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MLR-SNet: Transferable LR Schedules for
Heterogeneous Tasks

Jun Shu*, Yanwen Zhu*, Qian Zhao, Zongben Xu, and Deyu Meng

Abstract—The learning rate (LR) is one of the most important hyper-parameters in stochastic gradient descent (SGD) algorithm for
training deep neural networks (DNN). However, current hand-designed LR schedules need to manually pre-specify a fixed form, which
limits their ability to adapt practical non-convex optimization problems due to the significant diversification of training dynamics.
Meanwhile, it always needs to search proper LR schedules from scratch for new tasks, which, however, are often largely different with
task variations, like data modalities, network architectures, or training data capacities. To address this learning-rate-schedule setting
issues, we propose to parameterize LR schedules with an explicit mapping formulation, called MLR-SNet. The learnable parameterized
structure brings more flexibility for MLR-SNet to learn a proper LR schedule to comply with the training dynamics of DNN. Image and text
classification benchmark experiments substantiate the capability of our method for achieving proper LR schedules. Moreover, the explicit
parameterized structure makes the meta-learned LR schedules capable of being transferable and plug-and-play, which can be easily
generalized to new heterogeneous tasks. We transfer our meta-learned MLR-SNet to query tasks like different training epochs, network
architectures, data modalities, dataset sizes from the training ones, and achieve comparable or even better performance compared with
hand-designed LR schedules specifically designed for the query tasks. The robustness of MLR-SNet is also substantiated when the
training data are biased with corrupted noise. We further prove the convergence of the SGD algorithm equipped with LR schedule
produced by our MLR-Net, with the convergence rate comparable to the best-known ones of the algorithm for solving the problem.

Index Terms—Meta Learning, Generalization to Query Tasks, Learning Transferable LR Schedules, DNNs Training
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1 INTRODUCTION

S TOCHASTIC gradient descent (SGD) and its many variants
[1], [2], [3], [4], [5], have been served as the corner-

stone of modern machine learning with big data. It has
been empirically shown that DNNs achieve state-of-the-
art generalization performance on a wide variety of tasks
when trained with SGD [6]. Recent researches observe
that SGD tends to select the so-called flat minima, which
seems to generalize better in practice, partially explaining its
underlying working mechanism [7], [8], [9], [10], [11], [12].

Scheduling learning rate (LR) for the SGD algorithm is
one of the most widely studied aspects to help improve the
training for DNNs. Specifically, it has been experimentally
studied how the LR [13] essentially influences minima
solutions found by SGD. This issue is also investigated
from the theoretical perspective. For example, Wu et al.,
[10] theoretically analyzed that LR plays an important role
in minima selection from a dynamical stability perspective.
Furthermore, they used stochastic differential equations to
prove that the higher the ratio of the LR to the batch size, the
flatter minimum inclines to be selected. Besides, He et al., [14]
provided PAC-Bayes generalization bounds for DNN trained
by SGD, which are highly correlated with LR. In summary,
it is being more widely recognized that designing a proper
LR schedule tends to highly influence the generalization
performance of DNN training result [15], [16], [17], [18].
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There mainly exist three kinds of hand-designed LR
schedules: (1) Pre-defined LR schedule policies. Typical ones
include decaying and cyclic LR [19], [20] (as depicted in Fig.
1(a) and 1(b)), with a good training efficiency in practice.
This line of methods have been mostly used in current DNN
training, and become the default setting across the current
popular deep learning libraries like Pytorch [21]. Some
theoretical works have further proved that the decaying
schedule can yield faster convergence [22], [23] or avoid strict
saddles [24], [25] under some mild conditions. (2) Adaptive
gradient descend methods. Typical methods in this category
include AdaGrad [2], RMSProp [4], and Adam [5], often
using the adaptive LR for each model parameters based on
some gradient information. (3) LR search methods. The main
idea is to borrow LR search strategies, , such as Polyak’s
update rule [26], Frank-Wolfe algorithm [27], and Armijo
line-search [28], used in traditional optimization approaches
[29] to DNN training, by searching LR adaptively in each
updating step.

Although above LR schedules can achieve competitive
results on certain learning tasks, they still have evident
deficiencies in practice. On the one hand, these policies need
to manually pre-specify the formulation of the LR schedules,
inevitably suffering from the limited flexibility to adapt to
the complicated DNN optimization problems due to the
significant variation of its training dynamics. On the other
hand, when solving new heterogeneous tasks, it always
needs to redesign proper LR schedules from scratch, as well
as to tune their involved hyperparameters. This process
is often time and computation expensive, which tends to
further raise their application difficulty in real problems.

To alleviate the aforementioned issues, this paper aims
to develop a model to learn a plug-and-play LR schedule
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(a) Pre-set LR schedule on image dataset
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(b) Pre-set LR schedule on text dataset

MLR-SNet

(c) Diagram of MLR-SNet principle
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(d) LR schedule learned on image dataset
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(e) LR schedule learned on text dataset
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(f) Predicted LR schedules by MLR-SNet

Fig. 1. Pre-defined LR schedules used in our paper for (a) image and (b) text classification experiments. (c) Visualization of how we input current loss
ft to MLR-SNet, which then outputs a proper LR αt to help SGD find a better minima. LR schedules meta-learned by the proposed MLR-SNet on (d)
image and (e) text classification experiments (meta-training stage). (f) The predicted LR schedules, learned from CIFAR-10, on image (TinyImageNet)
and text (Penn Treebank) classification datasets (meta-test stage).

under the meta-learning framework. The main idea is to
parameterize the LR schedule as an LSTM network [30],
which is capable of dealing with such a long-term infor-
mation dependent problem. As shown in Fig. 1(c), with a
parameterized structure, the proposed model has the capacity
to fit an explicit loss-LR dependent relationship to adapt
the complicated training dynamics. We learn the LSTM
network from data in a meta-learning manner, which is able
to adaptively predict the LR schedule for a SGD algorithm
to help improve the DNN training performance. We call
this method Meta-LR-Schedule-Net (MLR-SNet for brevity).
Meanwhile, the parameterized structure makes it possible to
transfer the meta-learned LR schedule to be readily used in
new query tasks. In a nutshell, this paper mainly makes the
following five-fold contributions.

(1) The MLR-SNet is proposed to learn an adaptive LR
schedule for SGD algorithm, which is capable of dynamically
adjusting LR during the DNN training process based on
current training loss as well as the information delivered
from past training histories stored in the MLR-SNet. Due to
the explicit parameterized formulation of the MLR-SNet, it
can be more flexible than hand-designed policies to find a
proper LR schedule for specific learning tasks.

(2) The proposed model is model-agnostic, and can be
applied to the SGD implementation on general DNN models.
That is naturally feasible since the proposed MLR-SNet
is with general loss information as its inputs, which is
independent from the structure of the DNN models. The
MLR-SNet is thus able to be generally applied to different
DNN training problems, e.g., image and text classification
problems, as shown in Fig.1(d) and 1(e). It can be seen that
the meta-learned LR schedules have similar tendency as
specifically pre-defined ones, as depicted in Fig. 1(a) and
1(b), but with more adaptive variations at their locality.
This validates the capability and efficacy of our method
for adaptively scheduling LR.

(3) With an explicit parameterized structure, it is possible

to readily transfer the meta-trained MLR-SNet for helping
schedule LR of SGD on new heterogeneous tasks. Different
from hand-designed LR schedules often requiring to re-
design the LR schedules or re-tune the hyperparameters for
new query tasks, the meta-learned MLR-SNet is plug-and-
play, and without additional hyper-parameters to tune. To
verify this point, we transfer the meta-learned MLR-SNet to
different training epochs, datasets and network architectures,
and achieve comparable performance with the corresponding
best hand-designed LR schedules in the test data. Since it
is directly employed as a off-the-shelf LR-schedule setting
function, it is with similar computational complexity as the
hand-designed LR schedules. Besides, it has been empirically
verified that the generalization performance of meta-learned
MLR-SNet is slightly related to the size of meta-training
dataset, while relatively weakly related to the similarity
between meta-training and meta-test tasks and DNN models.
This reveals the potential of transferring meta-learned LR
schedules to improve the DNN training for the unseen tasks,
and hopeful to save large labor and computation cost for
DNN training in more real applications.

(4) The MLR-SNet is meta-learned to improve the gen-
eralization performance of the learned model on unseen
data. We validate that with sound guidance of clean data as
meta-data, our MLR-SNet can help achieve better robustness
when training data are biased with corrupted noise than
hand-designed LR schedules.

(5) We theoretical prove that the DNN models trained
with the SGD algorithm, using LR schedules produced
by our MLR-SNet, can obtain a convergence guarantee.
Meanwhile, we can also prove the convergence guarantee
for our MLR-SNet updated by the Adam algorithm guided
by the validation loss under some mild conditions.

The paper is organized as follows. Section 2 reviews
the related works. Section 3 presents the MLR-SNet model
as well as its learning algorithm. Section 4 demonstrates
the experimental evaluations to validate the adaptability,
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transferability and robustness of the MLR-SNet, as compared
with current LR schedules policies. Section 5 provides some
analysis on MLR-SNet, e.g., its convergence and computa-
tional complexity. The paper is finally concluded.

2 RELATED WORK

Meta learning for optimization. Meta learning, or learning
to learn has a long history in psychology [31], [32]. Meta
learning for optimization can date back to 1980s-1990s
[33], [34], aiming to meta-learn the optimization process
of learning itself. Inspired from such beneficial attempts,
many researches were proposed to meta-learn the optimiza-
tion process of different learning tasks. The early work is
proposed by Schmidhuber et al. [33], developing an end-to-
end differentiable system to jointly train both the network
and the learning algorithm by gradient descent, making the
network able to modify its own weights. Bengio et al. [34]
also proposed to learn parameterized local neural net update
rules that avoids back-propagation. Furthermore, Hochreiter
et al. [35] jointly train two networks, in which the output
of back-propagation from one network was feed into an
additional learning network to attain the learning algorithm.

Recently, [36], [37], [38], [39], [40], [41] have attempted
to scale this idea to larger DNN optimization problems. The
main idea is to construct a meta-learner as the optimizer,
which takes the gradients as input and outputs the whole
updating rules. These approaches tend to make selecting
appropriate training algorithms, scheduling LR and tuning
other hyper-parameters in an automatic way. The meta-
learner of these approaches can be updated by minimizing
the generalization error on the validation set. Furthermore,
[40] utilized reinforcement learning and [37] used test error
of few-shot learning tasks to train the meta-learner. Except
for solving continuous optimization problems, some works
employ these ideas to other optimization problems, such as
black-box functions [38], few-shot learning [42], [43], model’s
curvature [44], evolution strategies [45], combinatorial func-
tions [46], MCMC Proposals [47], etc.

Though faster in decreasing training loss than traditional
optimizers in some cases, the learned optimizers by this
line of methods always could not generalize well to varying
problems from the training ones, especially longer horizons
[41] and larger scale optimization problems [39]. Moreover,
these methods could not guarantee to output a proper
descent direction in each iteration for DNN training, since
they set the whole updating rules in SGD as the training
variables, which might too flexible to soundly guide the
training tendency of DNN parameters especially for meta-
tested tasks. Comparatively, our proposed method attempts
to learn an adaptive LR schedule for SGD algorithm, while
sufficiently preserve the original gradient knowledge of the
trained/tested problems. This not only makes the training
afford of such meta-learning task capable of being largely
alleviated and more stably executed, but also makes the meta-
learned LR schedules easily and more accurately transferable
to new heterogeneous tasks.

HPO and LR schedule adaptation. Hyper-parameter
optimization (HPO) was historically investigated by selecting
proper values for algorithm hyper-parameters to obtain bet-
ter performance on validation set (see [48] for an overview).

Typical methods include grid search, random search [49],
Bayesian optimization [50], gradient-based methods [51],
[52], [53], etc. Recently, some works attempt to find a proper
LR schedule under the framework of gradient-based HPO,
which can be solved by a bilevel optimization problem [51],
[54]. However, most HPO techniques for this task tends to
directly learn the algorithm hyper-parameters against certain
task while not predict their underlying setting rules across
different tasks, making them easily fall into short-horizon
bias and trapped into bad minima [55]. Comparatively, our
MLR-SNet is set as an explicit and concise function form
to deliver the effective LR schedule setting principle among
heterogeneous tasks, making it with better generality for
general meta-tested tasks.

Transfer to heterogeneous tasks. Transfer learning [56]
aims to transfer knowledge obtained from source task to
help the learning on the target task. Most transfer learning
approaches assume the source and target tasks consist of
similar instances, features or model spaces [57], which greatly
limits their application range. Recently, meta learning [43]
aims to learn common knowledge/methodology shared over
observed tasks, such that the learned knowledge/methodol-
ogy is expected to be transferred to unseen tasks. Similarly,
our method aims to realize such a methodology-level transfer
learning for the LR-schedule setting task, i.e., learn a general
LR schedule predictor which is plug-and-play and easy to
transfer to new query tasks. Such task-transferable capability,
however, is not possessed by conventional hand-designed
LR schedules and HPO methods.

3 MLR-SNET

The problem of training DNNs can be formulated as the
following non-convex optimization problem,

min
w∈Rd

fTr(DTr;w) :=
1

N

N∑
i=1

fTri (w), (1)

where fTri is the training loss function for data samples
i ∈ DTr = {1, 2, · · · , N}, which characters the deviation
of the model prediction from the data labels, and w ∈ Rd
represents the parameters of the model (e.g., the weight
matrices in the trained DNN) to be optimized. SGD [1], [58]
and its variants, including Momentum [59], Adagrad [2],
Adadelta [3], RMSprop [4], Adam [5], are often used for
DNN training. In general, these algorithms can be expressed
as the following formulation,

wt+1 = wt + ∆wt,∆wt = Ot(∇fTrw (DTr;wt),Ht; Θt), (2)

where wt is t-th updating model parameters,∇fTrw (DTr;wt)
denotes the gradient of fTr at wt,Ht represents the historical
gradient information, and Θt is the hyperparameter of the
optimizer O, e.g., LR, in the current interation. To present
our method’s efficiency, we focus on the following vanilla
SGD algorithm in this paper1,

wt+1 = ξt(wt, αt) = wt − αt∇wfTr(Dt;wt), (3)

1. For different learning tasks, the commonly used optimizers are
different. For example, image tasks often use SGD with Momentum,
while text tasks always employ SGD or Adam. To guarantee the chosen
optimizer able to be applied to various tasks, we learn the LR schedules
for the vanilla SGD in this paper. We further validate that MLR-SNet
can be applied to other optimizers, e.g., Adam (refer to Section 5.5).



4 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020

where ∇wfTr(Dt;wt) = 1
|Dt|

∑
i∈Dt ∇wf

Tr
i (wt), Dt⊂DTr

denotes the batch samples randomly sampled from the
training dataset DTr , |Dt| denotes the batch size,∇wfTri (wt)
denotes the gradient of sample i computed at wt and αt is
the LR at t-th iteration.

3.1 Existing LR Schedule Strategies
As [15] demonstrated, the choice of LR plays a central role
for effective DNN training with SGD. In this part, we will
recall LR schedules proposed in the previous works.

The following presents the commonly used pre-defined
LR schedules for current DNN training:

(Fixed) αt = α0,

(MultiStep) αt = α0 × (γM )i, li−1 ≤ Ecur ≤ li,
for given epochs l0, l1, · · · , ln,

(Exponential) αt = α0 × (γE)Ecur−1,

(SGDR) αt=αmin+0.5(αmax−αmin)

(
1+cos(

Ecur
Eper

π)

)
,

(4)

where α0 denotes the initial LR and αt denotes the LR
at t-iteration, [αmin, αmax] specifies a range for LR set-
ting of SGDR. Ecur accounts for how many epochs have
been performed, and Eper denotes that after Eper epochs
SGDR restarts to decrease the LR, and it generally sets
Eper = E0× (TMul)

k for the k-th restart. γM , γE < 1 denote
the decay factors for MultiStep and Exponential, respectively.

Compared with pre-defined formulation of LR schedules,
adaptive gradient methods like Adam [5] can adaptively
adjust LR by making use of (an approximation of) second
order gradient information, involving the initial global LR
required to be tuned. Besides, some methods extend classical
line search methods in convex optimization to the training
algorithm on DNNs, such as Polyak’s update rule [26], Frank-
Wolfe algorithm [27], and Armijo line-search [28], etc.

Though these methods achieve competitive results on
some learning tasks, they still possess certain drawbacks:
(1) The pre-defined LR schedules suffer from the limited
flexibility to adapt the highly variable training dynamics
for the complicated deep learning optimization problems.
(2) It always needs to repetitively redesign proper LR
schedules from scratch for new query tasks, as well as to
tune their involved hyperparameters. This process is time
and computation expensive, and always requires expert prior
knowledge to the problem, which tends to further raise their
application difficulty in real problems.

Inspired by current meta-learning developments [43], [60],
[61], some researches proposed to learn a generic optimizer
from data [36], [37], [38], [39], [40], [41]. The main idea among
them is to learn a meta-learner as the optimizer to guide the
learning of the whole updating rules. For example, [36] tries
to replace Eq.(2) with the following formulation,

wt+1 = wt + gt, [gt, ht+1]T = m(∇t, ht;φ), (5)

where gt is the output of a LSTM net m, parameterized
by φ, whose state is ht.This strategy has been expected to
make selecting appropriate training algorithms, scheduling
LR and tuning other hyper-parameters in a unified and
automatic way. Though faster in decreasing training loss
than the traditional optimizers in some cases, the learned

time-step time-step time-step

x
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Fig. 2. The structure and computational graph of our proposed MLR-SNet.

optimizer, however, might not always generalize well to more
variant and diverse problems, like longer horizons [41] and
large scale optimization problems [39] since the framework
is too flexible to be relatively easy to overfit training tasks.

Rather than the entire learning rules, a natural compro-
mise for the task is to focus on the LR schedules while keep to
use the gradient knowledge across the meta-training/testing
stages. Inspired by this motivation, recently some methods
[51], [54] consider the following constrained optimization
problem to search the optimal LR schedule α∗ such that the
produced models are associated with small validation error,

min
α={α0,··· ,αT−1}

fV al(DV al;wT ),

s.t. wt+1 = ξt(wt, αt), t = 0, 1, · · · , T − 1,
(6)

where fV al denotes the validation loss function, DV al =
{1, 2, · · · ,M} denotes hold-out validation set, αt is to-
be-solved LR hyper-parameter, ξt : Rd × R+ → Rd is
a stochastic weight update dynamics, like the updating
rule of the vanilla SGD in Eq.(3), and T is the maximum
iteration step. Though achieving comparable results on some
tasks with hand-designed LR schedules and meta-learned
optimizers, when generalized to new tasks, the meta-learned
LR schedules keep constant. This makes it hardly well adapt
to the task variations, and thus lead to possible performance
degradation. Namely, it still requires to re-learn the LR
schedules especially for new heterogeneous tasks, which
is also time and computation expensive.

3.2 Proposed Meta-LR-Schedule-Net Method
To address aforementioned issues, we propose to design a
meta-learner with an explicit mapping formulation to param-
eterize LR schedules as shown in Fig.1(c), called Meta-LR-
Schedule-Net (MLR-SNet for brevity). The parameterized
structure can bring two benefits: 1) It gives a fine flexibility to
learn a proper LR schedule to comply with the significantly
changed training dynamics of DNNs; 2) It makes the meta-
learned LR schedules become transferable and plug-and-play,
able to be readily applied to new heterogeneous tasks, with-
out requiring to re-learn or tune additional hyperparameters.

3.2.1 Formulation of MLR-SNet
The computational graph of MLR-SNet is depicted in Fig.2(a).
LetA(·, ·;φ)denote MLR-SNet. Then the updating equation
of the vanilla SGD algorithm in Eq.(3) can be rewritten as:

wt+1 = wt −A(ft, θt;φ)∇wfTr(Dt;wt),

where ft = fTr(Dt;wt), θt = (ht, ct)
T ,

(7)
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where A(ft, θt;φ) outputs the LR (αt) at the t-th iteration,
φ is the parameter of MLR-SNet, ft is the loss of the batch
samplesDt at the t-th iteration, and θt = {ht−1, ct−1}, where
ht, ct ∈ Rd

′
denote the output and state of the LSTM cell

at the t-th iteration (t = 0, · · · , T − 1), d′ represents the
dimension of the state vectors (i.e., the size of hidden nodes).
At each SGD iteration, A(ft, θt;φ) can learn an explicit loss-
LR dependent relationship, such that the net can adaptively
predict LR according to the current input loss ft, as well as
the historical training information θt stored in the net. For
every iteration step, the whole forward computation process
can be written as (as shown in Fig. 2(b)):

It
Ft
Ot
gt

=


σ
σ
σ

tanh

W2

(
relu
relu

)
W1

(
ht−1
ft

)
ct = Ft � ct−1 + It � gt
ht = Ot � tanh(ct)
pt = σ(W3ht)
αt = γ · pt

, (8)

where It, Ft, Ot denote the Input, Forget and Output gates
in the current iteration, and σ, tanh, relu denote the Sig-
moid, Tanh and ReLU activation functions, respectively.
The MLR-SNet parameter is φ = (W1,W2,W3), where
W1 ∈ Rd

′×(d′+1),W2 ∈ R4d′×2d′ ,W3 ∈ R1×d′ . Different
from the vanilla LSTM, the input ht−1 and the training
loss ft are preprocessed by a fully-connected layer W1 with
ReLU activation function. Then it works as the LSTM and
obtains the output ht. Subsequently, the predicted value pt is
obtained by a linear transform W3 on the ht with a Sigmoid
activation function. Finally, we introduce a scale factor γ
to guarantee the final predicted LR located in the interval

of [0, γ]. In our paper, we set γ =
f
1/2
0 log |f0∗C|

4C1/4 , where f0
denotes the initial loss, and C accounts for the number of
classes. Albeit simple, this net is known to be capable of
finely dealing with such long-term information dependent
problem, and thus expected to learn a proper LR schedule to
comply with the training dynamics of DNNs.

Remark. On the one hand, different from Eq.(6) directly
learning the LR schedules themselves, we use the MLR-
SNet parameterized by φ to learn the LR schedules. This
parameterized meta-learner helps extract the latent method-
ology of how to design a proper LR schedule for generally
handling a DNN training problem, rather than only the
hyper-parameters for a specific problem. Therefore, the meta-
learned MLR-SNet can be readily transferred to new DNN
training tasks for designing the LR schedules. On the other
hand, compared with learning the whole updating rules
as represented in Eq.(5), our MLR-SNet learns the most
important LR schedules for SGD algorithm while keep using
the gradient knowledge of the learned problem, making it
relatively easier to learn and under better control. This can
explain why MLR-SNet always tends to make the DNN
training procedure more robust and efficient in experiments.

3.2.2 Learning Algorithm of MLR-SNet

(1) Meta-Train: adapting to the training dynamics of DNN.
The MLR-SNet can be meta-trained to improve the gener-

Algorithm 1 The Meta-Train Algorithm of MLR-SNet
Input: Training data DTr , validation set DV al, max iterations

T , updating period Tval.
Output: Model parameter wT and MLR-SNet parameter φs, s ∈

S ⊂ {1, · · · , T}
1: Initialize model parameter w0, MLR-SNet cell θ0 = (h0, c0)T ,

and MLR-SNet parameter φ0.
2: for t = 0 to T − 1 do
3: Dt ← SampleMiniBatch(DTr) with batch size |Dt|.
4: if t % Tval = 0, then
5: D

(v)
t ←SampleMiniBatch(DV al) with batch size |D(v)

t |.
6: Update φt+1 by Eq. (10).
7: end if
8: Update wt+1 by Eq. (12).
9: end for

alization performance on unseen validation data for DNN
training by solving the following optimization problem:

min
θ
fV al(DV al;wT (φ)),

s.t. wt+1(φ) = ξt(wt,A(ft, θt;φ)), t = 0, · · · , T − 1.
(9)

where ft = fTr(Dt;wt) and ξt(wt, αt) corresponds to Eq.
(3). Now the important question is how to efficiently meta-
learn the parameter φ for the MLR-SNet. We employ the
online approximation technique in [61] to jointly update φ
and model parameter w to explore a proper LR schedule with
better generalization for DNNs training. However, the step-
wise optimization for φ is still expensive to handle large-scale
datasets and huge DNN structures. To address this issue, we
attempt to update φ once after updating w several steps
(Tval). The updating process can then be formulated as:

Updating φ. When it does not satisfy the updating
conditions, φ keeps fixed; otherwise, φ will be updated
using the model parameter wt and MLR-SNet parameter
φt obtained in the last step by minimizing the validation
loss defined in Eq.(9). Adam algorithm can be utilized to
optimize the validation loss, expressed as:

φt+1 = φt +Adam(∇θfV al(D(v)
t ; ŵt+1(θ)); ηt), (10)

where Adam denotes the Adam algorithm, whose input is
the gradient of validation loss with respect to MLR-SNet
parameter φ on mini-batch samples D(v)

t from DV al. ηt
denotes the LR of Adam. ŵt+1(φ)2 is virtually formulated
on a mini-batch training samples Dt from DTr as follows:

ŵt+1(φ)=wt −A(fTr(Dt, wt), θt;φ)·∇wfTr(Dt, w)
∣∣
wt
. (11)

Updating w. Then, the updated φt+1 is employed to
ameliorate the model parameter w, i.e.,

wt+1 =wt −A(fTr(Dt, wt), θt;φt+1)·∇wfTr(Dt, w)
∣∣
wt
. (12)

The whole algorithm in the meta-training stage can then be
summarized in Algorithm 1. All computations of gradients
can be efficiently implemented by automatic differentiation
libraries, like PyTorch [21], and easily used to general DNN
architectures. It can be seen that the MLR-SNet can be
gradually optimized during the learning process and adjust
the LR dynamically based on the training dynamics of DNNs.
(2) Meta-Test: generalization to new heterogeneous tasks.

2. Notice that ŵt+1(φ) here is a function of φ to guarantee the gradient
in Eq.(10) to be able to be feasibly computed.
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Algorithm 2 The Meta-Test Algorithm of MLR-SNet
Input: Training data Dµ

Tr for new task µ, max iterations Tµ,
meta-learned MLR-SNet A(·, ·;φs), s ∈ S.

Output: Model parameter uT .
1: Initialize model parameter u0, MLR-SNet cell θ0 = (h0, c0)T ,

and choose the subset of meta-learned MLR-SNet φs, s ∈
S ⊂ {1, · · · , T} for test.

2: for t = 0 to Tµ − 1 do
3: Dµ

t ← SampleMiniBatch(Dµ
Tr) with batch size |Dµ

t |.
4: Compute the lossfTr(Dµ

t , ut), and then MLR-SNet pre-
dicts the LRA(fTr(Dµ

t , ut), θt;φs) for current iteration.
5: Update ut+1 by Eq. (13).
6: end for

After the meta-training stage, the meta-learned MLR-SNet
with parameter φT is expected to be transferred to guild the
SGD running on new DNN training tasks. To better preserve
the proper LR changing dynamics during DNN training,
we more prefer to keep several MLR-SNet forms with
parameters φs, s ∈ S ⊂ {1, · · · , T} (e.g., φT/3, φ2T/3, φT as
employed in our experiments) and use them as LR schedules
along different iterations in the meta-testing stage. The new
DNN parameter u for the new task is then updated by (the
whole meta-test process refers to Algorithm 2),

ut+1 =ut −A(fTr(Dn, ut), θt;φs)·∇ufTr(Dn, u)
∣∣
ut
, (13)

where φs, s ∈ S is the parameters of the subset of the meta-
learned MLR-SNets. This means that we restore several LR
schedule setting rules, and dynamically employ specific ones
along different range of DNN training iterations. It is seen
that the meta-learned MLR-SNets so learned are plug-and-
play, and involve no additional hyperparameters to tune.

4 EXPERIMENTAL RESULTS

To evaluate the proposed MLR-SNet, we firstly conduct
experiments to show our method can learn proper LR
schedules compared with baseline methods (Section 4.1).
Then we transfer the meta-learned LR schedules to various
tasks for meta-test to show its superiority in generalization
(Section 4.2). What influences the generalization perfromance
of meta-learned LR schedules is discussed in Section 4.3.
Finally, we show our method behaves robust and stable when
training data contain different data corruptions (Section 4.4).

4.1 Meta-Train: Evaluation of the LR Schedules Meta-
learned by MLR-SNet

In this section, we attempt to evaluate the capability of MLR-
SNet to learn proper LR schedules for various tasks.

4.1.1 Image Classification Benchmarks
Datasets. We choose CIFAR-10 and CIFAR-100 to present the
efficiency of our method, which include 32×32 color images
arranged in 10 and 100 classes, respectively. Both datasets
contain 50,000 training and 10,000 test images.

Baselines. The compared methods include the SGD with
hand-designed LR schedules (the formulation is expressed
as Eq. (4)): 1) Fixed LR, 2) Exponential decay, 3) MultiStep
decay, 4) SGD with restarts (SGDR) [20]. Meanwhile, we
compare with adaptive gradient method: 5)Adam, LR search

TABLE 1
Test accuracy (%) of CIFAR datasets with SGD baselines.

Optimizer CIFAR-10 CIFAR-100
SGD+Fixed 92.26 ± 0.12 70.67 ± 0.34
SGD+MultiStep 93.82 ± 0.09 77.04 ± 0.17
SGD+Exponential 90.93 ± 0.11 76.88 ± 0.08
SGD+SGDR 93.92 ± 0.11 72.52 ± 0.34
Adam 90.86 ± 0.15 68.94 ± 0.24
SGD+L4 89.15 ± 0.14 63.61 ± 0.65
SGD+HD 92.34 ± 0.09 72.22 ± 0.30
SGD+RTHO 92.60 ± 0.18 72.32 ± 0.47
MLR-SNet (Meta-train) 94.80 ± 0.10 80.44 ± 0.17

TABLE 2
Test accuracy (%) of CIFAR dataset with SGDM baselines.

Optimizer CIFAR-10 CIFAR-100
SGDM+Fixed 87.69 ± 0.14 70.88 ± 0.12
SGDM+MultiStep 95.08 ± 0.13 80.74 ± 0.19
SGDM+Exponential 94.64 ± 0.05 78.87 ± 0.04
SGDM+SGDR 95.06 ± 0.17 80.93 ± 0.05
Adam 90.86 ± 0.15 68.94 ± 0.24
SGDM+L4 91.03 ± 0.14 66.51 ± 2.83
SGDM+HD 93.99 ± 0.12 76.80 ± 0.19
SGDM+RTHO 93.17 ± 0.49 76.14 ± 0.29
MLR-SNet (Meta-train) 94.80 ± 0.10 80.44 ± 0.17

method: 6) L4 [26], and current LR schedule adaptation
method: 7) hyper-gradient descent (HD) [54], 8) real-time
hyper-parameter optimization (RTHO) [51]. We run all
experiments with 3 different seeds reporting accuracy. Our
algorithm and RTHO [51] randomly select 1,000 clean images
in the training set of CIFAR-10/100 as validation data.

Hyperparameter setting. We employ ResNet-18 on
CIFAR-10 and WideResNet-28-10 [62] on CIFAR-100. All
compared methods and MLR-SNet are trained for 200 epochs
with batch size 128. For baselines involving SGD as base opti-
mizer, we set the initial LR as 0.1, and weight decay as 5e−4.
While for Adam, we just follow the default parameter setting.
As for each LR schedule, MultiStep decays LR by 10 every
60 epochs (i.e., γM = 0.1, l0 = 0, l1 = 60, l2 = 120, l3 =
180, l4 = 200); Exponential multiplys LR with γE = 0.95
every epoch; SGDR sets αmin = 1e−5, αmax = 0.1, and
E0 = 10, TMult = 2. L4, HD and RTHO update LR
every data batch, and we use the recommended setting in
the original paper. HD and RTHO search different hyper-
lrs from {1e−3, 1e−4, 1e−5, 1e−6, 1e−7} reporting the best
performing hyper-lr.

MLR-SNet architecture. The architecture of MLR-SNet
is illustrated in Section 3.2. In our experiment, the size of
hidden nodes (i.e., d′) is set as 50. The initialization of MLR-
SNet follows the default setting in Pytorch. We employ Adam
optimizer to train MLR-SNet, and set the LR as 1e−3, and
the weight decay as 1e−4. The input of MLR-SNet is the
training loss of a mini batch samples. Every iteration LR is
predicted by MLR-SNet and we update it every 100 iterations
(Tval = 100) according to the loss on the validation data.

Results. Fig.3(a) and 3(b) show changing tendencies of
training loss and test accuracy on CIFAR-10 and CIFAR-100
datasets in iterations of all competing methods, respectively,
and Table 1 shows the corresponding classification accuracy
on the test set. It can be observed that: 1) our MLR-SNet
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Fig. 3. Changing tendencies in terms of training perplexity (left column) and test accuracy (middle column) in iterations of all comparison methods on
image classification datasets in the meta-train stage. The LR schedules (right column) employed by all methods are also compared.
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Fig. 4. Changing tendencies in terms of training perplexity (left column) and test perplexity (middle column) in iterations of all comparison methods on
text classification datasets in the meta-train stage. The LR schedules (right column) employed by all methods are also compared.

obtains better test performance than all other competing
methods, and the learned LR schedules by MLR-SNet have
similar shapes as the corresponding hand-designed policies
(as depicted in Fig. 1(d)), while with more elaborate variation
details in locality for better adapting training dynamics.
2) The Fixed LR decreases the loss sharing the similar
performance to other baselines at the early training, while
fails to further decrease loss at the later training stages. This
implies that this strategy could not finely adapt to such DNN
training dynamics. 3) The MultiStep LR drops the LR at
some epochs, and such elegant strategy overcomes the issue
of Fixed LR and decreases loss substantially after dropping
the LR. Thus it obtains higher test performance. Besides,
though MultiStep and MLR-SNet can decrease the loss to 0
approximately, our MLR-SNet achieves better generalization
performance since the outer objective in Eq. (9) tends to

help learn the LR schedules to find a better minima. 4)
The Exponential LR decreases loss with a faster speed at
the early training steps than other baselines, while makes
a slow progress due to smaller LR at the later stages. 5)
The SGDR LR uses the cyclic LR, decreasing loss as fast
as the Exponential LR. 6) Though Adam has an adaptive
coordinate-specific LR, it behaves worse than MultiStep and
Exponential LR as demonstrated in [63]. An extra tuning is
thus necessary for better performance. 7) L4 greedily searches
LR locally to decrease loss, making it fairly hard to adapt
the complex DNNs training dynamics, and even with worse
test performance than Fixed LR. 8) HD and RTHO perform
similar as hand-designed LR schedules. Moreover, with an
explicit parameterized structure, our MLR-SNet can make
the learning of LR schedules more robust, and produce better
test performance than HD and RTHO. 9) Since the image
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TABLE 3
Test perplexity on the Penn Treebank dataset.

Optimizer 2-layer LSTM 3-layer LSTM
SGD+Val Strategy 74.33 ± 0.23 76.05 ± 0.39
Adam+Val Strategy 71.17 ± 0.23 74.80 ± 0.73
SGD+L4 82.58 ± 1.32 92.27 ± 0.92
SGD+HD 76.90 ± 0.33 78.63 ± 0.08
SGD+RTHO 76.69 ± 0.11 78.52 ± 0.16
MLR-SNet (Meta-train) 70.53 ± 0.25 72.28±0.25

tasks often use SGD algorithm with Momentum (SGDM) to
train DNNs, we also present the test performance of baseline
methods trained with SGDM with momentum 0.9 in Table
2. They obtain a remarkable improvement than trained with
SGD. Though not using extra historical gradient information
to help optimization, our MLR-SNet is capable of achieving
comparable results with baselines, since it also insightfully
stores the historical LR training information in the net.

4.1.2 Text Classification Benchmarks
Dataset. We choose Penn Treebank dataset [64] for evalua-
tion, which consists of 929k training words, 73k validation
words, and 82k test words, with a 10k vocabulary in total.

Baselines. We compare with 1) SGD, 2) Adam with
LR tuned using a validation set (SGD+Val Strategy and
Adam+Val Strategy). They drop the LR by a factor of 4 when
the validation loss stops decreasing. Also, we compared with
3) L4, 4) HD, 5) RTHO. We run all experiments with 3
different seeds reporting accuracy. Our algorithm and RTHO
[51] regard the validation set as validation data.

Hyperparameter setting. We use a 2-layer and 3-layer
LSTM network which follows a word-embedding layer and
the output is fed into a linear layer to compute the probability
of each word in the vocabulary. Hidden size of LSTM cell
is set to 512 and so is the word-embedding size. We tie
weights of the word-embedding layer and the final linear
layer. Dropout is applied to the output of word-embedding
layer together with both the first and second LSTM layers
with a rate of 0.5. As for training, the LSTM net is trained for
150 epochs with a batch size of 32 and a sequence length of
35. We set the base optimizer SGD to have an initial LR of 20.
For Adam, the initial LR is set to 0.01 and weight for moving
average of gradient is set to 0. We apply a weight decay of
5e−6 to both base optimizers. All experiments involve a 0.25
clipping to the network gradient norm. For both SGD and
Adam, we decrease LR by a factor of 4 when performance on
validation set shows no progress. For L4, we try different α
in {0.1, 0.05, 0.01, 0.005} and report the best test perplexity
among them. For both HD and RTHO, we search the hyper-
lr lying in {1, 0.5, 0.1, 0.05}, and report the best results.

MLR-SNet architecture. We keep the same setting as
the image classification, while we take LTr

log(vocabulary size) as
input of MLR-SNet to deal with the influence of large scale
classes for text dataset.

Results. Fig.4(a) and 4(b) show the train and test per-
plexity on the Penn Treebank dataset with 2-layer and 3-
layer LSTM, respectively. It can be observed that: 1) The Val
Strategy heuristically drops LR when the validation loss stops
decreasing. This hand-designed LR schedules can decrease
the loss quickly at the early training stage to find a good
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Fig. 6. (a) The LR variation curves along iterations with the same input
loss (we set it as 5) predicted by a single meta-learned MLR-SNet
obtained at certain epoch of meta-training stage. As is shown, when
iteration increases, the LR is almost constant. This implies that the meta-
learned MLR-SNet at certain epoch fails to predict the long trajectories
LR. (b) The recording test accuracy on CIFAR-100 with ResNet-18 using
different meta-test strategies.

minima, while it is hard to further search a better solution. 2)
Our MLR-SNet predicts LR according to training dynamics
and updates its parameters by minimizing the validation
loss, i.e., if the LR schedules produced by the MLR-SNet are
of high quality, then a DNN model trained with such LR
schedules should achieve low loss on a separate validation
dataset. This process is a relatively more intelligent way to
employ the validation dataset than Val Strategy. Thus our
method achieves comparable or even better performance
than Adam and SGD. The meta-learned LR schedules of the
MLR-SNet are shown in Fig.1(e), depicted as similar shapes
as the hand-designed policies. 3) L4 often falls into a bad
minima since it greedily searches LR locally. 4) Since HD
and RTHO lack of an explicit parameterized structure, they
directly learn LR schedules themselves by minimizing the
validation loss, which tends possible to bring the optimiza-
tion unstable, and lead to performance degradation. 5) When
the number of LSTM’s layers increases, the LR schedules
predicted by MLR-SNet show more advantages for such
an LSTM training problem, and bring more performance
improvements compared with hand-designed LR schedules.

Remark. Actually, the performance of compared baselines
can be approximately regarded as the best/upper perfor-
mance bound. Since these strategies have been tested to
work well for the specific tasks, and they are written into
the standard deep learning library. For different image and
text tasks, our MLR-SNet can achieve the similar or even
slightly better performance compared with the best baselines.
We thus believe that these experiments can demonstrate the
effectiveness and generality of our proposed method.

4.1.3 Ablation Study
To study individual components and their importance to our
proposed method, we conduct experiments above CIFAR-
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10 with ResNet-18 setting. Fig. 5 summarizes the results of
ablation studies, as discussed below.

The architecture of MLR-SNet. Fig.5(a) shows the test
accuracy of MLR-SNet on CIFAR-10 with ResNet-18 of
different architecture configurations. As can be seen, our
algorithm is not evidently sensitive to the configuration
setting of the MLR-SNet’s architecture. The depth of the MLR-
SNet has unsubstantial difference on the final performance,
and thus we choose the one hidden layer in our experiments
attributed to its simplicity and low cost for computation.
Besides, if the node size of the hidden layer is set small, e.g.,
20, it will behave slower at the early training stage compared
with larger node size. Therefore, we choose the node size of
the hidden layer at a proper size. Furthermore, this property
shows that our algorithm is robust and can always generally
help improve the DNN training performance.

The gobal LR of the meta-optimizer. We adopt Adam
optimizer to learn the parameter of the MLR-SNet. One
tunable hyperparameter is the global LR of the meta-
optimizer. Fig. 5(b) shows the result to further validate
whether our MLR-SNet behaves robust to the meta optimizer.
It can be seen that the MLR-SNet achieves almost the similar
performance even for different global LRs. This implies that
our MLR-SNet is not that sensitive for the setting of this
hyper-parameter in the meta optimizer, which makes it easy
to reproduce and apply to various problems. We simply set
it as 1e−3 throughout all our experiments.

4.2 Meta-Test: Transferability and Generalization capa-
bility of the LR Schedules Meta-learned by MLR-SNet

As aforementioned, the meta-learned LR schedules are
transferable and plug-and-play, attributed to its explicit
parameterized mapping form. We then validate its trans-
ferability and generalization to new heterogeneous tasks.

4.2.1 Baselines

The L4, HD, RTHO methods learn the LR schedules specif-
ically for given tasks, and they do not learn transferable
structure allowing to be generalized to new tasks. We thus
do not compare them in this part. The employed comparison
methods for image classification include SGDM3 with hand-
designed LR schedules: 1) Fixed LR, 2) Exponential decay,
3) MultiStep decay, and 4) SGDR, as well as the adaptive
gradient method Adam. As for the text classification experi-
ments, we compare with SGD and Adam algorithm with Val
Strategy LR schedule.

We use the MLR-SNet meta-learned on CIFAR-10 with
ResNet-18, as introduced in Section 4.1.1, as the plug-and-
play LR schedules to directly predict the LR for SGD algo-
rithm to new heterogeneous tasks. As discussed in Section
3.2.2, we save several meta-learned MLR-SNets at different
epochs in the whole one meta-train run for helping setting
LR schedules in the meta-testing stage. The motivation can be
easily observed from Fig.6(a), which reveals that if we only
use the single meta-learned MLR-SNet at certain epoch to
predict LR, then the predicted LR will converge to a constant
after several iterations. This implies that if we directly select

3. Here we present stronger baseline results compared with trained
with SGD, while our MLR-SNet still predicts LR schedules for SGD.

one single MLR-SNet learned by our algorithm, it will raise
the risk of the overfitting issue.

This thus inspired us to select more MLR-SNets learned
during the meta-training iterations participating in meta-test
process. Generally, if we want to select k nets for meta-test,
the MLR-SNet learned at [T∗lk ]-th epoch (l = 1, 2, · · · , k)
should be chosen, where [·] denotes ceiling operator, and
T is the iteration number in training. Fig.6(b) show the
test accuracy with ResNet-18 on CIFAR-100 of different test
strategies, i.e., choosing different k MSR-SNets to transfer.
It can be seen that once we choose more than three nets,
similar performance can be obtained. We thus easily set k as
3 throughout all our experiments.

4.2.2 Generalization to Different Training Epochs

The plug-and-play MLR-SNet is meta-trained with epoch
200, and we transfer it to other different training epochs, e.g.,
100, 400, 1200. All the methods are trained with ResNet-18
on CIFAR-100 with batch size 128 with varying epochs. The
hyper-parameter setting for compared hand-designed LR
schedules is the same as that in Section 4.1.1 as illustrated
above, except for MultiStep LR. For epoch 100, 400 and
1200, MultiStep decays LR by 10 every 30, 120, 360 epochs,
respectively. For our method, we use the transferring MLR-
SNet as below: 1) For epoch 100, we employ the 3 nets at
0-33, 33-67, 67-100 epoch, respectively; 2) For epoch 400,
we employ the 3 nets at 0-133, 133-267, 267-400 epoch,
respectively; 3) For epoch 1200, we employ the 3 nets at
0-400, 400-800, 800-1200 epoch, respectively.

As shown in Fig.7, our MLR-SNet has the ability to train
the SGD algorithm in the meta-test stage for longer horizons
and achieves comparable performance as the best baseline
MultiStep LR. The Fixed LR shakes at the later stage for the
longer epochs. This substantiated that the learned MLR-SNet
is capable of generalized to setting LR schedules with such
longer horizons problems.

4.2.3 Generalization to Different Datasets

We transfer the LR schedules meta-learned on CIFAR-10
to SVHN [65], TinyImageNet 4, and Penn Treebank [64]
datasets to validate the generalization of our method to
different datasets, especially varying data modalities. For
SVHN and TinyImageNet datasets, we train a ResNet-18
with 200 epoch. For Penn Treebank classification, we train a
3-layer LSTM with 150 epoch. The hyper-parameters of all
compared methods are with the same setting as CIFAR-10
and Penn Treebank introduced in Section 4.1. The results are
presented in Fig.8. It is worth noting that the LR schedules
for image task and text task have different forms, while our
MLR-SNet can still obtain a relatively stable and comparable
generalization performance for different tasks with the
corresponding best baseline methods.

4.2.4 Generalization to Different Net Architectures

To further validate that our method can be applied to
different network architectures, we also transfer the LR
schedules meta-learned on ResNet-18 to ShuffleNetV2 [66],

4. It can be downloaded at https://tiny-imagenet.herokuapp.com.
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(c) Training with 1200 Epochs

Fig. 7. Test accuracy on CIFAR-100 of ResNet-18 with varying epochs for our transferred MLR-SNet in the meta-test stage.
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(c) Penn Treebank dataset

Fig. 8. Test accuracy with different datasets for our transferred MLR-SNet in the meta-test stage.
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Fig. 9. Test accuracy on CIFAR-10 with different network architectures for our transferred MLR-SNet in the meta-test stage.
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Fig. 10. Illustration of meta-training tasks influencing the generalization performance of meta-Learned LR schedules.

MobileNetV2 [67] and NASNet [68]5. These network architec-
tures are different from ResNet-type network, especially the
NASNet is learned from data, not the artificial constructed
network. As shown in Fig.9, our method can achieve com-
parable results and even get better performance to the best
baseline method. This further shows that our MLR-SNet is
able to be transferred to varying types of network training.

4.2.5 Generalization to Large Scale Optimization Problem
In this part, we attempt to use the meta-learned LR sched-
ules to train DNN on ImageNet dataset [69]. To our best

5. The pytorch codes of all these networks can be found on
https://github.com/weiaicunzai/pytorch-cifar100.

knowledge, only [39] had attempted this task among existing
learning-to-optimize literatures. However, it can only be
executed for thousands of steps, and then its loss begins
to increase dramatically, thus not able to be implemented
in the optimization process in practice. We transfer the
LR schedules meta-trained on CIFAR-10 with ResNet-18
to ImageNet dataset with ResNet-506. All compared methods
are trained by SGDM with a momentum 0.9, a weight decay
5e−4, an initial learning rate 0.1 for 90 epochs, and batch
size 256. MultiStep decays LR by 10 every 30 epochs; Expo-
nential multiplies LR with γE = 0.95 every epoch; SGDR

6. The training codes of baseline methods can be found on
https://github.com/pytorch/examples/tree/master/imagenet.
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sets αmin = 1e−5, αmax = 0.1, and E0 = 10, TMult = 2.
Following [63], we decay global LR by 10 every 30 epochs
for Adam.

The test accuracy on ImageNet validation set is pre-
sented in Fig.11(a). It can be seen that the performance
of our method is competitive with those hand-designed
LR schedules methods, though we train the model with
SGD using the LR schedules predicted by our transferred
MLR-SNets. Meanwhile, the LR schedules predicted by MLR-
SNet brings non-extra computation complexity in the DNN
training process. This implies that our method is hopeful to
be effectively and efficiently used to deal with such large
scale optimization problems, making learning-to-optimize
ideas towards more practical applications.

4.3 How do Meta-Training Tasks Influence the General-
ization Performance of Meta-Learned LR Schedules

In this section, we empirically study how meta-training tasks
influence the generalization performance of meta-learned
LR schedules. To conduct ablation study for answering
this question, we construct three groups of meta-training
tasks to character the influence factors for the generalization
performance. An overview of them is shown in Table 4. The
meta-test task is set as training a ResNet-18 on full CIFAR-
100 with meta-learned LR schedules. The hyperparameter
setting follows those introduced in Section 4.1.1.

The similarity between meta-training and meta-test
tasks. Grayscale digits (MNIST), RGB digits (SVHN) and
natural photos (CIFAR-10) represent incremental similarity
between meta-training and meta-test tasks. We use the
three datasets to meta-learn MLR-SNet with ResNet-18,
respectively. As shown in Fig. 10(a), three transferred LR
schedules meta-learned from different datasets achieve very
similar final performance on the meta-test task. This validates
that such similarity difference has a relatively weak influence
on the generalization of meta-learned LR schedules.

Scale of meta-training tasks. The scale of meta-training
tasks is also taken into consideration. We uniformly sampled
50, 250, 500 samples per class in CIFAR-100 as training
datasets, denoted by 1/10 CIFAR-100, 1/2 CIFAR-100 and
CIFAR-100, respectively. We use the three datasets to meta-
learn MLR-SNet with ResNet-18. Fig. 10(b) shows the gener-
alization performance of three kinds of such meta-learned LR
schedules. As is shown, the performance deteriorates when
the size of training task set is small. If the scale of training
task set is in the same order of magnitude, it tends to obtain
similar generalization performance.

Architectures of training models. Different network ar-
chitectures in the meta-training stage may produce different
LR schedules. We adopt three different classifier networks,
including ResNet-18, ResNet-34, and ResNet-50, to meta-
learn MLR-SNet on CIFAR-100. Fig. 10(c) shows that three
transferred LR schedules achieve similar generalization
performance, even though they are meta-learned based on
different classifier networks.

Remark. We have empirically verified that the general-
ization performance of the meta-learned LR schedules is not
sensitive to the similarity between meta-training and meta-
test tasks, and network architectures in the meta-training
stage. This can be rationally explained by the fact that our

TABLE 4
Variants constructed from meta-training tasks.

Influence factors Tasks design
Task similarity MNISTa, SVHNa, CIFAR-10
Task scale 1/10 CIFAR-100b, 1/2 CIFAR-100b, CIFAR-100
Architecture ResNet-18, ResNet-34, ResNet-50

a: uniformly downsample to 50000 samples
b: uniformly sample to certain proportion of full CIFAR-100

MLR-SNet is sufficiently simple to make it less rely on
the task-related information. Besides, it is also verified that
the size of meta-training task could slightly influence the
final generalization performance. This might possibly due
to that few meta-training data could not provide enough
information to fit the proper LR schedules. Furthermore,
these empirically results state that our MLR-SNet is easy to
be meta-trained for achieving an admirable performance on
the meta-test tasks.
4.4 Robustness on Data Corruptions
In this section, we further validate whether our MLR-SNet
behaves robust against corrupted training data guided by
a clean validation set. To this aim, we design experiments
as follows: we take CIFAR-10-C and CIFAR-100-C [70] as
our training set7, consisting of 15 types of algorithmically
generated corruptions from noise, blur, weather, and digital
categories. These corruptions contain Gaussian Noise, Shot
Noise, Impulse Noise, Defocus Blur, Frosted Glass Blur, Mo-
tion Blur, Zoom Blur, Snow, Frost, Fog, Brightness, Contrast,
Elastic, Pixelate and JPEG. All the corruptions are generated
on 10,000 test set images of CIFAR-10/100 dataset, and
each corruption contains 50,000 images since each type of
corruption has five levels of severity. We treat CIFAR-10-C or
CIFAR-100-C dataset as training set, and the original training
set of CIFAR-10 or CIFAR-100 as test set. We train models
with ResNet-18 for each corrupted dataset. Finally, we can
obtain 15 models for CIFAR-10-C or CIFAR-100-C dataset.
The average accuracy of 15 models on test data is used
to evaluate the robust performance of each LR schedules
strategy. All compared hand-designed LR schedules are
trained with a ResNet-18 by SGDM with a momentum
0.9, a weight decay 5e−4, an initial learning rate 0.1 for
100 epochs, and batch size 128. Exponential LR multiplies
LR with 0.95 every epoch; MultiStep LR decays LR by 10
every 30 epochs; SGDR sets αmin = 1e−5, αmax = 0.1, and
E0 = 10, TMult = 2; Adam just uses the default parameter
setting. We update the MLR-SNet under the guidance of a
small set of validation set without corruptions, to guarantee
that the final learned models finely generalize to clean test
set. We randomly choose 10 clean images for each class as
validation set in this experiment.

Table 5 shows the mean test accuracy of 15 models (±std)
on the training set of CIFAR-10 or CIFAR-100 dataset. As
can be seen, our proposed MLR-SNet is capable of achieving
better generalization performance on clean test data than
baseline methods, which implies that our method behaves
more robust and stable than the pre-set LR schedules when
the learning tasks in which the distribution of training and

7. They can be downloaded at https://zenodo.org/record/2535967#.
Xt4mVigzZPY and https://zenodo.org/record/3555552#.Xt4mdSgzZPY.
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TABLE 5
Test accuracy (%) on CIFAR-10 and CIFAR-100 training sets of different methods trained on CIFAR-10-C and CIFAR-100-C. Best and Last denote
the best test result and the last epoch test result, respectively. The Bold and Underline Bold denote the first and second best results, respectively.

Datasets/Methods Fixed MultiStep Exponential SGDR Adam Ours(Train)

CIFAR-10-C Best 79.78±3.95 85.52±1.72 83.48±1.45 85.94±1.52 81.45±1.42 86.04±1.51
Last 77.88±3.91 85.36±1.71 83.32±1.43 78.21±2.01 80.29±1.64 85.87±1.54

CIFAR-100-C Best 46.74±3.03 52.26±2.58 49.72±1.97 52.54±2.49 45.45±1.94 52.56±2.26
Last 44.79±3.91 52.16±2.59 49.58±1.98 41.58±3.24 43.76±2.22 52.42±2.34

TABLE 6
Test accuracy (%) on CIFAR-10 and CIFAR-100 training sets of different methods trained on CIFAR-10-C and CIFAR-100-C. Best and Last denote
the best test result and the last epoch test result, respectively. The Bold and Underline Bold denote the first and second best results, respectively.

Datasets/Methods Fixed MultiStep Exponential SGDR Adam Ours(Train)

CIFAR-10-C Best 79.96±4.09 85.64±1.71 83.63±1.38 86.10±1.44 81.57±1.39 85.73±1.71
Last 77.89±4.05 85.48±1.71 83.47±1.37 78.46±1.92 80.39±1.65 85.62±1.76

CIFAR-100-C Best 46.91±3.08 52.38±2.43 49.90±1.93 52.80±2.39 45.58±1.95 52.51±2.38
Last 44.81±5.98 52.28±2.44 49.75±1.94 41.68±3.33 43.94±2.18 52.35±2.46

test data are mismatched. This is due to the fact that our MLR-
SNet has more flexibility to adapt the variation of the data
distribution than the pre-set LR schedules, and it can find a
proper LR schedule through minimizing the generalization
error which is based on the knowledge specifically conveyed
from the given validation data.

Furthermore, we attempt to explore the generalization for
our meta-learned LR schedules. Different from the above
experiments where all 15 models are trained under the
guidance of a small set of validation set, we just meta-learn
the MLR-SNet on Gaussian Noise corruption dataset, and
then transfer the meta-learned LR schedules to other 14
corruptions datasets. We report the average accuracy of 14
models on test data to show the robust performance of our
transferred LR schedules. All the methods are meta-tested
with a ResNet-18 for 100 epochs with batch size 128. The
hyper-parameter setting of hand-designed LR schedules
keeps the same as above. Table 6 shows the mean test
accuracy of 14 models on the training set of CIFAR-10
or CIFAR-100 dataset. As can be seen, our transferred LR
schedules obtain the best performance in the last epoch
compared with hand-designed LR schedules. This implies
that our transferred LR schedules can also perform robust
and stable for the learning tasks in which the distribution
of training and test data are mismatched. Besides, our
transferring LR schedules are plug-and-play, and have no
additional hyper-parameters to tune when transferred to new
heterogeneous tasks.

5 FURTHER ANALYSIS ON MLR-SNET

In this section, we firstly provide the convergence guarantee
for the SGD algorithm with LR schedules produced by our
MLR-SNet, as well as the convergence guarantee for the meta-
learning of the MLR-SNet (Section 5.1). In Section 5.2, we
further analyze the computational complexity for the MLR-
SNet. The “width” of the solution is visualized in Section
5.3. In Section 5.4, we further verify that the LSTM-type
meta-learner behaves more superiorly than MLP-type meta-
learner . Finally, we show that the MLR-SNet can be applied
to Adam optimizer in Section 5.5.

5.1 Convergence Analysis of MLR-SNet

The preliminary experimental evaluations show that our
method gives good convergence performance on various
tasks. We find that the meta-learned LR schedules in our
experiments follow a consistent trajectory as shown in Fig.1,
almost obeying a decay LR form. Without loss of generality,
we assume that the learning rate can be represented by

αt = αt−1βt, t = 1, 2, · · · , T, (14)

where αt denotes the learning rate predicted by MLR-
SNet at the t-th iteration, and βt denotes the decay factor
at the t-th iteration, 1/K ≤ a ≤ βt ≤ b ≤ 1, where
a = (M/T )1/T , b = (N/T )1/T , and a 6= b,M,N ∝ T , and
K is the arbitrarily large constant. We denote by E[·] the
expectation with respect to the underlying probability space.
To present the convergence results, we also assume that 8:

(A1) The loss function f(w) : Rd → R is L-smooth, i.e., f
is differentiable and its gradient ∇f(w) is L-Lipschitz.

(A2) f satisfies the µ-PL condition, that is, their exists
some µ > 0, 1

2‖∇f(w)‖2 ≥ µ(f(w) − f∗), holds for any w,
where f∗ represents the infimum of f(w).

(A3) For t=1, 2, · · · , T , we assume Et[‖vt−∇f(wt)‖2] ≤
κ‖∇f(wt)‖2 + σ, where κ, σ > 0, and vt is an unbiased
estimate of the gradient of f at point wt, i.e., Etvt = ∇f(wt).

Firstly, we consider the case where the function is smooth
and satisfies the Polyak- Lojasiewicz (PL) condition [74], [75].
The proofs of all Theorems are listed in the appendix file.

Theorem 1. Assume (A1,A2,A3) hold, and the SGD is with
learning rate (14), where α0 = (L(1 + κ))−1. Then for a given
T ≥ max{3,M,N}, the wt generated from SGD satisfies

Ef(wt+1)−f∗≤C(M) exp

(
− µT

KL(1 + κ) ln(T/M)

)
(f(w1)− f∗) +

2K2C(M) ln2(T/M)(N/M)2

e2µ2(1−M/N)T
.

where C(M) = exp( µM
KL(1+κ) ln(T/M) ).

8. They are commonly used for existing SGD convergence theories
[71], [72], [73].
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Fig. 11. (a)Test accuracy on ImageNet validation set with ResNet-50. (b)Computational time costed by different LR schedule methods. (c) (Upper)
Train lossf and (Lower) test loss as a function of a point on a random ray starting at the solutions for different methods on CIFAR-100 with ResNet-18.

Theorem 1 states that SGD with learning rate produced
by our MLR-Net can obtain an approximately linear conver-
gence rate, achieving the best-known rates for the non-convex
optimization [71]. While the assumption (A2) means that all
stationary points are optimal point, which is not always true
for deep learning, the following theorem discusses the case
where the PL condition is not satisfied.

Theorem 2. Assume (A1,A3) hold, and the SGD is with learning
rate (14), where α0 = (cL(1 + κ))−1, c > 1. Then for wt
generated using SGD, we have the following bound

min
t

E‖∇f(wt)‖2≤
2cKL(1+κ) ln(T/M)

T −M
[Ef(w1)−Ef(wT )]

+O
(

σKT

c(1 + κ)(T −M)

)
.

It can be seen that when σ 6= 0, if we set c ∝
√
T and

σ = O(1), it would give the O(1/
√
T ) rate; when σ = 0, if

we set c = O(1), it would give theO(1/T ). It is worth noting
that the condition σ = 0 holds in many practical scenarios,
e.g., [76]. On the other hand, we provide a convergence
analysis of the MLR-SNet updated by the validation loss.

Theorem 3. Assume (A1,A3) hold, f has ρ-bounded gradients
with respect to training/validation data, and theA(θ) is differential
with a δ-bounded gradient and twice differential with its Hessian
bounded by B. Assume that the learning rate αt = A(θt) predicted
by MLR-SNet obey Eq.(14). We suppose that the learning rate
of Adam algorithm for updating MLR-SNet satisfies ηt = η

for all t ∈ [T ], η ≤ ε
2L and 1 − β2 ≤ ε2

16ρ2 , where β2, ε are
the hyperparameters of the Adam algorithm (It can be found
in Appendix). Then for θt generated using Adam, we have the
following bound:

min
0≤t≤T

E[‖∇LV al(ŵt(θt))‖22] ≤ O(
1

c2 ln(T )
+ σ2). (15)

It can be seen that when σ 6= 0, if we set c ∝
√
T , and

σ = O(1), it would lead to the O( 1
T ln(T ) + σ2) convergence

rate; when σ = 0, if we set c = O(1), it would give the
O( 1

ln(T ) ) convergence rate. It can then be proved that the
convergence of the proposed method.

5.2 Computational Complexity Analysis

In the meta-training stage, our MLR-SNet learning algorithm
can be roughly regarded as requiring two extra full forward
and backward passes of the network (step 6 in Algorithm 1)
in the presence of the normal network parameters update

(step 8 in Algorithm 1), together with the forward passes
of MLR-SNet for every LR. Therefore compared to normal
training, our method needs about 3× computation time
for one iteration. Since we periodically update MLR-SNet
after several iterations, this will not substantially increase
the computational complexity compared with normal net-
work training. In the meta-test stage, our transferred LR
schedules predict LR for each iteration by a small MLR-
SNet (step 4 in Algorithm 2), whose computational cost
should be significantly less than the cost of the normal
network training. To empirically show the computational
complexity differences between baselines and our MLR-SNet,
we conduct experiments with ResNet-18 on CIFAR-10 and
report the running time for all methods. All experiments
are implemented on a computer with Intel Xeon(R) CPU
E5-2686 v4 and a NVIDIA GeForce RTX 2080 8GB GPU. We
follow the corresponding settings in Section 4.1, and results
are shown in Figure 11(b). It is seen that except that RTHO
costs significantly more time, our MLR-SNet takes similar
time to complete the meta-training and meta-test phase
compared to hand-designed LR schedules. Considering its
good transferability and generalization capability, it should
be rational to say that it is efficient.

5.3 Visualizing the “Width” of Solutions
We further point out that visualizing the “width” of a given
solution w in a low-dimensional space may help understand
why the model has fine generalization capability. Generally,
[8], [9] suggested that the wider optima leads to better
generalization. We use the visualization technique in [11]
to show how the loss changes along many random direc-
tions drawn from the d-dimensional Gaussian distribution.
Fig.11(c) visualizes the “width” of the solutions learned on
CIFAR-100 with ResNet-18 for different LR schedules. It can
be seen that our method, as well as the competitive baselines,
lies a wide flat region of the train loss. This could explain
why they achieve better generalization performance. Deeper
understandings on this point will be further investigated.

5.4 Why Do We Need LSTM Meta-learner
We regard scheduling LR as a long-term information depen-
dent problem, and thus we parameterize the LR schedules as
an LSTM network. As we know MLP (multilayer perceptron)
network can also learn an explicit mapping but ignores the
temporal information, here we compare the performance of
the two types of meta-learners. Fig. 12 compares the perfor-
mance of two types of meta-learners for both meta-training
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Fig. 12. Performance comparison of two types of meta-learners. (a) Two types of meta-learners are trained on CIFAR-10 and Penn Treebank datasets
following the experiment setting in Section 4.1. The figure presents the test performance of two tasks. (b) The LR schedules meta-learned on
CIFAR-10 is transferred to TinyImageNet and Penn Treebank datasets following the experiment setting in Section 4.2. The meta-test performance are
shown in the figure.
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Fig. 13. Applying MLR-SNet on Top of Adam Algorithm. (a) The MLR-
SNet for Adam is meta-trained on Penn Treebank datasets with 2-layer
LSTM following the experiment setting in Section 4.1. The figure present
the test perplexity. (b) The meta-learned LR schedules are transferred to
train the 3-layer LSTM on Penn Treebank dataset. The test perplexity is
depicted.

and meta-test procedures. As is shown, the MLP meta-learner
achieves better performance in the early learning stage for
both meta-training and meta-test procedure. While at the
later training stage, the LSTM meta-learner gradually brings
a notable performance increase compared with MLP meta-
learner. This might be possibly due to that the MLP meta-
learner easily falls into the local optimal LR learning, while
lacks of considering the overall significantly changed training
dynamics. Though MLP meta-learner can also depict the
loss-LR relationship, it ignores the more important training
dynamics information involved for the scheduling LR. The
LSTM meta-learner, however, is capable of accumulating
temporal information of complicated training dynamics, and
thus inclines to help find a more proper LR schedule for such
DNNs training.

5.5 Applying MLR-SNet on Top of Adam Algorithm
To further demonstrate the versatility of our method, we
apply the MLR-SNet on top of the Adam algorithm. Fig.13
shows that our method can help find better LR schedules
than the Val Strategy. And the transferred LR schedules can
also attain comparable performance with the hand-designed
LR schedules. This implies that our framework is hopeful to
learn the proper LR schedules for various optimizers.

6 CONCLUSION AND DISCUSSION

In this paper, we have proposed to learn an adaptive and
transferrable LR schedule in a meta learning manner. To
this aim, we have designed an LSTM-type meta-learner
(MLR-SNet) to parameterize LR schedules, which gives
more flexibility to adaptively learn a proper LR schedule
to comply with the complex training dynamics of DNNs.
Meanwhile, the meta-learned LR schedules are plug-and-
play and transferrable, which can be readily transferred to

schedule LR for SGD to new heterogeneous tasks. Com-
prehensive experiments have been implemented, and the
results substantiate the superiority of our method on various
image and text benchmarks in its adaptability, transferability
and robustness, as compared with current LR schedules
policies. The MLR-SNet is hopeful to be useful in practical
problems as it requires negligible increase in the parameter
size and computation time, and small transferrable cost
for new tasks. We will make further endeavor to further
ameliorate our proposed method to make it as a general and
useful tool for helping improve current DNN training. More
practical applications will also be attempt to further verify
its effectiveness in general learning tasks.
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APPENDIX

.1 Proof of Theorem 1

In the following we provide the proof details for the result
of Theorem 1 in the maintext.

Proof. Let f∗ be the infimum of f(w), and then under the
assumption A1, we have

f(wt+1) ≤ f(wt)− 〈∇f(wt), αtvt〉+
L

2
α2
t ‖vt‖2. (16)

Taking expectation on both sides, we have

Ef(wt+1)− Ef(wt) ≤− 〈E∇f(wt), αtEvt〉+
L

2
α2
tE‖vt‖2

=− αtE‖∇f(wt)‖+
L

2
α2
tE‖vt‖2.

According to the assumption A3, it produces that

E‖vt‖2 ≤ (κ+ 1)E‖∇f(wt)‖+ σ.

Therefore, we have

Ef(wt+1)− Ef(wt)

≤− αtE‖∇f(wt)‖+
L

2
α2
t [(κ+ 1)E‖∇f(wt)‖2 + σ]

=−
(
αt −

L(κ+ 1)

2
α2
t

)
E‖∇f(wt)‖2 +

L

2
α2
tσ

≤− 1

2
αtE‖∇f(wt)‖2 +

L

2
α2
tσ,

(17)

where the last inequality holds since αt ≤ 1
L(κ+1) . Let δt =

Ef(wt)− f∗, and then we get

δt+1 ≤ δt −
1

2
αtE‖∇f(wt)‖2 +

L

2
α2
tσ. (18)

Based on the assumption A2, we can get − 1
2‖∇f(wt)‖2 ≤

µδt. Now, Eq(18) can be written as

δT+1 ≤ (1− µαT )δT +
L

2
α2
Tσ

≤ (1− µαT )

[
(1− µαT−1)δT−1 +

L

2
α2
T−1b

]
+
L

2
α2
Tσ

= (1− µαT )(1− µαT−1)δT−1 +
Lσ

2

[
(1− µαT )α2

T−1 + α2
T

]
= · · ·

=
T∏
t=1

(1− µαt)δ1 +
Lσ

2

T∑
t=1

T∏
i=t+1

(1− µαi)α2
t .

Since 1− µαt ≤ exp(−µαt), t = 1, · · · , T , we have

δT+1≤
T∏
t=1

exp(−µαt)δ1+
Lσ

2

T∑
t=1

T∏
i=t+1

exp(−µαi)α2
t

=exp(−µ
T∑
t=1

αt)δ1 +
Lσ

2

T∑
t=1

exp(−µ
T∑

i=t+1

αi)α
2
t .

(19)

Since αt = αt−1βt, 1/K ≤ a ≤ βt, then αt ≥ α0a
t,

T∑
t=1

αt ≥ α0
a− aT+1

1− a
= α0

a(1− aT )

1− a

≥ α0

K

1− aT

1− a
=
α0

K

1−M/T

1− a

≥ α0

K

1−M/T

1/T ln(T/M)
=
α0(T −M)

K ln(T/M)
,

where we use the result that

1− x≤ ln(1/x),∀x
in the last inequallity. Thus we have

exp(−µ
T∑
t=1

αt) ≤ exp

(
−µα0

T −M
K ln(T/M)

)
= C(M) exp

(
− µT

KL(1 + κ) ln(T/M)

)
,

where C(M) = exp( µM
KL(1+κ) ln(T/M) ). Observing that

T∑
i=t+1

αi = α0
at+1 − aT+1

1− a
≥
α0T

(
at − aT

)
K ln(T/M)

,

we can deduce that
T∑
t=1

exp(−µ
T∑

i=t+1

αi)α
2
t ≤

T∑
t=1

exp

(
−µα0T

at − aT

K ln(T/M)

)
α2
t

=C(M)
T∑
t=1

exp

( −µα0Ta
t

K ln(T/M)

)
α2
t

≤C(M)
T∑
t=1

(
2K ln(T/M)

eµα0atT

)2

α2
t

≤C(M)
T∑
t=1

(
2K ln(T/M)

eµα0atT

)2

α2
0b

2t

=4K2C(M)
T∑
t=1

ln2(T/M)

e2µ2T 2
(N/M)2t/T

=
4K2C(M) ln2(T/M)

e2µ2T 2

(N/M)2/T − (N/M)2+2/T

1− (N/M)2/T
.

≤4K2C(M) ln2(T/M)

e2µ2T 2

(N/M)2+2/T

(N/M)2/T − 1

=
4K2C(M) ln2(T/M)

e2µ2T 2

(N/M)2

1− (M/N)2/T

≤4K2C(M) ln2(T/M)

e2µ2T 2

T (N/M)2

2− 2M/N

=
2K2C(M) ln2(T/M)(N/M)2

e2µ2(1−M/N)T
,

where the second inequality holds since exp(−x)≤(s/ex)s,
∀x > 0,∀s > 0, and the last inequality is based on the
Bernoulli inequality (M/N)2/T = (1 + M/N − 1)2/T ≤ 1+
2M/N−2

T . Putting all above results together, Eq.(19) can be
bounded by

δT+1 ≤C(M) exp

(
− µT

KL(1 + κ) ln(T/M)

)
δ1

+
2K2C(M) ln2(T/M)(N/M)2

e2µ2(1−M/N)T
.
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Thus the conclusion holds.

.2 Proof of Theorem 2

In the following we provide the proof details for the result
of Theorem 2 in the maintext.

Proof. According to the proof process of Theorem 1, under
the assumption A1,A2 and the setting that α0 = 1

L(1+κ) , it
can be deduced that Eq.(17) holds, i.e.,

Ef(wt+1)− Ef(wt) ≤ −
1

2
αtE‖∇f(wt)‖2 +

L

2
α2
tσ. (20)

Summing up above inequalities over t = 1, 2, · · · , T , and
rearranging the terms, we can obtain

1

2

T∑
t=1

αtE‖∇f(wt)‖2 ≤ Ef(w1)− Ef(wT ) +
Lσ

2

T∑
t=1

α2
t .

Thus, we can deduce that

min
0≤t≤T

E‖∇f(wt)‖2 ≤
∑T
t=1 αtE‖∇f(wt)‖2∑T

t=1 αt

≤2Ef(w1)− 2Ef(wT ) + Lσ
∑T
t=1 α

2
t∑T

t=1 αt
.

Observing that

T∑
t=1

α2
t ≤

T∑
t=1

α2
0b

2t = α2
0

b2 − b2T+2

1− b2

≤α2
0

1− b2T

1− b2
= α2

0

1− (N/T )2

1− (N/T )2/T

=α2
0

1− (N/T )2

1− exp(2/T ln(N/T ))

≤α2
0

2 ln(T/N)

1− 1/(1− 2/T ln(N/T ))

=α2
0 (T + 2 ln(T/N)) =

T + 2 ln(T/N)

c2L2(1 + κ)2
,

(21)

where the last inequality holds since exp(x) ≤ 1/(1 −
x),∀x < 1. Recall the following intermediate result of the
proof in Theorem 1,

T∑
t=1

αt ≥
α0(T −M)

K ln(T/M)
=

T −M
cKL(1 + κ) ln(T/M)

,

we can then obtain

min
0≤t≤T

E‖∇f(wt)‖2 ≤
2cKL(1 + κ) ln(T/M))

T −M

[Ef(w1)− Ef(wT )] +O
(

σKT

c(1 + κ)(T −M)

)
.

Thus the conclusion holds.

Algorithm 3 Adam Algorithm

Input: θ1 ∈ Rd
′
, learning rate {ηt}Tt=1, decay parameters 0 ≤

β1, β2 ≤ 1, ε > 0.
Output: MLR-SNet parameter θT

1: Set m0 = 0, v0 = 0.
2: for t = 0 to T − 1 do
3: Dn ← SampleMiniBatch(DV al, n).
4: Compute gt = ∇θfV al(Dn, θt).
5: mt = β1mt−1 + (1− β1)gt
6: vt = vt−1 − (1− β2)(vt−1 − g2t )
7: θt+1 = θt − ηtmt/(

√
vt + ε)

8: end for

.3 Proof of Theorem 3

In the following we provide the proof details for the result of
Theorem 3 in the maintext. First we need prove a necessary
lemma as follows:

Lemma 1. Suppose that the loss function f is Lipschitz smooth
with respect to the model parameter w with constant L, and has
ρ-bounded gradients with respect to the training/validation data.
And the A(θ) is differential with a δ-bounded gradient and twice
differential with its Hessian bounded by B. Then it holds that the
gradient of MLR-SNet parameter θ with respect to the loss is also
Lipschitz smooth.

Proof. The gradient of MLR-SNet parameter θ with respect
to the loss at data point j can be written as

∇θfj(ŵt(θ))|θt =
∂fj(ŵt(θ))

∂ŵt(θ)

∂ŵt(θ)

∂A(θ)

∂A(θ)

∂θ

=
−αt
n

n∑
i=1

(
∂fj(ŵt(θ))

∂ŵt(θ)

∂`i(wt)

∂wt

)
∂A(θ)

∂θ

∣∣
θt
,

Let Gij =
∂`j(ŵt(θ))
∂ŵt(θ)

∂`i(wt)
∂wt

, and then take gradient of θ
in both sides of the above equality. We then have

∇2
θ2
fj(ŵt(θ))|θt =

−αt
n

n∑
i=1

[
∂Gij

∂θ

∂A(θ)
∂θ

+Gij
∂A2(θ)

∂θ2

]
. (22)

For the first term in the right hand side, we have that
∥∥∥∥∥ ∂Gij∂θ

∂A(θ)

∂θ

∥∥∥∥∥ ≤ δ
∥∥∥∥∥ ∂fj(ŵt(θ))∂ŵt(θ)∂θ

∂fi(wt)

∂wt

∥∥∥∥∥
=δ

∥∥∥∥∥∥
∂

∂ŵt(θ)

−αt
n

n∑
i=1

(
∂fj(ŵt(θ))

∂ŵt(θ)

∂fi(wt)

∂wt

)
∂A(θ)

∂θ

∣∣
θt

 ∂fi(wt)

∂wt

∥∥∥∥∥∥
=δ

∥∥∥∥∥∥
−αt

n

n∑
i=1

 ∂2fj(ŵt(θ))
∂ŵ2
t (θ)

∂fi(wt)

∂wt

 ∂A(θ)

∂θ

∣∣
θt

 ∂fi(wt)

∂wt

∥∥∥∥∥∥ ≤ αtLρ2δ2.
(23)

For the second term in the right hand side, we have that∥∥∥∥Gij ∂A2(θ)

∂θ2

∥∥∥∥ ≤ Bρ2. (24)

Combining the above two inequalities Eq.(23) and (24), we
have

‖∇θfj(ŵt(θ))|θt‖ ≤ αρ2(αtLδ
2 + B). (25)

Define LA = αρ2(αtLδ
2 + B), and based on the Lagrange

mean value theorem, we have:∥∥∥∇fV al(ŵt(θ1))− fV al(ŵt(θ2))
∥∥∥ ≤ LA ‖θ1 − θ2‖ . (26)

Thus the conclusion holds.

Now we present the proof of Theorem 3.
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Proof. Suppose that we have a small validation set with B
samples {x1, x2, · · · , xM}, each associating with a validation
loss function `i(w(θ)), where w is the parameter of the
model, and θ is the parameter of the MLR-SNet. The overall
validation loss is then:

fV al(w) =
1

B

B∑
i=1

fV ali (w(θ)), (27)

where B is the minibatch size. According to the updating
Algorithm 1, we have:

EfV al(ŵt+1(θt+1))− EfV al(ŵt(θt))

=
{
EfV al(ŵt+1(θt+1))− EfV al(ŵt(θt+1))

}
︸ ︷︷ ︸

(a)

+
{
EfV al(ŵt(θt+1))− EfV al(ŵt(θt))

}
︸ ︷︷ ︸

(b)

.

(28)

For the above term (a), it holds that

EfV al(ŵt+1(θt+1))− EfV al(ŵt(θt+1))

≤
〈
E∇wfV al(ŵt+1(θt+1)),Eŵt+1(θt+1)− Eŵt(θt+1)

〉
+
L

2
E ‖ŵt+1(θt+1)− ŵt(θt+1)‖22 .

(29)

According to Eq (7) in the maintext, we have

ŵt+1(θt+1)− ŵt(θt+1) = −αt∇wfTr(ŵt(θt+1)).

Then Eq (29) can be written as

a ≤− 〈E∇wfV al(ŵt+1(θt+1)), αtEvt〉+
L

2
α2
tE‖vt‖2

≤− 〈E∇wfV al(ŵt+1), αtEvt〉+
L

2
α2
t [(κ+ 1)E‖∇f(wt)‖2 + σ]

≤αtρ2 +
L

2
α2
t [(1 + κ)ρ2 + σ].

For the term (b) in Eq. (28), according to Lemma 1, i.e.,
the validation loss is Lipschitz smooth with respect to the
MLR-SNet parameter θ with L, we have

EfV al(ŵt(θt+1))− EfV al(ŵt(θt))

≤
〈
E∇θfV al(ŵt(θt)),Eθt+1 − Eθt

〉
+
L

2
E ‖θt+1−θt‖22 .

(30)

Here we adopt Adam algorithm [77] (Algorithm 3) to
update the parameter of MLR-SNet, θt+1 − θt in Eq.(30) is
updated by

θt+1,i = θt,i − ηt
gt,i√
vt,i + ε

, i = 1, 2, · · · , d. (31)

Now, we have

b ≤− ηt
d∑
i=1

〈
E∇θLiV al(ŵt(θt)),E

gt,i√
vt,i + ε

〉

+
Lη2t

2
E

d∑
i=1

g2t,i
(
√
vt,i + ε)2

.

(32)

Based on the proof process in [78] (Eq. (4) in pp. 13), we can
deduce that

b ≤− ηt
2(
√
β2ρ+ ε)

E‖∇θfV al(ŵt(θt))‖22

+

(
ηρ
√

1− β2
ε2

+
Lη2

2ε2

)
σ2

B
.

(33)

Now Eq.(28) can be reformulated as:

EfV al(ŵt+1(θt+1))− EfV al(ŵt(θt))

≤ αtρ2 +
L

2
α2
t [(1 + κ)ρ2 + σ]− ηt

2(
√
β2ρ+ ε)

E‖∇θfV al(ŵt(θt))‖22 +

(
ηρ
√

1− β2
ε2

+
Lη2

2ε2

)
σ2

B
,

(34)

By rearranging the inequality (34), we can then obtain:

E
[

ηt
2(
√
β2ρ+ ε)

‖∇θLV al(ŵt(θt))‖22
]

≤αtρ2 +
L

2
α2
t (ρ

2 + σ2)− EfV al(ŵt+1(θt+1))

+ EfV al(ŵt(θt)) +

(
ηρ
√

1− β2
ε2

+
Lη2

2ε2

)
σ2

B
.

Using telscoping sum, we obtain
T∑
t=1

ηt

2(
√
β2ρ+ ε)

E
∥∥∥∇θfV al(ŵt(θt))∥∥∥2

2

≤EfV al(ŵ1(θ1))− EfV al(ŵT+1(θT+1)) + ρ2
T∑
t=1

αt

+
L

2
(ρ2 + σ2)

T∑
t=1

α2
t +

(
ηρ
√

1− β2
ε2

+
Lη2

2ε2

)
σ2T

B

≤fV al(ŵ1(θ1)) + ρ2
T∑
t=1

αt +
L

2
(ρ2 + σ2)

T∑
t=1

α2
t

+

(
ηρ
√

1− β2
ε2

+
Lη2

2ε2

)
σ2T

B
.

(35)

Therefore,

min
t

E
[∥∥∥∇θfV al(ŵt(θt))∥∥∥2

2

]

≤

∑T
t=1

ηt
2(
√
β2ρ+ε)

E
∥∥∥∇θfV al(ŵt(θ(t)))∥∥∥2

2∑T
t=1

ηt
2(
√
β2ρ+ε)

≤f
V al(ŵ1(θ1))− fV al(ŵT+1(θT+1)) + S

1/2(
√
β2ρ+ ε)×

∑T
t=1 ηt

≤2(
√
β2ρ+ ε)

Tη
×
{
fV al(ŵ1(θ1)) + S

}
,

where S= L
2 (ρ2 + σ2)

∑T
t=1 α

2
t + +

(
ηρ
√
1−β2

ε2 + Lη2

2ε2

)
σ2T
B +

ρ2
∑T
t=1 αt. Taking a similar process as in Eq.(21), we have

that
T∑
t=1

αt ≤
ln(T/N) + T

cL(1 + κ) ln(T/N)
,

T∑
t=1

α2
t ≤

2 ln(T/N) + T

c2L2(1 + κ)2 ln(T/N)
.

Therefore, we can obtain

min
t

E
∥∥∥∇θfV al(ŵt(θt))∥∥∥2

2
≤ O(

1

c2 ln(T )
+ σ2)

Thus the conclusion holds.
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Here we also demonstrate the pseudo-code of the MLR-
SNet for Pytorch implementation as follows, to make readers
easily reproduce our algorithm.

class LSTMCell(nn.Module):
def __init__(self, num_inputs, hidden_size):
super(LSTMCell, self).__init__()
self.hidden_size = hidden_size
self.fc_i2h = nn.Sequential(
nn.Linear(num_inputs, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, 4 * hidden_size))
self.fc_h2h = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, 4 * hidden_size))
def forward(self, inputs, state):
hx, cx = state
i2h = self.fc_i2h(inputs)
h2h = self.fc_h2h(hx)
x = i2h + h2h
gates = x.split(self.hidden_size, 1)
in_gate = torch.sigmoid(gates[0])
forget_gate = torch.sigmoid(gates[1])
out_gate = torch.sigmoid(gates[2])
in_transform = torch.tanh(gates[3])
cx = forget_gate * cx + in_gate * in_transform
hx = out_gate * torch.tanh(cx)
return hx, cx

class MLRNet(nn.Module):
def __init__(self, num_layers, hidden_size):
super(MLRNet, self).__init__()
self.hidden_size = hidden_size
self.layer1 = LSTMCell(1, hidden_size)
self.layer2 = nn.Linear(hidden_size, 1)
def forward(self, x, gamma):
self.hx, self.cx =
self.layer1(x, (self.hx, self.cx))
x = self.hx
x = self.layer2(x)
out = torch.sigmoid(x)
return gamma * out
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