPR'16) === SPG (ECCV'18) === HaS (ICCV'17)

=== ADL (CVPR'19) ACoL (CVPR'18) === CutMix (ICCV'19)
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Fig. 9. Performance by operating threshold 7. CUB and ImageNet: BoxAcc versus 7, Openlmages: PxPrec versus PxRec. ResNet

architecture results are used.
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Fig. 10. CAM pixel value distributions. On ImageNet and Openlm-
ages test.

we observe that (1) Performances do vary according to the
hyperparameter choice, so the hyperparameter optimization is
necessary for the optimal performances. (2) CAM is among the
more stable WSOL methods. (3) ACoL and ADL show greater
sensitivity to hyperparameters in general. (4) CUB is a difficult
benchmark where random choice of hyperparameters is highly
likely to lead to performances worse than the center-Gaussian
baseline. We thus suggest to use the vanilla CAM when absolutely
no full supervision is available.

Figure 14 (a-c) shows that WSOL on CUB are generally
struggling: random hyperparameters often show worse perfor-

mance than the center baseline. We conjecture that CUB is a
disadvantageous setup for WSOL: as all images contain birds,
the models only attend on bird parts for making predictions. We
believe adding more non-bird images can improve the overall
performances (§3.3).

We show the non-convergence statistics in Figure 14 (j-1).
Vanilla CAM exhibit a stable training: non-convergence rates are
low on all three datasets. ACoL, SPG, and ADL suffer from many
training failures, especially on CUB.

In conclusion, vanilla CAM is stable and robust to hyperpa-
rameters. Complicated design choices introduced by later methods
only seem to lower the overall performances rather than providing
new avenues for performance boost.

Effects of erasing hyperparameters. Many WSOL methods
since CAM have introduced different forms of erasing to en-
courage models to extract cues from broader regions (§5.1). We
study the contribution of such hyperparameters in ADL, HaS, and
ACoL in Figure 15. We observe that the performance improves
with higher erasing thresholds (ADL drop threshold and ACoL
erasing threshold). We also observe that lower drop rates leads to
better performances (ADL and HaS). The erasing hyperparameters
introduced since CAM only negatively impact the performance.
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Fig. 11. ImageNet score maps. Score maps of CAM, HaS, ACoL, SPG, ADL, CutMix from ImageNet.
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Fig. 12. CUB score maps. Score maps of CAM, HaS, ACoL, SPG, ADL, CutMix from CUB.
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5.5 Visual interpretability methods as WSOL methods

Visual interpretability methods have appeared in the community
as a branch relatively independent of the CAM [ 1] variants consid-
ered above. They are designed to shed light on the reasoning be-
hind the decisions made by learned models. For image classifiers,
the most popular form of visual interpretation method is input
attribution. Given an input image and a model, an input attribution
method produces a score map indicating the contribution of each
pixel towards the model decision.

While visual interpretability methods are often evaluated
with the dedicated tests for explainability (see [63], [64] for an
overview), we observe that they are eventually algorithms for pro-
ducing score maps indicating the pixels that are likely to contain
the cues for recognition. In this interlude section, we examine the
potential of visual interpretability methods for tackling the WSOL
problem. The CAM paper [ 1] has included the baseline results for

&
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Fig. 13. Openlmages score maps. Score maps of CAM, HaS, ACoL, SPG, ADL, CutMix from Openlmages.

input gradients, the most basic input attribution method, but no
work since then has systematically evaluated the interpretability
methods in terms of the localization performance.

Visual interpretability methods. We evaluate four variants in this
study. Vanilla backpropagation (VB) [31] computes the input-
gradient score map. It measures the local contribution of each pixel
towards the model outputs. Guided backpropagation (GB) [33]
is a modified version of backpropagation for DNNs with ReLU
activations. Unlike VB, GB also applies the ReLU activation
during the backward pass. SmoothGrad (SG) [65] is designed
to overcome the limitation of VB that it only considers the model
responses to infinitesimal changes around the input RGB values.
SG averages the input gradients for multiple noised versions of
the input image. The number of noised versions of the input,
Ngg, is a hyperparameter. Integrated gradient (IG) [35] is
another method that addresses the locality limitation of VB. IG
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Fig. 14. All results of the 30 hyperparameter trials. CUB, ImageNet, Openlmages performances of all 30 randomly chosen hyperparameter
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Fig. 15. Impact of hyperparameters for feature erasing. Color
and size of the circles indicate the performance at the corresponding
hyperparameters. X: non-convergent training sessions. %: hyperpa-
rameters suggested by the original papers.

averages the input gradients along the interpolated images from
the reference image to a zero (black) image. For this method,
the number of data points Vig is a hyperparameter. Note that
the choice of (pseudo-)input gradient generation algorithm (VB or
GB) and the choice of input synthesis and aggregation algorithm
(SG, IG, or None) are orthogonal. We thus experiment with all
six possible combinations: VB, GB, SG-VB, SG-GB, IG-VB, and
IG-GB. Interestingly, we observe that the localization performance
does not improve for IG-GB while N7« increases. We conjecture
that this is because GB highlights only the edge of the image,
rather than interprets the model decision [63]. More specifically,
the same score maps are produced from the dimmed images, so

Methods VGG Inception ResNet Mean
VB [31] 55.6 55.1 53.7 548
GB [33 55.2 54.6 527 542
SG-VB [31], [65] 49.1 48.3 39.6 444
SG-GB [33], [65] 432 47.8 437 449
1G-VB [31], [35] 58.6 57.3 56.7 57.5
IG-GB [33], [35] 54.5 57.5 51.7 54.6
CAM [1] 59.2 63.6 58.7  60.5

TABLE 9. WSOL evaluation for visual interpretability methods.
mPxAP performances on the Openlmages test split.

the localization performance remains the same.

Processing score maps. Unlike CAM score maps, input gradient
variants tend to be noisy and peaky. We consider the option to
smooth out the score maps via Gaussian blurring, as done in [57].
The kernel size o is a hyperparameter.

Which hyperparameters to use? We conduct preliminary experi-
ments to decide the hyperparameters o, N;g, and Ng¢. Figure 17
summarize the results on the t rain—-fullsup split. We observe
that large o and N improve object localization performance for
both IG and SG, and the performance gain saturates when o and
N are sufficiently large. We use Nig = Nsg = 50 and ¢ = 127
in this paper.
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Evaluation setup. We evaluate the score maps from the above
input attribution methods on Openlmages30k using our WSOL
evaluation framework. Following our hyperparameter search pro-
tocol (§5.4), we randomly sample 30 training hyperparameters
and select the best hyperparameter combination based on the
train-fullsup performance. Note that we fix the hyperpa-
rameters o and N because they are hyperparameters for inference.
In addition, we use the same checkpoints used for evaluating CAM
to factor out the influence of training process.

Results. Table 9 summarize the experimental results. We observe
that there is a meaningful ranking among the input attribution
methods. The VB variants are mostly better than the GB variants:
average PxAP scores across architectures are (54.0, 49.6, 57.1) for
VB variants and (53.4, 43.8, 53.9) for GB variants (in the order
of none, SG, and IG), respectively. We observe that SG decreases
the localization performance of VB (54.0 to 49.6 architecture-
mean PxAP) and GB (53.4 to 43.8 architecture-mean PxAP).
On the other hand, IG significantly improves the performance of
VB (54.0 to 57.1 architecture-mean PxAP) and GB (53.4 to 53.9
architecture-mean PxAP). Yet, the overall performance of input
attribution methods falls behind the CAM baseline. Even the best
input attribution performance (58.2 by IG-VB with VGG) is upper
bounded by the worst performance of CAM (58.3 with VGG).
Conclusion. We conclude the interlude with the following obser-
vations. (1) Vanilla backpropagation (VB) is better than the guided
backpropagation (GB) for object localization. (2) SmoothGrad
(SG) is not an effective synthesis and aggregation strategy. (3) In-
tegratedGradients (IG) improves localization. (4) CAM performs
better than all of the considered input attribution techniques.

5.6 Few-shot learning baselines

We have discussed the conceptual need for localization supervi-
sion (§3) and the corresponding experimental results where the
localization supervision train-fullsup is used for search-
ing hyperparameters in prior WSOL methods (§5.2). Given
train-fullsup, one may then use the localization supervision
for training the model itself, rather than for finding hyperparam-
eters. We investigate the model performances when under this
few-shot learning (FSL) paradigm. The architecture and loss for
the FSL baseline models are introduced in §5.1.

In the conference version [9], the FSL models have used
100% of the t rain-fullsup split for model training. Since the
FSL models also have their own set of hyperparameters, it is not
realistic to set them without validation. In this journal version, we
perform a validation with 20% of t rain—fullsup to search the
FSL hyperparameters (learning rate and feature map size). Then,
the found hyperparameters are used for learning the final model
with 100% of train-fullsup. The performance reports are
based on the test, as for the WSOL experiments in §5.2.

Performances of the FSL baselines are presented in Table 6.
Our simple FSL method performs better than the vanilla CAM
at 10, 5, and 25 fully labeled samples per class for ImageNet,
CUB, and Openlmages, respectively. The mean FSL performances
on CUB and Openlmages are 86.1% and 75.2%, which is far
better than those of the maximal WSOL performance of 61.1%
and 60.0%. The results suggests that the FSL baseline is a strong
baseline to beat.

We compare FSL against CAM at different sizes of
train-fullsup in Figure 16. We simulate the zero-fully-
labeled WSOL performance with a set of randomly chosen
hyperparameters (§5.4); for FSL, we simulate the no-learning
performance through the center-Gaussian baseline.

FSL baselines surpass the CAM results already at 1 full



supervision per class for CUB and Openlmages (80.9 and 68.2%
MaxBoxAcc and PxAP). We attribute the high FSL performance
on CUB to the fact that all images are birds; with 1 sample/class,
there are effectively 200 birds as training samples. For Openlm-
ages, the high FSL performance is due to the rich supervision
provided by pixel-wise masks. Interestingly, the performance of
WSOL is worse than that of center baseline on CUB (45.0%
and 54.4% MaxBoxAccV2). We believe that this is because
most birds are located on the center of images. On ImageNet,
FSL results are not as great: they surpass the CAM result at 3
samples per class (64.1%). Overall, however, FSL performances
are strikingly good, even at a low data regime. Thus, given a few
fully labeled samples, it is perhaps better to train a model with
them than to search hyperparameters.

6 DiscusSION AND CONCLUSION

After years of weakly-supervised object localization (WSOL)
research, we look back on the common practice and make a critical
appraisal. Based on a precise definition of the task, we have argued
that WSOL is ill-posed and have discussed how previous methods
have used different types of implicit full supervision (e.g. tuning
hyperparameters with pixel-level annotations) to bypass this issue
(§3). We have then proposed an improved evaluation protocol that
allows the hyperparameter search over a few labeled samples (§4).
Our empirical studies lead to some striking conclusions: CAM is
still not worse than the follow-up methods (§5.2) and it is perhaps
better to use the full supervision directly for model fitting, rather
than for hyperparameter search (§5.6).

We propose the following future research directions for
the field. (1) Resolve the ill-posedness via e.g. adding more
background-class images (§3.3). (2) Define the new task, semi-
weakly-supervised object localization, where methods incorporat-
ing both weak and full supervision are studied.

Our work has implications in other tasks where learners are

not supposed to be given full supervision, but are supervised
implicitly via model selection and hyperparameter fitting. Exam-
ples include weakly-supervised vision tasks (e.g. detection and
segmentation), zero-shot learning, and unsupervised tasks (e.g.
disentanglement [66]).
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