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MVSS-Net: Multi-View Multi-Scale Supervised
Networks for Image Manipulation Detection
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Abstract—As manipulating images by copy-move, splicing and/or inpainting may lead to misinterpretation of the visual content,
detecting these sorts of manipulations is crucial for media forensics. Given the variety of possible attacks on the content, devising a
generic method is nontrivial. Current deep learning based methods are promising when training and test data are well aligned, but
perform poorly on independent tests. Moreover, due to the absence of authentic test images, their image-level detection specificity is in
doubt. The key question is how to design and train a deep neural network capable of learning generalizable features sensitive to
manipulations in novel data, whilst specific to prevent false alarms on the authentic. We propose multi-view feature learning to jointly
exploit tampering boundary artifacts and the noise view of the input image. As both clues are meant to be semantic-agnostic, the
learned features are thus generalizable. For effectively learning from authentic images, we train with multi-scale (pixel / edge / image)
supervision. We term the new network MVSS-Net and its enhanced version MVSS-Net++. Experiments are conducted in both
within-dataset and cross-dataset scenarios, showing that MVSS-Net++ performs the best, and exhibits better robustness against JPEG
compression, Gaussian blur and screenshot based image re-capturing.

Index Terms—Image manipulation detection, multi-view feature learning, multi-scale supervision, model sensitivity and specificity
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1 INTRODUCTION

D IGITAL images can now be manipulated with ease and often
in a visually imperceptible manner [1]. Copy-move (copy

and move elements from one region to another region in a given
image), splicing (copy elements from one image and paste them
on another image) and inpainting (removal of unwanted elements)
are three common types of image manipulation that could lead
to misinterpretation and thus malicious use of the visual content
[2], [3], [4], [5]. Auto-detection of the presence of these sorts of
manipulations in a given image is crucial for media forensics and
trustworthy information sharing in the cyberspace. We aim to not
only discriminate manipulated images from the authentic, but also
pinpoint tampered regions at the pixel level.

While pictorial content tampering has been long existing,
media forensics is a relatively new research field [5]. Traditionally,
carefully hand-crafted features are extracted from a given image to
capture subtle differences between its tampered and authentic re-
gions. The differences are calculated by varied approaches, includ-
ing media-format based compression artifacts [6], [7], physics-
based lighting inconsistency [8], [9], statistical modeling [10],
local noise estimation [11], etc. However, due to the variety of
possible attacks on the digital content, a major challenge in the
field is that manipulation detection may not be resolved by a single
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Fig. 1. Image manipulation detection by the state-of-the-art. Test
images in the first three rows are manipulated by splicing, copy-move
and inpainting, respectively. Test images in the last three rows are
authentic (thus with blank mask). Our model (MVSS-Net++) strikes a
good balance between detection sensitivity (lower miss detection on the
manipulated) and specificity (lower false alarm on the authentic).

approach with a single source of information. What makes the
problem even more challenging is that when images are uploaded
and circulate on social media platforms, regular low-level image
processing such as re-sizing, re-compression, re-capturing and
aesthetic image enhancement, inevitably weakens forensic traces
[12]. Towards conquering the challenges, unsurprisingly, the state-
of-the-arts are deep learning based [13], [14], [15], [16], [17], [18],
specifically focusing on pixel-level manipulation detection [13],
[15], [16], also known as manipulation localization [19]. With
only two classes (manipulated versus authentic) in consideration,
the task appears to be a simplified case of image semantic segmen-
tation. However, an off-the-shelf semantic segmentation network
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Fig. 2. Conceptual diagram of the proposed multi-view multi-scale supervised networks for image manipulation detection. We use the
edge-supervised branch (ESB) and the noise-sensitive branch (NSB) to learn semantic-agnostic features for manipulation detection, and multi-
scale supervision to strike a proper balance between model sensitivity and specificity. The non-trainable sigmoid (σ) layer is shown in gray. The
Gclf module is responsible for converting a pixel-level segmentation map S(x) to an image-level prediction C(x). Depending on how the module is
implemented, we have MVSS-Net which uses global max pooling (GMP) and MVSS-Net++ which uses ConvGeM.

is suboptimal for the task, as it is designed to capture semantic
information, making the network dataset-dependent and do not
generalize. Prior research [16] reports that DeepLabv2 [20] trained
on the CASIAv2 dataset [21] performs well on the CAISAv1
dataset [22] homologous to CASIAv2, yet performs poorly on
the non-homologous COVER dataset [23]. A similar behavior of
FCN [24] is also observed in this study. It has been increasingly
recognized that deep neural networks (DNNs) perform well when
the training and test data are well aligned in terms of their data
source and manipulation methods, but often perform badly on
independent tests [19]. Hence, the key question is how to design
and train a DNN capable of learning semantic-agnostic features
sensitive to manipulations, whilst specific to prevent false alarms?

In order to learn semantic-agnostic features, image content
originally presented in the RGB view has to be suppressed.
Depending on at what stage the suppression occurs, we categorize
existing methods into two groups, i.e. noise-view methods [14],
[15], [17], [18], [25] and edge-supervised methods [13], [16].
Given the hypothesis that novel elements introduced by splic-
ing and/or inpainting differ from the authentic part in terms of
their noise distributions, the noise-view methods aim to exploit
such discrepancy. A noise map of an input image, generated
either by pre-defined high-pass filters [29] or by their trainable
counterparts [25], [30], is fed into a DNN, either alone [17],
[25] or together with the input image [14], [15], [18]. Note
that the methods are ineffective for detecting copy-move which
introduces no new element. The edge-supervised methods try to
find boundary artifacts around a tampered region, implemented
by using an object-detection head to regress a bounding box to
cover the region [14], [17] or an auxiliary branch to reconstruct
the region’s edge [13], [16]. Note that the prior arts uniformly
sum [13] or concatenate [16] features from different layers of the

backbone as input of the auxiliary branch. As such, there is a risk
that deeper-layer features, which are responsible for manipulation
detection, remain semantic-aware and thus not generalizable.

To measure a model’s generalizability, a common evaluation
protocol [13], [15], [16], [18] is to first train the model on a
public dataset, say CASIAv2 [21], and then test it on other public
datasets such as NIST16 [31], Columbia [32], and CASIAv1 [22].
To our surprise, however, the evaluation is performed exclusively
on manipulated images, with pixel-level metrics reported. The
specificity of the model, which reveals how it handles authentic
images and is thus crucial for real-world usability, is ignored. As
shown in Fig. 1, both traditional Error Level Analysis (ELA) and
current deep learning methods [13], [15], [18] make serious false
alarms on authentic images. As the current methods mainly use
pixel-wise segmentation losses to which an authentic example can
contribute is marginal, it is difficult for these methods to exploit
the authentic data as holistic context to improve their specificity.

Given the need of exploiting the noise view along with the
original RGB view and the need of jointly considering both local
edge information and holistic context, it is nontrivial to design
a DNN that performs the manipulation detection task in general.
We get inspiration from contemporary advances in other research
domains. In the context of generic semantic segmentation, the
Border Network [33] aggregates features progressively to predict
object boundaries. We adapt that technique for tracing subtle
boundary artifacts around manipulated regions. In the context of
medical image analysis, LesionNet [34] incorporates an image
classification loss for segmenting retinal lesions in color fundus
photographs. We borrow this idea to take authentic images into
account. We propose multi-view feature learning with multi-scale
supervised networks (MVSS-Net series) for image manipulation
detection. Note that several previous approaches can potentially
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TABLE 1
A taxonomy of the state-of-the-art for image manipulation detection. Methods marked with † are open-sourced or with models released, and

will be compared in our experiments. Star (*) indicates edge information is implicitly considered via bounding-box regression. Edge and image
labels used by this paper are automatically extracted from pixel-level annotations. So our multi-scale supervision requires no extra manual labeling.

Method Views Semantic
segmentation

backbone

Scales of supervision Level of evaluation

RGB Noise Fusion pixel edge image pixel image

MFCN, Salloum et al. 2017 [13] + - - FCN + + - + -

RGB-N, Zhou et al. 2018 [14] + SRM filter late fusion
(bilinear pooling) Faster R-CNN - * - + -

H-LSTM†, Bappy et al. 2019 [3] + - - Patch-LSTM + - - + -

ManTra-Net†, Wu et al. 2019 [15] + SRM filter
BayarConv

early fusion
(feature concatenation) Wider VGG + - - + -

HP-FCN†, Li & Huang 2019 [25] - High-pass filters - FCN + - - + -

GSR-Net†, Zhou et al. 2020 [16] + - - DeepLabv2 + + - + -

CR-CNN†, Yang et al. 2020 [17] - BayarConv - Mask R-CNN + * - + -

SPAN†, Hu et al. 2020 [18] + SRM filter
BayarConv

early fusion
(feature concatenation) Wider VGG + - - + -

MM-Net, Yang et al. 2021 [26] + BayarConv middle fusion
(attention guidance) Mask R-CNN + - - + -

JPEG-ComNet, Rao & Ni 2021 [27] + SRM filter early fusion
(feature concatenation) Siamese FCN + + - + -

CAT-Net†, Kwon et al. 2021 [28] + DCT middle fusion
(feature concatenation) HRNet + - - + -

Proposed MVSS-Net† + BayarConv late fusion
(dual attention) FCN + + + + +

and indirectly learn the boundary artifacts along with the noise
view, e.g. via a bounding-box regression task [14]. To the best
of our knowledge (Table 1), we are the first to jointly exploit the
noise view and the explicitly extracted boundary artifacts to learn
manipulation detection features. With multi-scale supervision, we
also make an initial endeavor to learn from the authentic data.
Note that the above joint exploitation is technically nontrivial. For
instance, simply adding the image classification loss improves the
model specificity, but at the cost of considerable degrade in pixel-
level detection performance, as our experiments show. To combine
the best of the two worlds, new networks are needed.

To sum up, our major contributions are as follows:
• Proposed MVSS-Net as a new network for image manipula-
tion detection. As Fig. 2 shows, the technical strength of MVSS-
Net lies in its capability to jointly exploit the multi-view input, the
explicitly extracted boundary artifacts and the holistic information
in an end-to-end manner. Multi-view feature learning is designed
to extract semantic-agnostic and thus more generalizable features.
• Network training by multi-scale supervision. This allows us
to learn effectively from authentic images, which are ignored by
the prior arts. Consequently, the manipulation detection specificity
is improved substantially.
• Superior to the SOTA on multiple benchmarks. As extensive
experiments on two training sets and six test sets show, MVSS-
Net compares favorably against the SOTA. The inclusion of
authentic test images reveals a model’s detection specificity at the
image level. Code and models are available at GitHub1.

A preliminary version of this work was published at ICCV
2021 [35]. The journal article improves over the conference paper
in multiple aspects. First, for converting pixel-level manipulation
detection to an image-level prediction, we propose ConvGeM to

1https://github.com/dong03/MVSS-Net

replace global max pooling (GMP) used in [35]. The new module
effectively overcomes two downsides of GMP, i.e. the bottleneck
in back propagating the image-scale loss and the lack of ability
to consider the amount and the spatial distribution of positive
responses. This results in a better model MVSS-Net++. Second,
we strengthen our evaluation by including three more baseline
methods, i.e. H-LSTM [3], SPAN [18] and CAT-Net [28], and a
recently released dataset, i.e. IMD [36]. In addition, we present
a pilot study on how the current models react to manipulated
images given re-capturing by screenshot, a common operation
when images circulate on the Internet.

2 RELATED WORK

We are inspired by a number of recent works that made novel at-
tempts to learn semantic-agnostic features for image manipulation
detection, see Table 1. We describe in brief how these attempts
are implemented and explain our novelties accordingly. We focus
on deep learning approaches to copy-move / splicing / inpainting
detection. For the detection of low-level manipulations such as
Gaussian Blur and JPEG compression, we refer to [30].

In order to suppress the content information, Li and Huang
[25] propose to implement an FCN’s first convolutional layer with
trainable high-pass filters and apply their HP-FCN for inpainting
detection. Kown et al. [28] model quantized DCT coefficient dis-
tribution to trace compression artifacts. Yang et al. use BayarConv
[30] as the initial convolutional layer of their CR-CNN [17].
Although such constrained conv. layers are helpful for extracting
noise information, using them alone has the risk of losing other
useful information in the original RGB view. Hence, we see
an increasing number of works on exploiting information from
both the RGB view and the noise view [14], [15], [18], [26],
[27], [28]. Zhou et al. [14] develop a two-stream Faster R-CNN,

https://github.com/dong03/MVSS-Net
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coined RGB-N, which takes as input the RGB image and its noise
counterpart generated by the spatial rich model (SRM) [29]. Rao
and Ni also use SRM [27], whilst Wu et al. [15] and Hu et al.
[18] use both BayarConv and SRM. Given features from distinct
views, the need for feature fusion is on. Feature concatenation
at an early stage is adopted by Mantra-Net [15], SPAN [18] and
JPEG-ComNet [27], while CAT-Net [28] concatenates the features
at a middle stage. Alternatively, MM-Net [26] performs feature
fusion at an intermediate stage, where features from the noise-
view branch are used as attention maps to re-weight features from
the RGB-view branch. Our MVSS-Net is more close to RGB-N as
it performs feature fusion at the late stage. However, different from
the non-trainable bilinear pooling used in RGB-N, Dual Attention
used in MVSS-Net is trainable and thus more selective.

As manipulating a specific region in a given image inevitably
leaves traces between the tampered region and its surrounding,
how to exploit such edge artifact also matters for manipulation
detection. Salloum et al. develop a multi-task FCN (MFCN) to
symmetrically predict a tampered area and its boundary [13].
GSR-Net has an edge detection and refinement branch which
accepts features from different levels [16]. The more recent JPEG-
ComNet [27] applies boundary attention on RGB view features to
predict edges of manipulated areas, and subsequently utilizes the
prediction to refine manipulation segmentation. Given that region
segmentation and edge detection are intrinsically two distinct
tasks, the challenge lies in how to strike a proper balance between
the two. Directly using deeper features for edge detection as
done in JPEG-ComNet has the risk of affecting the main task
of manipulation segmentation, while putting all features together
as used in MFCN and GSR-Net may let the deeper features
be ignored by the edge branch. Our MVSS-Net has an edge-
supervised branch that effectively resolves these issues.

Last but not least, we observe that the specificity of an image
manipulation detector, i.e. how it responds to authentic images,
is seldom reported. In fact, the mainstream solutions are devel-
oped within a semantic segmentation network. Naturally, they are
trained and evaluated on manipulated images in the context of
manipulation segmentation [16]. The absence of authentic images
both in the training and test stages naturally raises concerns regard-
ing the detection specificity. In this paper we make a novel attempt
to include authentic images for training and test, an important
step towards real-world deployment. In addition, different from
the previous common practice that selects a model’s decision
threshold based on test data, we advocate the use of a default
threshold of 0.5. Such an evaluation also matters practically.

3 PROPOSED MODEL

Given an RGB image x of size W ×H × 3, we aim for a multi-
head deep network G that not only determines whether the image
has been manipulated, but also pinpoints its manipulated pixels. In
particular, we let G have an semantic segmentation head, denoted
by Gseg , for producing a full-size probability map, denoted by
S(x), which indicates the probability of manipulation at the
pixel level. We have access to the pixel-level scores via Si,j(x),
i = 1, . . . ,W, j = 1, . . . ,H . Meanwhile, the network has an
image classification head Gclf to output C(x) the probability
of the image being manipulated. As the image-level decision is

naturally subject to pixel-level evidence, we derive C(x) from the
segmentation map:{

S(x) ← Gseg(x),
C(x) ← Gclf (S(x)).

(1)

Eq. 1 provides a high-level sketch of our network.
In order to extract generalizable manipulation detection fea-

tures, G is designed to accept both the original RGB-view and an
extra noise-view of the input image. To strike a proper balance
between detection sensitivity and specificity, the multi-view fea-
ture learning process is jointly supervised by annotations of three
scales, i.e. pixel, edge and image. All this results in Multi-View
multi-Scale Supervised Networks (MVSS-Net).

3.1 Multi-View Feature Learning

MVSS-Net has two branches, both with ResNet-50 [37] as their
backbones. The edge-supervised branch (ESB) at the top of Fig. 2
is specifically designed to exploit subtle boundary artifacts around
tampered regions, whilst the noise-sensitive branch (NSB) at the
bottom is to capture the noise inconsistency between tampered and
authentic regions. Both clues are meant to be semantic-agnostic.

3.1.1 Edge-Supervised Branch
Ideally, with edge supervision, we hope the response area of the
network will be more concentrated on tampered regions. Design-
ing such an edge-supervised network is nontrivial. As noted in Sec.
2, the main challenge is how to construct an appropriate input for
the edge detection head. On one hand, directly using features from
the last ResNet block is problematic, as this will enforce the deep
features to capture low-level edge patterns and consequently affect
the main task of manipulation segmentation. While on the other
hand, using features from the initial blocks is also questionable,
as subtle edge patterns contained in these shallow features can
vanish with ease after multiple deep convolutions. A joint use of
both shallow and deep features is thus necessary. However, we
argue that simple feature concatenation as previously used in [16]
is suboptimal, as the features are mixed and there is no guarantee
that the deeper features will receive adequate supervision from the
edge head. To conquer the challenge, we propose to construct the
input of the edge head in a shallow-to-deep manner.

As illustrated in Fig. 2, features from different ResNet blocks
are combined in a progressive manner for manipulation edge
detection. In order to enhance edge-related patterns, we introduce
a Sobel layer, see Fig. 3(a). The basic idea behind the Sobel layer
is to discriminate edge-related pixels from others in a given feature
map by attending to them with edge-related weights. In order to
obtain such an attention map, we let the feature map go through
the classical Sobel filter, which is widely used for identifying
candidate edge pixels [38], followed by a Batch Normalization
layer and an L2 Norm layer, and eventually a sigmoid (σ) layer.
The feature map is then re-weighted using the attention map with
element-wise multiplication.

The feature map produced by the block #i, enhanced by the
Sobel layer, then goes through an edge residual block (ERB), see
Fig. 3(b), before being combined (by summation) with its coun-
terpart from the block #i+1. To prevent the effect of accumulation
that unwittingly makes features from the last blocks slighted, we
let the combined features go through another ERB (top in Fig. 2)
before the next round of feature combination. We believe such a
mechanism helps prevent extreme cases wherein deeper features
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are either over-supervised or fully ignored by the edge head. By
visualizing feature maps of the last ResNet block in Fig. 4, we
observe that the proposed ESB indeed produces more focused
responses near tampered regions.

(a) Sobel Layer

(b) Edge Residual Block (ERB)

Fig. 3. Diagrams of (a) Sobel layer and (b) edge residual block, used
in ESB for manipulation edge detection.

Fig. 4. Visualization of averaged feature maps of the last ResNet
block, brighter color indicating higher responses. Manipulation from the
top to bottom is inpainting, copy-move and splicing. Read from the third
column are w/o edge (standard ResNet with no edge-related block),
GSR (ResNet with the GSR-Net alike edge branch) and our ESB, which
produces more focused responses near tampered regions.

The output of ESB has two parts: feature maps from the last
ResNet block, denoted as {fesb,1, . . . , fesb,k}, to be used for the
main tasks, and the predicted manipulation edge map, denoted as
Sedge(x), obtained by transforming the output of the last ERB
with a sigmoid (σ) layer. The key data flow of the ESB branch is
conceptually expressed by Eq. 2,

{fesb,1, . . . , fesb,k}
Sedge(x)

}
←ESB(x). (2)

3.1.2 Noise-Sensitive Branch
In parallel to ESB, we build a noise-sensitive branch (NSB).
NSB is implemented as a standard FCN (another ResNet-50 as

its backbone) except for its input, which is a noise view of a given
image rather than the original RGB view. Regarding the choice of
noise extraction, we adopt BayarConv [30], which is found to be
better than the SRM filter [17].

According to Bayar and Stamm [30], BayarConv is developed
to enhance the noise inconsistency between manipulated and au-
thentic regions within a given image. To that end, the BayarConv
layer is implemented as a set of trainable prediction error filters.
The response of each filter is designed to be the error between the
center-pixel value of the filter window and the linear combination
of the remaining pixel values within the window. More concretely,
given a specific convolutional filter parameterized by ω with
ω(0, 0) as its center element, BayarConv imposes two constraints,
i.e. ω(0, 0) = −1 and

∑
i,j 6=0

ω(i, j) = 1. The constraints are

applied on ω after each training iteration.
As Fig. 2 shows, letting the given image x go through a

BayarConv layer with kernel size of 5 × 5 × 3, we obtain its
full-sized noise view as BayarConv(x). The output of the NSB
branch is an array of k feature maps from the last ResNet block
of its backbone, i.e.

{fnsb,1, . . . , fnsb,k} ← ResNet(BayarConv(x)). (3)

3.1.3 Branch Fusion by Dual Attention
Given two arrays of feature maps {fesb,1, . . . , fesb,k} and
{fnsb,1, . . . , fnsb,k} from ESB and NSB, we propose to fuse
them by a trainable Dual Attention (DA) module [39]. This is
new, because previous work [14] uses bilinear pooling for feature
fusion, which is non-trainable.

The DA module has two attention mechanisms working in par-
allel: channel attention (CA) and position attention (PA), see Fig.
5. CA associates channel-wise features to selectively emphasize
interdependent channel feature maps. Meanwhile, PA selectively
updates features at each position by a weighted sum of the features
at all positions. The outputs of CA and PA are summed up,
and transformed via a 1 × 1 convolution into a feature map of
size W

16 ×
H
16 , denoted as S

′
(x). With parameter-free bilinear

upsampling followed by an element-wise sigmoid function, S
′
(x)

is transformed into the full-size segmentation map S(x). The DA
based branch fusion is conceptually expressed as{

S
′
(x)←DA([fesb,1,. . .,fesb,k,fnsb,1, . . . , fnsb,k]),

S(x)←σ(bilinear-upsampling(S
′
(x))).

(4)

3.2 ConvGeM for Image-Level Prediction
Concerning Gclf in Eq. 1, a straightforward implementation is
Global Max Pooling (GMP) as previously used in our conference
paper [35]. GMP takes the maximum of S(x) as C(x), i.e.
C(x) = Si∗,j∗(x), with (i∗, j∗) = argmaxi,j Si,j(x). While
GMP links C(x) directly to S(x), we argue that this operation is
suboptimal due to the following two downsides. First, as an image
classification loss is practically computed based on Si∗,j∗(x), the
gradient w.r.t. the loss is back-propagated exclusively via the sole
point (i∗, j∗). Such a bottleneck not only slows down the training
of the classification head, but also impedes the head from guiding
the entire network. Second, GMP is invariant to the amount of
positive responses and how they are spatially distributed. However,
both properties matter for the pixel-level detection result to be
meaningful. According to Gestalt theory [40], humans perceive
visual patterns in connection with their spatial context. Following
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Fig. 5. Dual Attention (DA), with its channel attention module shown
in blue and its position attention module shown in green. While DA was
originally developed for capturing long-range contextual dependencies
of feature maps produced by a single-branch network [39], we re-
purpose it for fusing feature maps from two distinct branches.

this theory, for an effective deception, a certain amount of pixels in
a given image have to be manipulated simultaneously with certain
configurations. As such, positive responses occurring sporadically
are more likely to be noise than their spatially grouped counter-
parts. Telling them apart is beyond the capability of GMP.

We notice that Generalized Mean pooling (GeM), originally
proposed for image retrieval [41], can be used to overcome the
first downside of GMP. As shown in Eq. 5, GeM uses a trainable
positive parameter p to strike a balance between global mean
pooling (p = 1) and GMP (say a larger p of 100):

GeM(S(x)) =
1

W ×H
(
W∑
i=1

H∑
j=1

S(xi,j)
p)

1
p . (5)

As more pixels contribute to C(x), GeM effectively breaks the
bottleneck of GMP in back propagation. We empirically observe
that substituting GeM for GMP saves 10 training epochs ap-
proximately. Nonetheless, GeM remains invariant to the spatial
distribution of the positive responses.

As convolution naturally captures spatial correlation among
pixels, one might consider adding a convolutional block, denoted
by Conv(S(x)), in advance to GeM. Consequently, C(x) is
obtained as GeM(Conv(S(x))). Notice that in the early training
epochs, the network, in particular its segmentation head Gseg ,
has not been well trained, and thus mostly produces meaningless
S(x). Such noisy input to Gclf will be further exaggerated by
Conv, making the classification head and consequently the entire
network difficult to train. In order to suppress such a negative
effect, we add GeM(S(x)) to C(x) through a decayed skip
connection weighed by a nonnegative hyper parameter λ as

C(x) = λ · GeM(S(x)) + (1− λ) · GeM(Conv(S(x))) (6)

where λ is initialized with a value close to 1, and decayed
nonlinearly w.r.t. the number of epochs. As illustrated in Fig 6,
using a close-to-one λ lets Gclf temporarily ignore the Conv
block at the early training stage. Then, as Gseg continuously
improves to provide more accurate and reliable S(x), λ decreases
more rapidly to let Gclf count more on Conv to exploit S(x)
sufficiently. As Eq. 6 shows, the convex combination of GeM
and GeM(Conv) with their weights dynamically determined in
the training process effectively tackles the drawbacks of GMP. We
coin the new module ConvGeM.

Fig. 6. Illustration of the proposed ConvGeM module that con-
verts the pixel-level manipulation detection result S(x) to the image-
level prediction C(x). The hyper parameter λ that balances GeM and
GeM(Conv) decays w.r.t. the training epochs, and is dynamically deter-
mined in the training process.

3.3 Multi-Scale Supervision

We consider losses at three scales, each with its own target, i.e.
a pixel-scale loss for improving the model’s sensitivity for pixel-
level manipulation detection, an edge loss for learning semantic-
agnostic features and an image-scale loss for improving the
model’s specificity for image-level manipulation detection.

Pixel-scale loss. As manipulated pixels are typically in minor-
ity in a given image, we use the Dice loss, found to be effective
for learning from extremely imbalanced data [34]:

lossseg(x) = 1−
2
∑

i,j S(xi,j) · yi,i∑
i,j S

2(xi,j) +
∑

i,j y
2
i,j

, (7)

where yi,j ∈ {0, 1} is a binary label indicating whether pixel
(i, j) is manipulated.

Edge loss. As pixels of an edge are overwhelmed by non-
edge pixels, we again use the Dice loss for manipulation edge
detection, denoted as lossedg . Since manipulation edge detection
is an auxiliary task, we do not compute the lossedg at the full
size of W ×H . Instead, the loss is computed at a smaller size of
W
4 ×

H
4 , see Fig. 2. This tactic reduces computational cost during

training, and in the meanwhile, improves the performance slightly.
Image-scale loss. In order to reduce false alarms, authentic

images have to be taken into account in the training stage. This is
however nontrivial for the current works, e.g. Mantra-Net [15],
HP-FCN [25] and GSR-Net [16], as they all rely on certain
semantic segmentation losses. Consider the widely used binary
cross-entropy (BCE) loss for instance. An authentic image with a
small percent of its pixels misclassified contributes marginally to
the BCE loss, making it difficult to effectively reduce false alarms.
Also note that the Dice loss cannot handle the authentic image by
definition. Therefore, an image-scale loss is needed.

As the two classes at the image level are more balanced than
their counterpart at the pixel level, we adopt the BCE loss, widely
used for image classification, for computing the image-scale loss:

lossclf (x) = −(y · logC(x) + (1− y) · log(1− C(x))), (8)

with y = max({yi,j}). It is worth pointing out that the usefulness
of lossclf is not limited to improving model specificity. Through
ConvGeM, the image-scale supervision can now be back prop-
agated more effectively than our previously used GMP [35] for
improving feature learning.
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Combined loss. Given the losses computed at three distinct
scales, we obtain a combined loss by a convex combination, i.e.

Loss = α · lossseg + β · lossclf + (1− α− β) · lossedg (9)

where α, β ∈ (0, 1) are positive weights. The combined loss is
minimized by stochastic gradient descent, where authentic images
in a specific mini-batch are used to compute lossclf only.

4 EXPERIMENTS

4.1 Experimental Setup

Datasets. For a head-to-head comparison with the state-of-the-art,
we adopt CASIAv2 [21] for training and widely used COVER
[23], Columbia [32], NIST16 [31], CASIAv1+2 [22] and the more
recent IMD [36] for testing. Meanwhile, we notice DEFACTO [4],
a recent large-scale dataset, containing 149k images sampled from
MS-COCO [43] and auto-manipulated by copy-move, splicing and
inpainting. Considering the challenging nature of DEFACTO, we
choose to perform our ablation study on this new set. As the set
has no authentic images, we construct a training set termed DEF-
84k, by randomly sampling 64k positive images from DEFACTO
and 20k negative images from MS-COCO. In a similar manner,
we build a test set termed DEF-12k, by randomly sampling 6k
positive images from the remaining part of DEFACTO and 6k
negatives from MS-COCO. Note that to avoid any data leakage,
for manipulated images used for training (test), their source images
are not included in the test (training) set. In total, our experiments
use two training sets and six test sets, see Table 2. Metadata of
these sets is available at our project website1.

TABLE 2
Two training sets and six test sets used in our experiments. The
symbol – indicates information unavailable. Copy-move, splicing and

inpainting are shortened as cmpv, spli and inpa, respectively. DEF-84k
and DEF-12k are used for training and test in the ablation study

(Section 4.2), while for the SOTA comparison (Section 4.3) we train on
CASIAv2 and evaluate on all test sets.

Dataset Negative Positive cpmv spli inpa

Training
DEF-84k [4] 20,000 64,417 12,777 34,133 17,507
CASIAv2 [21] 7,491 5,063 3,235 1,828 0

Testing
COVER [23] 100 100 100 0 0
Columbia [32] 183 180 0 180 0
NIST16 [31] 0 564 68 288 208
CASIAv1+ [22] 800 920 459 461 0
IMD [36] 414 2,010 – – –
DEF-12k [4] 6,000 6,000 2,000 2,000 2,000

Evaluation Criteria. For pixel-level manipulation detection,
following previous works [13], [14], [16], we compute pixel-
level precision and recall, and report their F1. For image-level
manipulation detection, in order to measure the miss detection
rate and false alarm rate, we report sensitivity, specificity and their
F1. AUC as a decision-threshold-free metric is also reported. Au-
thentic images per testset are only used for image-level evaluation.

2Note that the original CASIAv1 has 782 authentic images in common
with CASIAv2. We fixed the issue by replacing these common images in
CASIAv1 with the same amount of images randomly sampled from Corel [42],
which is the data source of CASIAv1. We term the fixed version CASIAv1+.

Note that previous works commonly report performance with
the decision threshold selected per testset [16], [18], [28], allowing
one to compare models under their optimal conditions. However,
this setting leads to overly optimistic performance estimates, as in
practice, a model’s decision threshold (or its operating point) has
to be pre-specified and fixed. Towards real-world evaluation, for
both pixel-level and image-level F1 computation, we propose to
use a default threshold of 0.5, unless otherwise stated.

The overall performance is measured by Com-F1, defined as
the harmonic mean of pixel-level and image-level F1. Com-F1
is sensitive to the lowest value of pixel-F1 and image-F1. In
particular, it scores 0 when either pixel-F1 or image-F1 is 0, which
does not hold for the arithmetic mean.

For a more complete comparison, we additionally report accu-
racy per test set, i.e. the percentage of correctly classified samples
in a test set. Pixel-level / image-level accuracy is obtained by
treating every pixel / image as a sample. Note that accuracy is not a
reliable metric when the class distributions are highly imbalanced.
So we report MCC (Matthews Correlation Coefficients) [44], a
more balanced measure of a classifier’s ability on both classes.

Implementation. Our models are implemented in PyTorch and
trained on an NVIDIA Tesla V100 GPU. The input size is 512×
512. The two ResNet-50 used in ESB and NSB are initialized with
ImageNet-pretrained counterparts. We use an Adam [45] optimizer
with a learning rate periodically decays from 10−4 to 10−7. For
the two hyper-parameters in the combined loss, we empirically set
α = 0.16 and β = 0.04, see a parameter sensitivity analysis in the
online supplementary material3. As for ConvGeM, the initial value
of p in the GeM used in the decayed skip connection is set to 10 so
as to get a similar effect of GMP, while p of the GeM in the Conv
branch is initialized to be 3 to make this GeM more close to global
mean pooling. The weight λ in Eq. 6 is decayed nonlinearly w.r.t.
the number of training epochs e as λ = 0.9975(e·e), e = 1, 2, . . ..
An early stop occurs once the loss on a held-out validation set
from DEFACTO does not decrease in 10 consecutive epochs. As
such, the number of training epochs depends on the training data
in use: training on CASIAv2 takes 16 epochs, meaning λ of 0.527
in the inference mode, while training on DEF-84k requires a larger
number of 30 epochs, resulting in a smaller λ of 0.105.

We apply regular data augmentation for training, including
flipping, blurring, compression and naive manipulations either by
cropping and pasting a squared area or using built-in OpenCV
inpainting functions [46], [47].

4.2 Ablation Study

To reveal the influence of the individual components, we evaluate
the proposed model in varied setups with the components added
progressively. All results reported in this section are obtained with
DEF-84k as the training set and DEF-12k as the test set.

4.2.1 On Trainable Components

Influence of the semantic segmentation backbone. We depart
from FCN-16 without multi-view multi-scale supervision. Recall
that we use a DA module for branch fusion. So for a fair
comparison, we adopt FCN-16 with DA, making it essentially
an implementation of DANet [39]. Such an improved FCN-16
scores better than its more advanced counterparts, e.g. UNet [48],

3https://tinyurl.com/mvssnet-extra

https://tinyurl.com/mvssnet-extra
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DeepLabv3 [49] and DeepLabv3+ [50], see Table 3. The re-
sult confirms our conjecture in Section 1 that the state-of-the-
art semantic segmentation networks are indeed suboptimal for
manipulation detection. The competitive baseline (FCN-16 with
DA) is referred to as Seg (Setup #0) in Table 4.

TABLE 3
Performance of different semantic segmentation backbones,

trained with the segmentation loss only. F1 scores are in percentage.

Backbone Pixel-F1 Image-F1 Image-AUC Com-F1

U-Net 13.2 51.7 0.540 21.0
DeepLabV3 24.9 52.6 0.645 33.8
DeepLabV3+ 27.9 50.9 0.651 36.0
FCN-16 33.7 69.9 0.774 45.5
FCN-16 with DA 54.6 70.9 0.840 61.7

Influence of the image classification loss. Comparing
Seg+Clf and Seg, we see a clear increase in specificity and a
clear drop in sensitivity, suggesting that adding lossclf makes the
model more conservative for reporting manipulation. This change
is not only confirmed by lower Pixel-F1, but is also observed in the
fourth column of Fig. 7, showing that manipulated areas predicted
by Seg+Clf are much reduced.

Influence of NSB. Since Seg+Clf+Noise is obtained by adding
NSB into Seg+Clf, its better performance verifies the effectiveness
of NSB for improving manipulation detection.

Influence of ESB. The better performance of Seg+Clf+Edge
against Seg+Clf justifies the effectiveness of ESB.

ESB versus GSR-Net. Seg+Clf+GSR is obtained by replacing
our ESB with the edge branch of GSR-Net [16]. The over-
all performance of Seg+Clf+GSR is lower than Seg+Clf+Edge.
Moreover, there is a larger performance gap on cmpv (ESB of
0.405 versus GSR-Net of 0.363). The results clearly demonstrate
the superiority of the proposed ESB over the prior art.

Influence of two branch fusion. The full setup, with ESB
and NSB fused by dual attention, performs the best, showing
the complementarity of the individual components. To further
justify the necessity of our dual attention based fusion, we
make an alternative solution which ensembles Seg+Clf+Noise and
Seg+Clf+Edge by model averaging, refereed to as Ensemble(N,E).
Comparing Setup #6 and #7 in Table 4, we see that MVSS-
Net is better than Ensemble(N,E), showing the advantage of our
fusion method. Comparison to fusion by bilinear pooling as used
previously [14] is provided in the appendix.

Influence of Gclf . We compare three different implemen-
tations of Gclf , i.e. GMP, GeM and the proposed ConvGeM,
with their performance shown in the last three rows of Table
4. Compared with GMP, GeM obtains a higher pixel-level F1,
indicating a more effective usage of the image-scale supervision
for improving the segmentation network. However, GeM averages
the responses over pixels, albeit in a nonlinear manner, making
it less sensitive, and consequently resulting in a sharp drop in
image-level detection sensitivity (from 79.7 to 63.1). Its gain on
the pixel-level task and its loss on image-level task cancel out each
other, making Com-F1 mostly unchanged compared to GMP. By
contrast, ConvGeM strikes the best balance between the two tasks,
improving Com-F1 from 64.3 to 66.3.

Edge segmentation versus bounding box regression. An
alternative strategy for learning boundary artifacts around manip-
ulated regions is to treat tampering localization as a bounding-box

(bbox) regression task, see [14]. To compare with this alternative,
we replace the edge segmentation head, i.e. the sigmoid layer in
Fig. 2, by the object detection head of CenterNet [51]. CenterNet
performs anchor-free object detection with a two-branch head,
where one branch produces a probabilistic map of each pixel being
the center of an object, while the other branch is responsible for
predicting object sizes. In our context, the region of an object
is defined as the minimum bbox that encloses all pixels in a
given tempering area. The performance of MVSS-Net trained
with the object detection loss is shown in the second last row of
Table 4 (Setup #9.1). Its relatively lower scores than Setup #9 in
terms of both pixel-level and image-level manipulation detection
suggest that the edge segmentation loss is more suited for learning
boundary artifact features.

4.2.2 On Non-trainable Blocks

Influence of Sobel on ESB. Seg+Clf+Edge/s is obtained by
removing the Sobel operation from Seg+Clf+Edge, so its perfor-
mance degeneration in particular on copy-move detection (from
0.405 to 0.382, cmpv in Table 4) indicates the necessity of Sobel.

It is worth mentioning that the benefit of Sobel for tampering
edge detection is concluded on the basis of the ResNet-based
network architecture. Compared to ResNet, big vision models with
billions of trainable parameters have shown superior performance
in natural image classification [52]. Replacing the ResNet blocks
used in MVSS-Net with their counterparts from the big models
is likely to boost the performance of the current task. Whether
the non-trainable Sobel is beneficial for such more sophisticated
network architectures requires future investigation.

Enhancing NSB using non-trainable blocks? Inspired by
the benefit of Sobel to ESB, we attempt to enhance NSB by using
non-trainable blocks to progressively extract noise-related artifacts
from the output of each ResNet block in NSB. In particular, we
use a median filtering residual (MFR) block after each ResNet
block. An MFR processes an input feature map by subtracting the
median-filtered feature map from the input, and thus acts as a high-
pass filter. The output of each MFR is incrementally aggregated
in a shallow-to-deep manner similar to the ESB logic in Fig. 2.
The output of the last MFR is added to the output of the last
ResNet block, before the DA module. We refer to the appendix
for more details. The performance of NSB with MRF is shown in
Setup #9.2 in Table 4. Compared with Setup #9 (NSB w/o MFR),
the higher sensitivity (81.3 vs 74.8) and lower specificity (79.9
vs 85.7) suggest that high-frequency noise patterns are sensitive
to manipulation, but not sufficiently specific, resulting in more
pixel-level false alarms. Therefore, the MFR benefit to image-
level manipulation detection is obtained at the cost of performance
degradation in pixel-level manipulation detection.

4.2.3 Qualitative Visualization

Fig. 7 shows some qualitative results of pixel-level manipulation
detection. From the left to right, the results demonstrate how the
propose model in varied setups strikes a balance between the
detection sensitivity and specificity.

So far, our evaluation is performed on homologous training
and test data. Next, we evaluate the generalization ability of our
models in a cross-dataset setting, with CASIAv2 as a common
training set and COVER, Columbia, NIST16, CASIAv1+, IMD
and DEF-12k as the test sets.
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TABLE 4
Ablation study of MVSS-Net . Training: DEF-84k. Test: DEF-12k. F1, Sensitivity (Sen.) and Specificity (Spe.) scores are in percentage. Best

number per column is highlighted in bold. The steadily improved performance justifies the necessity of the individual components used in
MVSS-Net (Setup #7) and MVSS-Net++ (Setup #9).

Setup Component Pixel-level manipulation detection (F1) Image-level manipulation detection Com-F1
ESB NSB cpmv. spli. inpa. MEAN AUC Sen. Spe. F1

Conference version [35], with GMP as Gclf
0: Seg – – 45.3 72.2 46.3 54.6 0.840 82.7 62.0 70.9 61.7
1: Seg+Clf – – 34.1 67.3 37.6 46.3 0.858 76.8 77.8 77.3 57.9
2: Seg+Clf+Noise – + 39.3 70.6 42.6 50.8 0.871 76.3 82.1 79.1 61.9
3: Seg+Clf+Edge + – 40.5 71.5 43.5 51.8 0.870 77.3 81.1 79.2 62.6
4: Seg+Clf+Edge/s w/o sobel – 38.2 71.0 42.2 50.5 0.869 79.2 78.9 79.0 61.6
5: Seg+Clf+GSR GSR-Net – 36.3 71.4 42.1 49.9 0.864 81.3 77.9 79.6 61.3
6: Ensemble(#2, #3) + + 38.4 70.8 43.7 51.0 0.878 73.1 87.6 79.7 62.2
7: Seg+Clf+Noise+Edge + + 44.6 71.4 45.5 53.8 0.886 79.7 80.2 79.9 64.3

Journal extension, built on top of Setup #7
8: GeM as Gclf + + 48.0 73.5 47.0 56.2 0.871 63.1 93.0 75.2 64.3
9: ConvGeM as Gclf + + 48.3 72.8 49.0 56.7 0.879 74.8 85.7 79.9 66.3
9.1: Edge→ BBox + + 47.7 73.9 47.1 56.2 0.884 70.6 89.4 78.9 65.7
9.2: NSB with MFR + + 45.5 72.4 46.0 54.6 0.894 81.3 79.9 80.6 65.1

Fig. 7. Visualizing pixel-level manipulation detection results of the proposed model in varied setups. Data source: DEFACTO [4]. The test
images in the last three rows are authentic. Setups with multi-scale supervision (Seg+Clf and afterwards) improves the detection specificity, yet at
the cost of the detection sensitivity, which has to be brought back by multi-view feature learning. Among all the setups, MVSS-Net++ strikes the
best balance between the detection sensitivity and specificity.
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4.3 Comparison with State-of-the-art
4.3.1 Baselines
For a fair and reproducible comparison, we have to be selective,
choosing the state-of-the-art that meets one of the following three
criteria: 1) pre-trained models released by paper authors, 2) source
code publicly available, and 3) following a common evaluation
protocol where CASIAv2 is used for training and other public
datasets are used for testing. Accordingly, we compile a list of
nine published baselines as follows:
• Models available: H-LSTM [3] (pre-trained on a homemade
dataset of 65k manipulated images and finetuned on NIST16 and
IEEE Forensics Challenge data4), ManTra-Net [15] (trained on a
private set of millions of manipulated images5), HP-FCN [25]
(trained on a private set of inpainted images6), CR-CNN [17]
(trained on CASIAv27), SPAN [18] (trained on the same data
as ManTra-Net and finetuned on CASIAv28), and CAT-Net [28]
(trained on a joint dataset including CASIAv2, IMD, Fantastic
Reality [53], self-spliced COCO9). We use these six models as is.
• Code available: GSR-Net [16], which we train using author-
provided code10. We cite their results where appropriate and use
our re-trained model only when necessary.
• Same evaluation protocol: MFCN [13] and RGB-N [14] with
numbers quoted from the same team [16].

For a fair comparison, we have re-trained FCN (Setup#0 in
Table 4), MVSS-Net (Setup#7) and MVSS-Net++(Setup#9) from
scratch on CASIAv2. As the previous works seldom report their
image-level performance, an image classification head is naturally
missing in their implementations. In order to obtain image-level
predictions of the baselines yet with no need of hacking into their
models or code, we utilize GMP as having been used in MVSS-Net.

4.3.2 Pixel-Level Manipulation Detection
Table 5 shows the pixel-level detection performance of the varied
models. MVSS-Net++ is the best in terms of overall performance.
We attribute the better performance of ManTra-Net on DEF-12k to
its large-scale training data, which was also originated from MS-
COCO as DE-12k. The top performer on NIST is H-LSTM, the
training data of which contains around 70% of NIST. Compared
with baselines trained on the same CASIAv2, i.e. MFCN, RGB-N,
CR-CNN and GSR-Net, MVSS-Net++ surpasses them on almost
all testsets. Its superior performance in this cross-dataset setting
justifies its better generalization ability.

Comparing the left part of Table 5, which shows the models’
performance in their optimal conditions, and the right part of the
table, which shows the counterpart performance in a real scenario,
a clear gap exists. For the best baseline, i.e. SPAN, its pixel-level
F1 drops from 68.8 to 21.4. As for MVSS-Net++, its F1 drops
from 73.2 to 38.7. The result shows the challenging nature of
the task and the necessity of the proposed evaluation protocol for
fairly assessing the technical progress towards real deployment.

4.3.3 Image-Level Manipulation Detection
Table 6 shows the image-level performance of the different mod-
els, all using the default decision threshold of 0.5. MVSS-Net++ is

4https://github.com/jawadbappy/forgery localization HLED
5https://github.com/ISICV/ManTraNet
6https://github.com/lihaod/Deep inpainting localization
7https://github.com/HuizhouLi/Constrained-R-CNN
8https://github.com/ZhiHanZ/IRIS0-SPAN
9https://github.com/mjkwon2021/CAT-Net

10https://github.com/pengzhou1108/GSRNet

again the top performer. With multi-scale supervision, the MVSS-
Net series are able to learn from the authentic and obtains higher
specificity, and thus lower false alarm rate, on most test sets.
Our models also have competitive AUC scores, meaning they are
better than the baselines on a wide range of operating points. Fig.
8 shows the performance curves of the individual models w.r.t.
the decision threshold. The peak performance of MVSS-Net++ is
obtained at the decision value of 0.46, much closer to 0.5 than
its counterparts in the other models. This result again suggests the
better generalization ability of our model.

The overall performance of both pixel-level and image-level
manipulation detection is provided in Table 7.

Fig. 8. Performance curves w.r.t. the decision threshold. Larger
threshold means lower sensitivity and higher specificity. Per model, its
image-level F1 score given a specific threshold is obtained by averaging
the F1 scores over the five testsets, i.e. Columbia, CASIAv1+, COVER,
DEF-12k and IMD. The two numbers following each model are its
optimal threshold and the corresponding F1, as visualized in red circles.

4.3.4 Robustness Evaluation

Following [14], [15], [18], we evaluate the model robustness
against two daily image processing operations when images
circulate on the Internet, i.e. JPEG compression and Gaussian
blur. Furthermore, we investigate how the current models react
to manipulated images re-captured by screenshot, which to the
best of our knowledge has not been done before.

Comparing the two operations, Gaussian blur affects the de-
tection performance more severely, in particular when a larger
kernel size of 17 × 17 and above are used, see Fig. 9. While
such a larger kernel effectively erase manipulation traces, it also
noticeably decreases the readability of the pictorial content (data
not shown). Both MVSS-Net and MVSS-Net++ exhibit better
robustness than the baselines. According to their original papers,
ManTra-Net and SPAN used a wide range of data augmentations
including compression, while CR-CNN, GSR-Net and CAT-Net
did not use such data augmentation. So for a more fair comparison,
we also train MVSS-Net++ with compression and blur excluded
from data augmentation. The re-trained model, denoted as MVSS-
Net++ (w/o aug), remains more robust than the baselines.

https://github.com/jawadbappy/forgery_localization_HLED
https://github.com/ISICV/ManTraNet
https://github.com/lihaod/Deep_inpainting_localization
https://github.com/HuizhouLi/Constrained-R-CNN
https://github.com/ZhiHanZ/IRIS0-SPAN
https://github.com/mjkwon2021/CAT-Net
https://github.com/pengzhou1108/GSRNet


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2022 11

TABLE 5
Performance on pixel-level manipulation detection. Performance metric: F1 [%]. Best result per test set is highlighted in bold font. All models
are trained on CASIAv2, except for those marked with star (*), the training data of which contains either private (ManTra-Net, SPAN, CAT-Net and

HP-FCN) or published but no longer publicly accessible data (H-LSTM).

Method Optimal threshold per model & testset Fixed threshold (0.5)
NIST Columbia CASIAv1+ COVER DEF-12k IMD MEAN NIST Columbia CASIAv1+ COVER DEF-12k IMD MEAN

MFCN, VCIR17 [13] 42.2 61.2 54.1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
RGB-N, CVPR18 [14] n.a. n.a. 40.8 37.9 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
H-LSTM*, TIP19 [3] 46.6 14.2 20.9 21.3 12.5 31.0 24.4 35.4 13.0 15.4 16.3 5.9 19.5 17.6
ManTra-Net*, CVPR19 [15] 45.5 70.9 69.2 77.2 61.8 70.5 65.9 0.0 36.4 15.5 28.6 15.5 18.7 19.1
HP-FCN*, ICCV19 [25] 36.0 47.1 21.4 19.9 13.6 16.9 25.8 12.1 6.7 15.4 0.3 5.5 11.2 8.5
CR-CNN, ICME20 [17] 42.8 70.4 66.2 47.0 34.0 60.0 53.4 23.8 43.6 40.5 29.1 13.2 26.2 29.4
GSR-Net, AAAI20 [16] 45.6 62.2 57.4 48.9 37.9 68.7 53.4 28.3 61.3 38.7 28.5 5.1 24.3 31.0
SPAN*, ECCV20 [18] 68.3 77.4 68.8 71.8 57.1 69.6 68.8 22.1 48.7 18.4 17.2 4.8 17.0 21.4
CAT-Net*, WACV20 [28] 59.9 77.6 57.3 48.5 44.1 51.7 56.5 17.9 55.5 13.6 12.9 4.6 5.4 18.3

This paper:
FCN 50.7 58.6 74.2 57.3 40.1 64.5 57.6 16.7 22.3 44.1 19.9 13.0 21.0 22.8
MVSS-Net 73.7 70.3 75.3 82.4 57.2 75.7 72.4 29.2 63.8 45.2 45.3 13.7 26.0 37.2
MVSS-Net++ 71.5 73.1 77.1 83.2 55.6 76.2 72.8 30.4 66.0 51.3 48.2 9.5 27.0 38.7

TABLE 6
Performance on image-level manipulation detection. Decision threshold: 0.5. NIST16 is excluded as it has no authentic image.

MVSS-Net++ tops the performance with image-level F1 of 68.0 averaged over the five test sets, followed by CAT-Net (51.7) and MVSS-Net (51.2).

Method Columbia CASIAv1+ COVER DEF-12k IMD
AUC Sen. Spe. F1 AUC Sen. Spe. F1 AUC Sen. Spe. F1 AUC Sen. Spe. F1 AUC Sen. Spe. F1

H-LSTM 0.506 100.0 1.1 2.2 0.498 99.7 0.0 0.0 0.500 100.0 0.0 0.0 0.499 99.9 0.1 0.2 0.501 100.0 0.0 0.0
ManrTra-Net 0.701 100.0 0.0 0.0 0.500 100.0 0.0 0.0 0.500 100.0 0.0 0.0 0.543 100.0 0.0 0.0 0.500 100.0 0.0 0.0
CR-CNN 0.783 96.1 24.6 39.2 0.719 93.0 13.9 24.2 0.566 96.7 7.0 13.1 0.567 77.4 26.7 39.7 0.615 92.9 12.3 21.7
GSR-Net 0.502 100.0 1.1 2.2 0.500 99.4 0.0 0.0 0.515 100.0 0.0 0.0 0.456 91.4 0.1 0.2 0.500 100.0 0.0 0.0
SPAN 0.500 100.0 0.0 0.0 0.500 100.0 0.0 0.0 0.500 100.0 0.0 0.0 0.500 100.0 0.0 0.0 0.500 100.0 0.0 0.0
CAT-Net 0.971 87.2 96.2 91.5 0.647 23.9 92.1 38.0 0.557 28.0 80.0 41.5 0.543 34.2 72.5 46.5 0.586 27.5 81.6 41.1

FCN 0.762 95.0 32.2 48.1 0.770 72.8 64.3 68.3 0.541 90.0 10.0 18.0 0.551 71.1 33.8 45.8 0.502 84.6 15.5 26.2
MVSS-Net 0.980 66.9 100.0 80.2 0.937 61.5 98.8 75.8 0.731 94.0 14.0 24.4 0.573 81.7 26.8 40.4 0.656 91.5 22.0 35.5
MVSS-Net++ 0.984 96.7 89.6 93.0 0.862 53.6 98.4 69.4 0.726 69.0 68.0 68.5 0.531 37.3 66.6 47.8 0.658 59.5 63.5 61.4

TABLE 7
Overall performance measured by Com-F1, the harmonic mean of

pixel-level F1 and image-level F1, on five test sets.

Method Columbia CASIAv1+ COVER DEF-12k IMD MEAN

H-LSTM 3.8 0.0 0.0 0.4 0.0 0.8
ManrTra-Net 0.0 0.0 0.0 0.0 0.0 0.0
CR-CNN 41.3 30.3 18.1 19.8 23.7 26.6
GSR-Net 4.2 0.0 0.0 0.4 0.0 0.9
SPAN 0.0 0.0 0.0 0.0 0.0 0.0
CAT-Net 69.1 20.0 19.7 8.4 9.5 25.3

FCN 30.5 53.6 18.9 20.3 23.3 29.3
MVSS-Net 71.1 56.6 31.7 20.5 30.0 42.0
MVSS-Net++ 77.2 59.0 56.6 15.8 37.5 49.2

The screenshot oriented evaluation is conducted as follows.
A subset of 100 manipulated images are randomly selected
from CASIAv1+. Each image is then manually re-captured on
a Windows10 laptop with a screen resolution of 1920 × 1080.
Three commercial screenshot tools are used, including Microsoft

Snip&Sketch11, Google Chrome DevTools12, and Snipaste13. Per
image and tool, the result image is saved in jpg (with a quality
level of 90%) and png formats, respectively, except for Chrome
which supports png only. Varying the configuration of the screen
tool and the image format results into five variants of the test
set, i.e. Snip&Sketch (png), Snip&Sketch (jpg), Chrome (png),
Snipaste (png) and Snipaste (jpg).

Fig. 10 shows the performance of the individual models on
the original test set and its variants. We draw two conclusions
from the figure. First, concerning the two factors for image re-
capturing, i.e. screenshot tool and file format, the latter is more
important. Second, while all models suffer from screenshot based
image re-capturing, MVSS-Net++ remains the best.

4.3.5 Efficiency Test

We measure the inference efficiency in terms of frames per second
(FPS), tested on two GPU cards, i.e. NVIDIA Tesla V100 (32GB
GPU memory footprint) and GeForce RTX2080ti (12GB GPU
memory footprint), respectively. Depending on the card in use,

11https://www.microsoft.com/en-us/p/snip-sketch
12https://developer.chrome.com/blog/new-in-devtools-74/#screenshot
13https://www.snipaste.com/

https://www.microsoft.com/en-us/p/snip-sketch
https://developer.chrome.com/blog/new-in-devtools-74/#screenshot
https://www.snipaste.com/


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JUNE 2022 12

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Robustness evaluation against two image processing tech-
niques, i.e. JPEG compression and Gaussian Blurs. Test set:
CASIAv1+. MVSS-Net++ (w/o aug) indicates training with JPEG com-
pression and Gaussian blur excluded from data augmentation. The
proposed models are more robust than the baselines.

Fig. 10. Detection performance on images re-captured by three
screenshot tools (Snip&Sketch, Chrome and Snipaste) and saved
in two different formats (jpg and png). Results are sorted by the
performance of MVSS-Net++ in descending order.

the MVSS-Net series run at 16 to 20 FPS, see Table 8. The
relatively high FPS as compared to the other publicly available
models permits the MVSS-Net series for real-time application.

TABLE 8
Model inference speed, tested on two NVIDA GPU cards respectively.
Performance metric: Frames per second (FPS). Models are sorted in
descending order in terms of their FPS on RTX2028ti, which is much

cheaper than V100 and thus more affordable.

Model Tesla V100 RTX2080ti

MVSS-Net 20.1 19.0
MVSS-Net++ 19.0 16.0
GSR-Net 31.7 9.8
SPAN 8.4 8.1
H-LSTM 6.5 5.4
CAT-Net 5.4 4.1
C-RCNN 2.8 2.2
ManTra-Net 3.1 2.1

4.3.6 Failure Case Analysis
Given the challenging nature of the task, failures are inevitable,
see Fig. 11. The first-row image was manipulated by darkening
the frame of the spectacle the kid was wearing. Such manipulation
traces appear to be too tiny to be revealed by the current models.
The top-right corner of the second-row image was overlaid with
certain translucent image patch, with the manipulated traces well
melting into the misty scene. As for the last image, manipulation
was performed by putting a knight on the back of the dog in the
foreground, while blurring the background. All models capture the
inconsistency between the foreground and the background, yet all
fail to recognize that the background was actually manipulated.

Fig. 11. Failure cases. Data source: IMD.

5 CONCLUSIONS

For learning semantic-agnostic features, both noise and edge
information are helpful, whilst the latter is better when used alone.
For exploiting the edge information, our proposed edge-supervised
branch (ESB) is more effective than the previously used feature
concatenation. ESB steers the network to be more concentrated
on tampered regions. Regarding the specificity of manipulation
detection, we empirically show that the state-of-the-arts suffer
from poor specificity. The inclusion of the image classification loss
improves the specificity, yet at the cost of a clear performance drop
for pixel-level manipulation detection. To avoid such a loss, multi-
view feature learning has to be used together with multi-scale
supervision. The resultant MVSS-Net++ is a new state-of-the-
art for image manipulation detection, outperforming the current
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methods in both within-dataset and cross-dataset scenarios. It also
exhibits better robustness against JPEG compression, Gaussian
blur and screenshot based image re-capturing.

With the initial success of MVSS-Net, we believe it will be
promising to design a more complex network that contains more
components to cover other information (e.g. compression artifacts)
and other modalities (e.g. associated text) for media forensics.

APPENDIX

Additional measures. Table 9 shows accuracy and MCC scores
of different models. The MVSS-Net series clearly outperform the
baselines in terms of the well balanced MCC.

TABLE 9
Detection performance measured by accuracy and MCC.

Method NIST Columbia CASIAv1+ COVER DEF-12k IMD MEAN

Pixel-level accuracy (%):
H-LSTM 92.8 69.2 90.3 87.4 94.3 90.9 87.5
ManrTra-Net 92.5 74.6 88.2 90.2 96.9 92.3 89.1
C-RCNN 92.9 77.2 80.5 89.1 96.8 91.4 88.0
GSR-Net 88.4 80.3 87.9 84.9 93.7 90.2 87.6
SPAN 88.8 77.3 91.6 88.2 95.0 91.0 88.7
CAT-Net 92.1 82.0 91.9 90.0 96.8 92.5 90.9
FCN 92.4 70.8 93.6 88.0 96.8 92.4 89.0
MVSS-Net 90.1 77.6 94.0 91.1 97.0 91.1 90.2
MVSS-Net++ 90.5 66.0 93.1 91.4 96.8 91.0 88.1

Image-level accuracy (%):
H-LSTM 92.8 50.1 53.3 50.0 50.0 82.9 63.2
ManrTra-Net 92.5 49.6 53.5 50.0 50.0 82.9 63.1
C-RCNN 92.9 60.1 56.2 51.9 52.1 79.1 65.4
GSR-Net 88.4 50.1 53.2 50.0 45.8 82.9 61.7
SPAN 88.8 49.6 53.5 50.0 50.0 82.9 62.5
CAT-Net 92.1 91.7 55.6 54.0 53.4 36.7 63.9
FCN 92.4 63.3 68.8 50.0 52.5 72.8 66.6
MVSS-Net 90.1 83.6 78.8 54.0 54.3 79.6 73.4
MVSS-Net++ 90.5 93.1 74.4 68.5 52.0 60.2 73.1

Pixel-level MCC [-1, 1]:
H-LSTM 0.351 0.124 0.138 0.131 0.046 0.182 0.162
ManrTra-Net 0.000 0.365 0.092 0.313 0.175 0.194 0.190
C-RCNN 0.232 0.408 0.380 0.273 0.140 0.254 0.281
GSR-Net 0.257 0.518 0.178 0.228 0.083 0.224 0.248
SPAN 0.203 0.444 0.190 0.164 0.039 0.161 0.200
CAT-Net 0.175 0.518 0.138 0.127 0.048 0.058 0.177
FCN 0.151 0.194 0.425 0.154 0.113 0.212 0.208
MVSS-Net 0.279 0.492 0.447 0.437 0.099 0.256 0.335
MVSS-Net++ 0.289 0.545 0.503 0.464 0.097 0.265 0.361

Image-level MCC [-1, 1]:
H-LSTM – 0.074 -0.039 0.000 -0.009 -0.009 0.003
ManTra-Net – 0.000 0.000 0.000 0.000 0.000 0.000
C-RCNN – 0.295 0.114 0.084 0.048 0.073 0.123
GSR-Net – 0.074 -0.053 0.000 -0.208 0.000 -0.037
SPAN – 0.000 0.000 0.000 0.000 0.000 0.000
CAT-Net – 0.838 0.216 0.094 0.072 0.078 0.259
FCN – 0.349 0.372 0.000 0.053 0.001 0.155
MVSS-Net – 0.710 0.637 0.133 0.102 0.163 0.349
MVSS-Net++ – 0.865 0.569 0.370 0.041 0.174 0.404

(a) A median filtering residual block (MFR)

(b) NSB with MFR

Fig. 12. Diagrams of (a) non-trainable MFR and (b) NSB with MFR.

NSB with MFR. Fig. 12 shows how to add non-trainable MFR
blocks to NSB, in a shallow-to-deep manner similar to ESB. NRB
(noise residual block) is implemented in the same manner as ERB
(edge residual block) in Fig. 3(b).
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