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Instance Shadow Detection
with A Single-Stage Detector
Tianyu Wang, Xiaowei Hu*, Pheng-Ann Heng, and Chi-Wing Fu

Abstract—This paper formulates a new problem, instance shadow detection, which aims to detect shadow instance and the
associated object instance that cast each shadow in the input image. To approach this task, we first compile a new dataset with the
masks for shadow instances, object instances, and shadow-object associations. We then design an evaluation metric for quantitative
evaluation of the performance of instance shadow detection. Further, we design a single-stage detector to perform instance shadow
detection in an end-to-end manner, where the bidirectional relation learning module and the deformable maskIoU head are proposed in
the detector to directly learn the relation between shadow instances and object instances and to improve the accuracy of the predicted
masks. Finally, we quantitatively and qualitatively evaluate our method on the benchmark dataset of instance shadow detection and
show the applicability of our method on light direction estimation and photo editing.

Index Terms—Instance shadow detection, instance segmentation, shadow detection, deep neural network.
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1 INTRODUCTION

“When you light a candle, you also cast a shadow,”—Ursula K.
Le Guin written in A Wizard of Earthsea.

Shadows are formed when the light is blocked by the objects.
When we see a shadow, we also know that there must be some
objects that create or cast the shadow. However, recent shadow
detection methods [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13] simply generate a binary mask to indicate the shadow regions
and fail to find the associated object that casts each individual
shadow. To find shadows together with their associated objects, we
propose a new task, named instance shadow detection, in which
we detect not only individual shadow instances in the input image
but also the associated object that casts each shadow.

Instance shadow detection has the potential to benefit various
applications. For privacy protection, for example, when we remove
vehicles and persons from photos, we can remove the associated
shadows with the objects together. Also for photo editing, when
we translate or scale objects in photos, we can naturally manip-
ulate the objects with their associated shadows simultaneously.
Further, shadow-object associations give hints to estimate the
light direction, facilitating the development of applications such
as shadow generation for virtual objects in AR environments and
scene relighting. Last, the detected shadow and object instances
help to estimate building heights from satellite metadata [14].

To approach the new task of instance shadow detection, we
first prepared the SOBA (Shadow OBject Association) dataset.
The dataset has three parts: SOBA training, SOBA testing, and
SOBA challenge. Both the SOBA-testing and SOBA-challenge
sets are for testing but the SOBA-challenge set contains complex
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(a) Input image

(c) Shadow instances (d) Object instances

(b) Our result

(e) Shadow-obj. associations

Fig. 1: Given (a) an input photo, the goal of instance shadow de-
tection is to detect (c) individual shadow instances, (d) individual
object instances , and (e) shadow-object associations. (b) shows
the overall result produced by our method from (a).

scenarios for evaluating the capability of methods in handling
challenging cases. The whole dataset contains 4,293 pairs of
annotated shadow-object associations over 1,100 images. Each
image has (i) a shadow instance mask, which labels each shadow
instance with a unique color; (ii) a shadow-object association
mask, which labels each shadow-object pair with a corresponding
unique color; and (iii) an object instance mask, which is (ii)
minus (i); see Figure 1 for an example. Also, we formulate a
new evaluation metric for the task to quantitatively evaluate the
performance of the instance shadow detection results.

We approach the instance shadow detection task by exploiting
the remarkable computational capability of deep neural networks.
Our earlier work LISA [1] first generates region proposals that
likely contain shadow/object instances and shadow-object associ-
ations. For each proposal, we then crop regions-of-interest (RoIs)
from the feature maps and predict masks and boxes of the shadow
instances, object instances, and shadow-object associations from
each RoI. Lastly, we pair the shadow and object instances with the
shadow-object associations. However, this two-stage framework
and post-processing strategy have several limitations. First, this
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approach considers shadow-object association as a single category.
Yet, the appearance of shadow and object instances have large
variations, so shadow-object associations could easily be missed.
Second, it generates region proposals for shadow/object instances
and shadow-object associations using two separate branches and
leverages post-processing to produce the final shadow-object as-
sociations. Errors could accumulate over the network and post-
processing. Third, the employed RoIs represent feature regions
using rectangular shapes. However, the shapes of the shadow
instances and shadow-object associations are usually irregular and
the cropped RoIs of rectangular shapes could include many irrele-
vant image contents such as other object and shadow instances.

To address the above issues, we design a single-stage deep
framework [2] to directly learn to find the relation between shadow
and object instances in an end-to-end manner. This framework
includes only fully convolutional operations to generate the masks
for the shadow instances, object instances, and shadow-object
associations, thus enabling us to handle shadow/object instances
and shadow-object associations of any shape. Importantly, we
design the bidirectional relation learning module to find the
shadow-object association pairs to learn an offset vector from
the center of each shadow instance to the center of its associated
object instance, and the other way around, aiming to explore the
inter-relationship between shadows and objects effectively. We
construct a class vector to represent the learning directions during
this process: shadow to object or object to shadow.

Further, we design a deformable MaskIoU head in the network
to improve the mask accuracy. This module takes the output of the
mask head and mask feature as inputs and predicts the IoU scores
of the predicted masks. Unlike the Mask Scoring R-CNN [15],
which feeds feature cropped from the RoI as the input of the
MaskIOU head, we take the raw feature as input to our method.
Hence, we further introduce the deformable convolution [16] to
process the whole feature and focus on discriminate regions in the
shadow/object instance masks. Also, we formulate a segmentation
loss, an offset loss, and a boundary loss to jointly optimize the
entire network. Lastly, we design also a shadow-aware copy-and-
paste strategy to augment input images during the training. These
new techniques help the network learn to better pair the shadow
and object instances for improving the overall performance.

Below, we summarize the major contributions of this work.
• First, we formulate a new task, instance shadow detection,

which aims to find individual shadow instances, individual
object instances, and the shadow-object associations.

• Second, we prepare a new dataset and evaluation metric
to support instance shadow detection. The dataset contains
1,100 images and 4,293 pairs of shadow-object associations,
and provides three instance masks for each image.

• Third, we design a single-stage instance shadow detection
network with two novel techniques, the bidirectional relation
learning module, the deformable maskIoU head, and some
training strategies to directly learn the relation between
shadow and object instances.

• Fourth, we perform various experiments to quantitatively and
visually demonstrate the effectiveness of our method. Results
show that our method outperforms our previous two-stage
detector [1] by over 50.2% and 70.2% on the SOBA-testing
set and the SOBA-challenge set, respectively.

• Last, we demonstrate the applicability of the instance shadow
detection on various tasks, including light direction estima-
tion and photo editing.

2 RELATED WORK

Shadow detection. Generic shadow detection aims to generate
a binary mask to mark shadow regions in the input image. Early
methods build physical models to leverage color and illumination
to detect shadows. Among them, Salvador et al. [17] explore
shadows’ spectral and geometrical properties to segment the cast
shadows. Panagopoulos et al. [18] build a higher-order Markov
Random Field illumination model with coarse 3D geometry in-
formation. Tian et al. [19] adopt the difference of spectral power
distributions in daylight and skylight for shadow detection.

Later, machine-learning approaches are developed to rec-
ognize shadows by first describing image regions using hand-
crafted features and then classifying the regions into shadows
and non-shadows. Features like texture [20], [21], [22], [23], T-
junction [24], color [21], [22], [23], [24], and edge [20], [24], [25]
are commonly used to describe shadows followed by classifiers
like SVM [21], [22], [23], [25] and decision tree [20], [24]. These
designed physical models and hand-crafted features have limited
ability to describe shadows, so approaches based on these models
and features may mis-detect shadows in general cases.

Deep neural networks automatically learn features from
shadow images and show remarkable performance on shadow
detection, especially with extensive training data. Khan et al. [7]
present the first work that uses a convolutional neural network
(CNN) to learn features for shadow detection. Shen et al. [26]
and Hou & Vicente et al. [3], [10] devise a structured learning
framework and a stacked-CNN, respectively, to detect shadows.
Nguyen et al. [27] design an adjustable parameter in a conditional
GAN to balance the weights of shadow and non-shadow regions.

Later, Hu et al. [5], [6] learn the direction-aware spatial context
to detect shadows by designing an attention mechanism in a spatial
recurrent network. Wang et al. [28] iteratively detect and remove
shadows with two conditional generative adversarial networks.
Le et al. [8] adopt adversarial training samples generated from a
shadow attenuation network to train a shadow detection network.
Zhu et al. [12] design a bidirectional feature pyramid network
with recurrent attention residual modules to detect shadows.
Zheng et al. [11] revisit false negatives and false positives from the
predicted results and derive a distraction-aware shadow detection
network. Ding et al. [29] detect and remove shadows in a recurrent
manner via an attentive recurrent generative adversarial network.
More recently, Chen et al. [13] present a semi-supervised shadow
detection algorithm by exploring unlabeled data through a multi-
task mean teacher framework. Hu et al. [4] build a new dataset
to support shadow detection in a complex world and designed a
fast shadow detection network. Chen et al. [30] design a triple-
cooperative video shadow detection network to detect shadows in
videos. Unlike general shadow detection, which adopts a single
mask for all shadows in an image, this work detects not just
individual shadows but also the associated objects altogether.

Apart from generic shadow detection, various works explored
deep learning to remove shadows in natural images [9], [29],
[31], [32], [33], [34], [35], [36], [37], [38], [39] and in docu-
ments [40], to generate shadows in augmented reality [41] and
in real scenes [42], and to manipulate portrait shadows [43]. Our
instance shadow detection task offers a new perspective to edit or
remove individual shadows with the associated objects.

Instance segmentation. Besides, this work relates to instance
segmentation, which aims to label pixels of individual foreground
objects in the input image. One category of methods predicts
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(a) Example images in the SOBA-training set

(b) Example images in the SOBA-testing set (c) Example images in the SOBA-challenge set

Fig. 2: Example images with the mask labels in our SOBA data set. Please zoom in for a better visualization.

region proposals in the input image and then generates an instance
mask for each proposal, e.g., MNC [44], DeepMask [45], Instance-
FCN [44], SharpMask [46], FCIS [47], BAIS [48], MaskLab [49],
Mask R-CNN [50], PANet [51], MegDet [52], and HTC [53].
Among them, Mask R-CNN simultaneously predicts the category
label, bounding box, and segmentation mask for each region
proposal and achieves great success. The other category directly
predicts the instance masks and associated categories in the whole
image, e.g., TensorMask [54], SSAP [55], SOLO [56], Embed-
Mask [57], SOLOv2 [58], CenterMask [59], and CondInst [60].
Our method is based on the architecture of CondInst [60]; below,
we further elaborate on how CondInst works.

Details on CondInst [60]. CondInst performs instance segmen-
tation by generating the location and mask of each object. First, it
adopts a fully convolutional network to predict the object centers
based on the features extracted by the backbone network. Second,
it takes the object locations and the extracted mask features
as inputs, and leverages the dynamic convolution to generate
filters for each object to predict its mask. By doing so, CondInst
can eliminate the RoI operations and reduce the parameters and
computational complexity when predicting the masks, leading to
a more efficient and simple instance segmentation framework.
Based on CondInst, we further formulate our bidirectional relation
learning module to learn the relation between shadow and object
instances and design a deformable maskIoU head to penalize the

predicted instance masks with low quality.

Difference from the conference papers. This work extends
our earlier works [1], [2] in three aspects. First, we enrich our
dataset prepared for instance shadow detection by providing more
challenging cases with labels, aiming to evaluate the detection
performance in complex scenarios. Second, we improve the single-
stage instance shadow detection (SSIS) method (in our confer-
ence version [2]) by designing new techniques: (i) a deformable
MaskIoU head, (ii) a shadow-aware copy-and-paste data aug-
mentation strategy, and (iii) a boundary loss, to better segment
the shadow/object instances and shadow-object associations. Our
SSISv2 outperforms the two-stage detector LISA [1] and the
original SSIS [2] by 50.6% and 17.2%, respectively, in accuracy.
Third, we perform more experiments to evaluate the design of
our network and add more applications to show how our SSISv2
outperforms the existing methods on instance shadow detection.

3 DATASET AND EVALUATION METRIC

3.1 SOBA (Shadow OBject Association) Dataset
We prepare SOBA (Shadow OBject Association) dataset to sup-
port instance shadow detection, which contains three parts: SOBA
training, SOBA testing, and SOBA challenge. We first build the
SOBA-training and -testing sets from relatively simple cases by
collecting images from the ADE20K [61], [62], SBU [3], [10],
[63], ISTD [28], and Microsoft COCO [64] datasets, and also
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(a) Statistical properties of the SOBA-training and SOBA-testing sets.
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(b) Statistical properties of the SOBA-challenge set.

Fig. 3: Statistical properties of the SOBA dataset.

from the Internet using keyword search with shadow plus animal,
people, car, athletic meeting, zoo, street, etc. Then, we coarsely
label the images to produce shadow instance masks and shadow-
object association masks, and refine them using the Apple Pencil
software; see Figures 1 (b) & (d). Next, we obtain object instance
masks (see Figure 1 (c)) by subtracting each shadow instance
mask from the associated shadow-object association mask. Over-
all, there are 1,000 images with 3,623 pairs of shadow-object
instances, and we randomly split the images into a training set
(840 images, 2,999 pairs) and a testing set (160 images, 624 pairs);
see Figure 2 (a) & (b) for some examples.

We show some statistical properties of the SOBA-training and
-testing sets in Figure 3 (a). From the left histogram, we can see
that it has a diverse number of shadow-object pairs per image,
around 3.62 pairs per image on average. On the other hand, the
right histogram reveals the proportion of image space (horizontal
axis) occupied, respectively, by shadow and object instances in the
dataset images. From the plot, we can see that most shadows and
objects occupy relatively small areas in the whole images.

To evaluate the detection performance in complex scenarios,
we further collected 100 images with challenging shadow-object
pairs from the Internet using keyword search with crowd plus
people, animals, cars, street, pasture, grassland, and beach. Then,
we picked images of scenes with multiple various-shape shadow-
object associations, large occlusion between the objects, between
the shadows, or between both the objects and shadows, and long
shadows that usually appear at sunset. Figure 2 (c) shows some of
these images. Also, we annotated the images using similar steps as
mentioned earlier. We name this dataset SOBA challenge, which
includes 670 pairs of shadow-object instances, and the whole
SOBA-challenge dataset is used only for testing.

Figure 3 (b) shows SOBA challenge’s statistical properties.
From the left histogram, we can see that this dataset has ∼6.70
pairs per image on average (vs. 3.62 for SOBA training & testing)
and more than 20% of the images have nine or more shadow-object
pairs per image. The right histogram also shows that this dataset
contains more objects that occupy large areas in the images.

Overall, the whole SOBA dataset has 1,100 images with 4,293
pairs of annotated shadow-object associations.

3.2 SOAP (Shadow-Object Average Precision) Metric
Existing metrics evaluate instance segmentation results by looking
at object instances individually. Our problem involves multiple
types of instances: shadows, objects, and their associations. Hence,
we formulate a new metric called the Shadow-Object Average Pre-
cision (SOAP) by adopting the same formulation as the traditional
average precision (AP) with the intersection over union (IoU) but
further considering a sample as true positive (an output shadow-
object association), if it satisfies the following three conditions:

(i) the IoU between the predicted shadow instance and ground-
truth shadow instance is no less than τ ;

(ii) the IoU between the predicted object instance and ground-
truth object instance is no less than τ ; and

(iii) the IoU between the predicted and ground-truth shadow-
object associations is no less than τ .

We follow [64] to report the evaluation results by setting τ
as 0.5 (SOAP50) or 0.75 (SOAP75), and report also the average
over multiple τ [0.5:0.05:0.95] (SOAP). Also, since we obtain
the bounding boxes and masks of the shadow instances, object
instances, and shadow-object associations, we report SOAP50,
SOAP75, and SOAP for both bounding boxes and masks. The
dataset and evaluation metric are available for download at
https://github.com/stevewongv/ InstanceShadowDetection.

4 METHODOLOGY

4.1 Overall Network Architecture
Figure 4 overviews our network architecture. Given the input
image, we leverage a convolutional neural network to extract
feature maps in varying solutions and employ a feature pyramid
network [65] with multiple feature levels (P3 to P7). Then, we
adopt multiple heads at different levels: a class tower with four
convolutional layers to predict the classification scores and a box
tower with another four convolutional layers for other predictions.
In summary, we obtain the following predictions for each head:

(i) classification scores, which indicate the categories of
shadow, object, and background;

(ii) offset vector, which are image-space vectors from the centers
of shadow instances to the centers of the corresponding object
instance, and vice versa;

(iii) controller and paired controller, each learning a set of
filter parameters in the mask head to predict the masks
for shadow instance and object instance, respectively. Note
that each instance has its individual filter parameters to
predict a mask; see [60] for details. In our framework, if the
controller generates filter parameters for a shadow instance,
the paired controller will generate filter parameters for the
corresponding object instance, and vice versa; and

(iv) regression and centerness: regression predicts the bounding
box of each shadow and object instance, whereas centerness
regularizes the prediction by reducing the number of low-
quality predicted bounding boxes far from the center of a
target shadow/object; see [66] for details.

Next, we formulate a mask branch, which takes the feature
map at P3 as input and generates the mask feature. For each
predicted shadow/object instance, we duplicate and concatenate
the mask feature with two relative coordinate (Rel. Coord.) maps:

https://github.com/stevewongv/InstanceShadowDetection
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Fig. 4: The schematic illustration of our single-stage instance shadow detection network (SSISv2). The mask feature and outputs of the
box tower and class tower are used to formulate the bidirectional relation learning module; see Figure 5. The mask feature and output
instance masks are sent to the deformable MaskIoU head for mask refinement; see Section 4.3. Note that each head has its own box
head and class head, and the filter parameters among these heads are shared.

one indicates the center of the object/shadow instance, whereas the
other is obtained by first multiplying the offset vector with a class
vector then adding the results with the coordinates to represent the
center of the corresponding shadow/object instance. Note that the
class vector is generated from the classification score, where −1
(+1) indicates the direction from object to shadow (from shadow
to object) and the relative coordinate map is computed from the
predicted locations of shadow/object instances. Further, we use the
learned filter parameters from the controller and paired controller
to perform convolutional operations on the concatenated feature
mask and relative coordinate maps and predict the masks for the
shadow/object instances and the paired object/shadow instances.
Finally, we concatenate the predicted masks for the instances and
the mask feature and design a deformable MaskIoU head to refine
the predicted masks by adopting a MaskIoU loss function.

In the following, we will elaborate on how to learn the relation
between shadow and object instances (Section 4.2) and formulate
the deformable MaskIoU head (Section 4.3), and then present the
training and testing strategies, including the shadow-aware copy-
and-paste augmentation and loss functions (Section 4.4).

4.2 Bidirectional Relation Learning

Figure 5 shows the detailed structure of our proposed bidirectional
relation learning module. Figure 5 (a) illustrates how to learn the
paired shadow instance from the object instance, whereas Figure 5
(b) illustrates this strategy in the opposite direction. As shown in
the top left corner, after obtaining the original location Lm of
the m-th object instance, we append the location with the mask

feature and adopt the m-th mask head to predict the segmentation
mask of this instance. Note that the filter parameters in the mask
head are produced from the controller and the filter parameters
vary in different mask heads; see “Controller” in Figure 4.

Then, we compute the associated location Am to mark the
center of the paired shadow instance by using the learned offset
vector Om and class vector −1:

Am = Lm + Om × −1 , (1)

where the offset vector is learned from the box tower and it
represents the distance between the center of the object instance
and the center of the paired shadow instance; the class vector
is generated from the classification score and we adopt −1 to
represent the direction from object to shadow and 1 to represent
the direction from shadow to object. Next, we concatenate the
associated location Am and mask feature, and use the m-th asso-
ciated mask head to generate the mask for the shadow instance,
and the filter parameters of the associated mask head are learned
from the paired controller automatically, as shown in Figure 4.

Similarly, taking the original location Ln of the n-th shadow
instance as the input, we compute the associated location An of
the paired object instance by

An = Ln + On × 1 , (2)

whereOn denotes the n-th offset vector and 1 denotes the learning
direction from shadow to object. Also, we adopt the mask head and
the associated mask head to generate the segmentation masks for
the paired shadow and object instances; see Figure 5 (right).
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Note that the location maps (Lm, Am, Ln, An) shown in
Figure 5 are the visualization results of the learned locations,
demonstrating that our network can successfully learn the loca-
tions for the shadow and object pairs.

4.3 Deformable MaskIoU Head
As shown in Figure 6 (a), the original model tends to predict masks
with high confidence scores but low IoUs. These low-quality

masks degrade the detection performance, since the confidence
score predicted from the classification task (“classification” in
Figure 4) fails to consider the mask information. To further refine
the predicted masks of shadow/object instances, we formulate the
deformable MaskIoU head to regress the intersection over union
(IoU) between the predicted masks and the associated ground-truth
masks. As shown in Figure 4 (bottom), given the mask feature and
each predicted mask as input, we perform a 1 × 1 convolution to
reduce the feature channel and a deformable convolution layer [16]
to focus the learning on the instance’s specific region, followed
by a convolution layer and an adaptive max-pooling layer to
reshape the feature map to 64 × 64. Lastly, we leverage three
fully connected layers to predict a single mask IoU per instance.

Unlike the MaskIoU head in [15], which is designed only for
RoI-based methods and takes the RoI feature of size 14 × 14 as
input, we design a deformable MaskIoU head that takes the whole
mask feature with instance mask as input and automatically learns
the discriminative feature for each instance mask, since our based
method [60] employs the whole mask feature with conditional
convolution to eliminate the RoI operations. Figure 6 shows the
predicted instance masks with confidence scores and associated
mask IoUs before and after using the MaskIoU head. As shown
on the bottom right of the figure, after using the deformable
MaskIoU head, we can dramatically avoid more masks with high
confidences but low IoUs, showing that our deformable MaskIoU
head can successfully filter out instances of low quality. Please see
Section 5.2 for related quantitative comparison results.

4.4 Training and Testing Strategies

4.4.1 Shadow-aware Copy-and-Paste Augmentation

To enhance the network’s robustness, especially for handling
challenge cases, e.g., occlusion between object and shadow in-
stances, we design a shadow-aware copy-and-paste augmentation
strategy to enrich the training data. As shown in Figure 7, we
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(a) Input images (b) Variant #1 (b) Variant #2

Fig. 7: Shadow-aware copy-and-paste augmentation. (b) & (c)
show example copying-and-pasting results on different objects.

randomly select a shadow-object association in the input image,
copy the object instance with its associated shadow instance, then
paste them to the surroundings. Specifically, we shift the mask by
a random value in range [- 23W, 2

3W] on the X axis and a random
value in range (0, 2

3H] on the Y axis, where W and H are the width
and height of the shifted object. Importantly, the augmentation
should consider object layering. That is, we should put the pasted
shadow-object association behind existing object instances but
above their original shadow instances and scene background for
plausible occlusions among the objects. Further, we propose to
relight the scene background in the shadow region cast by the
copied object. The relighted shadow region R is computed by

R =
mean(S)

mean(T )
· T , (3)

where T is the original color of the relighted shadow region and
S is the color of the shadow region where is copied.

4.4.2 Loss Function

We define the overall loss Lall for training our SISSv2 network as
a sum of detection loss LD, mask loss LM, and boundary loss LB:

Lall = LD + LM + LB . (4)

Detection loss:

LD = Lcls + Lcenter + Lbox + Loffset, (5)

where Lcls is the classification loss, Lcenter is the centerness loss,
and Lbox is the box regression loss, which follows the losses
in [66]. The offset loss Loffset takes the form of the smooth L1

loss [67] for optimizing the offset vectors:

Loffset (u, v) =
∑

I∈{x,y}

{
0.5 (ui − vi)2 , if |ui − vi| < 1;
|ui − vi| − 0.5 , otherwise ,

(6)
where ui is resulted from the element-wise multiplication of the
predicted offset vector and class vector:

ui = Oi × Ci , (7)

and vi denotes the ground-truth offset vector:

vi = L̃i − Li , (8)

C
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v

C
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v

C
on

v

Mask Head

Thick boundary mapInstance mask

Mask Feature & Rel. Coord.

Thin boundary map

Laplacian

filter

Fig. 8: The mask head (top right) simultaneously predicts a thick
boundary map and an instance mask. We then pass the instance
mask to the Laplacian filter to produce the thin boundary map.

where L̃i and Li are the ground-truth and predicted location of
the paired object/shadow instance, respectively.

Mask loss:

LM = Lmask + Lassociated
mask + Lmaskiou , (9)

where we adopt dice loss [68] to compute the losses of the output
instance masks Lmask and produce the associated instance masks
Lassociated

mask ; see Figure 4 for the predictions. The MaskIoU loss
Lmaskiou is defined as

Lmaskiou =
1

N

N∑
i=1

(Ii − Ĩi)2 , (10)

where Ii and Ĩi are the predicted and ground-truth mask IoU,
respectively; and N is the number of the predicted instances.

Boundary loss. Different from existing boundary losses, we
formulate two types boundary maps with different thicknesses to
improve the boundary accuracy of the instance masks. One is a
thick boundary map for focusing on the boundary structures, and
the other is a thin boundary map for focusing on the boundary
details. As shown in Figure 8, we predict the thick boundary map
from the mask head directly and generate the thin boundary map
by applying a Laplacian filter on the predicted instance mask. On
the other hand, we extract the boundary map from the ground-
truth image and apply the Laplacian filter to the boundary map to
formulate a supervision on the predicted thin boundary map; then,
we apply the Euclidean distance transform [69] to the boundary
map from the ground truth to formulate a supervision on the
predicted thick boundary map. The overall boundary loss is a
summation of the output instance masks Lboundary and the output
associated instance masks Lassociated

boundary :

LB = Lboundary + Lassociated
boundary , (11)

Lboundary = β
||l(m̃)| − |l(m)||

|l(m̃)|
+ dice(

d(m̃)

max(d(m̃))
< 0.5, b) ,

(12)
where m̃ is ground-truth instance mask; m is predicted instance
mask; l(x) is Laplacian filter, whose kernel size is five; weight β is
set as five to balance the loss values; d computes a distance field,
in which each pixel stores the distance to the nearest boundary
pixel; max(d(m̃)) is the maximum distance for normalization;
dice is dice loss; and b is the predicted thick boundary map.
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TABLE 1: Comparison with the previous state-of-the-art methods for instance shadow detection on the SOBA-testing set. Note that the
results of LISA and SSIS are slightly different from the results reported in the conference versions [1], [2], because this work replaces
a simple polygon representation (employed in the previous works) with a more precise representation, i.e., RLE, for the labeled masks.

Network SOAPsegm SOAPbbox Association APsegm Association APbbox Instance APsegm Instance APbbox

LISA [1] 23.5 21.9 40.9 48.4 39.2 37.6
SSIS [2] 30.2 27.1 52.2 59.6 43.4 41.3
SSISv2 35.3 29.0 59.2 63.1 50.2 44.4

TABLE 2: Comparison with the previous state-of-the-art methods for instance shadow detection on the SOBA-challenge set.

Network SOAPsegm SOAPbbox Association APsegm Association APbbox Instance APsegm Instance APbbox

LISA [1] 10.4 10.1 20.7 25.8 23.8 24.3
SSIS [2] 12.7 12.8 28.4 32.6 25.6 26.2
SSISv2 17.7 15.1 34.6 37.3 31.0 28.4

Figure 12 shows example results produced by our method with
and without the boundary loss; by adopting the boundary loss in
training, we can improve the accuracy of the predicted instance
masks; please see Section 5.2 for the quantitative comparison.
Both offset loss Loffset and mask loss of the associated instance
mask Lassociated

mask propagate the gradient to offset vectors, helping
to optimize the network during the training. Also, we do not use
Lmaskiou in the first 5, 000 training iterations and thin boundary
loss in the first 10, 000 training iterations, as the predicted instance
masks have low quality at the beginning of the training process.

4.4.3 Training Parameters
We train our network by adopting the strategies of CondInst [60]
and AdelaiDet [70]. First, we adopt the weights of ResNeXt-
101-BiFPN [71], [72] trained on ImageNet [73] to initialize the
backbone network parameters, set the mini-batch size as two, and
optimize our network on one NVidia RTX 3090 GPU. Second, we
set the base learning rate as 0.001, adopt a warm-up [74] strategy
to linearly increase the learning rate from 0.0001 to 0.001 in
the first 1, 00 iterations, reduce the learning rate to 0.0001 after
40, 000 iterations, and stop the learning after 45, 000 iterations.
Third, we re-scale the input images, such that the longer side is
smaller than 1, 333 and the shorter side was smaller than 640,
without changing the image aspect ratio. Lastly, we apply random
horizontal flip to the input images as data augmentation.

4.4.4 Inference
In testing, the mask heads in our network produce the masks
for the shadow and object instances, while the associated mask
heads generate the masks for the paired object and shadow
instances based on the learned offset vectors; see Figure 5. With
bidirectional relation learning, we can obtain two sets of predicted
masks, for each pair of shadow and object instances. If the main
branch (left branch in Figure 5 (a)&(b)) produces the mask of its
shadow instance, the associated branch (right branch in Figure 5
(a)&(b)) will generate the mask of its object instance, and vice
versa. Yet, the accuracy of mask predictions in the main branch
is usually better than that of the associated branch, since the
associated branch needs to learn both tasks of mask prediction and
shadow-object relation, making its training more difficult. Hence,
we adopt the associated branch only to predict the paired relation
of the shadow and object instances, and take the masks predicted
from the main branch as the results. Finally, we adopt mask non-
maximum suppression (NMS) to refine the results.

5 EXPERIMENTAL RESULTS

5.1 Comparison with State-of-the-art Methods
We compare our SSISv2 with the instance shadow detection meth-
ods in our conference versions, LISA [1] and SSIS [2]. LISA is a
two-stage detector that takes light direction as guidance and adopts
a post-processing strategy to pair up the predicted shadow/object
instances with the shadow-object associations, whereas SSIS is
a single-stage fully convolutional detector that directly predicts
shadow instances, object instances, and their associations. Our
SSISv2 further formulates the deformable MaskIoU head, the
shadow-aware copy-and-paste data augmentation strategy, and the
boundary loss to improve the performance over SSIS [2].

Table 1 reports the comparison results on the SOBA-testing
set. We can see that SSISv2 clearly outperforms previous state-
of-the-art methods, LISA [1] and SSIS [2], for all the evaluation
metrics, where the improvements on SOAPsegm and SOAPbbox

are 50.2% / 32.4% over LISA and 16.9% / 7.0% over SSIS,
respectively, showing the superiority of SSISv2. Further, we com-
pare the methods on the SOBA-challenge set and report the results
in Table 2; SSISv2 also achieves the best results in terms of all the
evaluation metrics in the challenge scenarios.

Next, we provide visual comparison results in Figure 9, where
(a) shows the input images; (b), (c), and (d) show the results
produced by LISA [1], SSIS [2], and SSISv2, respectively, and (e)
shows the paired locations learned by SSISv2 to indicate the paired
shadow and object instances. From the results, we can see that
(i) SSISv2 can discover more shadow-object association pairs, as
shown in the first two rows; (ii) SSISv2 can produce more accurate
masks for shadow and object instances, as shown in the third row;
(iii) SSISv2 can successfully pair up the object and shadow in-
stances, but previous methods may fail; see the last two rows; and
(iv) SSISv2 can learn the locations of shadow-object pairs through
the directional relation learning module, as shown in (e). Figure 10
shows the visual comparison results on the SOBA-challenging set,
where SSISv2 better pairs up the shadow and object instances and
produces more accurate instance masks than the results produced
by the previous methods. Please see Figure 11 for more instance
shadow detection results produced by SSISv2 on various types of
objects and shadows. Our code, trained models, and the results
are released at https://github.com/stevewongv/SSIS.

5.2 Evaluation on the Network Design
Component analysis. We evaluate major components in SSISv2
on the SOBA-testing set. As shown in the first column in the

https://github.com/stevewongv/SSIS
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(b) LISA [1](a) Input images (c) SSIS [2] (d) SSISv2 (e) Paired location learned in SSISv2

Fig. 9: Visual comparison between instance shadow detection results produced by various methods (b)-(d) on images (a) in the SOBA-
testing set; (e) shows the learned locations for pairing shadow and object instances in our method.

(b) LISA [1](a) Input images (c) SSIS [2] (d) SSISv2

Fig. 10: Visual comparison between instance shadow detection results produced by various methods (b)-(d) on the SOBA-challenge set.
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TABLE 3: Component analysis on the SOBA-testing set; “data augm” denotes shadow-aware copy-and-paste (see Section 4.4.1).

+ deformable
maskIoU

+ boundary
loss

+ data
augm SOAPsegm SOAPbox

Association
APsegm

Association
APbox

Instance
APsegm

Instance
APbox

basic 28.1 26.8 49.8 56.6 41.5 40.8
+ offset 29.1 25.4 51.1 57.6 41.8 38.9

+ class (SSIS [2]) 30.2 27.1 53.6 59.6 43.4 41.3

X 32.0 27.2 53.6 58.8 45.9 41.1
X 31.0 26.3 54.6 59.4 45.0 40.8

X 31.1 26.7 55.1 60.6 45.3 42.0
X X 33.3 27.5 56.0 60.7 46.4 42.0
X X 33.5 27.8 56.8 62.2 47.8 42.8

X X 32.1 27.7 56.4 61.7 46.3 42.8
SSISv2 X X X 35.3 29.0 59.2 63.1 50.2 44.4

TABLE 4: Evaluation on the bidirectional learning strategy.

Strategy SOAPsegm SOAPbbox

object→ shadow 23.8 23.5
shadow→ object 25.6 23.1

main + associated 26.8 25.8
offset pairing 26.7 23.9

SSIS 30.2 27.2

TABLE 5: Evaluation on the MaskIoU head strategy.

Strategy SOAPsegm SOAPbbox

w/o MaskIoU head 32.1 27.7
w/o deformable conv 33.0 25.5

SSISv2 35.3 29.0

top half of Table 3, “basic” is a network built by removing the
offset vectors, class vectors, deformable MaskIoU, shadow-aware
copy-and-paste augmentation, and boundary loss from SSISv2 and
adopting only the segmentation loss in training. “+ offset” learns
the offset vectors based on the “basic” network. “+ class” further
considers the class vectors, the same as the model in SSIS [2]. Ta-
ble 3 (5-th to 11-th) rows show the new components in this work:
“+ deformable MaskIoU” adopts the deformable MaskIoU head to
refine the predicted masks; “+ data augm” adopts shadow-aware
copy-and-paste augmentation; and “+ boundary loss” leverages the
boundary loss to improve the boundary accuracy. Table 3 reports
the analysis results, showing that all components consistently
improve the performance for most metrics and best performance
is attained when equipping all proposed components.

Bidirectional learning strategy analysis. Next, we evaluate the
effectiveness of the bidirectional learning strategy. First, we learn
the shadow-object pairs only in one direction. As shown in Table 4,
for “object→ shadow,” we used the architecture in Figure 5 (a) to
predict the masks of the object instances from the mask heads in
the main branch, and to predict the masks of the shadow instances
from the associated heads. “shadow → object” leverages the
architecture in Figure 5 (b) for mask prediction. Then, we evaluate
other strategies for finding the shadow-object associations. “main
+ associated” means we use the masks predicted from the main
branch and the corresponding associated branch without using
the strategy in Section 4.4.4-Inference. “offset pairing” means we
replace the strategy in Section 4.4.4-Inference with the learned
location offset between the shadow and object instances when
pairing the association. Results show that learning the shadow-
object relations from two directions with our inference strategy

TABLE 6: Evaluation on the boundary loss strategy.

Strategy SOAPsegm Association APsegm

w/o boundary loss 33.5 56.8
thick boundary loss 34.6 57.3
thin boundary loss 34.3 56.8

SSISv2 35.3 59.2

TABLE 7: Evaluation on shadow-aware copy-and-paste augm.

Strategy SOAPsegm SOAPbbox

w/o data augm. 33.3 27.5
object-only 32.8 27.5
above layering 33.8 27.0
multiple associations 34.2 28.3

SSISv2 35.3 29.0

achieves the best performance.

MaskIoU head strategy analysis. To evaluate the effectiveness
of our MaskIoU head design, we build two basic models: one
by removing the MaskIoU head and the other by replacing the
deformable convolution layers with naÏve convolution layers.
Results in Table 5 show that our MaskIoU head design with
deformable convolution achieves the best performance.

Boundary loss strategy analysis. We quantitatively evaluate the
effectiveness of the proposed boundary loss. Table 6 shows that
both thin and thick boundary losses contribute to the performance
and best performance is achieved by using both losses simultane-
ously; see also Figure 12 for visual comparison results.

Data augmentation strategy analysis. To evaluate the effec-
tiveness of shadow-aware copy-and-paste data augmentation, we
conduct experiments with different settings (see Table 7), where
(i) “object-only” means we only copy and paste the object near
its original position; (ii) “above layering” means we always put
the pasted shadow-object association above the original object
instance; (iii) “multiple associations” means we randomly select
multiple objects from the image then copy and paste the corre-
sponding shadow-object associations to their nearby positions.
Table. 7 shows that (i) “object-only” decreases the performance
compared with the baseline, since it lacks the information of the
shadow instances and breaks the relations between shadows and
objects; (ii) “above layering” hardly pastes the shadow naturally
in front of the original object, thereby limiting the overall per-
formance; and (iii) “multiple associations” introduces occlusions
between associations, yet not as effective as SSISv2.

Discussion. SSISv2 has a strong ability of finding shadows and
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Fig. 11: More instance shadow detection results produced by our SSISv2 over a wide variety of objects and shadows. The top two rows
are from the SOBA-testing set while the others are from the SOBA-challenge set.

(a) w/o boundary loss (b) w/ boundary loss

Fig. 12: Boundary loss analysis. (a) and (b) show the masks pre-
dicted from SSISv2 without and with boundary loss, respectively.
We zoom into the regions in red boxes for better visualization.

objects. Yet, it is infeasible to handle some extreme scenarios,
in which we cannot find another set of masks, e.g., very small
shadows. In our implementation, we ignore instances that contain
only one set of masks. In practice, this situation is very rare.

6 APPLICATIONS

Below, we present application scenarios to demonstrate the appli-
cability of the results produced by our SSISv2.

Light direction estimation. Instance shadow detection promotes
2D light direction estimation in the image planes. For instance, we
can connect the bounding box centers of the shadow and object
instances in each shadow-object association pair as the estimated
light direction. Figure 14 shows some example results, for which
we adopt the estimated light directions to render virtual red posts
with simulated shadows on the ground. From the results, we can
see that the virtual shadows with the red posts [75] look consistent
with the real shadows cast by the other objects, thus showing the
applicability of our detection results of our method.

Photo editing. Another application is photo editing, in which
we can remove object instances together with their associated
shadows. Yi et al. [76] developed an image in-painting method for
automatically removing specific objects by a given corresponding
mask. With the results of instance segmentation methods, we can
remove specific objects but leave shadows cast by the objects on
the ground; see Figure 13 (c). With the help of our instance shadow
detection results (Figure 13 (b)), we can remove the objects with
their shadows altogether, as shown in Figure 13 (d).
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(a) Original images (b) Instance shadow detection (c) Examples of naïve object removal (d) Enhanced by the results in (b) 

Fig. 13: Instance shadow detection enables us to easily remove objects (e.g., dog and person) with their associated shadows altogether.

Fig. 14: We estimate the light direction and incorporate a virtual
red post into each image with a simulated shadow, following [75].

Further, we can efficiently transfer an object together with its
shadow from one photo to another. Figure 15 shows an example, in
which we remove the girl together with her shadow from (b) and
paste them together onto (a) in a smaller size. Clearly, if we simply
paste the girl and shadow to (a), the shadow is not consistent
with the real shadows in the target photo; see (c). Thanks to
instance shadow detection, which outputs individual masks for
objects together with their associated shadow instances, as well as
the estimated 2D light direction. So, we can achieve light-aware
photo editing by using the estimated light directions in both photos
to adjust the shadow images when transferring the girl object from
one photo to the other; see (d).

7 CONCLUSION

This paper presents instance shadow detection, targeting to pre-
dict shadow instances, object instances, and their relations. To

(a) Original image 1 (b) Original image 2

(c) Naïve cut-and-paste (d) Light-aware shadow

Fig. 15: When we cut-and-paste objects from one photo to the
other, instance shadow detection results enable us not only to
extract object and shadow instances together but also to adjust
the shadow shape according to the estimated light direction.

approach this task, we first prepare a new dataset and a new evalua-
tion metric. Our dataset contains 1,100 images with labeled masks
of 4,262 pairs of shadow instances, object instances, and shadow-
object associations, while the evaluation metric promotes quanti-
tative evaluation of instance shadow detection performance. We
also design a new single-stage fully-convolutional network for in-
stance shadow detection by directly learning the relation between
shadow instances and object instances in an end-to-end manner.
Further, we propose the bidirectional relation learning module,
the deformable maskIoU head, and the shadow-aware copy-and-
paste augmentation to improve the detection performance. Finally,
we show the superiority of our method on the benchmark dataset
and demonstrate the applicability of our method on light direction
estimation and photo editing.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

In the future, we plan to improve the performance of instance
shadow detection by exploring the knowledge from the existing
data prepared for other relevant vision tasks, e.g., shadow detec-
tion and instance segmentation, from synthetic data generated by
computer graphic techniques and from unlabeled data downloaded
from the Internet. Also, we plan to explore more applications
based on the shadow-object association results.
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