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Incidents1M: a large-scale dataset of images
with natural disasters, damage, and incidents

Ethan Weber, Dim P. Papadopoulos, Agata Lapedriza, Ferda Ofli, Muhammad Imran, Antonio Torralba

Abstract—Natural disasters, such as floods, tornadoes, or wildfires, are increasingly pervasive as the Earth undergoes global
warming. It is difficult to predict when and where an incident will occur, so timely emergency response is critical to saving the lives of
those endangered by destructive events. Fortunately, technology can play a role in these situations. Social media posts can be used as
a low-latency data source to understand the progression and aftermath of a disaster, yet parsing this data is tedious without automated
methods. Prior work has mostly focused on text-based filtering, yet image and video-based filtering remains largely unexplored. In this
work, we present the Incidents1M Dataset, a large-scale multi-label dataset which contains 977,088 images, with 43 incident and 49
place categories. We provide details of the dataset construction, statistics and potential biases; introduce and train a model for incident
detection; and perform image-filtering experiments on millions of images on Flickr and Twitter. We also present some applications on
incident analysis to encourage and enable future work in computer vision for humanitarian aid. Code, data, and models are available at
http://incidentsdataset.csail.mit.edu.

Index Terms—visual recognition, scene understanding, image dataset, social media, disaster analysis, incident detection
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1 INTRODUCTION

E FFICIENT detection of natural disasters, such as floods,
wildfires, and other events that require human inter-

vention, is essential for relief organizations. Particularly, in
the occurrence of an emergency, rapidly acquiring infor-
mation is a key factor to organize an optimized response.
Unfortunately, in the case of events that need human inter-
vention, information analysis still requires a lot of manual
processing, which is costly and often inefficient. Recently,
there have been some efforts on using computer vision
techniques on satellite imagery, synthetic aperture radar,
and other remote sensing data [1]–[4] to overcome the need
of manual data processing. However, these efforts do not
allow to fully automate the data processing yet, since they
are not robust enough. Furthermore, satellite imagery only
provides an overhead view of the area and is often affected
by occlusions caused by clouds (which are common in the
case of critical weather conditions) and smoke (which is
common in natural disaster including wildfires, volcanic
eruptions, or hurricanes).

In this work, we explore how to automate information
processing about natural disasters from a different source:
social media posts. Studies show that right after a disas-
ter occurs, social media contains relevant information to
disaster response, such as reports of damages or urgent
needs of affected people, among others [5], [6]. In particular,
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this information is often in the form of images and videos.
Unlike data sources such as satellite imagery, exploiting the
information in on-the-ground social media images for relief
organization response had remained unexplored until very
recently in our prior work [7], mainly because of technical
challenges. Automatically filtering relevant images is chal-
lenging, since image streams on social media are very noisy
and a large percentage of images posted are not related
to humanitarian needs. Also, automatic filtering of relevant
images requires robust deep learning models, which need to
be trained with large amounts of labelled images. However,
creating a suitable large-scale labeled dataset for the task of
incident recognition in the wild is costly.

This paper presents the large-scale, multi-label Inci-
dents1M Dataset (Fig. 1). We extend the Incidents Dataset [7]
from 446,684 to 977,088 images and remove the single-
label assumption (of having at most one incident and place
category per image). Instead we obtain multiple labels per
image. In this paper we explain the process for creating this
dataset, analyze its statistics and potential biases, train a
new Incidents1M Model and demonstrate applications of
detecting incidents in the wild. We then explore additional
applications in damage assessment by training an off-the-
shelf generative model [8] and discuss how a real-time
incident monitoring dashboard may be useful. We expect
that the larger Incidents1M Dataset with multi-labels will
enable more insights and applications beyond its original
introduction [7].

2 RELATED WORK

Computer vision for social good. Many vision-based tech-
nologies fall short of reaching out to diverse geographies
and communities due to biases in the commonly-used
datasets. For instance, state-of-the-art object recognition
models perform poorly on images of household items found
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Incidents: thunderstorm, tornado
Places: power line, field

Incidents: car accident, blocked
Places: downtown

Incidents: wildfire, on fire
Places: forest

Incidents: landslide, mudslide, mudflow
Places: building outdoor, village

Incidents: construction, dirty/contamined, collapsed
Places: excavation, construction site

Incidents: flooded, heavy rainfall, tropical cyclone
Places: highway

Incidents: damaged, collapsed
Places: street, house, building outdoor

Incidents: fog, snow covered
Places: skyscraper, downtown

Figure 1. Incidents1M Dataset images. These are some images from the Incidents1M Dataset, with their corresponding incident and place labels.
275,381 images have more than one incident labels. The place labels provide additional context for where the incident is occurring.

in low-income countries [9]. To remedy this shortcoming,
the community has made recent progress in areas includ-
ing mapping economic development and poverty [10]–[14],
creating high-resolution maps in the developing world [15],
[16], recognizing displaced people and human rights vio-
lations [17], [18], assessing demographic makeup and per-
ceived safety of urban areas [19], [20], estimating population
density and urban analytics [21]–[27], improving health
decisions [28]–[30], crop monitoring and food security [31]–
[34], climate change [35], and wildlife preservation [36].
These studies and others have shown the potential of com-
puter vision to create impact for social good at a global scale.

Incident detection in satellite imagery. There are numerous
studies that combine traditional machine learning with a
limited amount of airborne or satellite imagery over disaster
zones [1], [3], [4], [37]–[39]. For a detailed survey, see [2],
[40]–[42]. Oftentimes, these studies are constrained to par-
ticular disaster events. However, recently deep learning-
based techniques have been applied on larger collections
of airborne or remote-sensed data to detect damaged build-
ings [43]–[48], segment flooded regions [49]–[51], estimate
extent of fires [52], [53], assess hurricane destruction [54],
[55], perform fine-grained analysis of disaster scenes [56],
[57], and compute a disaster impact index [58]. Other
studies have applied transfer learning [59] and few-shot
learning [60] to deal with unseen situations during disasters.

Incident detection in social media. More recently, social
media has emerged as a non-traditional data source for
rapid disaster response. Most studies have focused heavily
on text messages for extracting crisis-related information [6],
[61]. On the contrary, there are only a few studies using
social media images for disaster response [7], [62]–[72].
For example, [65] classifies images into three damage cat-
egories whereas [66] regresses continuous values indicating
the level of destruction. Recently, [67] presented a system
with duplicate removal, relevancy filtering, and damage
assessment for analyzing social media images. [72], [73]
developed a method to predict flood water level from social
media images. [68], [69] investigated domain adversarial
networks to cope with data scarcity during an emergent
disaster event.

Incident detection datasets. Most of the aforementioned

studies use small datasets covering just a few disaster
categories, which limits the possibility of creating methods
for automatic incident detection. In addition, the reported
results are usually not comparable due to lack of public
benchmark datasets, whether it be from social media or
satellites [74]. One exception is the xBD dataset [75], which
contains 23,000 images annotated for building damage but
covers only six disasters types (earthquake, tsunami, flood,
volcanic eruption, wildfire, and wind). On the other hand,
[43] has many more images but their dataset is constructed
for detecting damage using pre- and post-disaster images.
There are also datasets combining social media and satel-
lite imagery for understanding flood scenes [76], [77] but
they have up to 11,000 images only. In summary, existing
incident datasets are small, both in number of images and
categories. In particular, incident datasets are far, in size,
from the current large datasets on image classification, like
ImageNet [78] or Places [79], which contain millions of
labeled images. Unfortunately, neither ImageNet nor Places
covers incident categories. Extending our previous work [7],
our dataset is significantly larger and more diverse than any
other available dataset related to incident detection.

Out-of-distribution detection. Classification and object de-
tection models trained and tested on the same data distri-
bution achieve remarkable results. However, these models
often suffer when deployed on out-of-distribution data. For
classification [78], [79], the task is to select the correct class
with the implicit assumption that at least one of the classes
will be present in the image. For object detection [80]–[82],
the task is to first filter for whether or not an object exists,
and then this is typically followed by classification. Our
setting is closer to object detection rather than classification
because we aim to filter many social media images to iden-
tify the very few relevant images with incidents. To avoid
false-positive predictions with classification and detection
models, prior work has focused on improving training to in-
corporate negatives [83], [84] or adjusting model confidence
at test time [85], [86]. Keeping this in mind, we choose to
include and collect class-negative labels (or, hard-negatives)
for our dataset to enable training a robust model for incident
detection.
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Places image count

Incidents image count

Figure 2. Dataset statistics. (Left) The number of class-positive and class-negative images for the incident and place categories. (Middle) The
number of images that contain both class-positive incidents, excluding the same-incident diagonal. This highlights interesting incident correlations
(e.g., “earthquake” and “collapsed”). (Right) The number of images with both a class-positive incident and place label (e.g., “traffic jam” and
“highway”).

3 INCIDENTS1M DATASET

In this section, we present the Incidents1M Dataset, a multi-
label dataset containing many images of incident-related
scenes across a variety of locations. Here we define the in-
cident and place categories, explain the image downloading
and labeling process, and present the final dataset statistics.

3.1 Incident and place categories

The Incidents1M Dataset contains both incident and place
categories. For the incident categories, we first consider an
extensive list found online1 and create a fine-grained list
of 233 incident categories. We manually merge visually-
similar categories (e.g., “snow storm” and “blizzard”, and
“mudslide” and “mudflow”) and remove categories un-
likely to be recognized (e.g., “heat wave”, “infestation”,
“famine”). This results in 43 incident categories. Similarly,
for places we first consider the 118 outdoor categories of
Places Dataset [79] and merge categories in the same super-
category. This results in 49 place categories. All category
names are shown in Fig. 2.

3.2 Image downloading and duplicate removal

With the 43 incidents and 49 places defined, we use the
pairwise combinations to create 43 x 49 = 2,107 (incident,
place) pairs. Using synonyms and prepositional phrases,
we amplify and convert these pairs into a total of 10,188
Google Image queries (e.g., “car accident in highway” and
“car wreck in flyover”, or “blizzard in street” and “snow
storm in alley”). We then download all images returned
from Google for each query. This results in 6,178,192 images.
To remove duplicate images, we extract deep features with a
pre-trained model (ResNet18 [87] on Places [88]) and cluster
images with a nearest neighbors algorithm. We remove extra
images and keep 3,487,339 images to consider for labeling.

1. https://en.wikipedia.org/wiki/Disaster

Number of class-positive incident labels Number of class-positive place labels
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Figure 3. Multi-label statistics. The Incidents1M Dataset has multiple
labels per image, both class-positive and class-negative. Some images
have up to 6 class-positive incident labels. (Left) We show the number of
images that have the specified number of class-positive labels. (Right)
We show the same information but for place labels. (Left and right)
Notice that the 0 columns indicate the number of class-negative images,
where no labeled incidents or places occur.

3.3 Multi-label category annotation

In previous work [7], we labeled these images with up to one
incident and one place per image. However, here we remove
the single-label assumption and instead label images with
multiple categories where applicable. Multiple labels per
image is more accurate, e.g., a building may be both “on
fire” and “collapsed”; our incident and place categories are
not mutually exclusive.

Labeling tasks. The downloaded images from Google are
noisy, so we use the Amazon Mechanical Turk (MTurk)
platform to manually obtain class labels. Similar to [79],
we create Human Intelligence Tasks (HITs) where human
annotators are shown 100 images sequentially and asked
binary questions of whether the images have a particular
incident or place label (e.g., Does this image contain a
“wildfire”? or, Does this image occur in a “forest”?). A total
of 15 images (10 positive and 5 negative) out of the 100 in
a HIT are used as quality control. We only keep labels for
HITs with annotator accuracy above 85% on the 15 control
images.

Class-negative labels. Whenever a human annotator is

https://en.wikipedia.org/wiki/Disaster
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asked a binary question, we obtain either a class-positive
(YES response) or a class-negative (NO response) label.
Both annotations are included in our dataset because they
provide information about whether or not the particular
incident or place appears in the image. Furthermore, class-
negative labels are particularly useful for training a detec-
tion model that can perform in the wild. Concretely, we
use class-negatives to mitigate false positive predictions (see
Sec. 4.2 for more details).
Labeling procedure. To start the multi-labeling procedure,
we run incident HITs for ~1M of the initial 3,487,339 images.
We ask the binary questions for the category used in the
original Google query, and this results in a set of class-
positive and class-negative incident images. For the class-
positive incident images (those with at least one incident),
we then run HITs to obtain place labels in the same way.
Next, we train a model (Sec. 4) on the labeled images,
and we run inference on the remaining images to assign
a confidence score to every image for all 43 incident and
49 place categories. We sort these confidence scores in
decreasing order, and we create HITs for the top ranked
incident categories to obtain labels. For any image that has
at least one class-positive incident label, we create and run
HITs for the top ranked place categories. In prior work [7],
we stopped labeling when an image had at least one class-
positive incident. Here, we continue the process and allow
for annotators to label an image more than once, up to
6 times. This makes the Incident1M Dataset significantly
larger and more useful.

3.4 Dataset statistics
The Incidents1M Dataset contains 1,787,154 images, where
977,088 are class-positive incident images (having at least
one class-positive label) and 810,066 are class-negative inci-
dent images (having no class-positive labels but at least one
class-negative label). For places, 764,124 images are class-
positive and 1,023,030 are class-negative. We show a more
complete breakdown of these numbers by categories, as
well as the frequency of incidents co-occurring with other
incidents or places in Fig. 2. Furthermore, the class-positive
incident images have a mean of 1.35 class-positive labels
per image. For class-positive place images the mean is 1.55.
We report additional statistics on our multi-label statistics in
Fig. 3, where we show the number of images with a specific
number of class-positive labels, for both incidents (left) and
places (right).

4 INCIDENTS MODEL

In this section, we introduce the Incidents1M Model for
detecting incidents in images. We train the model with all
1,787,154 images, which have at least one class-positive or
class-negative label.

4.1 Multi-class multi-label architecture
We consider a multi-class multi-label setting because we
have 43 incident and 49 place categories, and multiple
labels can co-occur together (Fig. 2). Furthermore, incidents
and places can be visually related and share contextual
information, so we follow the multi-task learning paradigm

[89]–[91] and employ a Convolutional Neural Network
(CNN) with a shared backbone and two task-specific output
branches. The incident and place branches pass through a
sigmoid layer and are transformed to tensors of the form
R43 and R49, respectively. Each value in the vectors has a
confidence score in the range (0, 1).

4.2 Training with a class-negative loss

Our setting is more similar to incident detection than to
incident classification. With our interest in in-the-wild data
such as on Twitter, the number of images depicting an inci-
dent is very little compared to the vast majority of images.
Much like the well-known problem of object detection [80]–
[82], we want the Incidents1M Model to detect positive
incident examples from a pool of many images, including
challenging negative images. For instance, a chimney with
smoke or a fireplace are not disaster situations, yet they
share visual features similar to our “with smoke” and “on
fire” incident categories. Prior work exists to mitigate false-
positive detections by either modifying the training pro-
cess [83], [84] or adjusting model confidence scores during
test time [85], [86]. We choose to do the former and modify
our training process to incorporate class-negative images,
or images where we have information that no incident of a
particular category exists.

We formulate the loss by modifying a binary cross
entropy (BCE) loss similar to [83] to use partial labels
from the 1,787,154 images. More specifically, we incorporate
class-negative information into the loss to mitigate false
positive predictions. The class-negative images are, in-fact,
hard-negatives given the way that we annotated images
described in Sec. 3.3 (i.e., asking questions based on Google
queries or prioritizing questions based on high confidence
scores returned from our model). For each task-specific
output branch, our loss takes the same form. The incident
loss Lin is formalized as follows:

Lin =
N∑
i=1

wi

(
yi log(xi) + (1− yi) log(1− xi)

)
(1)

where N = 43 is the number of classes, x is the predicted
class probabilities, y is the target class labels, and w is
the weight vector indicating where we have information
(wi = 1 when we have either a class-positive or class-
negative label, otherwise wi = 0). As a way to bias
the model to suppress false confidence scores, we set all
{wi}Ni=1 = 1 when

∑
yi > 0, meaning at least one class-

positive label exists. The place loss Lpl takes the same form
with N = 49, and the total loss L = Lin + Lpl.

5 EXPERIMENTS WITHIN THE INCIDENTS DATASET

In this section, we run experiments using our multi-label
Incidents1M Dataset. We explore the importance of the
class-negative loss and also the effect of the dataset size.
We use our best model for the remainder of the paper.
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Incident1M model trained with cls-neg images
vs. only using cls-pos images
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Figure 4. Class-negative usefulness. (Top left) We show images scored highly for the corresponding incident when trained with only class-positive
labels. (Bottom left) We show highly ranked images when both class-positive and class-negative labels are used. Notice that the model using
class-negatives is more robust to similarly looking visual features or noisy labels (e.g., incorrect labeling of “blocked” due to its polysemous usage
in sports context). (Right) We show the per-class AP improvement for both models, with and without class-negatives. AP increases for almost all
incidents.

5.1 Dataset splits and evaluation setting

In this work, we introduce the Incidents1M Dataset, which
is an extension of the Incidents Dataset [7]. The Incidents1M
Dataset contains ~2x more images and has multiple class-
positive labels per image. In this section, we train and
evaluate our models with “Incidents1M Dataset”. We split
the dataset into a train (90%), val (5%), and test (5%) set.
Each split of the “Incidents1M Dataset” is a larger and
more complete superset of the corresponding split from the
original “Incidents Dataset” [7]. We evaluate the mAP for
both the incident and place categories separately.

Implementation details. We use a ResNet-50 [87] for the
model backbone, which has been pretrained on the Places
dataset [79] used for scene classification. The incident and
place branches are each a fully-connected layer mapping
from 2048 dimensions to the 43 and 49 dimensions for
the incident and place categories, respectively. For every
model, we train until convergence with early stopping based
on the average incidents and places mAP on the hold-out
validation set. We use an image batch size of 256, the Adam
optimizer with a learning rate of 1e-4, and at most 20 epochs.
Note that because our dataset is substantially larger than our
first introduction, we no longer use additional images from
the Places [79] dataset as was done in [7].

5.2 Class-negative usefulness

First we show that using class-negatives improves model
performance. In particular, we train a model with and with-
out using class-negative images. When using class-positive
(cls-pos) images only, this means that we use the 977,088
images with at least one class-positive label and do not
incorporate any class-negative (cls-neg) labels into the loss
described in Eq. 1. When we use the class-negatives, the loss
is used normally and high confidence scores are penalized
where we have class-negative information. The top two
rows of Tab. 5.2 illustrate that the incident mAP goes from
62.83 to 67.19, i.e., a ~7% increase in performance. The place
mAP goes down only by a negligible amount; this may
be attributed to class-negatives for incidents being more
applicable than class-negatives for places. For instance, “not
a car accident” describing an image with an intact car is
very informative to a model learning visual features. Similar
examples for place labels are harder to construct.

Table 1
Class-negative loss and dataset size. In this table, we explore the

importance of the class-negative loss (top section) as well as the
dataset size (middle section). The final row is the model used in the

original Incidents work [7] (bottom section). Our best performing model
is row 2, which uses both the class-positives and class-negatives; this

is the Incidents1M Model chosen for in-the-wild experiments.

Loss
Training data Cls-pos Cls-neg Test set mAP

Incident Place
Incidents1M X 62.83 63.15
Incidents1M X X 67.19 62.94

Incidents1M (75%) X X 66.85 62.52
Incidents1M (50%) X X 65.59 61.57
Incidents1M (25%) X X 64.01 59.68

Incidents [7] X X 63.89 60.33

In Fig. 4, we show (left) qualitative results and (right)
per-class incident AP improvements when using the class-
positive only model (cls-pos) vs. using both (cls-pos & cls-
neg). The images shown are some of the highest scored
images from each model. Notice that when class-negatives
are not used, the model has never seen an intact airplane or
an intact bicycle. Furthermore, the model may pick up on
any amount of noise that exists from incorrect labels in the
dataset. Even though we take extensive measure to ensure
high quality in the dataset, some incorrect labels may appear
(e.g., the polysemous term “blocked” referring to American
football rather than an incident, shown in column 3 of the
figure). When the model is trained with class-negatives,
however, it becomes more robust to similar features (e.g.,
the intact wings of the airplane) or incorrect labels, and
reliably scores true incidents with higher confidence while
mitigating false positive predictions. We see that all incident
categories besides “truck accident” experience an improve-
ment in AP; we attribute the decrease in the “truck accident”
score to both the small number of “truck accident” labels
and possible confusion with other categories, namely “bus
accident”, “car accident”, or “van accident”.

5.3 More data improves performance
We note that in the original Incidents Dataset [7], only
single-labels were used with a similar loss as Eq. 1. How-
ever, in this paper, we have both (1) multiple labels and
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“oil spill” with “boat” object “damaged” with “chair” object “storm surge” with “surfboard” object “thunderstorm” with “truck” object “motorcycle accident” with motorcycle” object “airplane accident” with “airplane” object

Object count

Figure 5. Objects in the Incidents1M Dataset. We run a pretrained Mask R-CNN model on images with class-positive incidents. (Top left) We
show the number of objects found in the entire dataset for a particular incident category. (Top right) We show a 2D histogram of incident images that
contain at least one detected object. We normalize each row. (Bottom) We show qualitative examples of incidents with detected objects overlaid.

(2) more images. Here we show the effect of scaling up the
dataset in the middle rows of Tab. 5.2. The 2nd row of the
table is the full dataset (100%). The very bottom row is the
trained model from [7], which has worse performance com-
pared to our model trained on our expanded Incidents1M
dataset. Note that the same model architecture and loss is
used in both papers.

Below row 2 in Tab. 5.2, we show the impact that dataset
size has on model performance. In rows 3-5, we show the
results of models trained with 75%, 50%, and 25% of the
Incidents1M dataset. The subsets are randomly sampled
from all the 1,787,154 images, and we ensure that each
smaller set is a strict subset of the larger one. The mAP
gracefully declines with an incident mAP from 67.19 (100%)
to 64.01 (25%) and a place mAP from 62.94 (100%) to 59.68
(25%). We notice that even when using just 25% (446,788
images), we have comparable performance to the original
model [7] shown in the last row. That model was trained
with 1,144,148 images where 446,684 contained exactly one
class-positive image and the remaining 697,464 images only
had class-negative information. From this, we observe that
the multi-label information in the Incidents1M dataset is
helpful to model performance.

The Incidents1M Model used in the remainder of this
paper is from row 2 of Tab. 5.2, the best model for inci-
dent detection, trained with both class-positives and class-
negatives on the entire dataset. Although place mAP is
not optimal, it has comparable performance to the class-
positive-only loss and nevertheless, throwing away useful
class-negative information for training models is counter-
productive to our detection goals.

6 INCIDENTS1M DATASET BIAS ANALYSIS

In this section, we analyze the Incidents1M Dataset using an
off-the-shelf pretrained detection model to provide further
insights into our data. This is similar to [92], where we aim
to identify sources of bias in the data rather than in only
the model performance. We also examine where the images
may be coming from by geo-locating IP addresses, which

can be used as a proxy for location. Lastly, we run our
Incidents1M Model on a set of images across continents to
discover model performance biases based on geography.

6.1 Detecting objects and understanding correlations

We run a Mask R-CNN [93] model pretrained on 80 COCO
categories over all of the class-positive incident images in
the Incidents1M Dataset. We filter all object detections above
a 0.75 confidence threshold, and we report our findings in
Fig. 5 (left). We observe that “person” and “car” are the
most common object categories. Furthermore, we observe
which objects occur with which incidents. We notice that
indoor objects (e.g., “couch” and “microwave”) tend to be
false positive detections or correct predictions that appear
out of place due to an incident such as an earthquake
or flood, which may destroy a home and cause indoor
objects to appear outside. The class-positive images in the
Incidents1M Dataset have an average of 4.92 and a median
of 3 objects.

On the top right of Fig. 5, we look for correlations of
incidents occurring with different objects. The 2D histogram
shows the percent of incident images that contain at least
one instance of the specified object. The colors are row-wise
normalized. Some obvious examples that occur are “traffic
jam” with “car”, “ship boat accident” with “boat”, and “bus
accident” with “bus”. However, more interesting analysis
is found by looking at a particular incident and looking
for relative peaks in the corresponding row. For example,
“tornado” incidents occur with “boat”, “car”, “kite”, “traffic
light”, “truck”, and “umbrella”. We also notice that most
images, regardless of the incident, occur with “no object”,
“car”, “person”, and “truck”. This may indicate that most
images were taken on the road or in public areas, which may
match expectations given that the original dataset images
are downloaded from the Google search engine.

At the bottom of Fig. 5, we include qualitative examples
of incidents occurring with specific Mask R-CNN detections
indicated. By using an off-the-shelf model to detect objects,
we can enable retrieving images of interest, e.g., all the im-
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Table 2
Geographical model bias. (Left) We show the mAP of the Incidents model across 6 different continents for 14 incident super-categories. Each
country is represented with 1K geotagged images from Twitter. We also show the results on Incidents1M test set for reference. (Right) We show

the number of class-positive images for each super-category and the total below (where an image has at least one incident).

Average Precision (AP) Number of class-positive images
Super-category AF AS EU NA OC SA Incident1M Super-category AF AS EU NA OC SA

blocked 5.73 12.63 37.34 29.96 14.01 14.17 67.53 blocked 33 68 34 75 59 113
burned- 71.24 70.78 55.05 56.22 53.86 37.53 75.95 burned- 163 118 110 119 108 37
collapsed- 38.46 48.39 41.70 36.39 44.40 67.03 61.00 collapsed- 166 164 95 121 154 325
dirty- 35.38 28.69 24.00 23.01 29.57 32.09 64.81 dirty- 103 128 29 75 64 118
drought 66.37 31.16 39.31 29.74 47.21 41.05 70.51 drought 54 24 36 35 40 39
earthquake 68.15 76.88 84.00 69.32 49.85 85.44 79.59 earthquake 61 118 46 51 78 260
flooded 87.47 83.29 76.55 72.26 75.93 55.65 86.76 flooded 145 168 109 85 106 97
fog 42.11 61.47 60.68 50.66 38.10 40.90 79.54 fog 43 76 92 103 158 62
rainfall 54.25 62.75 44.58 45.54 50.02 29.81 65.95 rainfall 147 241 116 101 163 78
landslide 13.84 37.22 15.87 17.98 26.95 41.71 58.85 landslide 17 63 20 65 34 127
on fire 86.43 73.95 70.85 78.91 58.22 65.82 69.23 on fire 133 82 82 79 63 17
snowstorm- 50.53 49.66 70.30 58.92 22.64 51.81 55.30 snowstorm- 11 16 63 64 27 16
traffic jam 50.20 47.67 76.69 64.25 55.31 65.50 75.42 traffic jam 22 22 8 12 8 19
veh. accident 57.26 52.44 51.46 46.51 45.58 31.63 68.77 veh. accident 84 42 31 43 37 73

mAP 51.96 52.64 53.46 48.55 43.69 47.15 69.94 Total of 1K 580 629 534 535 594 607

ages that contain a “thunderstorm” incident with a “truck”
object. This could be helpful when training a class-specific
model or for analyzing specific damage types, such as how
“car” objects are affected by “flood” incidents.

6.2 Geographical distribution
In this section, we conduct a brief geographical analysis
by approximating the latitude and longitude coordinates
of each image based on its URL used to download the
image. We note that this is an approximation of the loca-
tion coordinates for two reasons: (1) we are approximating
server locations rather than where the images were actually
taken and (2) the database mapping server IP addresses to
GPS coordinates may be outdated or incorrect. For each
image URL, we first extract the domain name and then
use DNS to map it to an IP address. Then, we query
https://geolocation-db.com with the IP address to receive
an approximated location. In Fig. 6, we report visualizations
for where most of the images are located2. At the top, we see
that most images are stored on servers in the United States
and Europe. At the bottom in the histogram, we notice that
the image locations follow a long-tail distribution. There are
only 177,656 unique domains out of the 1.8M URLs (~10%).
In the histogram, we report the 50 most common domains.

6.3 Geographical model bias experiment
Here we aim to investigate if our model exhibits bias based
on geographical location of where images are taken. To do
this, we use Twitter; we download images associated with
geotagged tweets that have natural disaster keywords. From
this collection, we separate the tweets into 6 continents. We
exclude Antarctica (AN) from our analysis as tweets are not
common there. Once separated into continents with tweet
GPS metadata, we then obtain ground-truth labels from
MTurk. To exhaustively evaluate the models, we would
have to obtain labels for all 43 incidents, which quickly
becomes costly.

2. World maps in the figures are plotted with Plotly and are enabled
by OpenStreetMap.

Figure 6. Geographical distribution. Here we report the approximate
locations of images according to URLs. We perform geolocation with
queries to https://geolocation-db.com. (Top) A word cloud and heatmap
indicating where most of the images are located. (Bottom) A histogram
of the 50 most common domain names with the corresponding number
of images from the geolocalized server.

To speed up analysis, we first group our inci-
dent categories into the following 14 super-categories:
“blocked”, “burned-with smoke”, “collapsed-damaged”,
“dirty-contaminated”, “drought”, “earthquake”, “flooded”,
“fog”, “heavy rainfall”, “landslide”, “on fire”, “snowstorm-
snow covered”, “traffic jam”, and “vehicle accident”. Next,
we sample 1K images from each continent and for each
image, we ask 14 binary questions (i.e., Does this image
contain X incident?). Finally, we use these labels to obtain
a mean average precision (mAP) metric shown in the left of
Tab. 6.1. We include the AP on the Incidents1M Dataset as
well for reference. On the right of the table, we show the
number of class-positive incident images for the particular
super-categories as well as the total number of class-positive

https://geolocation-db.com
https://www.openstreetmap.org
https://geolocation-db.com
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Figure 7. Temporal monitoring on Twitter. (Top) Histogram of tweets obtained from Twitter using natural disaster keywords from 2017-2018. Black
lines indicate periods of time when our data collection server was inactive. (Bottom) Number of tweets with earthquake images per day after filtering
with at least 0.5 confidence. For significant earthquakes (above 6.5 magnitude), we notice an increase in earthquake images immediately after the
event. Furthermore, we notice a spike on July 20, 2018 not reported in the NOAA database. We manually checked the tweets and found images
referring to a severe flood in Japan, indicating that the flood damage may resemble earthquake damage.

images out of the 1K images per continent. Recall that a
class-positive image has at least one incident.

6.3.1 Average precision (AP)
We notice that the mAP for each continent is much lower
than the mAP on the Incidents1M Dataset (69.94). Europe
(EU) has the highest mAP of 53.46, which makes sense
given our findings in Fig. 6 where images from Incidents1M
are often located on servers in EU and North America
(NA). However, this logic does not apply for NA, where
the mAP is only 48.55. We suspect that although images
are often located in NA, they are often of incidents located
elsewhere. Maybe geolocalization work such as [94] could
prove useful to study where incidents are occurring based
on their visual features rather than using Twitter-provided
GPS coordinates.

We see that even the best mAP from EU (53.46)
is still 16.48 mAP points below the score on the Inci-
dents1M Dataset. This is due to Twitter images being
out-of-distribution and having more challenging negative
images to filter through than our Incidents1M test set.
We include the per super-category APs in the table for
additional inspection. We notice that for some categories
such as “earthquake”, “on fire”, and “snowstorm”, the AP
scores are comparable for the continents (except for OC)
and with Incidents1M. For others such as “blocked”, “dirty-
contaminated”, and “landslide”, the APs are low for all
continents compared to Incidents1M.

6.3.2 Distribution of class-positive images
On the right of Tab. 6.1, we see the breakdown of per super-
category class-positive images followed by the total at the
bottom. First, we notice that some super-categories occur
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Figure 8. Incident detection on Flickr images. Here we show incident
detection results on 26M Flickr images. (Top) On the left we show a
heatmap of where the images are located, and on the right we show
some images. Red dots are earthquake epicenters or volcano locations.
(Middle) we show locations of images filtered with high confidence for
earthquakes. These correspond to the 0.9 threshold (blue lines) in the
graphs. We filter at different thresholds and show Accuracy@XKm (per-
cent of images within X kilometers from a red dot) increasing. (Bottom)
The same but for volcanic eruptions.

quite often in Twitter images (e.g., “burned-with smoke”,
“collapsed-damaged”, “rainfall”) while others occur less
frequently (e.g., “snowstorm-snow covered”, “traffic jam”).
We also notice local peaks in frequency depending on the
continents. Unexpectedly, the EU and NA have the most
“snowstorm-snow covered” labels. Africa (AF) has the most
“burned-with smoke” and “on fire” labels. AF and Asia
(AS) have the most “flooded” images. We see that AS has
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Unfiltered

Filtered

Global Events (RTI) United States Events (IoU)

Earthquake Volcanic 
Eruption Snowstorm WildfireFlood Tornado

0.98 0.87 29.91 20.10 21.95 23.43

2.78 1.31 39.03 26.06 37.18 20.24

Figure 9. Temporal monitoring on Twitter. (Top left) We report mRTI for global events and IoU for common US events. (Bottom left) We show a
similar result as in Fig. 7 but for filtered volcanic eruptions images and ground truth events. (Right) For more frequent events in the United States,
we filter tweets for flood, tornado, snowstorm, and wildfire images and compare with ground truth frequency events obtained from NOAA.

the most class-positive incident images (629) out of the 1K
images labeled. We note that the categories such as “vehicle
accident” with low counts could be due to the way the
original Twitter images were downloaded (i.e., based on
natural disaster keywords).

7 INCIDENT DETECTION IN THE WILD

In this section, we use our Incidents1M Dataset model and
repeat experiments from [7] for incident detection in both
Flickr and Twitter images. We perform detection exper-
iments on Flickr and Twitter. We also show a temporal
monitoring experiment where we filter Twitter data over
time to detect incidents, and we comment on the usefulness
of such a pipeline with a custom interface built internally.
We note that in all filtering experiments that we repeat here,
our Incidents1M Model has performance metrics greater or
equal to that of our prior work [7].

7.1 Incident detection on Flickr
The goal of this experiment is to illustrate how our model
can be used to detect specific incident categories in the wild.
Here we use 26 million geo-tagged Flickr images obtained
from the YFCC100M dataset [95]. Since the images have
precise geo-coordinates from EXIF data, we can use our
incident detection model to filter for specific incidents and
compare distance to ground-truth locations. We evaluate
only earthquake and volcanic eruption incidents in this
experiment as we could find reasonable ground-truth data
to compare the results. Specifically, we downloaded the GPS
coordinates, i.e., latitude and longitude, of a public compi-
lation of earthquake epicenters3 and volcanoes from the Na-
tional Oceanic and Atmospheric Administration (NOAA)
website4. We employ an Accuracy@XKm metric [96] to
determine whether the predicted incident is correct or not.
More concretely, we compute the percentage of images
within X Km from the closest earthquake epicenter or vol-
cano, respectively. We randomly sample images and report
metrics for (i) unfiltered images, (ii) images with the target
incident having the highest score, (iii) images with model
confidence above 0.5, and (iv) images with model confi-
dence above 0.9. Fig. 8 shows that detected earthquake and
volcanic eruption incidents appear much closer to expected
locations when compared to random images.

3. https://raw.githubusercontent.com/plotly/datasets/master/
earthquakes-23k.csv

4. https://www.noaa.gov/

Table 3
Twitter incident detection. Here we demonstrate incident detection
on Twitter images by sorting with confidence scores from our model
and reporting average precision (filtered AP). We compare against a

randomly sorted baseline (unfiltered AP). We consider all tweets within
a 250 Km radius of the earthquake epicenters (for earthquakes) or from
the center of the city (for floods). Ground-truth labels are obtained from

MTurk for each event to compute the AP for both the unfiltered and
filtered scenarios.

Incident Location Number AP
& Year of images Unfiltered Filtered

Earthquake Nepal 2015 2479 22.30 83.57
Earthquake Chile 2015 2015 8.92 62.97
Earthquake Ecuador 2016 5659 25.37 89.32
Earthquake Italy 2016 18673 6.90 74.98

Flood Chennai 2015 5091 26.30 93.25
Flood Bangladesh 2017 297 45.06 92.66

7.2 Incident detection on Twitter
In this experiment, we detect earthquakes and floods in
noisy Twitter data posted during actual disaster events.
We collected data from four earthquake and two flood
events using event-specific hashtags and keywords. In total,
901,127 images were downloaded. Twitter GPS coordinates
are not nearly as precise as the Flickr ones, so we consider
only the 38,317 geo-located images within 250 Km from
either (i) the earthquake epicenter or (ii) the flooded city
center.

For all six events shown in Tab. 7.2, we use MTurk
to obtain ground-truth human labels (i.e., earthquake or
not, and flood or not) for images within the considered
radius. Then, we compare the quality of the initial set
of the keyword-based retrieved Twitter images (unfiltered)
to the quality of images retained by our model (filtered).
We report the average precision (AP) per event for both
earthquakes and floods. When considering all earthquake
events and flood events, we obtain an average AP of 77.71%
and 92.96% compared to the baseline AP of 15.87% and
35.68%, respectively. The baseline AP is the AP averaged
over multiple trials of randomly shuffling the images, and it
is given as a reference.

7.3 Temporal monitoring of incidents on Twitter
In this section we demonstrate how our model can be
used on a Twitter data stream to detect specific inci-
dents over time. To test this, we downloaded 1,946,850

https://raw.githubusercontent.com/plotly/datasets/master/earthquakes-23k.csv
https://raw.githubusercontent.com/plotly/datasets/master/earthquakes-23k.csv
https://www.noaa.gov/
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Desert Farm Forest House

Landfill Ocean Sky Village

Figure 10. StyleGAN2-generated images. Here are images generated
from a places class-conditional StyleGAN2 model. The model is trained
with the 764,124 images that have at least one class-positive place label.
We do not condition on incident labels, yet random seed sampling in the
latent space yields diverse, realistic looking images.

images from tweets containing natural disaster keywords
(e.g., blizzard, tornado, hurricane, earthquake, active vol-
cano, coastal flood, wildfire, landslide) from Aug. 23, 2017
to Oct. 15, 2018. To quantify detection results, we ob-
tained ground-truth event records from the “Significant
Earthquake Database”, the “Significant Volcanic Eruption
Database”, and the “Storm Events Database” of NOAA.
The earthquake and volcanic eruptions ground-truth events
are rare global events, while the storms (floods, tornadoes,
snowstorms and wildfires) are much more frequent but
recorded only for the United States. We filter images with
at least 0.5 confidence and compare against the databases
(Fig. 7 and Fig. 9).

For earthquakes and volcanic eruptions, we report aver-
age Relative Tweet Increase (RTI) inspired by [97], where

RTIe =
∑e+w

d=e Nd∑e−w
d=e Nd

(2)

Nd is the number of relevant images posted on day d, e is
the event day (e.g., day of earthquake or volcanic eruption),
and w is an interval of days. We use w = 7 for our
analysis to represent a week before and after an event. An
RTI of 2 means that the average number of tweets in the
week following an event is twice as high as the average
number the week before. After filtering, the mean RTI
(mRTI =

∑
e∈E RTIe/|E|) shows an average of 2.78 folds

increase in tweets the week after an earthquake and 1.31
folds after a volcanic eruption. The numbers are reported
in Fig. 9). A more qualitative depiction for earthquakes is
shown in Fig. 7.

We notice that the mRTI would be even better if the
ground truth databases were exhaustive; unfortunately, this
is not the case. On Nov. 27, 2017 we detect the highest
number of volcanic eruption images, but observe no signif-
icant eruption in the database. Looking into this, we found
that Mount Agung erupted the same day, which caused the
airport in Bali, Indonesia to close and left many tourists
stranded5.

For the more common events (floods, wildfires, snow-
storms, and wildfires), we measure the correlation between

5. https://en.wikipedia.org/wiki/Mount Agung

Figure 11. Interactive dashboard to monitor Twitter data. We built
an internal web-based JavaScript application to better understand the
incidents that occur in images on Twitter. We show histograms (top and
middle left) for the selected incident and confidence score filter (middle
right). (Bottom left) we show where these tweets are located on a world
map and (bottom right) we show the actual tweets as HTML IFrames.
Connected lines in the map indicate which tweets and where re-tweets
occurred, with the green dot indicating the original tweet.

tweet frequency and event frequency. We normalize both
histograms, smooth with a low-pass filter, and report in-
tersection over union (IoU) for United States incidents in
Fig. 9. We notice an increase in IoU after filtering for flood,
tornado, and snowstorm images. For wildfires, we notice
a decrease in IoU and attribute this to the large spike in
tweets in December 2017. In fact, frequency of events does
not necessarily capture how severe the damage is (which,
in turn, is often correlated with how many people post
on social media). In fact, a destructive wildfire occurred in
California on Dec. 4, 2017 burning 281,893 acres6.

In this experiment we show results in an off-line setting
with a collection of 1,946,850 tweets from the past. Our
straightforward procedures could be implemented to work
in real-time with temporal predictions or emergency alerts
when high mRTI peaks are detected. To better understand
this idea and improve interpretation of this large tweet col-
lection, we have built an internal interface shown in Fig. 11
and discuss it in Sec. 8.2. Our goal is to demonstrate that
the Incidents1M Model can offer real-world insights when
operating on large, unstructured social media platforms
such as Twitter.

8 ADDITIONAL APPLICATIONS OF INCIDENTS1M
In this section, we aim to go beyond the incident detection
paradigm in the previous sections and instead explore some
additional applications of the Incidents1M Dataset. In par-
ticular, we (1) train a StyleGAN2 model [8], [98] for incident
image generation and (2) implement a JavaScript-based web
application for understanding incidents that can be detected
in Twitter data. We hope both of these ideas and applications
inspire more work in the incident-analysis direction.

8.1 Incident image generation

Image generation methods have been popularized with ad-
vances in GAN models [99], which can now synthesize very
realistic images. Here we use the Incidents1M Dataset to

6. https://en.wikipedia.org/wiki/Thomas Fire

https://en.wikipedia.org/wiki/Mount_Agung
https://en.wikipedia.org/wiki/Thomas_Fire
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train a StyleGAN2 model with adaptive discriminator aug-
mentation (ADA) [98] with image generation results shown
in Fig. 10. More specifically, we train a class-conditional
model that is conditioned on the place label. 764,124 images
in Incidents1M have at least one class-positive place, so
during training we sample images from this subset and
randomly choose one of the place labels to condition with.
We found that class-conditioning helps to produce realistic
images that have a coherent-looking structure (e.g., fields
are planar, water has a wavy texture, and buildings are
mostly intact). The incident labels are not used for con-
ditioning, yet randomly sampling from the latent space
gives interesting and diverse images. We believe further
work in this direction could improve understanding of the
composition of incidents and how damage may play a role
in destroying and deforming person-made structures such
as houses or villages, like those shown in Fig. 10.

8.2 Interactive dashboard for incident monitoring
We built an internal, interactive web-based dashboard for
understanding incidents that occur in Twitter data. Fig. 11
shows a screenshot of our application which was imple-
mented as a ReactJS7 application and uses the the Plotly
JavaScript Open Source Graphing Library8. For the image
shown in the figure, we are using the same data collection
from Sec. 7.3. We filter for earthquake images in this par-
ticular example, and we provide a detailed caption of the
layout with Fig. 11. We found this interactive web-interface
very helpful for our understanding of incidents that occur
in-the-wild, and we hope this initial work leads to more
ideas or an open-sourced implementation to explore data in
real-time and with data streams other than from Twitter.

9 CONCLUSION

In this paper, we extend the original Incidents dataset [7]
to a larger and multi-label dataset. We analyze the com-
position and possible biases that exist in the data, perform
in-the-wild incident detection experiments on social media
with Flickr and Twitter images, and present preliminary
experiments that go behind model performance and inci-
dent detection. The Incidents1M Dataset has 977,088 images
with at least one incident and an additional 810,066 images
that have useful class-negative information. This data can
be used to train models for incident classification, class-
conditional generation models such as StyleGAN2, or more.
We expect our data release, analysis in model performance,
and applications in-the-wild will enable and inspire more
work for humanitarian aid. Computer vision could be used
as an important tool for scientists as we navigate the coming
years with more frequent natural disasters and attempt to
mitigate the harmful effects of climate change.
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Castro, V. Kopacková, and P. Bilinski, “Mapping informal set-
tlements in developing countries with multi-resolution, multi-
spectral data,” in ICLR Workshop on Artificial Intelligence for Social
Good, 2019.

[14] G. R. Watmough, C. L. J. Marcinko, C. Sullivan, K. Tschirhart,
P. K. Mutuo, C. A. Palm, and J.-C. Svenning, “Socioecologically
informed use of remote sensing data to predict rural household
poverty,” Proceedings of the National Academy of Sciences, vol. 116,
no. 4, pp. 1213–1218, 2019.

[15] Y. Nachmany and H. Alemohammad, “Detecting roads from satel-
lite imagery in the developing world,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, 2019.

[16] D. Bonafilia, J. Gill, S. Basu, and D. Yang, “Building high resolution
maps for humanitarian aid and development with weakly- and
semi-supervised learning,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, 2019.

[17] G. Kalliatakis, S. Ehsan, M. Fasli, and K. D McDonald-Maier, “Dis-
placenet: Recognising displaced people from images by exploiting
dominance level,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, 2019.

[18] G. Kalliatakis, S. Ehsan, A. Leonardis, M. Fasli, and K. D.
McDonald-Maier, “Exploring object-centric and scene-centric cnn
features and their complementarity for human rights violations
recognition in images,” IEEE Access, vol. 7, pp. 10 045–10 056, 2019.

https://reactjs.org
https://plotly.com/javascript


12

[19] N. Naik, J. Philipoom, R. Raskar, and C. Hidalgo, “Streetscore –
predicting the perceived safety of one million streetscapes,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, 2014, pp. 793–799.

[20] T. Gebru, J. Krause, Y. Wang, D. Chen, J. Deng, E. L. Aiden,
and L. Fei-Fei, “Using deep learning and google street view to
estimate the demographic makeup of neighborhoods across the
united states,” Proceedings of the National Academy of Sciences, vol.
114, no. 50, pp. 13 108–13 113, 2017.

[21] S. M. Arietta, A. A. Efros, R. Ramamoorthi, and M. Agrawala,
“City forensics: Using visual elements to predict non-visual city
attributes,” IEEE transactions on visualization and computer graphics,
vol. 20, no. 12, pp. 2624–2633, 2014.

[22] T. Gebru, J. Krause, Y. Wang, D. Chen, J. Deng, and L. Fei-Fei,
“Fine-grained car detection for visual census estimation,” in The
AAAI Conference on Artificial Intelligence, 2017.

[23] S. Workman, M. Zhai, D. J. Crandall, and N. Jacobs, “A unified
model for near and remote sensing,” in The IEEE International
Conference on Computer Vision (ICCV), 2017.

[24] G. Can, Y. Benkhedda, and D. Gatica-Perez, “Ambiance in social
media venues: Visual cue interpretation by machines and crowds,”
in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, 2018.

[25] H. Kataoka, Y. Satoh, K. Abe, M. Minoguchi, and A. Nakamura,
“Ten-million-order human database for world-wide fashion cul-
ture analysis,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, 2019.

[26] N. Naik, S. D. Kominers, R. Raskar, E. L. Glaeser, and C. A.
Hidalgo, “Computer vision uncovers predictors of physical urban
change,” Proceedings of the National Academy of Sciences, 2017.

[27] B. Zhou, L. Liu, A. Oliva, and A. Torralba, “Recognizing city
identity via attribute analysis of geo-tagged images,” in European
conference on computer vision (ECCV), 2014, pp. 519–534.

[28] N. Wu, J. Phang, J. Park, Y. Shen, Z. Huang, M. Zorin, S. Jas-
trzebski, T. Fevry, J. Katsnelson, E. Kim, S. Wolfson, U. Parikh,
S. Gaddam, L. L. Y. Lin, K. Ho, J. D. Weinstein, B. Reig, Y. Gao,
H. T. K. Pysarenko, A. Lewin, J. Lee, K. Airola, E. Mema, S. Chung,
E. Hwang, N. Samreen, S. G. Kim, L. Heacock, L. Moy, K. Cho,
and K. J. Geras, “Deep neural networks improve radiologists’
performance in breast cancer screening,” IEEE Transactions on
Medical Imaging, pp. 1–1, 2019.

[29] N. Abdur Rehman, U. Saif, and R. Chunara, “Deep landscape
features for improving vector-borne disease prediction,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, 2019.

[30] S. M. McKinney, M. Sieniek, V. Godbole, J. Godwin, N. Antropova,
H. Ashrafian, T. Back, M. Chesus, G. C. Corrado, A. Darzi,
M. Etemadi, F. Garcia-Vicente, F. J. Gilbert, M. Halling-Brown,
D. Hassabis, S. Jansen, A. Karthikesalingam, C. J. Kelly, D. King,
J. R. Ledsam, D. Melnick, H. Mostofi, L. Peng, J. J. Reicher,
B. Romera-Paredes, R. Sidebottom, M. Suleyman, D. Tse, K. C.
Young, J. De Fauw, and S. Shetty, “International evaluation of an
ai system for breast cancer screening,” Nature, vol. 577, no. 7788,
pp. 89–94, 2020.

[31] R. Pryzant, S. Ermon, and D. Lobell, “Monitoring ethiopian wheat
fungus with satellite imagery and deep feature learning,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, 2017.

[32] N. Efremova, D. West, and D. Zausaev, “AI-based evaluation of
the SDGs: The case of crop detection with earth observation data,”
in ICLR Workshop on Artificial Intelligence for Social Good, 2019.

[33] R. Rustowicz, R. Cheong, L. Wang, S. Ermon, M. Burke, and
D. Lobell, “Semantic segmentation of crop type in africa: A
novel dataset and analysis of deep learning methods,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, 2019.

[34] A. Kaneko, T. Kennedy, L. Mei, C. Sintek, M. Burke, S. Ermon, and
D. Lobell, “Deep learning for crop yield prediction in africa,” in
ICML Workshop on Artificial Intelligence for Social Good, 2019.

[35] V. Schmidt, A. Luccioni, S. K. Mukkavilli, N. Balasooriya,
K. Sankaran, J. Chayes, and Y. Bengio, “Visualizing the con-
sequences of climate change using cycle-consistent adversarial
networks,” in ICLR Workshop on Artificial Intelligence for Social Good,
2019.

[36] B. Kellenberger, D. Marcos, and D. Tuia, “When a few clicks make
all the difference: Improving weakly-supervised wildlife detection

in uav images,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, 2019.

[37] M. Turker and B. T. San, “Detection of collapsed buildings caused
by the 1999 Izmit, Turkey earthquake through digital analysis
of post-event aerial photographs,” International Journal of Remote
Sensing, vol. 25, no. 21, pp. 4701–4714, 2004.

[38] S. Radhika, Y. Tamura, and M. Matsui, “Cyclone damage detection
on building structures from pre-and post-satellite images using
wavelet based pattern recognition,” Journal of Wind Engineering
and Industrial Aerodynamics, vol. 136, pp. 23–33, 2015.

[39] J. Fernandez Galarreta, N. Kerle, and M. Gerke, “UAV-based urban
structural damage assessment using object-based image analysis
and semantic reasoning,” Natural Hazards and Earth System Science,
vol. 15, no. 6, pp. 1087–1101, 2015.

[40] K. E. Joyce, S. E. Belliss, S. V. Samsonov, S. J. McNeill, and P. J.
Glassey, “A review of the status of satellite remote sensing and
image processing techniques for mapping natural hazards and
disasters,” Progress in Physical Geography, vol. 33, no. 2, pp. 183–
207, 2009.

[41] F. Dell’Acqua and P. Gamba, “Remote sensing and earthquake
damage assessment: Experiences, limits, and perspectives,” Pro-
ceedings of the IEEE, vol. 100, no. 10, pp. 2876–2890, 2012.

[42] L. Dong and J. Shan, “A comprehensive review of earthquake-
induced building damage detection with remote sensing tech-
niques,” ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 84, pp. 85–99, 2013.

[43] L. Gueguen and R. Hamid, “Large-scale damage detection using
satellite imagery,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 1321–1328.

[44] N. Attari, F. Ofli, M. Awad, J. Lucas, and S. Chawla, “Nazr-cnn:
Object detection and fine-grained classification in crowdsourced
uav images,” in IEEE International Conference on Data Science and
Advanced Analytics (DSAA), 2016.

[45] Y. Li, W. Hu, H. Dong, and X. Zhang, “Building damage detection
from post-event aerial imagery using single shot multibox detec-
tor,” Applied Sciences, vol. 9, no. 6, p. 1128, 2019.

[46] J. Z. Xu, W. Lu, Z. Li, P. Khaitan, and V. Zaytseva, “Building
damage detection in satellite imagery using convolutional neural
networks,” in NeurIPS Workshop on Artificial Intelligence for Human-
itarian Assistance and Disaster Response, 2019.

[47] R. Gupta, B. Goodman, N. Patel, R. Hosfelt, S. Sajeev, E. Heim,
J. Doshi, K. Lucas, H. Choset, and M. Gaston, “Creating xbd:
A dataset for assessing building damage from satellite imagery,”
in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, 2019.
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