
1

Deep Point Set Resampling via Gradient Fields
Haolan Chen*, Student Member, IEEE, Bi’an Du*, Student Member, IEEE,
Shitong Luo, Student Member, IEEE, and Wei Hu, Senior Member, IEEE

Abstract—3D point clouds acquired by scanning real-world objects or scenes have found a wide range of applications including
immersive telepresence, autonomous driving, surveillance, etc. They are often perturbed by noise or suffer from low density, which
obstructs downstream tasks such as surface reconstruction and understanding. In this paper, we propose a novel paradigm of point set
resampling for restoration, which learns continuous gradient fields of point clouds that converge points towards the underlying surface.
In particular, we represent a point cloud via its gradient field—the gradient of the log-probability density function, and enforce the
gradient field to be continuous, thus guaranteeing the continuity of the model for solvable optimization. Based on the continuous
gradient fields estimated via a proposed neural network, resampling a point cloud amounts to performing gradient-based Markov Chain
Monte Carlo (MCMC) on the input noisy or sparse point cloud. Further, we propose to introduce regularization into the gradient-based
MCMC during point cloud restoration, which essentially refines the intermediate resampled point cloud iteratively and accommodates
various priors in the resampling process. Extensive experimental results demonstrate that the proposed point set resampling achieves
the state-of-the-art performance in representative restoration tasks including point cloud denoising and upsampling.

Index Terms—Point cloud resampling, gradient fields, regularization, denoising, upsampling

F

1 INTRODUCTION

The maturity of depth sensing, laser scanning and image process-
ing has enabled convenient acquisition of 3D point clouds from
real-world scenes1, which consist of discrete 3D points irregularly
sampled from continuous surfaces. Point clouds have attracted
increasing attention as an effective representation of 3D shapes,
which are widely applied in autonomous driving, robotics and
immersive tele-presence. Nevertheless, they are often perturbed by
noise or suffer from low density2 due to the inherent limitations
of scanning devices or matching ambiguities in the reconstruc-
tion from images, which significantly obstructs downstream tasks
such as reconstruction and understanding. Hence, point cloud
restoration such as denoising and upsampling—essentially point
set resampling—is crucial to relevant 3D vision applications.
However, point set resampling is challenging due to the irregular
and unordered characteristics of point clouds.

Previous point cloud restoration works are mainly optimization
based or deep-learning based. Optimization-based approaches rely
heavily on geometric priors and are sometimes challenging to
strike a balance between the detail preservation and restoration
effectiveness, such as for point cloud denoising [3], [4], [5],
[6], [7], [8], [9], [10] and upsampling [4], [11], [12], [13],
[14]. Recently, deep-learning-based approaches have emerged and
achieved promising restoration performance thanks to the advent
of neural network architectures crafted for point clouds [15], [16],
[17]. For point cloud denoising, the majority of deep-learning-
based denoising models predict the displacement of noisy points

* Equal contribution. H. Chen, B. Du, S. Luo and W. Hu are with Wangx-
uan Institute of Computer Technology, Peking University, No. 128, Zhong-
guancun North Street, Beijing, China (e-mail: {chenhl99, scncdba, luost,
forhuwei}@pku.edu.cn).
Corresponding author: Wei Hu.

1. Commercial products include Microsoft Kinect (2010-2014), Intel Re-
alSense (2015-), Velodyne LiDAR (2007-2020), LiDAR scanner of Apple iPad
Pro (2020-), etc..

2. This is evidenced in various public 3D scanning datasets such as KITTI
[1] and ScanNet [2].

Gradient Ascent

Estimated Gradient Field

Point Gradient Underlying Surface

Fig. 1. An illustration of the proposed deep point set resampling
method. We first estimate the global gradient field of the degradation-
convolved distribution ∇x log[(p ∗ h)(x)] from the input degraded point
cloud. Then, we perform gradient ascent using the estimated gradient
field to converge points to the underlying surface for point cloud restora-
tion.
from the underlying surface and then apply the inverse displace-
ment to the noisy point clouds [18], [19], [20], [21]. This class
of methods mainly suffer from two types of artifacts: shrinkage
and outliers, which arise from over-estimation or under-estimation
of the displacement. Instead, Luo et al. [22] proposed score-
based point cloud denoising, where the log-likelihood of each
point is increased from the distribution of the noisy point cloud
via gradient ascent—-iteratively updating each point’s position.
Nevertheless, the gradient could be discontinuous that leads to
unstable solutions, and no regularization has been introduced. For
point cloud upsampling, complex regularization terms and fine-
tuning are often required in order to prevent trivial upsampling
results where points cluster together.

To address these issues, we propose a novel paradigm of deep
point set resampling for point cloud restoration, which models
the distribution of degraded point clouds via gradient fields and
converges points towards the underlying surface based on the
learned gradient fields for restoration. Point clouds consist of
discrete points x sampled from the surface of 3D objects or
scenes, and thus can be modeled as a set of samples from some 3D
distribution p(x) supported by 2D manifolds. If the point cloud is

ar
X

iv
:2

11
1.

02
04

5v
1

 [
cs

.C
V

]
 3

 N
ov

 2
02

1

2

degraded from noise corruption and/or low density, the distribution
of the degraded point cloud can be modeled as the convolution
between the original distribution and some degradation model,
expressed as (p ∗ h)(x). The mode of p ∗ h is the underlying
clean surface under some mild assumptions (see Section 3.1
for detailed analysis), having higher probability than its ambient
space. According to this observation, restoring a degraded point
cloud naturally amounts to moving perturbed points towards the
mode, which can be realized by performing gradient ascent on the
log-probability function log[(p∗h)(x)], as illustrated in Figure 1.
As the points are expected to converge to the mode of distribution
after sufficient iterations of gradient ascent, our method is more
robust against artifacts such as shrinkage and outliers, while
previous methods have no awareness of the mode.

However, as p∗h is unknown at test-time, we instead estimate
the global gradient field of the distribution underlying a degraded
point cloud ∇x log[(p ∗ h)(x)], i.e., the gradient of the log-
probability density function. Moreover, in order to guarantee
solvable optimization via gradients, we enforce the gradient field
to be continuous by cosine annealing. Further, unlike previous
works where regularization by prior knowledge is incorporated
into the loss function during the training stage, we propose to
flexibly introduce regularization into the point set resampling
process subsequent to training, which essentially refines the inter-
mediate resampled point cloud iteratively during the sampling and
is able to accommodate various priors such as the graph Laplacian
regularizer (GLR) [23] for adaptive smoothing.

Specifically, during the training stage, we take a context point
cloud—the input degraded point cloud that provides the context
of the underlying distribution, and develop a context feature
extraction network and a gradient field estimation network to learn
the gradient field of the distribution, which is optimized by our
formulated objective function. During the point cloud restoration
stage, we resample the degraded point cloud by performing
Markov Chain Monte Carlo (MCMC) such as Langevin dynamics
based on the inferred gradient field. We also develop an algorithm
to alternate the MCMC process and the regularization process
iteratively until convergence.

This work extends our previous work [22] from the following
four aspects. Firstly, instead of estimating a local gradient field
around each point in the input as in [22], we propose to learn a
global gradient field of the distribution supported over the entire
point cloud. Secondly, we make the model continuous via cosine
annealing, thus alleviating abrupt changes during the estimation of
the global gradient field; Thirdly, we introduce regularization into
the resampling process, thus enhancing the quality of the restored
point clouds further; Finally, we generalize the application of
point cloud denoising in [22] to point cloud restoration such as
denoising and upsampling, and perform extensive experiments
under various noise types and upsampling ratios.

To summarize, our main contributions include

1) We propose a novel paradigm of deep point set resam-
pling for point cloud restoration, which models the distri-
bution of degraded point clouds via global gradient fields
and converges points towards the underlying surface for
restoration.

2) We analyze the continuity of the distribution modeling
and propose a continuous model by leveraging the cosine
annealing, thus guaranteeing solvable optimization via
gradients.

3) We introduce regularization into the point set resampling
process, which is able to enhance the intermediate resam-
pled point cloud iteratively during the sampling tailored
for specific regularization designs flexibly.

4) Extensive experimental results demonstrate that the pro-
posed point set resampling achieves the state-of-the-art
performance in representative restoration tasks including
point cloud denoising and upsampling, which also leads
to satisfactory mesh reconstruction.

2 RELATED WORKS

In this section, we discuss related works on point cloud restoration,
including point cloud denoising and upsampling, respectively.

2.1 Point Cloud Denoising

Point cloud denoising aims at restoring a clean point cloud
from the noise-perturbed input, which can be classified into two
categories: optimization-based methods and deep-learning-based
methods.

2.1.1 Optimization-based denoising
This class of methods cast point cloud denoising as an optimiza-
tion problem constrained by geometric priors. We classify them
into four categories:

(1) Local-surface-fitting-based methods approximate the
point cloud with a smooth surface using simple-form function
approximators explicitly or implicitly and then project points onto
the surface [6]. Explicit methods include jet fitting [5] and bilateral
filtering [3], [4], [24] that take into account both point coordinates
and normals. However, they are often sensitive to outliers and may
fail to generate robust surface under extreme noise [25]. Instead of
parameterizing the underlying surface, implicit methods [12], [13]
generate a set of points that represent the underlying surface while
preserving a uniform distribution. Nevertheless, they rely on local
operators that tend to result in over-smoothing [25].

(2) Sparsity-based methods first reconstruct normals by solv-
ing an optimization problem with sparse regularization and then
update the coordinates of points based on the reconstructed
normals [7], [9], [26]. The recently proposed MRPCA [8] is a
sparsity-based denoiser which has achieved promising denoising
performance.

(3) Graph-based methods abstract point clouds on graphs and
perform denoising using graph filters such as the graph-Laplacian-
based filters [27], [28], [29], [30], [31]. Among them, Zeng et al.
[28] proposed graph Laplacian regularization (GLR) of a low-
dimensional manifold model for point cloud denoising, while Hu
et al. [29] proposed a paradigm of feature graph learning to infer
the underlying graph structure of point clouds for denoising.

(4) Density-based methods are most relevant to ours as they
also involve modeling the distribution of points. Zaman et al. [10]
deploys the kernel density estimation technique to approximate
the density of noisy point clouds and focuses on outlier removal.
Outlying points are removed in low-density regions. To finally
obtain a clean point cloud, the bilateral filter [24] is leveraged to
reduce the noise of the outlier-free point cloud.

To summarize, optimization-based point cloud denoising
methods rely heavily on geometric priors. Also, there is sometimes
a trade-off between detail preservation and denoising effective-
ness.

3

2.1.2 Deep-learning-based denoising
In recent years, neural network architectures tailored for irregular
point cloud learning have emerged, e.g., PointNet [15], Point-
Net++ [16], DGCNN [17], etc., which has made deep point cloud
denoising possible. The majority of existing deep-learning-based
methods predict the displacement of each point in noisy point
clouds using neural networks, and apply the inverse displacement
to each point. PointCleanNet (PCN) [19] is the pioneer of this
class of approaches, which employs a variant of PointNet as its
backbone network [15] and minimizes the asymmetric Chamfer
distance between the output and input point cloud. GPDNet [21]
uses graph convolutional networks to enhance the robustness of the
neural denoiser. NPD [32] and PointProNets [33] also predict the
position or the direction of local surfaces to guide the denoising
process. Hermosilla et al. [20] proposed an unsupervised point
cloud denoising framework—Total Denoising (TotalDn). In To-
talDn, an unsupervised loss function is derived for training deep-
learning-based denoisers, based on the assumption that points
with denser surroundings are closer to the underlying surface.
The aforementioned displacement-prediction methods generally
suffer from two types of artifacts: shrinkage and outliers, as a
result of inaccurate estimation of noise displacement. Instead, Luo
et al. [34] proposed to learn the underlying manifold (surface)
of a noisy point cloud for reconstruction in a downsample-
upsample architecture. However, although the downsampling stage
discards outliers in the input, it may also discard some informative
details, leading to over-smoothing especially at low noise levels.
Motivated by the distribution model of noisy point clouds, Luo
et al. [22] proposed to denoise point clouds via gradient ascent
guided by the estimated gradient of the noisy point cloud’s log-
density, which distinguishes significantly from the aforementioned
methods.

As discussed in the Introduction, we extend our previous work
[22] in four aspects. Our method is shown to alleviate the artifacts
of shrinkage and outliers while preserving informative details,
leading to significantly improved denoising performance.

2.2 Point Cloud Upsampling
Point cloud upsampling aims at generating dense point clouds
from low-density data, which can also be classified into two
categories: optimization-based methods and deep-learning-based
methods.

2.2.1 Optimization-based upsampling
Prior to the emergence of deep-learning-based upsamplers, point
cloud upsampling is often formulated as optimization problems
with geometric prior constraints. Alexa et al. [11] proposed to
upsample a point cloud by first constructing a Voronoi diagram,
and then inserting new points at the vertices of the diagram.
Lipman et al. [12] proposed the locally optimal projection (LOP)
operator to resample points and reconstruct surfaces based on an
L1 norm. Huang et al. [13] proposed an improved weighted LOP
and an iterative scheme to consolidate point clouds. Huang et
al. [4] further developed a progressive method called edge-aware
resampling (EAR) for point cloud upsampling. However, EAR
relies on the normals of the input point cloud, which requires
extra estimation. Wu et al. [35] proposed a consolidation method
but mainly focused on filling missing regions. In summary, these
methods rely heavily on appropriate geometric priors and require
careful fine-tuning.

2.2.2 Deep-learning-based upsampling
The advent of point-based neural networks [15], [16], [17] has also
made deep point cloud upsampling possible, whose architectures
lay the foundation for this task. Based on the PointNet++ archi-
tecture, Yu et al. [36], [37] proposed PUNet and ECNet. PUNet
[36] first encodes each point in the low-resolution point cloud into
point-wise features. Then, the features are fed into a network to be
expanded into new points. ECNet [37] improves PUNet by intro-
ducing a point-to-edge loss, aiming at preserving sharp features in
the point cloud. Wang et al. [38] proposed a cascaded upsampling
network MPU, which consists of four similar sub-networks that
are connected sequentially. A point cloud is upsampled by 2x after
being passed through each of the sub-network. More recently,
Li et al. [39] proposed PUGAN, which employs discriminators
to fine-tune the upsampling network. Qian et al. [40] designed
PUGeo-Net that exploits the knowledge of differential geometry
and learns to predict both coordinates and normals simultaneously.
Nevertheless, these models require complex regularization terms.

3 POINT SET RESAMPLING MODEL

In this section, we will elaborate on the proposed modeling
of point set resampling. We start from the basic mathematical
modeling via gradient fields, and then analyze the continuity of the
model. Finally, we introduce regularization into the model during
the gradient-based resampling.

3.1 Distribution Modeling of Degraded Point Clouds

To begin with, we view the distribution of an undegraded point
cloud Y = {yi}Ni=1 as sampled from a 3D distribution p(y)
supported by the underlying 2D manifolds. Since Y is discrete
sampling from 2D manifolds, p(y) is discontinuous and has zero
support in the ambient space, i.e., p(y)→∞ if y exactly lies on
the manifold, otherwise p(y) = 0.

Next, we consider the distribution of degraded point clouds.
We denote a degraded point cloud as X = H ~ Y + N , where
H is a degradation function such as subsampling or blurring,
and N is an additive noise term from some noise distribution
N such as Gaussian distribution, while ~ denotes the convolution
operation. Here, we assume that the probability density function
N is continuous and has a unique mode at 0. These assumptions
are made for analysis. We will show by experiments that in some
cases where the assumptions do not hold, the proposed method still
achieves superior performance (see Section 5). It can be shown
that the clean point cloud Y from the distribution p(Y) exactly
lies on the mode of q(X) if the mode of N is 0. When the
assumption of uni-modality holds, q(X) reaches the maximum
on the manifold.

Suppose the density function q(X) is known. Based on the
above analysis, restoring a point cloud X = {xi}Ni=1 amounts
to maximizing

∑
i log q(xi). This can be naturally achieved

by performing gradient ascent until the points converge to the
mode of q(x). The gradient ascent relies only on the gradient
field ∇x log q(x)—the first-order derivative of the log-density
function. As discussed above, q(x) reaches the maximum on
the underlying manifold under some mild assumptions. Hence,
the gradient field ∇x log q(x) consistently heads to the clean
surface, as demonstrated in Figure 1. However, the density q(x)
is unknown during the test time. Instead of estimating q(x) from
degraded observations, we only resort to the gradient of log q(x),

4

i.e., ∇x log q(x), which is more tractable. This motivates the
proposed model—deep point set resampling based on gradient
fields.

Formally, our model aims at learning the gradient field g(x)
that leads to the maximization of

∑
i log q(xi), i.e.,

max
g(x)

∑
i

log q(xi). (1)

It is obvious that points lying on the supporting manifolds
satisfy g(x) = 0. For points that are away from the supporting
manifolds (e.g., due to noise perturbation), we estimate the gra-
dients that converge points to the mode of the distribution q(x),
which corresponds to the underlying surface.

3.2 Continuity of the Model
As restoring the input point cloud is equivalent to solving the
equation g(x) = 0, continuity of the model is required to
guarantee this equation can be solved iteratively via gradients.
Hence, we propose to employ cosine annealing that makes the
estimation of the gradient field continuous with respect to the
central points.

In particular, as we estimate the gradient of some position
x from its local neighborhood Nr(x) with radius r, when the
position of x changes during the resampling procedure, other
points may enter or exit the neighborhood Nr(x) abruptly, which
will cause discontinuity. Hence, before aggregating features of
nearby points, we assign each of them a corresponding weight,
which decays as the distance from x gets larger. Formally, the
aggregated feature of x is

F (x) =
∑

xj∈Nr(x)

1

2
(cosπ

|x− xj |
r

+ 1)fj(x), (2)

where xj ∈ Nr(x) denotes xj is adjacent to x in the neighbor-
hood Nr(x), fj(x) is the relative feature of x with respect to
xj , which we will estimate via a network as described later in
Eq. 9. Essentially, the weight of the relative feature decays as the
distance to x enlarges, and finally becomes 0 when the distance
exceeds r.

Next, we prove that the above scheme makes the model
continuous.

Proof. Assuming that when the coordinate of a point x changes
by ∆x, and that there is only one point x′ that enters the
neighborhood of point x, the change in the feature F (x) is

lim
∆x→0

∆F = lim
∆x→0

1

2
(cosπ

|(x + ∆x)− x′|
r

+ 1)fj(x)

= lim
∆x→0

1

2
(cosπ

r − δ(∆x)

r
+ 1)fj(x) = 0,

(3)

where δ is a very small distance related to ∆x. This indicates that
the change in the feature converges to 0 as the coordinate change
of x approaches 0, which is continuous.

If there are more than one point that enter or exit the neighbor-
hood, we can similarly prove the above equation since the number
of points must be limited. Hence, the continuity of our model is
proved.

3.3 Regularization of the Model
The proposed deep point set resampling framework first learns the
gradient fields from data in the training stage, and then performs

Gradient Field

Resampled Point SetOriginal Point Set

Underlying Surface

With RegularizationWithout RegularizationEstimated Gradient Field

Reconstructed Surface

Fig. 2. A toy example to illustrate the comparison between resampling re-
sults without regularization and those with regularization. An appropriate
regularization leads to sharper boundaries.

point cloud restoration via gradient ascent. This framework allows
us to introduce regularization into the gradient ascent process
for further refinement based on prior knowledge. Compared with
existing works where regularization can only be considered in the
training stage typically by incorporating into the loss function, our
framework introduces regularization during the restoration process
subsequent to training, which is thus more flexible for designing
various priors for different downstream tasks. Figure 2 illustrates a
toy example where our resampling method preserves the sharpness
of the surface better with the regularization considered.

3.3.1 Formulation and Priors
Regularization enables restoring point clouds with desired proper-
ties from prior knowledge, such as piecewise smoothness [41].
A classical formulation to optimize a point cloud with prior
knowledge is mathematically written as:

min
Z
‖X −H(Z)‖22+λ · P(Z), (4)

where X and Z denote the input degraded point cloud and the
restored one, respectively. H(·) is a degradation operator (e.g.,
subsampling) defined over Z. P(Z) represents a regularization
term for Z. λ is a hyper-parameter to strike a balance between the
first term of data fidelity and the second term of regularization.

There exist a variety of priors for point clouds, such as the
Graph Laplacian Regularizer (GLR) [23] and the Reweighted
Graph Laplacian Regularizer (RGLR) [42] for preserving shape
structures, and the repulsion prior [43] for enforcing points to be
uniformly distributed, etc.. In this work, we focus on the GLR and
RGLR, which are commonly adopted for point cloud restoration
when abstracting point clouds on graphs in optimization-based
approaches.

In particular, graphs provide structure-adaptive, accurate, and
compact representations for point clouds [41]. Hence, we represent
each point in a point cloud as a node in a graph G, and connect
nearby points to construct a graph, e.g., a k-nearest-neighbor
(kNN) graph where each point is connected to its k nearest
neighbors. Then the coordinates of points serve as the graph signal
over the graph. Specifically, given a graph signal Z residing on
the vertices of a graph G encoded in the graph Laplacian L [44],
the GLR is mathematically expressed as:

PGLR(Z) = Z>LZ =
∑
i∼j

wi,j‖zi − zj‖22, (5)

where L is the graph Laplacian matrix that encodes the connectiv-
ity of the graph and the degree of each node. i ∼ j means vertices
i and j are connected, implying the corresponding points on the
geometry are highly correlated. wi,j is the weight of the edge
connecting vertices i and j. The signal Z is smooth with respect

5

to G if the GLR is small, as connected vertices zi and zj must be
similar for a large edge weight wi,j in order to minimize PGLR(Z)
as in Eq. 5; for a small wi,j , zi and zj can differ significantly.

In the aforementioned GLR, the graph Laplacian L is fixed,
which does not promote restoration of the target signal with
discontinuities if the corresponding edge weights are not very
small. It is thus extended to Reweighted GLR (RGLR) in [23],
[45], [46] by considering L as a learnable function of the graph
signal Z. The RGLR is defined as

PRGLR(Z) = Z>L(Z)Z =
∑
i∼j

wi,j(zi, zj)‖zi − zj‖22, (6)

where wi,j(xi,xj) can be learned from the data adaptively during
the optimization process. Now there are two optimization variables
Z and wi,j , which can be optimized alternately.

It has been shown in [46] that minimizing the RGLR iter-
atively can promote piecewise smoothness in the reconstructed
graph signal Z, assuming that the edge weights are appropriately
initialized. Since point clouds often exhibit piecewise smoothness
as discussed in [41], the RGLR helps to promote this property in
the restoration process.

3.3.2 Optimization Solutions
Having introduced various priors, we now discuss how to intro-
duce the regularized optimization in Eq. 4 into the resampling
process. As most commonly used priors are differentiable (e.g.,
the GLR and RGLR), we focus on differentiable priors during the
resampling.

In Eq. 4, assuming H(·) is differentiable, Eq. 4 exhibits a
closed-form solution. For simplicity, we assume H is an identity
matrix (e.g., as in the denoising case). Then setting the derivative
of Eq. 4 to zero yields

2(X −Z) + λ · P ′(Z) = 0. (7)

Hence, Z can be efficiently solved from Eq. 7. Taking the GLR
as an example, as P ′GLR(Z) = 2LZ, Eq. 7 admits the following
closed-form solution:

Z = (I + λ · L)−1X, (8)

where I is an identity matrix. This is a set of linear equations and
can be solved efficiently. As L is a high-pass operator [41], the
solution in Eq. 8 is essentially an adaptive low-pass filtering result
from the observation X .

We will present the proposed algorithm that alternates the
regularization-based optimization and gradient ascent in Sec-
tion 4.4.2.

4 POINT SET RESAMPLING ALGORITHM

Based on the modeling of point set resampling in Section 3,
we develop efficient algorithms for gradient field estimation and
gradient-based resampling. Firstly, we will provide an overview
of the entire architecture. Next, we discuss the network for the
estimation of gradient fields and the training objective. Finally,
we present the proposed resampling algorithm, without or with
regularization introduced.

4.1 Overview
Given a degraded point cloud X = {xi}Ni=1 containing N points,
our goal is to perform point cloud restoration of the degraded

Context

Feature

Extraction
Gradient Field Estimation

Aggregated Feature

Estd. Gradient

G.T. Gradient Underlying

Surface
Neighborhood

Point

Points

L

𝑥1

𝑥2

𝑥3
𝑥4 𝑥5

𝑥7

𝑥6

𝑥

ℎ𝑖 Feature of Point 𝑥𝑖

ℎ𝑖

Pointwise

Features

Fig. 3. An overview of the proposed network architecture. Note that
points xc

j ∈ Nr(x) are sampled from the context point cloud.

X , such as denoising and upsampling, by point set resampling
described in Sec 3. To implement the proposed deep point set
resampling, we develop efficient networks for gradient field train-
ing and point cloud resampling respectively, which consist of the
following modules as illustrated in Fig. 3.

1) Context Feature Extraction Network. This module
takes a context point cloud XC that provides the con-
text of the underlying distribution as input and extracts
point-wise features of XC for the subsequent gradient
field estimation. XC is assigned as the input degraded
point cloud X and kept fixed during the training (Sec-
tion 4.2.1).

2) Gradient Field Estimation Network. Based on the
extracted point-wise features, this network estimates the
gradient field underlying the degraded point cloud X
(Section 4.2.2).

3) Training objective. We design an objective for training
the Gradient Field Estimation Network (Section 4.3).

4) Point Set Resampling. We resample point sets by per-
forming Markov Chain Monte Carlo (MCMC) based on
the learned gradient field iteratively, with or without
regularization (Section 4.4).

4.2 The Proposed Training Network
In order to learn the gradient fields, our model first parameterizes
the distribution of the supporting manifold underlying the context
point cloud XC by feature extraction. The extracted feature is then
employed to estimate the gradient fields pointing to the underlying
surface. We discuss the context feature extraction network and the
gradient field estimation network in order as follows.

4.2.1 Context Feature Extraction Network
Given a context point cloud XC = {xci}Ni=1, we first learn
the features around each point xci . In particular, we adopt the
DGCNN [17] commonly used in previous denoising and upsam-
pling models [22], [34], [38], [39] as a basic unit, and build a
stack of densely connected edge convolution layers for the context
feature extraction. Specifically, we construct a kNN graph over
context point cloud XC , where each point is treated as a vertex
and connected to its k nearest neighbors. Then we extract multi-
scale as well as both local and non-local features for each point
via the edge convolution layers, and further acquire features with
richer contextual information via the dense connection [47], [48].
These properties make the architecture suitable for point cloud
restoration tasks, as evidenced in previous works [22], [34], [38].
The learned feature for point xci is denoted as hi.

6

kn
n

gr
ap

h

Context Feature

𝑁𝑁 × ℎ𝑐𝑐

r-
ne

ig
hb

or

𝑁𝑁 × 3

|| m
lp ×

gl
ob

al
 m

lp

loss

Distance Weights

Relative Feature

𝑁𝑁 × 𝑘𝑘

𝑁𝑁 × ℎ𝑟𝑟

𝑁𝑁 × 𝑘𝑘 × ℎ𝑐𝑐

cosine
annealing

Pointwise Gradient

𝑁𝑁 × 3

m
lp

Context Point Cloud

𝑁𝑁 × 𝑘𝑘 × ℎ𝑐𝑐𝑁𝑁 × 3

D
Ec

on
v

DenseEdgeConv Layer

D
Ec

on
v

…

Context Point Cloud

|| Concatenation

Foobar Operator / Layer

× Matrix multiplication

𝑁𝑁 × 3

𝑁𝑁 × 𝑘𝑘 × ℎ𝑜𝑜𝑜𝑜𝑜𝑜

Aggregated Feature

Gradient Field Estimation

Context Feature Extraction

up
da

te

Fig. 4. An illustration of the proposed network architecture. h[∗] represents the feature dimension, where hc, hr and hout represent the dimension
of the context feature, relative feature and aggregated feature, respectively.

4.2.2 Gradient Field Estimation Network
Parameterized by point xci ’s feature hi, this network aims to
estimate a global gradient field of the distribution supported
over the entire point cloud. Different from our previous work
[22] which estimates a gradient field localized around each point
in the input context point cloud, we take some 3D coordinate
x ∈ R3 over the supporting manifold as input and output the
global gradient g(x), where x does not necessarily correspond to
a point in X .

Specifically, we sample the k nearest neighbors of some 3D
coordinate x in X , and employ the relative coordinates to learn
relative features fj(x). Formally, the gradient field estimation unit
F takes the form:

fj(x) = F(x− xcj ,hj), (9)

where F(·) is a multi-layer perceptron (MLP).
To ensure the continuity of our model, a cosine annealing

module that we introduced in Section 3.2 (Eq. 2) is appended
to aggregate the relative feature corresponding to each neighbor
xcj into the point-wise feature of x with distance-related weights,
leading to the aggregated feature F (x).

Finally, F (x) is fed into a global MLP consisting of con-
volution layers to output the final gradient field. Then the final
estimation of the gradient field of is

g(x) =M(
∑

xc
j∈Nr(x)

1

2
(cosπ

∣∣∣x− xcj

∣∣∣
r

+ 1) F(x− xcj ,hi)),

(10)
whereM represents the global MLP. The gradient field estimation
is trained by optimizing the proposed objective, which will be
discussed next.

4.3 The Training Objective
We denote the input degraded point cloud as X = {xi}Ni=1 and
the ground truth point cloud3 as Y = {yi}Ni=1. Using the ground

3. For example, in the point cloud denoising task, the ground truth is the
clean point cloud.

Algorithm 1 Training of Gradient Field Learning

Input: The degraded point cloud X = {xi}Ni=1, context point cloud
XC = {xc

i}Ni=1 set as XC = X , and ground truth point cloud Y .
Initialize: The Context Feature Extraction Module H; the Gradient

Field Estimation Unit F; the global MLPM.
1: while not converge do
2: Construct a kNN graph G over context point cloud XC .
3: Learn the point-wise context feature hi = H(xc

i ,G).
4: Learn relative feature fj(x) = F(x− xc

j ,hj),xc
j ∈ Nr(x)

5: Compute distance weight wj(x) =
1
2
(cosπ

|x−xc
j |

r
+ 1).

6: Aggregate relative feature F (x) =
∑

xc
j∈Nr(x) wj(x)fj(x).

7: Predict the gradient field g(x) = M(F (x)) via the global
MLPM.

8: Compute the loss function in Eq. 12.
9: Update network parameters with the SGD optimizer and L.

10: end while
Output: H, F,M with trained weights.

truth Y , we define the gradient for some point x ∈ R3 as follows:

s(x) = NN(x,Y)− x, x ∈ R3, (11)

where NN(x,Y) returns the point nearest to x in Y . Intuitively,
s(x) is a vector from x to the underlying surface.

The training objective aligns the network-predicted gradient
field to the ground truth defined above:

L = Ex∼S

[
‖s(x)− g(x)‖22

]
, (12)

where S is a distribution of x in R3 space. Note that, this objective
not only matches the predicted gradient field on the position of
x but also matches the gradient field on the neighboring areas
of x. This is important because a point moves around during
gradient ascent for resampling, which relies on the gradient field
defined over its neighborhood provided by the context point cloud
XC . Such definition of training objective also distinguishes our
method from previous displacement-based methods [19], [21], as
the objectives of those methods only consider the position of each

7

Algorithm 2 Point Cloud Restoration
Input: The degraded point cloud X = {xi}Ni=1, context point cloud
XC = {xc

i}Ni=1 set as XC = X , number of steps T , step decay rate
d; H, F,M with trained weights from Algorithm 1.
Initialize: step size α1

1: Extract context feature hi ← H(xc
i)

2: t← 1,x
(0)
i ← xi, xi ∈X

3: while t < T + 1 do
4: fj(x

(t−1))← F(x(t−1) − xc
j ,hj) , xc

j ∈ Nr(x
(t−1))

5: F (x(t−1))←
∑

x
(t−1)
j ∈Nr(x(t−1))

wj(x
(t−1))fj(x

(t−1)).

6: Predict the gradient field g(x(t−1))←M(F (x(t−1)))
7: if Resampling with regularization then
8: x̃

(t)
i ← x

(t−1)
i + αtg(x

(t−1)
i)

9: x
(t)
i ← (I + λ · L)−1x̃

(t)
i

10: αt+1 ← dαt

11: else
12: x

(t)
i ← x

(t−1)
i + αtg(x

(t−1)
i)

13: αt+1 ← dαt

14: end if
15: end while
16: Ŷ ← {x(T)

i }
N
i=1

Output: The restored point cloud Ŷ .

point while our objective covers the neighborhood of each point.

4.4 Point Set Resampling
In the point cloud restoration stage, given a degraded point cloud
X = {xi}Ni=1 as input, we first construct the gradient field
g(x) for the point cloud X . Specifically, we first feed X into
the context feature extraction network to obtain a set of point-
wise features {hi}Ni=1. Next, by substituting xi, hi and some 3D
coordinate x ∈ R3 into Eq. 10, we acquire g(x) as the estimated
gradient field.

Next, we perform point set resampling via gradient ascent to
achieve point cloud restoration. As discussed in Section 3.3, our
model opts to introduce regularization or not during resampling,
depending on the requirement of specific tasks. Thus, we develop
algorithms for resampling without regularization and with regular-
ization respectively, which are presented as follows.

4.4.1 Resampling without regularization
In the simple setting without regularization, restoring a point cloud
amounts to updating each point’s position via gradient ascent:

x
(0)
i = xi, xi ∈X,

x
(t)
i = x

(t−1)
i + αtg(x

(t−1)
i), t = 1, . . . , T,

(13)

where αt is the step size at the t-th step. We suggest two criteria
for choosing the step size sequence {αt}Tt=1: (1) The sequence
should be decreasing towards 0 to ensure convergence. (2) α1

should be less than 1 and not be too close to 0. This is because ac-
cording to Eq. 11, the magnitude of the score is approximately the
distance from each point to the underlying surface (approximately
the length of s(x) in Eq. 11). Thus, performing gradient ascent
for a sufficient number of steps with a proper step size less than 1
is enough. The final reconstructed point cloud is Ŷ = {x(T)

i }Ni=1.

4.4.2 Resampling with regularization
As regularization is often beneficial to point cloud restoration as
discussed in Section 3.3, we also develop a resampling algorithm

with regularization considered. As mentioned, we focus on the
commonly adopted regularizers for point clouds—the GLR and
RGLR, which are introduced into the resampling process by alter-
nating the gradient ascent and regularization-based optimization
to exploit prior knowledge for the refinement of the intermediate
resampled point cloud.
Resampling with the GLR. As the GLR-based optimization
admits a closed-form solution as in Eq. 8, we alternate the gradient
ascent and GLR-based optimization as follows:

x
(0)
i = xi, xi ∈X,

x̃
(t)
i = x

(t−1)
i + αtg(x

(t−1)
i),

x
(t)
i = (I + λ · L)−1x̃

(t)
i , t = 1, . . . , T,

(14)

where L is computed from the input point cloud X and kept fixed
during the iterations.

To compute L, we first construct a kNN graph over X . The
edge weight wi,j connecting points i and j is assigned as a
function of the Euclidean distance between xi and xj :

wi,j = exp

{
−‖xi − xj‖22

σ2

}
, (15)

where σ is a parameter.
Based on the iterative optimization in Eq. 14, the final recon-

structed point cloud is Ŷ = {x(T)
i }Ni=1.

Resampling with the RGLR. In the RGLR, the graph Laplacian
is dynamically updated from each intermediate resampled point
cloud. As there exist two optimization variables in the RGLR-
based optimization as presented in Eq. 6, there is no closed-form
solution and alternate optimization is often adopted. Hence, we
perform the following iterative process for resampling with the
RGLR:

x
(0)
i = xi, xi ∈X,

x̃
(t)
i = x

(t−1)
i + αtg(x

(t−1)
i),

L(t) ← X̃(t),

x
(t)
i = (I + λ · L(t))−1x̃

(t)
i , t = 1, . . . , T,

(16)

where L(t) is updated from the optimized intermediate point cloud
X(t). The initialization of L(0) is the same as in Eq. 15, and
the update of L(t) follows the same function of edge weights
computed from X(t). The final reconstructed point cloud is Ŷ =

{x(T)
i }Ni=1.
Finally, we provide a summary of the training algorithm of

gradient field estimation in Algorithm 1 and the point cloud
restoration algorithm in Algorithm 2. For the sake of simplicity, we
present resampling with the GLR as a representative regularization
in Algorithm 2.

5 EXPERIMENTS

In this section, we evaluate the deep point set resampling model
by applying it to representative point cloud restoration tasks:
point cloud denoising and upsampling. We compare the proposed
method with state-of-the-art approaches.

5.1 Point Cloud Denoising
5.1.1 Setup
Datasets and Noise Models. Following our previous work [22],
we sample 20 meshes from the training set of PUNet [36] for

8

Points 10K (Sparse) 50K (Dense)
Noise 1% 2% 3% 1% 2% 3%

Dataset Model CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

PU [36]

Bilateral [24] 3.646 1.342 5.007 2.018 6.998 3.557 0.877 0.234 2.376 1.389 6.304 4.730
Jet [5] 2.712 0.613 4.155 1.347 6.262 2.921 0.851 0.207 2.432 1.403 5.788 4.267
MRPCA [8] 2.972 0.922 3.728 1.117 5.009 1.963 0.669 0.099 2.008 1.033 5.775 4.081
GLR [28] 2.959 1.052 3.773 1.306 4.909 2.114 0.696 0.161 1.587 0.830 3.839 2.707

PCN [19] 3.515 1.148 7.467 3.965 13.067 8.737 1.049 0.346 1.447 0.608 2.289 1.285
GPDNet [21] 3.780 1.337 8.007 4.426 13.482 9.114 1.913 1.037 5.021 3.736 9.705 7.998
DMR [34] 4.482 1.722 4.982 2.115 5.892 2.846 1.162 0.469 1.566 0.800 2.432 1.528
Score [22] 2.521 0.463 3.686 1.074 4.708 1.942 0.716 0.150 1.288 0.566 1.928 1.041

Ours 2.353 0.306 3.350 0.734 4.075 1.242 0.649 0.076 0.997 0.296 1.344 0.531

PC [19]

Bilateral [24] 4.320 1.351 6.171 1.646 8.295 2.392 1.172 0.198 2.478 0.634 6.077 2.189
Jet [5] 3.032 0.830 5.298 1.372 7.650 2.227 1.091 0.180 2.582 0.700 5.787 2.144
MRPCA [8] 3.323 0.931 4.874 1.178 6.502 1.676 0.966 0.140 2.153 0.478 5.570 1.976
GLR [28] 3.399 0.956 5.274 1.146 7.249 1.674 0.964 0.134 2.015 0.417 4.488 1.306

PCN [19] 3.847 1.221 8.752 3.043 14.525 5.873 1.293 0.289 1.913 0.505 3.249 1.076
GPDNet [21] 5.470 1.973 10.006 3.650 15.521 6.353 5.310 1.716 7.709 2.859 11.941 5.130
DMR [34] 6.602 2.152 7.145 2.237 8.087 2.487 1.566 0.350 2.009 0.485 2.993 0.859
Score [22] 3.369 0.830 5.132 1.195 6.776 1.941 1.066 0.177 1.659 0.354 2.494 0.657

Ours 2.873 0.783 4.757 1.118 6.031 1.619 1.010 0.146 1.515 0.340 2.093 0.573

TABLE 1
Comparison among competitive denoising algorithms under isotropic Gaussian noise. CD is multiplied by 104 and P2M is multiplied by 104.

training. We use Poisson disk sampling to sample point clouds
from these meshes into three resolutions: 10K, 30K and 50K.
Then, we normalize these point clouds into the unit sphere. To
train the denoising model, we perturb point clouds only with the
commonly assumed Gaussian noise with standard deviation from
0.5% to 3% of the bounding sphere’s radius. Before feeding each
point cloud into the model, we split them into patches to save
GPU memory. Splitting point clouds into patches can also make
our model adaptable to arbitrary resolution of point clouds. Patch
size is set to be 1K during the training.

For quantitative evaluation, we choose the testing set of PUNet
[36] which contains 20 different shapes, and PointCleanNet (PCN)
[19] which contains 10 shapes. As in the training phase, we
adopt Poisson disk sampling [49] to sample point clouds at 10K
resolution (sparse) and 50K resolution (dense) for each shape.
During the testing phase, we feed the whole point cloud into the
network for denoising instead of splitting it into patches. Further,
in order to demonstrate the generalizability of the proposed model,
we perturb point clouds with various kinds of noise models for
testing, including isotropic Gaussian noise, Laplace noise, discrete
noise, anisotropic Gaussian noise, uni-directional Gaussian noise,
uniform noise, simulated Lidar noise, as well as real-world noise.
The corresponding parameters are set as follows.

(1) Isotropic Gaussian noise. We perturb point clouds with
Laplace noise using the following model:

p(x; s) =
1√
2πs

e−
x2

2s2 , (17)

The scale parameter s is set to 1%, 2% and 3% of the bounding
sphere radius of the shape to generate point clouds at different
noise levels. This setting is maintained in the following experi-
ments, and hence will not be repeated for brevity.

(2) Laplace noise. We perturb point clouds with Laplace noise
using the following model:

p(x; s) =
1

2s
e−
|x|
s , (18)

(3) Discrete noise. We perturb point clouds with discrete noise
using the following model:

p(x; s) =


0.1 x = (±s, 0, 0) or (0,±s, 0) or (0, 0,±s)
0.4 x = (0, 0, 0)

0 Otherwise
,

(19)
where x denotes the coordinates of each point in the point cloud.
(4) Anisotropic Gaussian noise. This is realized by setting the
covariance matrix of the 3D Gaussian distribution to the following
positive definite matrix:

Σ = s2 ×

 1 − 1
2 − 1

4
− 1

2 1 − 1
4

− 1
4 − 1

4 1

 . (20)

(5) Uni-directional Gaussian noise. This is realized by only
perturbing the x-component of point clouds with Gaussian noise.
(6) Uniform noise. This is realized by employing the uniform
distribution on a 3D ball to generate noise:

p(x; s) =

{
3

4πs3 ‖x‖2≤ s
0 Otherwise

. (21)

(7) Simulated Lidar noise. We adopt a virtual Velodyne HDL-
64E2 scanner provided by the Blensor simulation package [50] to
acquire noisy point clouds. The noise level is set as 1% since this
experiment is for qualitative evaluation.
(8) Real-world noise. We also test on the Paris-rue-Madame
dataset [51] obtained from the real world using laser scanners

9

for qualitative evaluation.

Baselines. We compare our method to state-of-the-art point cloud
denoising algorithms, including deep-learning-based methods and
optimization-based methods.

Among the deep-learning-based denoisers, we choose PCN
[19], GPDNet [21], DMRDenoise (DMR) [34] and Score-Based
Denosie (Score) [22]. Optimization-based denoisers include bilat-
eral filtering [3], jet fitting [5], MRPCA [8] and GLR [28].

Metrics. We employ two metrics commonly adopted in previous
works to perform quantitative evaluation of our model: Chamfer
Distance (CD) [52] and Point-to-Mesh distance (P2M) [53]. Since
the size of point clouds varies, we normalize the denoised results
into the unit sphere before computing the metrics.

Implementation Details. We use only one set of hyper-parameters
to train a model for all experiments except ablation studies.
During the training, we set the learning rate to 5e−4. During the
resampling process, we set the step size to 0.15 and the number of
steps to 50. Besides, the denoising results of our method doesn’t
require any post-processing, while previous deep-learning-based
denoisers such as PCN [19] often need to inflate their results
slightly to alleviate possible shape shrinkage.

5.1.2 Quantitative Results
We first employ isotropic Gaussian noise to test our models
and baselines. As shown in Table 1, our method significantly
outperforms previous deep-learning-based methods in every set-
ting. Compared to optimization-based models, over model also
surpasses them in most settings. In particular, our method achieves
larger gain when the noise level is higher, further validating the
superiority of the proposed model.

Furthermore, in order to demonstrate the generalizability of
our model, we also test under various kinds of noise, including
Laplace noise, discrete noise, anisotropic Gaussian noise, uni-
directional Gaussian noise and uniform noise. Note that, the model
being tested is exactly the same model in the previous experiment
which is trained only using Gaussian noise. Due to the limit of
space, we compare our method with relatively stronger baselines
(MRPCA [8], GLR [28], PCN [19] and Score [22]). Experimental
results in Table 2 indicate that our method not only outperforms
optimization-based methods under different noise models, but also
generalizes to unseen noise models significantly better than state-
of-the-art deep-learning-based methods.

5.1.3 Qualitative Results
Figure 5 shows the denoising results from our proposed method
and competitive baselines under isotropic Gaussian noise and
simulated LiDAR noise, respectively. Specifically, the level of
isotropic Gaussian noise is set to 3%, and that of the simulated
Lidar noise is set to 1%. The color of each point indicates its
reconstruction error measured by Point-to-Mesh distance. Points
closer to the underlying surface are colored darker, and otherwise
colored brighter.

We observe from Figure 5 that, our results are much cleaner
and more visually appealing than those of other methods. Notably,
our method preserves details better than other methods and is more
robust to outliers compared to other deep-learning-based methods
such as PCN [19] and Score [22].

Further, we conduct qualitative studies on the real-world
dataset Paris-rue-Madame [51]. Note that, since the noise-free

Points 10K
Noise 1% 2% 3%

Type Model CD P2M CD P2M CD P2M

Laplace

MRPCA [8] 2.950 0.724 4.216 1.428 7.951 4.441
GLR [28] 3.223 1.121 4.751 2.090 7.977 4.773
PCN [19] 4.616 1.940 11.082 7.218 20.981 15.922
Score [22] 2.915 0.674 4.601 1.799 6.332 3.271

Ours 2.663 0.450 3.790 1.067 5.110 2.017

Discrete

MRPCA [8] 1.522 0.629 2.353 0.674 2.607 0.743
GLR [28] 1.838 1.014 2.665 1.047 2.952 1.116
PCN [19] 1.177 0.307 2.870 0.871 4.028 1.674
Score [22] 1.249 0.251 2.177 0.416 2.653 0.653

Ours 1.021 0.163 1.921 0.268 2.274 0.431

Aniso

MRPCA [8] 2.676 0.689 3.605 1.007 5.108 2.081
GLR [28] 2.910 1.048 3.779 1.332 4.975 2.195
PCN [19] 3.432 1.129 7.393 3.940 12.952 8.654
Score [22] 2.470 0.456 3.682 1.084 4.776 2.000

Ours 2.305 0.308 3.345 0.758 4.152 1.350

Uni-dir

MRPCA [8] 1.712 0.646 2.564 0.767 3.237 1.063
GLR [28] 2.033 1.026 2.837 1.139 3.472 1.434
PCN [19] 1.530 0.432 3.466 1.360 5.638 2.914
Score [22] 1.442 0.279 2.412 0.543 3.391 1.108

Ours 1.256 0.196 2.196 0.386 2.862 0.686

Uniform

MRPCA [8] 1.555 0.633 2.754 0.684 3.229 0.765
GLR [28] 1.850 1.015 2.948 1.052 3.400 1.109
PCN [19] 1.205 0.337 3.378 1.018 5.044 1.995
Score [22] 1.277 0.248 2.467 0.418 3.079 0.654

Ours 1.056 0.164 2.348 0.275 2.916 0.443

TABLE 2
Comparison among competitive denoising algorithms under various
types of noise. CD is multiplied by 104 and P2M is multiplied by 104.

Dataset: PU 10K, 1% 10K, 2% 10K, 3%
Ablation CD P2M CD P2M CD P2M

Discon. 2.489 0.382 3.424 0.812 4.185 1.371
Ours 2.353 0.306 3.350 0.734 4.075 1.242

TABLE 3
Ablation studies on the continuity of our model. ”Discon.” represents a

discontinuous version of our model without the cosine annealing
employed. CD is multiplied by 104 and P2M is multiplied by 104.

point cloud is unavailable for real-world datasets, the error of
each point cannot be computed and visualized. As demonstrated in
Figure 7, our denoising result exhibits the most satisfactory visual
quality among the competing methods. In particular, our result is
cleaner and smoother than that of PCN [19], with details preserved
better than DMR [34].

In addition, we present a denoising trajectory during the
gradient ascent every other 10 steps in Figure 8, which reveals
the iterative resampling process of our method—noise reduces as
points gradually converge to the mode of the distribution along
the direction of the estimated gradient field. We see that the
noise is significantly reduced during the first 10 iterations, and
the denoising result almost converges at the 20th iteration, which
shows the efficiency of the proposed point set resampling.

To summarize, the demonstrated qualitative results are con-
sistent with the quantitative results in Section 5.1.2, which again
validates the effectiveness of the proposed method.

10

Noisy GLR MRPCA PCN Score Ours Clean

(a)

(b)

Fig. 5. Visual comparison of point cloud denoising methods under (a) Isotropic Gaussian noise, (b) simulated LiDAR noise. Points colored yellower
are farther away from the ground truth surface.

3 5 7 10
Noise Level%

4

6

8

10

12

14

C
ha

m
fe

r D
is

ta
nc

e

Resampling with the GLR
Resampling with the RGLR
Resampling without Regularization

Fig. 6. Ablation studies on resampling with regularization. CD is multi-
plied by 104 and P2M is multiplied by 104.

5.1.4 Ablation Studies
Further, we perform ablation studies to examine 1) the effective-
ness of the proposed continuity model; 2) how different types of
prior knowledge affect our denoising results.

In the first ablation study, we evaluate the performance gain of
the continuity model in Eq. 2. As shown in Table 3, the continuous
model outperforms the discontinuous version (i.e., removing the
cosine annealing) in both metrics of CD and P2M under various
noise levels, thus validating the effectiveness of the continuous
model.

The second ablation study examines different prior knowledge,
i.e., different regularization terms during the resampling process.
As we introduced in Section 3.3.1, we focus on the Graph Lapla-

cian Regularizer (GLR) and the Reweighted Graph Laplacian
Regularizer (GLR). Employing the resampling algorithm with
regularization in Section 4.4, we compare the denoising perfor-
mance without regularization, with the GLR, and with the RGLR.
Figure 6 demonstrates that introducing regularization into the
resampling process does improve the denoising performance, and
the improvement gets larger when the noise level is higher. This
makes sense, as regularization generally plays a more important
role in the challenging case of high noise levels, i.e., when data
fidelity is undesirable. Also, we see that the RGLR performs better
than the GLR, because the graph in the RGLR is learned from the
updated resampled point cloud adaptively and iteratively, which
is able to capture the underlying surface dynamically during the
resampling process. Finally, we would like to emphasize that the
prior knowledge is introduced in the resampling process, which
requires no extra training and is thus more flexible than previous
works where the regularization is considered in the training stage.

5.2 Point Cloud Upsampling

Given a point cloud containing N points, the goal of point cloud
upsampling is to infer more points and generate a dense point
cloud consisting of mN points, where m is the upsampling ratio.

To apply the proposed model, we first need to roughly upsam-
ple it into a denser point cloud with mN points as initialization.
Here we adopt two different initialization strategies. The first one
is to simply perturb the sparse point cloud by slight Gaussian
noise independently for m times, leading to a denser but noisy
point cloud with mN points. The second approach is to adopt a
lightweight neural network as a coarse generator, leveraging on
the idea of Dis-PU [54]. We will introduce the implementation
detail of the network in Section 5.2.1

11

Noisy GLR MRPCA

PCN DMR Ours

Fig. 7. Visual comparison of denoising results on the real-world dataset Paris-rue-Madame [51].

Fig. 8. A gradient ascent trajectory of our point cloud denoising every
other 10 steps.

The obtained initial dense point cloud via one of the aforemen-
tioned strategies tends to be noisy and non-uniform. To address
this problem, we treat the original sparse yet clean point cloud
as the context point cloud for the training of the gradient field
learning, as it contains certain information of the supporting
manifold. Subsequently, we feed the generated initial dense point
cloud into the trained model to infer the gradient field of the
dense point cloud, and update the coordinates of points iteratively
according to the point set resampling algorithm in Section 4.4 for
further refinement, thus leading to a final upsampled point cloud.

5.2.1 Setup
Datasets We use the training set of PU-GAN [39] to train our
model. It contains 120 meshes covering a wide variety of objects,
ranging from simple objects to complex and detailed objects. The
dataset is divided into simple, medium and complex according
to the degree of fineness. Specifically, during the training stage,
we sample point clouds from meshes with 1,024 and 2,048
points respectively as the sparse input, and sample point clouds
with 4,096 and 8,192 points respectively as their corresponding

ground truth dense point clouds using Poisson disk sampling [49].
Data augmentation including random rotation and scaling is also
adopted to reduce over-fitting.

For quantitative evaluation, we combine the testing sets of
MPU [38] and PU-GAN [39]. We also adopt Poisson disk sam-
pling [49] to construct the testing set, which contains 39 point
clouds sampled from meshes. Each point cloud consists of 2,048
points.

Baselines We compare our method with four state-of-the-art point
cloud upsampling models: EAR [4], PUNet [36], MPU [38]
and PU-GAN [39]. Among them, EAR [4] is optimization-based
which requires no supervision of data, while the rest are deep-
learning-based.

For fair comparison, we re-train the three deep-learning-based
models with their released codes using the same dataset and same
supervision data. In particular, we re-train the MPU network with
two upsampling blocks because the upsampling rate of our training
set is 4x, while the original MPU has 4 upsampling blocks but
requires the supervision of 16x denser point clouds.

Metrics To examine our model, we employ three commonly
used metrics to quantitatively evaluate our experimental results.
The adopted metrics are: Chamfer distance (CD), point-to-mesh
distance (P2M) and Hausdorff distance (HD). We also normalize
the input point clouds into unit sphere before feeding them into
the network since the size of point clouds varies.

Implementation Details In the proposed point cloud upsampling

12

Rate Method CD P2M HD

4x

EAR [4] 3.339 6.575 4.112
PUNet [36] 6.692 14.449 4.773
MPU [38] 2.348 2.156 1.362

PU-GAN [39] 2.489 2.475 3.898
Ours-Naive 2.901 2.598 1.522
Ours-Gen 2.324 1.852 1.064

8x

EAR [4] 2.426 7.427 4.325
PUNet [36] 8.401 15.768 8.327
MPU [38] 1.542 1.828 1.484

PU-GAN [39] 1.818 2.634 4.827
Ours-Naive 1.677 1.577 1.246
Ours-Gen 1.532 1.496 1.114

16x

EAR [4] 1.825 7.818 4.577
PUNet [36] 7.274 12.784 8.710
MPU [38] 0.946 1.282 1.473

PU-GAN [39] 1.099 2.129 4.963
Ours-Naive 0.980 1.079 1.406
Ours-Gen 0.840 1.206 1.152

TABLE 4
Comparison among our model and state-of-the-art point cloud

upsampling methods. CD is multiplied by 104, P2M is multiplied by 105

and HD is multiplied by 103.

method with the first noise-perturbation-based initialization strat-
egy described in Section 5.2, which is referred to as ”Ours-Naive”,
we perturb each point cloud by Gaussian noise with standard
deviation of 2% for m times to acquire an initial dense point
cloud.

In our upsampling method with the second generation-based
initialization strategy, which we refer to as ”Ours-Gen”, here are
the details of the coarse generator. We first encode the input
point cloud with a feature extractor consisting of three densely
connected edge convolution [17] layers, leading to a feature map
Fp. Then, a feature expansion unit is employed, which simply
duplicates Fp for m times and concatenates them with a regular
2D grid to obtain Fe. Finally, we feed Fe into a fully-connected
regression layer to generate an initial dense point cloud.

The parameters in the training phase and resampling phase are
assigned the same as those for denoising provided in Section 5.1.1.

5.2.2 Quantitative Results
We show the quantitative comparison in Table 4. Our method,
especially the variant of ”Ours-Gen”, achieves state-of-the-art
performance over all the upsampling rates. In particular, ”Ours-
Gen” achieves comparatively significant performance improve-
ment under the metric of P2M, which indicates that our method is
beneficial to the preservation of the underlying structure. Besides,
”Ours-Naive” outperforms competitive methods at high upsam-
pling rates (i.e., 8x, 16x). This is because ”Ours-Naive” upsamples
point clouds in a one-pass manner, while other methods upsample
point clouds progressively to reach the high resolution, which may
introduce error propagation.

5.2.3 Ablation Study
To examine the effect of the coarse generator, we also conduct
ablation studies to show that only using the lightweight network
of coarse generator can hardly obtain a high-quality dense point

Rate Method CD P2M HD

4x Coarse-Gen 2.769 3.262 1.322
Ours-Gen 2.324 1.852 1.064

8x Coarse-Gen 2.161 3.124 1.508
Ours-Gen 1.532 1.496 1.114

16x Coarse-Gen 2.132 4.483 2.079
Ours-Gen 0.840 1.206 1.152

TABLE 5
Ablation studies to examine the effect of the coarse generator.

Fig. 9. A gradient ascent trajectory of our point cloud upsampling every
other 10 steps. The first row is obtained by ”Ours-Naive”, while the
second row is from ”Ours-Gen”.

cloud especially when the upsampling rate is high. As presented
in Table 5, our model ”Ours-Gen” achieves significantly better
performance than the coarse generator ”Coarse-Gen”, especially
at high upsampling rates such as 8x and 16x. This is because the
coarse generator is only trained with data for 4x upsampling rate.

5.2.4 Qualitative Results
We first demonstrate the upsampling trajectory of ”Ours-Naive”
and ”Ours-Gen” respectively in Figure 9. The input sparse point
clouds are firstly upsampled coarsely via each variant, and then
refined by the proposed resampling method based on the learned
gradient field. We see that, the upsampling result of Horse con-
verges after 20 steps of gradient ascent, while that of Elephant
gets visually satisfactory after only 10 steps because of the better
initialization.

Further, we visualize the results of the 8x upsampling and
corresponding reconstructed meshes with screened Poisson sur-
face reconstruction [55] of two shapes ”Elephant” and ”Kitten”
in the testing set in Figure 10. We choose competitive methods
with comparatively satisfactory results for comparison. Figure 10
shows that our method preserves details much better, such as
around the Elephant’s trunk and the Kitten’s nose. This leads
to much more satisfactory mesh reconstructions with smoother
surface and more accurate details. Besides, our method exhibits
negligible outliers.

Moreover, we test the robustness of our model to the sparsity
of input point clouds. We reduce the number of input points
from 2048 points (the number of input points in Figure 10) to
1024 points, 768 points and 512 points. We still upsample them
at the same upsampling rate m = 8 and visualize the results.
Figure 11 shows the upsampling results and corresponding mesh
reconstructions. We see that, though the input point clouds are
very sparse, our model is stable and able to preserve prominent

13

Input EAR PUGAN MPU Ours-Naive Ours-Gen Ground Truth

Fig. 10. Visual comparison of point cloud upsampling results from competitive methods with 8x upsampling rate and their corresponding mesh
reconstructions over two shapes in the testing set. Points colored yellower are farther away from the ground truth surface.

Fig. 11. Robustness of our model to the sparsity of the input point cloud.
(a) The input with varied sparsity; (b) The corresponding upsampling
results; (c) The corresponding mesh reconstructions.

geometric information. This validates the effectiveness of our
model even for sparse input point clouds.

6 CONCLUSION

In this paper, we propose a novel paradigm of point cloud
resampling, which models degraded point clouds as samples from
a 3D distribution and learns a global gradient field—the gradient
of the log-probability density function—over the point cloud that
converges points towards the underlying surface. We enforce
the gradient field to be continuous, and introduce prior-based
regularization into the resampling process to further enhance the
quality of the restored point cloud. Based on the model, we design
an efficient neural network architecture to estimate the gradient

field and develop algorithms for point cloud restoration with or
without regularization via gradient ascent. Extensive experimental
results validate the superiority of our model on representative tasks
including point cloud denoising and upsampling.

REFERENCES

[1] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The
kitti dataset,” The International Journal of Robotics Research, vol. 32,
no. 11, pp. 1231–1237, 2013.

[2] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner, “Scannet: Richly-annotated 3d reconstructions of indoor
scenes,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 5828–5839.

[3] J. Digne and C. De Franchis, “The bilateral filter for point clouds,” Image
Processing On Line, vol. 7, pp. 278–287, 2017.

[4] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, and H. Zhang,
“Edge-aware point set resampling,” ACM transactions on graphics
(TOG), vol. 32, no. 1, pp. 1–12, 2013.

[5] F. Cazals and M. Pouget, “Estimating differential quantities using poly-
nomial fitting of osculating jets,” Computer Aided Geometric Design,
vol. 22, no. 2, pp. 121–146, 2005.

[6] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva,
“Point set surfaces,” in Proceedings Visualization, 2001. VIS’01. IEEE,
2001, pp. 21–29.

[7] H. Avron, A. Sharf, C. Greif, and D. Cohen-Or, “`1-sparse reconstruction
of sharp point set surfaces,” ACM Transactions on Graphics (TOG),
vol. 29, no. 5, pp. 1–12, 2010.

[8] E. Mattei and A. Castrodad, “Point cloud denoising via moving rpca,” in
Computer Graphics Forum, vol. 36, no. 8. Wiley Online Library, 2017,
pp. 123–137.

[9] Y. Sun, S. Schaefer, and W. Wang, “Denoising point sets via l0 mini-
mization,” Computer Aided Geometric Design, vol. 35, pp. 2–15, 2015.

[10] F. Zaman, Y. P. Wong, and B. Y. Ng, “Density-based denoising of
point cloud,” in 9th International Conference on Robotic, Vision, Signal
Processing and Power Applications. Springer, 2017, pp. 287–295.

14

[11] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva,
“Computing and rendering point set surfaces,” IEEE Transactions on
visualization and computer graphics, vol. 9, no. 1, pp. 3–15, 2003.

[12] Y. Lipman, D. Cohen-Or, D. Levin, and H. Tal-Ezer, “Parameterization-
free projection for geometry reconstruction,” ACM Transactions on
Graphics (TOG), vol. 26, no. 3, pp. 22–es, 2007.

[13] H. Huang, D. Li, H. Zhang, U. Ascher, and D. Cohen-Or, “Consolidation
of unorganized point clouds for surface reconstruction,” ACM transac-
tions on graphics (TOG), vol. 28, no. 5, pp. 1–7, 2009.

[14] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d
shapenets: A deep representation for volumetric shapes,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2015,
pp. 1912–1920.

[15] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
652–660.

[16] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in Advances in neural
information processing systems, 2017, pp. 5099–5108.

[17] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” ACM
Transactions on Graphics (TOG), vol. 38, no. 5, pp. 1–12, 2019.

[18] C. Duan, S. Chen, and J. Kovacevic, “3d point cloud denoising via
deep neural network based local surface estimation,” in ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2019, pp. 8553–8557.

[19] M.-J. Rakotosaona, V. La Barbera, P. Guerrero, N. J. Mitra, and M. Ovs-
janikov, “Pointcleannet: Learning to denoise and remove outliers from
dense point clouds,” in Computer Graphics Forum, vol. 39, no. 1. Wiley
Online Library, 2020, pp. 185–203.

[20] P. Hermosilla, T. Ritschel, and T. Ropinski, “Total denoising: Unsuper-
vised learning of 3d point cloud cleaning,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 52–60.

[21] F. Pistilli, G. Fracastoro, D. Valsesia, and E. Magli, “Learning graph-
convolutional representations for point cloud denoising,” arXiv preprint
arXiv:2007.02578, 2020.

[22] S. Luo and W. Hu, “Score-based point cloud denoising,” International
Conference on Computer Vision, 2021.

[23] J. Pang and G. Cheung, “Graph laplacian regularization for image
denoising: Analysis in the continuous domain,” IEEE Transactions on
Image Processing, vol. 26, no. 4, pp. 1770–1785, 2017.

[24] S. Fleishman, I. Drori, and D. Cohen-Or, “Bilateral mesh denoising,” in
ACM SIGGRAPH 2003 Papers, 2003, pp. 950–953.

[25] Y. Zheng, G. Li, S. Wu, Y. Liu, and Y. Gao, “Guided point cloud
denoising via sharp feature skeletons,” The Visual Computer, vol. 33,
no. 6, pp. 857–867, 2017.

[26] L. Xu, R. Wang, J. Zhang, Z. Yang, J. Deng, F. Chen, and L. Liu, “Survey
on sparsity in geometric modeling and processing,” Graphical Models,
vol. 82, pp. 160–180, 2015.

[27] Y. Schoenenberger, J. Paratte, and P. Vandergheynst, “Graph-based de-
noising for time-varying point clouds,” in 2015 3DTV-Conference: The
True Vision-Capture, Transmission and Display of 3D Video (3DTV-
CON). IEEE, 2015, pp. 1–4.

[28] J. Zeng, G. Cheung, M. Ng, J. Pang, and Y. Cheng, “3D point cloud
denoising using graph Laplacian regularization of a low dimensional
manifold model,” IEEE Transactions on Image Processing, vol. 29, pp.
3474–3489, December 2019.

[29] W. Hu, X. Gao, G. Cheung, and Z. Guo, “Feature graph learning for 3D
point cloud denoising,” IEEE Transactions on Signal Processing, vol. 68,
pp. 2841–2856, 2020.

[30] W. Hu, J. Pang, X. Liu, D. Tian, C.-W. Lin, and A. Vetro, “Graph Signal
Processing for geometric data and beyond: Theory and applications,”
IEEE Transactions on Multimedia, 2021.

[31] W. Hu, Q. Hu, Z. Wang, and X. Gao, “Dynamic point cloud denoising
via manifold-to-manifold distance,” IEEE Transactions on Image Pro-
cessing, vol. 30, pp. 6168–6183, 2021.

[32] C. Duan, S. Chen, and J. Kovacevic, “3d point cloud denoising via
deep neural network based local surface estimation,” in ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2019, pp. 8553–8557.

[33] R. Roveri, A. C. Öztireli, I. Pandele, and M. Gross, “Pointpronets:
Consolidation of point clouds with convolutional neural networks,” in
Computer Graphics Forum, vol. 37, no. 2. Wiley Online Library, 2018,
pp. 87–99.

[34] S. Luo and W. Hu, “Differentiable manifold reconstruction for point
cloud denoising,” in Proceedings of the 28th ACM International Confer-
ence on Multimedia, 2020, pp. 1330–1338.

[35] S. Wu, H. Huang, M. Gong, M. Zwicker, and D. Cohen-Or, “Deep points
consolidation,” ACM Transactions on Graphics (ToG), vol. 34, no. 6, pp.
1–13, 2015.

[36] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “Pu-net: Point
cloud upsampling network,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 2790–2799.

[37] ——, “Ec-net: an edge-aware point set consolidation network,” in Pro-
ceedings of the European Conference on Computer Vision (ECCV), 2018,
pp. 386–402.

[38] W. Yifan, S. Wu, H. Huang, D. Cohen-Or, and O. Sorkine-Hornung,
“Patch-based progressive 3d point set upsampling,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 5958–5967.

[39] R. Li, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “Pu-gan: a point
cloud upsampling adversarial network,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 7203–7212.

[40] Y. Qian, J. Hou, S. Kwong, and Y. He, “Pugeo-net: A geometry-centric
network for 3d point cloud upsampling,” in European Conference on
Computer Vision. Springer, 2020, pp. 752–769.

[41] W. Hu, J. Pang, X. Liu, D. Tian, C.-W. Lin, and A. Vetro, “Graph signal
processing for geometric data and beyond: Theory and applications,”
IEEE Transactions on Multimedia, 2021.

[42] C. Dinesh, G. Cheung, and I. V. Bajic, “3d point cloud denoising via
bipartite graph approximation and reweighted graph laplacian,” arXiv
preprint arXiv:1812.07711, 2018.

[43] X. Wang, T. Xiao, Y. Jiang, S. Shao, J. Sun, and C. Shen, “Repulsion
loss: Detecting pedestrians in a crowd,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
7774–7783.

[44] R. Merris, “Laplacian matrices of graphs: a survey,” Linear algebra and
its applications, vol. 197, pp. 143–176, 1994.

[45] X. Liu, G. Cheung, X. Wu, and D. Zhao, “Random walk graph laplacian-
based smoothness prior for soft decoding of jpeg images,” IEEE Trans-
actions on Image Processing, vol. 26, no. 2, pp. 509–524, 2016.

[46] Y. Bai, G. Cheung, X. Liu, and W. Gao, “Graph-based blind image
deblurring from a single photograph,” IEEE Transactions on Image
Processing, vol. 28, no. 3, pp. 1404–1418, 2018.

[47] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[48] Y. Liu, B. Fan, G. Meng, J. Lu, S. Xiang, and C. Pan, “Densepoint:
Learning densely contextual representation for efficient point cloud
processing,” in Proceedings of the IEEE International Conference on
Computer Vision, 2019, pp. 5239–5248.

[49] J. Bowers, R. Wang, L.-Y. Wei, and D. Maletz, “Parallel poisson disk
sampling with spectrum analysis on surfaces,” ACM Transactions on
Graphics (TOG), vol. 29, no. 6, pp. 1–10, 2010.

[50] M. Gschwandtner, R. Kwitt, A. Uhl, and W. Pree, “Blensor: Blender
sensor simulation toolbox,” in International Symposium on Visual Com-
puting. Springer, 2011, pp. 199–208.

[51] A. Serna, B. Marcotegui, F. Goulette, and J.-E. Deschaud, “Paris-rue-
madame database: a 3d mobile laser scanner dataset for benchmarking
urban detection, segmentation and classification methods,” in 4th Inter-
national Conference on Pattern Recognition, Applications and Methods
ICPRAM 2014, 2014.

[52] H. Fan, H. Su, and L. J. Guibas, “A point set generation network for 3d
object reconstruction from a single image,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 605–
613.

[53] N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W.-Y. Lo, J. John-
son, and G. Gkioxari, “Accelerating 3d deep learning with pytorch3d,”
arXiv:2007.08501, 2020.

[54] R. Li, X. Li, P.-A. Heng, and C.-W. Fu, “Point cloud upsampling via
disentangled refinement,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 344–353.

[55] M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruction,”
ACM Transactions on Graphics (ToG), vol. 32, no. 3, pp. 1–13, 2013.

	1 Introduction
	2 Related Works
	2.1 Point Cloud Denoising
	2.1.1 Optimization-based denoising
	2.1.2 Deep-learning-based denoising

	2.2 Point Cloud Upsampling
	2.2.1 Optimization-based upsampling
	2.2.2 Deep-learning-based upsampling

	3 Point Set Resampling Model
	3.1 Distribution Modeling of Degraded Point Clouds
	3.2 Continuity of the Model
	3.3 Regularization of the Model
	3.3.1 Formulation and Priors
	3.3.2 Optimization Solutions

	4 Point Set Resampling Algorithm
	4.1 Overview
	4.2 The Proposed Training Network
	4.2.1 Context Feature Extraction Network
	4.2.2 Gradient Field Estimation Network

	4.3 The Training Objective
	4.4 Point Set Resampling
	4.4.1 Resampling without regularization
	4.4.2 Resampling with regularization

	5 Experiments
	5.1 Point Cloud Denoising
	5.1.1 Setup
	5.1.2 Quantitative Results
	5.1.3 Qualitative Results
	5.1.4 Ablation Studies

	5.2 Point Cloud Upsampling
	5.2.1 Setup
	5.2.2 Quantitative Results
	5.2.3 Ablation Study
	5.2.4 Qualitative Results

	6 Conclusion
	References

