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Abstract

In this paper, we present a CNN-based fully unsu-
pervised method for motion segmentation from op-
tical flow. We assume that the input optical flow
can be represented as a piecewise set of paramet-
ric motion models, typically, affine or quadratic mo-
tion models. The core idea of our work is to lever-
age the Expectation-Maximization (EM) framework
in order to design in a well-founded manner a loss
function and a training procedure of our motion seg-
mentation neural network that does not require ei-
ther ground-truth or manual annotation. However,
in contrast to the classical iterative EM, once the
network is trained, we can provide a segmentation
for any unseen optical flow field in a single inference
step and without estimating any motion models. We
investigate different loss functions including robust
ones and propose a novel efficient data augmenta-
tion technique on the optical flow field, applicable to
any network taking optical flow as input. In addi-
tion, our method is able by design to segment multi-
ple motions. Our motion segmentation network was
tested on four benchmarks, DAVIS2016, SegTrackV2,
FBMS59, and MoCA, and performed very well, while
being fast at test time.

1 Introduction

Motion segmentation is among the main computer vi-
sion tasks. Its goal is to divide a frame into motion-

related coherent segments. Motion coherence must
be understood with respect to a given property ex-
pressed by motion features, parametric motion mod-
els, or even higher-level motion information. Depend-
ing on the formulation of the problem or the need
of the application, segments can be layers, i.e., non
necessarily connected subsets of points, or regions,
i.e., connected segments, forming a partition of the
image grid. Motion segmentation is a relevant step
for many applications covering video interpretation,
biomedical imaging, robot vision, and autonomous
navigation, to name a few.

Motion segmentation is a complex problem that
has been investigated for decades, but there are still
open questions. Indeed, it combines topology and in-
formation aspects in an intricate way. By topology,
we mean the partition of the frame constituting the
output of the segmentation. By information, the type
of features or motion models it relies on. This all re-
sults in a chicken-and-egg problem: estimating easily
and correctly the involved motion models requires an
available partition, getting an accurate and reliable
partition implies available motion models driving the
segmentation.

As we want to address general-purpose image mo-
tion segmentation without anticipating any given ap-
plication, we cope with optical flow segmentation
(OFS). Indeed, the optical flow carries all the in-
formation related to motion between two successive
frames of a video. Segmenting optical flow enables
specific computer vision goals, as for instance, seg-
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menting independent moving objects in the scene.
Of course, the image motion depends on one hand
on the relative motion between scene objects and the
camera, and on the other hand on the object depth.
As a consequence, any significant difference in depth
results in a distinctive image motion. A static object
in the foreground of the scene produces a specific flow
pattern compared to the static background, and its
image motion is supposed to form a separate seg-
ment. In the sequel, we call this situation ”motion
parallax”. However, identifying the nature of the flow
segments is outside the scope of this paper. It could
be achieved with additional steps as done for example
in [35].

We assume that the input optical flow can be rep-
resented as a piecewise set of parametric motion mod-
els, typically affine or quadratic ones, each of them
characterizing motion in one segment. Thus, we for-
mulate OFS as a piecewise linear regression problem,
where finding supports (segments) and estimating the
motion models are intertwined issues.

This problem can be addressed with latent vari-
ables, which usually imposes an alternate optimisa-
tion strategy. The Expectation-Maximization (EM)
algorithm is certainly the flagship solution for a sta-
tistical approach of this problem [14]. Several ex-
tensions to the original EM were proposed as the
Classification EM (CEM) introduced in [9], where
emphasis is put on the clustering issue of the prob-
lem beyond the mixture model one. However, classi-
cal EM relies on handcrafted features, and leads to
time-consuming iterative algorithms. On the other
hand, deep learning, and more precisely, convolu-
tional neural networks (CNN), have now become the
most effective key solution for image and motion seg-
mentation [2, 21, 44, 45]. Nevertheless, the training
step remains an important issue. Supervised learn-
ing provides high accuracy, but manual annotation
of optical-flow segmentation maps as ground truth is
very cumbersome, and almost unreachable at a large
scale. One solution to overcome this issue is to train
on synthetic data whose segmentation ground truth
is known. However, for some application, the simu-
lation of realistic data is very challenging. Unsuper-
vised training is thus preferable but more challenging
to optimize, in particular to formulate the appropri-

ate loss leading to the intended outcomes. Moreover,
an unsupervised method is certainly the best way to
deal with videos, and specifically optical flows, un-
seen during the training phase, thus ensuring better
generalisation.

In this paper, we aim to bring the two, EM and
CNN, together in order to design a principled and
efficient unsupervised motion segmentation method.
By unsupervised, we mean that we do not resort to
any ground-truth and manual annotation, both for
the training stage in the loss function, for the selec-
tion of the optimal trained network model and for the
choice of network hyperparameters. On one hand, the
parametric motion models will carry the coherence
for each motion segment. However, the key point is
to confine their estimation to the training stage. On
the other hand, we take EM as the well-founded basis
for the design of the loss function and consequently
the training stage of the motion segmentation net-
work. In the related framework of mixture density
networks [7], a neural network is combined with a
mixture density model. However, it does not rely on
EM. Once trained, our network segments each flow
of the video without any iteration and any motion
model estimation.

Thus, the main purpose of our EM-driven network
is to uncover motion coherence. Taken alone, it can
segment motion within videos. It can also be in-
corporated in a larger framework to solve any video
segmentation or understanding problem that could
benefit from a motion coherence cue. This could be
achieved either by using our network as a module in-
side a bigger pipeline, for motion saliency detection
for instance, or by using our proposed loss as a regu-
larization term for the training of a neural network.

We demonstrate the efficiency and accuracy of our
OFS method on the task of segmenting moving ob-
jects in videos, due to the availability of well-known
benchmarks for this application. We evaluate and
compare it to existing methods on four datasets:
DAVIS2016 [3], FBMS59 [39], SegTrackV2 [28] and
MoCA [26].

The contributions of our work are summarized be-
low:

• We infer a principled unsupervised CNN-based
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motion segmentation method from the EM algo-
rithm;

• We introduce a new data augmentation scheme
adapted to optical flow fields;

• We are able to segment in a fast and non-
iterative way multiple motions using optical flow
only;

• Experiments on several challenging datasets
show that our method outperforms, both in
terms of accuracy and computational efficiency,
comparable unsupervised motion segmentation
methods for DAVIS2016 and FBMS59, and is
the second best for SegTrackV2 and MoCA.

The paper is organized as follows. Section 2 de-
scribes related work on motion segmentation. In Sec-
tion 3, we formulate the motion segmentation prob-
lem through the EM framework. We present in Sec-
tion 4 how we leverage the EM algorithm to design
the network loss function, its architecture and the
training procedure. Section 5 reports extensive ex-
periments with comparison to other existing methods
on four benchmarks. In Section 6, we discuss sev-
eral issues related to the main components of our ap-
proach including a comparison with the choices made
by other methods. Finally, Section 7 provides con-
cluding remarks.

2 Related work on motion seg-
mentation

In this section, we comment works related to motion
segmentation. For the ease of the presentation, we
organize it in three parts, even though they may over-
lap or a given work may fall into several categories.
First, we deal with video object segmentation, where
the focus is on primary moving objects (usually a
single one followed by the camera). The second cat-
egory targets the detection of independently moving
objects in the scene viewed by a mobile camera. The
third one is concerned with image motion segmenta-
tion in a more general perspective than the two first
more specific categories. Our OFS method belongs
to the last category.

2.1 Video object segmentation

The focus of video object segmentation (VOS) is on
segmenting primary objects (typically, a single one)
moving in the foreground of a scene and usually fol-
lowed by the camera. VOS delivers a binary seg-
mentation, primary object versus background [52].
Nevertheless, it may occur that the background con-
tains moving objects as well, as in some videos of
the DAVIS2016 dataset [3]. The availability of large
annotated VOS datasets makes the use of super-
vised deep-learning techniques possible for VOS. Us-
ing jointly object appearance and motion improves
performance in VOS as demonstrated for example
in [10] with a two-branch segmentation network, or
in [13] with a learning-based spatiotemporal grouping
method. In [46], one convolutional and one recurrent
network are jointly trained to segment moving ob-
jects. A close formulation is proposed in [23] with a
two-stream fully convolutional neural network com-
bining an appearance module with an optical-flow
module. MATNet [61] also combines motion with
appearance using an attention-based architecture al-
lowing better interaction between those two modali-
ties. COSNet [32] trained in a supervised way a co-
segmentation module to segment the object common
to a pair of frames. Then, they use this module to
segment the primary moving object in a sequence.

Unsupervised VOS methods have also been devel-
oped. The one described in [42] exploits image mo-
tion boundaries and appearance models to recognize
moving objects throughout videos. In [19], the au-
thors assume that the moving object has distinctive
low-level appearance and motion features, (i.e., ori-
entation and magnitude of flow vectors), compared
to the background. They use a Tukey-inspired mea-
sure to detect outlier pixels in the images, and label
them as belonging to moving objects. In [25], the
authors exploit the recurrence property of the pri-
mary moving object to segment it from the sequence
of images. In [58], the authors set up an adversarial
framework between a generator network producing
a hiding mask on the optical flow, and an inpainter
network trying to inpaint the flow inside the mask.
The rationale is that independent motion cannot be
predicted by the surrounding motion. However, this

3



method might be also sensitive to static objects in
the foreground generating motion parallax as shown
in [35]. The authors of [59] make the dynamic and
static models mutually reinforce during the unsuper-
vised training phase, so that the network can pre-
cisely detect the objects of interest in the processed
images.

In a different setting, the method described in [33]
uses optical flow to confirm the validity of a spatial
segmentation by assessing that the collective motion
of the pixels is coherent in the regions segmented by
the network. As we do, they estimate parametric
motion models using an external optimisation tech-
nique in the network forward pass. However, they do
not leverage an EM-based coherence loss as done in
our method, and their work relies on a reconstruc-
tion loss. Consequently, their framework is bounded
to use Ordinary Least Square to keep the loss dif-
ferentiable. It cannot involve robust loss functions
in contrast to our method. As a consequence, their
method can be disturbed by systematic noise in the
input optical flow.

2.2 Segmentation of independently
moving objects

When the camera is moving, all points in the image
exhibit apparent motion. A frequent goal is to seg-
ment areas corresponding to objects really moving in
the viewed scene, also designated as independently
moving objects, or shortly, as independent motions.
The output can be either a binary segmentation as
in VOS, but this time all independently moving ob-
jects on one side and the static background on the
other, or, less often, a multi-label segmentation, each
moving object being identified by a different label.

A first approach is to cancel the dominant mo-
tion in the image generally due to the camera mo-
tion. A classical way to compute the dominant mo-
tion is to estimate a parametric motion model, affine
or quadratic, with a robust function [41]. However,
a single model cannot usually encompass an entire
static scene with objects at different depths. Such a
scene configuration raises the motion parallax issue:
distinctive segments in the optical flow corresponding
to static objects in the foreground. Different alterna-

tives have been investigated to solve this problem: a
stratification of the moving object-detection problem
into scenarios from 2D to 3D based on geometrical
cues [22], projective geometry criteria to distinguish
motion segments generated by independently moving
objects from those induced by static objects in the
scene foreground [12], multi-frame monocular epipo-
lar constraint of the camera motion [15], the flow
angle likelihood and 3D rigid motion models in [5],
long-term analysis by classifying trajectories as back-
ground or foreground [53]. In [38], the authors cir-
cumvent the problem for a translating camera by us-
ing the orientation of the flow vectors.

A supervised learning method is defined in [49] to
infer relevant motion patterns and consequently iden-
tify independently moving objects. It is based on
a fully convolutional network trained with synthetic
video sequences along with their ground-truth opti-
cal flow and motion segmentation maps. Another ap-
proach is to compute the so-called static scene flow,
that is, the image motion of the whole static scene,
induced by the camera motion. Then, independently
moving objects can be identified against this static
scene flow as in [44], where a competitive collabora-
tion between several networks is designed. However,
it requires additional ingredients, including the avail-
ability of the camera intrinsic parameters, the accu-
rate estimation of the scene depth and of the camera
pose. The authors in [6] only compensate the rota-
tional component of the camera motion, but still need
the camera intrinsic parameters.

2.3 Segmentation of image motion

A broader perspective is to partition the 2D motion
between two successive frames of the video, what-
ever the source of every individual image motion. It
is then a “pure” multi-label segmentation problem.
Seminal works on image motion segmentation into
layers [1,51] or into connected regions [8,40], take two
successive images as input and estimate a polynomial
motion model (typically, affine models) per layer or
per region. These methods are respectively based on
a clustering framework [51], on MDL encoding [1], on
Markov Random Fields (MRF) with least-square [8]
or robust estimation of the parametric motion mod-
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els [40].

Subsequently, other paradigms were investigated.
Let us quote the estimation of a non-parametric mix-
ture with a variant of the EM algorithm and the use of
Green’s functions [54], a multi-frame approach based
on graph cuts with occlusion detection [55], a con-
tinuous minimization of a single functional involving
implicit multiphase level set implementation and fa-
voring motion boundaries of minimal length [11], a
level set formulation and motion representation with
several basis functions [50], the introduction of depth-
ordered MRFs and a graph-cut optimisation method
over several frames [47], the use of large time win-
dows, point trajectories and spectral clustering [39],
and the simultaneous handling of many tracks along
with statistics from the appearance model and tem-
poral consistency [28].

The advent of deep learning and the availability
of efficient optical flow methods have recently led to
new categories of methods. These methods take as
input directly the optical flow computed between two
successive images, and train neural networks to pro-
duce a segmentation. In [57], the authors leverage the
slot attention mechanism introduced in [31]. The de-
signed network handles the two-mask segmentation,
and comprises several components, feature encoding,
iterative binding, decoding to layers, and flow re-
construction. Besides, the loss function involves an
entropy term to make masks as binary as possible,
and a temporal consistency term. In [56], the mo-
tion segmentation problem is handled as a multi-type
subspace clustering problem by learning nonlinear
subspace filters with stacked multi-layer perceptrons.
Then, for inference, the authors apply K-means to
the output embeddings.

In [27], the segmentation of moving objects is ex-
tended to the recovery of the whole object (i.e., so-
called amodal segmentation) even in case of partial
occlusion or temporary static state. The authors re-
sort to multi-frame analysis and transformer encoder.
If no manual annotation is required, the method how-
ever benefits from ground-truth segmentation infor-
mation in the loss function through simulated data
mimicking real situations.

3 Motion segmentation as an
EM problem

The core idea of our work is to leverage the
Expectation-Maximisation framework to design in a
well-founded manner the loss function and the train-
ing procedure of our OFS neural network. In this
section, we first describe one way to use the EM al-
gorithm for optical flow segmentation.

Optical flow f ∈ R2×W×H is a vector field defined
over an image grid Ω of size I = W ×H. We denote
by fi ∈ R2 the motion vector associated to each site
i ∈ Ω of this grid. We make the assumption that
any optical flow field can be decomposed in a set of
K segments or layers, each one grouping a (possibly
non connected) part of the image grid and exhibit-
ing a coherent motion. In order to enforce coherence,
we choose to represent the motion field within each
segment k with a parametric model defined by pa-
rameters θk. We denote θ = {θk, k = 1, . . . ,K}. In
practice, we use polynomial motion models, typically
affine (first-degree polynomial) or quadratic (second-
degree polynomial) models. Their interest lies in
both an easy physical interpretation and an effi-
cient estimation. For instance, a specific 8-parameter
quadratic motion model corresponds to the projec-
tion, into the image plane, of the rigid motion of a 3D
planar surface. Thus, we can account for any slanted
almost planar surface that exhibits a smooth depth
variation, not only fronto-parallel ones. By almost
planar, we mean a negligible depth variation of the
object surface compared to its distance to the cam-
era. Our method could nevertheless accommodate
other types of parametric models.

We now consider the likelihood of the optical flow
field f given the set of parameters θ, denoted by
p(f |θ). In order to make explicit the partition of f
into k segments and the associated individual θk’s, we
introduce latent variables zi such that p(zi = k|fi, θk)
represents the probability that site i belongs to layer
k. Assuming conditional independence, the loga-
rithm of the likelihood can be written as below in
step 1 of eq.(1). Then, we introduce the zi variables
(steps 2 and 3 of eq.(1)), and we finally straightfor-
wardly make any positive distribution q appear (step
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4 of eq.(1)). We have:

log(p(f |θ)) = log
∏
i

p(fi|θ)

= log
∏
i

∑
k

p(fi, z
k
i |θk)

=
∑
i

log
∑
k

p(fi, z
k
i |θk)

=
∑
i

log
∑
k

q(zki )
p(fi, z

k
i |θk)

q(zki )
, (1)

where zki , [zi = k]. Maximizing log(p(f |θ)) w.r.t.
θ is obviously complicated, even if it boils down to
k maximizations w.r.t. the θk’s. Indeed, variables zi
are hidden. To maximize eq.(1) w.r.t. θk, variables zi
must be available. Accordingly, we need to maximize
also w.r.t. the zi’s.

However, we can use the Jensen’s inequality
(h(E[x]) ≥ E[h(x)] for any concave function h), as
done in classical EM [2], in order to build a lower
bound ll(θ) of the log-likelihood log(p(f |θ)). We get
log(p(f |θ)) ≥ ll(θ) with:

ll(θ) =
∑
i

∑
k

q(zki ) log
p(fi, z

k
i |θk)

q(zki )

=
∑
i

∑
k

q(zki ) log p(fi, z
k
i |θk)

−
∑
i

∑
k

q(zki ) log q(zki ), (2)

where the first term of eq.(2) is the expectation over
q(zi) of log p(fi, zi|θ) and the second term is the en-
tropy that we note H. The resulting expression of
the lower bound is:

ll(θ) =
∑
i

Eq(zi)[log p(fi, zi|θ)] +
∑
i

H(q(zi)). (3)

In the classical EM algorithm, one usually takes
q(zki ) , p(zki |fi, θk), i.e., the posterior distribution.
Then, one alternates between an expectation step
where q(zki ),∀i, k, is estimated, and a maximization
step where ll(θ) is maximized w.r.t. the θk’s. This
procedure monotonically increases the log-likelihood
until it reaches a local optimum [2].

4 CNN-based motion segmen-
tation

In our case, we adopt a neural network model gφ(f),
taking as input the optical flow f and parameterized
by φ, to produce the image motion segmentation that
is our primary goal. This network has a softmax acti-
vation in order to output a valid probability distribu-
tion over layers for each site. The motivation is that,
by doing so, we can access a large family of distri-
butions. Most importantly, after the training stage,
our network is able to infer the motion segmenta-
tion without iterating and without involving motion
models, in contrast to the classical EM algorithm. In
addition, it is much faster. At the training stage, we
deal with two sets of parameters: the parameters of
the motion models θ and the parameters of the net-
work model φ. At the inference stage, we are only
concerned by the network parameters φ. The over-
all flowchart of our method, including training and
inference stages, is given in Fig.1.

4.1 EM-driven network specification

Coming back to eq.(2) and following the choice ex-
pressed above, we take gφ(f)ki as q(zki ), where gφ(f)ki
is the probability (prediction) given by the network
for site i to belong to segment k given the input op-
tical flow f . The lower bound now depends on two
sets of parameters, θ and φ, and writes:

ll(θ, φ) =
∑
i

∑
k

gφ(f)ki (log p(fi, z
k
i |θk)− log gφ(f)ki )

=
∑
i

Egφ(f)i [log p(fi, zi|θ)] +
∑
i

H(gφ(f)i).

(4)

We alternatively optimize ll(θ, φ) with respect to θ
and φ for the training stage as follows:

θ∗ = arg max
θ

∑
i

∑
k

gφ(f)ki log(p(fi, z
k
i |θk)) (5)

φ∗ = arg max
φ

∑
i

∑
k

gφ(f)ki log(p(fi, z
k
i |θ∗k))

+
∑
i

H(gφ(f)i). (6)
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Training loss

Segmentation masksOptical flow field    Neural network Estimated motion models

Training step

Segmentation masksNeural networkOptical flow field    

Inference step Optical flow coding

Arrow HSV color

Figure 1: Flowchart of the proposed CNN method for the training (top) and inference (bottom) steps.
Training step: First, we segment the optical flow field f with the neural network gφ. Then, we get the opti-
mal parametric motion models {fθ∗k}k=1,...,K within each probabilistic segmentation masks {gφ(f)k}k=1,...,K

using (13). Finally, we update the parameters φ of the neural network using (14), where the loss function
is defined in (12). This training step is performed iteratively over each batch B (of size 1 in this illustra-
tion). Inference step: We directly apply the trained network gφ∗ to any new unseen optical flow field f to
obtain the probabilistic segmentation masks {gφ∗(f)k}k=1,...,K . There is no estimation of the motion models
{fθ∗k}k=1,...,K in the inference step in contrast to the training step. For the sake of visualization, optical
flows and polynomial motion models are represented with the HSV color code, but actually, the flow field f
used as input of the neural network is taken as a 2D vector field. We have a two-channel input. Optical flow
coding: correspondence between the arrow visualization of the optical flow field and the HSV color map.

As previously described in [20], the entropy of the
predicted segmentation at each site i, H(gφ(f)i), nat-
urally arises in eq.(4), and then, in eq.(6). Entropy
measures statistical uncertainty and is maximised for
gφ(f)ki = 1

K ,∀i, k. It acts as a regularization term
balancing the likelihood term to avoid falling too
quickly into (inappropriate) local optima.

Regarding the optimisation on θ, we can reach a
local optimum using an off-the-shelf iterative algo-
rithm. However, we can only perform a gradient de-
scent step for the optimisation with respect to the
network weights φ.

In order to gain intuition on how the network is
learning to produce the motion segmentation, follow-

ing [2], we rewrite the lower bound as:

ll(θ, φ) =
∑
i

∑
k

gφ(f)ki log
p(fi, z

k
i |θk)

gφ(f)ki

=
∑
i

∑
k

gφ(f)ki log
p(zki |fi, θk)

gφ(f)ki

+
∑
i

log p(fi|θ)
∑
k

gφ(f)ki

= −
∑
i

KL[gφ(f)i||p(zi|fi, θ)] + log(p(f |θ)).

(7)

Consequently, the optimisation step over the network

7



weights is defined by:

φ∗ = arg min
φ

∑
i

KL[gφ(f)i||p(zi|fi, θ∗)], (8)

where we minimize the KL-divergence between the
segmentation produced by the network and the seg-
mentation linked to the optimal parameters θ∗. Thus,
the network is trained to produce a segmentation for
a given set of parameters. As the quality of the net-
work segmentation improves, so does the quality of
the estimated θ∗, pushing the network weights to pro-
duce better segmentation in turn.

4.2 Flow likelihood and loss function

In the previous section, we described the overall
training process. In this section, we address the def-
inition of the different terms of the loss function.

First, we decompose the joint probability in eq.(4)
into a likelihood and a prior:

p(fi, z
k
i |θk) = p(fi|zki , θk)p(zki ). (9)

The likelihood p(fi|zki , θk) assesses how the estimated
parametric motion model in a given region fits the
observed flow in this region. In this work, we use a
uniform prior for p(zki ). Nevertheless, we could adopt
a more complex prior, if we wanted to influence the
size of each region for instance.

An important point of our design is to specify the
form of the likelihood p(fi|zki , θk) that is used to
compare the input optical flow with the paramet-
ric flow for a given set of parameters θ. In prac-
tice, since our parametric motion models are depen-
dent on the position of the points on the 2D space,
we introduce a deterministic function c(i) that maps
the site i to a polynomial expansion involving its
coordinates. More specifically, for a 6-parameter
affine motion model, we have c(i) =

[
1, xi, yi

]
; for

a full 12-parameter quadratic model, we have c(i) =[
1, xi, yi, x

2
i , xiyi, y

2
i

]
. The likelihood evaluates the

distance between the input flow vectors f and the
parametric flow vectors fθki , θTk · c(i),∀k, i. Its gen-
eral form is given by:

p(fi|zki , θk) =
1

Z
exp(− 1

α
δ(fi, θ

T
k · c(i))), (10)

where δ : R2∗2 → R is a distance function to de-
fine, and α is a free parameter related to the uncer-
tainty in the flow measure and the resulting adequacy
of the parametric motion model. If δ is a transla-
tionally invariant function, which we verified for all
tested distance functions, then Z is only dependent
on the function δ and hyperparameter α and not on
the input. The proof can be found in the supplemen-
tary material. This allows us to perform optimisation
without explicitly computing Z.

The choice of the distance function δ is central in
our approach, as it is used both for the estimation
of the parametric motion models and for the training
of the network (see eq.(5) and eq.(6)). Robust loss
functions can be beneficial as thoroughly investigated
in [4]. We consider the following distance functions:

• Squared L2 : δ(fi, θ
T
k · c(i)) = ||fi − θTk · c(i)||22

• L2 norm : δ(fi, θ
T
k · c(i)) = ||fi − θTk · c(i)||2

• L1 norm : δ(fi, θ
T
k · c(i)) = ||fi − θTk · c(i)||1

L1 (due to the absolute function involved) and L2

(due to the square root of the sum involved) norms
bring robustness to outliers in the flow field, in con-
trast to the squared L2.

We define the loss of our model as:

L(f, θ, φ) = −ll(θ, φ), (11)

where ll(θ, φ) is given by eq.(4). Taking into account
eq.(10), we can formulate the loss function as:

L(f, θ, φ) =
1

α

∑
i

∑
k

gφ(f)ki δ(fi, θ
T
k · c(i))

+
∑
i

∑
k

gφ(f)ki log gφ(f)ki + I log(K Z),

(12)

where Z is the normalization term in eq.(10) and α
allows us to balance the likelihood, prior and entropy
parts of the loss. We use α = 10−2 in all our exper-
iments, but in practice the network model is fairly
robust to the choice of this hyperparameter. In the
supplementary material, more details are given on
the derivation of eq.(12).
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4.3 Network training

During the training, we minimize the loss function
L over a dataset of optical flow fields. For each in-
put flow field f of the training dataset, we minimize
L(f, θ, φ) with respect to each parameter. This alter-
nate optimisation is performed over every batch B as
follows:

θ∗ = arg min
θ

∑
f∈B

L(f, θ, φt) (13)

φt+1 = φt − γ∇φ
∑
f∈B

L(f, θ∗, φ), (14)

where t is the iteration number and γ the learning
rate.

In practice, we use an optimizer to get θ∗ and an
automatic differentiation to compute the gradients
with respect to φ. As described in subsection 4.1 and
in our computation graph presented in Fig.2, we con-
sider θ∗ as fixed in the gradient step with respect to
φ, making ∇φL(f, θ∗, φ) trivial to compute using au-
tomatic differentiation. Practical details are provided
in subsection 5.1

Figure 2: Illustration of the computation graph for
the training of our network. m , gφ(f) denotes the
set of arrays (as many as masks) collecting the prob-
ability for each site of the input flow field to belong
to each mask. θ is the set of the motion model pa-
rameters, and φ the set of the network parameters.
In our method, we are alternatively optimising w.r.t.
θ (optimisation 1) and φ (optimisation 2).

4.4 Data augmentation

As proven beneficial in many computer vision prob-
lems, we proceed to data augmentation to train the

motion segmentation network. However, the input
data are not images but optical flows in our case,
which led us to define an original data augmentation
procedure. The goal is to make the network as in-
variant as possible to the global motion field, since
we identify it as an important clue for generalisation.

Therefore, we add to each optical flow field of the
dataset a parametric motion model whose parameters
are drawn at random. For the sake of consistency, we
take quadratic motion models. This mimics a large
variety of camera movements. This procedure has
the advantage of multiplying the flow configurations,
while keeping the same flow structure as in the ini-
tial sample. In other words, the network is trained
with a diversity of flows, while having the same target
segmentation to predict. In the supplementary ma-
terial, we give a formal proof that our loss function is
invariant to the added parametric global motion. As
shown in Section 5.3, this data augmentation scheme
contributes to improve the overall performance of the
network. Let us emphasize that it could also be used
to train any network taking optical flow as input with
the benefit of such invariance.

4.5 Related work on EM and deep
learning

To conclude this section, we explain how our ap-
proach differs from other works that somehow make
use of EM within a neural network framework. In
[29], the EM paradigm is involved in the network
designed for semantic segmentation. However, the
purpose is quite different since they exploit the EM
algorithm in the attention mechanism. It allows them
to iteratively estimate a compact set of bases used to
compute the attention maps.

The EM framework plays also a role in [17, 18],
and just recently in [60], in the design of the neu-
ral network architecture concerned with perceptual
grouping tasks. However, those approaches differ in
several ways. First, they remain iterative. One starts
from parameters specifying each latent space com-
ponent (as our motion parameters θ), but the net-
work iteratively refines them in the inference stage,
so that this network remains dependent on the ini-
tialization. Another big difference with our method

9



Method Training Input DAVIS2016 SegTrack V2 FBMS59 MoCA
J F J J J

Ours

Fully Unsupervised

Flow

69.3 70.7 55.5 57.8 61.8

MoSeg [57] 68.3 66.1 58.6 53.1 63.4

FTS [42] 55.8 47.8 47.7 -

TIS0 [19] 56.2 45.6 - - -

TISs [19]
Image & Flow

62.6 59.6 - - -

CIS - No Post [58] 59.2 45.6 36.8 49.4

CIS - With Post [58] 71.5 62.0 63.6 54.1

DyStab - Dyn [59]
Supervised Features

Flow 62.4 40.0 49.1 -

DyStab - Stat&Dyn [59] Image & Flow 80.0 73.2 74.2 -

ARP [25] Image & Flow 76.2 70.6 57.2 59.8 -

MATNet [61]
Supervised

Flow 82.4 80.7 64.2

COSNet [32] Image 80.5 79.5 - 75.6 50.7

Table 1: Results on DAVIS2016 validation dataset, SegTrackV2, FBMS59 validation dataset and MoCA
for several unsupervised and supervised methods (scores taken from [19], [58], [57] and [59]). J is the
Jaccard index (region similarity) and F accounts for contour accuracy. The higher the value, the better
the performance. For further explanation on the evaluation metrics, we refer the reader to the DAVIS2016
website. Following the evaluation protocols, reported scores are the average of scores over all samples in the
corresponding dataset, except for DAVIS2016 where it is the average of each sequence average score. Our
network is trained once and for all on the synthetic dataset FT3D whatever the benchmark.

lies in the network architecture itself, which includes
generative branches to produce an approximation of
the input data from the latent space components and
an iterative branch (recurrent network in [17,18] and
sampling in [60]) to update the latent space compo-
nents themselves. Since those methods rely on an
iterative inference process implementing EM, they
rather belong to the class of algorithm unfolding tech-
niques [36].

5 Experimental results

5.1 Implementation details

Optical flow fields are computed on the original video
frames using the RAFT method [48]. Then, we down-
sample them to obtain 128×224 vector fields provided
as input to the network. The resulting segmentation
is subsequently upsampled to the original frame size
for evaluation w.r.t. the ground truth. It allows us

to perform much more efficient training and inference
stages. In all experiments, we use the L1 norm loss
function, unless otherwise specified.

We take the full quadratic motion model with 12
parameters to represent the optical flow within each
segment k:

fθk(x, y) = (θk1 + θk2x+ θk3y + θk4x
2 + θk5xy + θk6y

2,

θk7 + θk8x+ θk9y + θk10x
2 + θk11xy + θk12y

2)T ,
(15)

where point (x, y) belongs to segment k. We take
this parametric motion model since it can better fit
complex motion. Indeed, it is likely to better encom-
pass the background motion when the camera mo-
tion includes both translation and rotation with a
static background involving objects at slightly differ-
ent depths, and for articulated motions as well.

Our method is fully unsupervised. We do not re-
sort to any manual annotation for training nor for
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model selection. Indeed, in all experiments, we se-
lected the stopping epoch from the loss function eval-
uated always on the same validation set: the official
training split of DAVIS2016 [3].

We consider generalisation to unseen datasets as
an essential property of any motion segmentation
method. To apply this idea, we trained once and
for all our model on a single dataset, namely Flying
Things 3D (FT3D) [34], for all experiments. In ad-
dition, the use of a synthetic dataset alleviates the
problem of choosing the relevant real training data
for a given experiment. For completeness, we also
performed training experiments on real datasets, and
obtained similar or slightly better performance de-
pending on the chosen real training set.

Let us recall that the optimisation on θ does not
occur at inference stage. The network prediction for
each site of the flow field to belong to each segment
k is directly used to yield the motion segmentation
map. We simply select for each site segment k̂ with
the highest probability.

No postprocessing is performed on the resulting
segmentation. As shown later, the obtained segments
are generally smooth, certainly due to the implicit
regularization capacity of the network.

We take as input the optical flow in its vector field
representation f ∈ RW×H×2. Thus, we have a two-
channel input for the network. Our loss function and
our training procedure could be adapted to any neu-
ral network designed for segmentation. We choose
the well-known convolutional architecture U-Net [45]
for gφ. We use a slightly modified implementation
of the one available under PyTorch Lightning [16].
We take seven downsampling layers and start with a
feature depth of 64. The selection of the structure is
again unsupervised using the validation loss on FT3D
dataset. As did in [35], we use InstanceNorm between
convolutional blocks in order to tackle variations in
optical flow magnitude over the dataset.

We use Adam [24] optimizer with a learning rate of
10−4 to train the network. The optimisation on θ is
done with Pytorch implementation of L-BGFS [30].
Batches comprise flow fields randomly sampled from
the training dataset.

Our network1 is time efficient, being a simple con-
volutional network, with an average computation
time of 0.008s per 128 × 224 input flow field on a
Tesla-V100, if we consider a batch of size 32. With-
out any parallelisation (batch size of 1), it can run
at 36fps making it usable for real-time applications.
In particular, it is faster than the fastest method in-
troduced in [57], because we do not use an iterative
attention module, thus reducing our computational
complexity. In contrast to methods involving self
attention, there is a linear relationship between the
complexity of our network and the size of the optical
flow field, which allows us to readily process input of
large dimensions.

5.2 Comparative evaluation

We want to objectively evaluate the performance of
our method for segmenting optical flow fields. Due to
the lack of benchmarks dedicated to OFS, we com-
pare our method on four VOS datasets described be-
low.

DAVIS20162 [3] includes 50 videos (3455 frames)
split in 30 train and 20 validation videos with diverse
objects. Only the principal moving object is anno-
tated in the ground truth. We use the official criteria
for evaluation on this dataset: the Jaccard score and
the contour accuracy score.

SegTrackV23 [28] and FBMS59 [39] respectively
comprise 14 videos (1066 annotated frames) and 59
videos (720 annotated frames), each involving one or
several moving objects. For FBMS59 we use the 29
sequences of the validation set for evaluation. In cases
where there are several moving objects, we group
them into a single foreground mask for evaluation,
as done in [57].

Moving Camouflaged Animals (MoCA) [26]
presents camouflaged animals in natural scenes. For
a fair comparison, we use the subset released by
[57] with 88 videos and 4803 frames. Ground-truth
bounding boxes are provided instead of masks for
evaluation. Accordingly, we convert our output to

1https://github.com/Etienne-Meunier/EM-Flow-
Segmentation

2https://davischallenge.org/index.html
3https://paperswithcode.com/dataset/segtrack-v2-1
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Figure 3: Examples of motion segmentation results obtained with our method with two masks, on the
videos bmx-trees, breakdance-flare, scooter-black, kite-surf, blackswan, parkour, dogs02 and cuttlefish 1,
of the DAVIS2016, FBMS and MoCA datasets. First row: a frame of the video with the ground-truth
superimposed in yellow. Second row: the input flow field displayed with the HSV color code [1] that is
depicted in Fig.1. Third row: the segmentation produced by our method superimposed in green on the
corresponding image.

a bounding box around the largest connected region
of our output mask as done in [57].

Apart from a few videos in SegTrackV2 and
FBMS59, those datasets focus on one primary mov-
ing object. Indeed, videos depict one single inde-
pendently moving object in the foreground. Conse-
quently, the ground truth comprises only two seg-
ments: foreground primary moving object versus
background. To be coherent with this status, we ap-
ply our method with two masks, i.e., K = 2. To
choose the foreground mask, we rely on a simple
heuristic where we designate the biggest mask as the
background one.

We compare our method with several other super-
vised and unsupervised methods: MoSeg [57], TIS
(two versions) [19], CIS [58], FTS [42], DyStab [59],
ARP [25], MATNet [61] and COSNet [32]. All these
methods were described in Section 2. Results are
collected in Table 1. For a fair comparison, we un-
derline several points in this table. First, we differen-
tiate methods trained on ground-truth segmentation
masks such as COSNet [32] or MATnet [61], and un-
supervised methods. We also indicate methods that
use features trained in a supervised way, as it pro-
vides a strong advantage, and then do not fit in an
unsupervised scenario. Indeed, DyStab [59] resorts to
supervised classification features to initialise its net-
works, and ARP [25] requires a motion boundary de-
tection algorithm previously trained in a supervised

way. Secondly, as we evaluate here motion segmen-
tation based on optical flow, we dissociate methods
that take RGB images as input from methods using
only optical flow like ours. Some works like [19, 59]
propose versions with (TISs, DyStab-Stat&Dyn) and
without (TIS0, DyStab-Dyn) RGB frames taken as
input, illustrating the influence of this input modal-
ity on the final results. As in [57], we distinguish the
CIS version involving a strong CRF-based postpro-
cessing, ”CIS-With Post”, and one without postpro-
cessing, ”CIS-No Post”, since postprocessing drasti-
cally increases runtime making the method unusable
for practical applications. It is measured in [57] that
CIS [58] has a runtime of 11s/frame with postpro-
cessing against 0.1s without.

Table 1 shows that our method outperforms all
comparable methods on DAVIS2016 and FBMS59.
Our method is the second best for the two other
datasets. It is even close to the best one and far
ahead the other comparable methods for MoCA. By
comparable methods, we mean unsupervised meth-
ods without unusable postprocessing. Let us stress
that we train our method on an external dataset, un-
like CIS that is trained on test data as well. Scores
obtained by our method for every sequence of the four
datasets are collected in the supplementary material.
In addition, a quantitative comparison, in term of
speed and accuracy, between classical EM and our
OFS network is given in Table 1 of the supplemen-
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tary material, along with an experimental study on
the dependency of the classical EM to the initializa-
tion of the motion model parameters.

In Fig.3, we report visual results to figure out how
our method behaves on different typical examples
from the VOS datasets. We can observe four exam-
ples of failure cases with respect to the DAVIS2016
ground truth (i.e., scooter-black, kite-surf, blackswan
and parkour), although the extra parts segmented by
our method make sense w.r.t. OFS task. Let us recall
that the VOS task takes into account by construction
only the primary moving object and not all moving
objects in the scene. In Scooter-black, the car seg-
mented in the background is moving; in Parkour, the
fence is segmented as it exhibits an important motion
parallax; in Kite-surf and Blackswan, the ripples on
the water are segmented too. This type of complex
examples will be more appropriately handled with
the multiple motion segmentation described in sub-
section 6.

5.3 Ablation study

In order to identify the contribution of the different
components of our method, we performed an abla-
tion study. We investigated the following three main
components:

• DA: removal of the data augmentation on the
optical flow described in subsection 4.4.

• Quad. Model: replacing the full quadratic mo-
tion model with the affine one.

• L1 norm (a): substitution of the robust loss func-
tion (L1 norm) by its non-robust counterpart,
the squared L2 given in subsection 4.2.

• L1 norm (b): substitution of the robust loss func-
tion (L1 norm) by the L2 norm given in subsec-
tion 4.2.

We performed each change on our full method one
by one. As shown in Table 2, the quadratic motion
model plays a pivotal role in the performance of the
network. The other components still play an impor-
tant role in an equal measure. We can observe that
the L2 norm provides better performance than the

without DA Quad. Model L1 norm (a) L1 norm (b) full method

J Mean ↑ 58.4 53.1 58.8 60.6 61.1

Table 2: Ablation study for different components
of our method. Each time, we suppress or modify
only one component, respectively, removal of the data
augmentation, substitution of the quadratic motion
model by the affine motion model, substitution (a)
of the L1 norm by the squared L2, substitution (b)
of the L1 norm by the L2 norm. J is given as the
average of the average frame Jaccard index obtained
for each of the four datasets presented in Section 5.2.

squared L2. As mentioned before, we train the net-
work on the FT3D dataset where estimated optical
flow fields exhibit low noise, which mitigates the im-
pact of a robust loss for training. In previous experi-
ments, the performance gap between a model trained
with L1 loss and squared L2 loss on a real dataset
was even more significant.

5.4 Multiple motion segmentation

Our method can handle by design the segmentation
of multiple motions. Indeed, it has been defined from
the start with K masks. In Section 5.2, we took into
account only two masks for the evaluation on VOS
datasets, because the challenge and the ground-truth
have been defined in this way. In this subsection,
we report additional experiments with several masks
(K ∈ {3, 4, 5, 6, 7}) in Table 3. Visual results are also
displayed in Fig.4 for K = 4. They were obtained on
videos from DAVIS2016, FBMS59 and SegTrack-V2.
We observe that our method can deal with multi-
ple motions in the video and correctly segment them.
This figure includes several examples of articulated
motion (e.g., mallard-fly, hockey), and independently
moving objects (e.g., cars5, cars4, people2). The fig-
ure also contains examples corresponding to “virtual”
failure cases encountered in the two-mask VOS chal-
lenge reported in Section 5.2. We mean segments
that really correspond to moving objects but are not
included in the ground truth that is focused on the
primary moving object. These results demonstrate
that, when involving more than two masks, we can
correctly deal with interfering motions such as mo-
tion parallax (e.g., libby, swing) or additional mov-
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Our method with K masks Davis2016 (J ) SegTrack V2 (J ) FBMS59 (J ) MoCA (J )

K = 3 75.1 55.0 62.1 64.4

K = 4 76.0 59.6 64.7 66.8

K = 5 77.2 59.7 65.1 66.6

K = 6 78.3 62.0 66.0 68.0

K = 7 78.3 62.8 66.9 67.5

Table 3: Results on DAVIS2016 validation dataset, SegTrackV2, FBMS59 validation dataset and MoCA
obtained with our method for several numbers of masks. Quantitative evaluation is performed here using
ground truth for selecting the right masks as described in the main text.

Figure 4: Results obtained with our method for four masks (K = 4) regarding multiple motion segmentation.
First row: one image of the video. Second row: input optical flow displayed with the HSV color code that
is depicted in Fig.1. Third row: motion segmentation maps with four masks, one colour per mask (the
four masks may be not present if not necessary). We adopt the same color code for all segmentation
maps (dark blue: mask 1, light blue: mask 2, green: mask 3, yellow: mask 4). Examples are drawn from
DAVIS2016, FBMS59 and SegTrackV2 datasets. Videos in lexicographic order: mallard-fly, hockey, libby,
swing, hummingbird, cars5, cars4, people2.

ing objects (e.g., cars5). In addition, our multimask
parametric motion segmentation could deal with ob-
jects comprising several significant planar surfaces of
distinct orientation, each of them corresponding then
to different optical flow segments.

We evaluated our multi-mask segmentation on the
VOS datasets presented in Section 5. As we generate
now several masks, segment selection is an issue for
computing the J score that is based on two masks
(foreground moving object versus background). Just
to be able to compute this score and to figure out
the performance we could reach (at least an upper
bound), we declare as foreground all layers that over-
lap for their most part the ground-truth foreground
mask. Scores are collected in Table 3. As expected,
performance increases with the number of masks up

to a certain point. We observe that we get very high
scores on the four benchmarks, and, for K > 3, we
outperform all the other comparable methods by a
relatively large margin (see Table 1). We are even
close to the performance of supervised methods.

Of course, this would not be a valid procedure to
extract the primary moving object in practice, since
we need the ground-truth masks. However, it gives
an insight into the quality of our multiple motion
segmentation, since, so doing, we are not modifying
our segmentation masks, but only selecting them. It
also highlights the potential of our multiple motion
segmentation method, if paired with an efficient mask
selection procedure.

Based on visual assessment of our results, we also
observed that our method implicitly ensures tempo-
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ral consistency. Indeed, motion segments are con-
sistently segmented over time. Moreover, they gen-
erally correspond to the same mask number within
the same video. This seems to be particularly true
for the background when looking at the segmentation
results. We illustrate this behaviour in Fig.5. This
is an appealing property, since the output of the net-
work could be easily exploiting for tracking or for
higher-level dynamic scene understanding.

6 Discussion

Our work takes its origin in the classical methods
of image motion segmentation. The main idea is to
group elements of similar nature under a common
set of parameters. The novelty of CNN approaches is
to train a model that extracts groups without relying
on an iterative process at inference. In addition, they
engage by design an implicit consistency making the
network robust to corrupted observations.

As discussed in [58], region (or layer)-based motion
segmentation approaches face the important chal-
lenge of specifying a proper model (or regularization)
representing the flow within each segment. A too
weak regularization may make the flow reconstruc-
tion trivial (i.e., the reconstruction is just a copy of
the input flow). Conversely, a too strongly regular-
ized model may make the flow reconstruction coarse,
since it is likely to be not expressive enough.

Hereafter, we compare our design choices with the
ones of the two competing unsupervised optical-flow
segmentation methods: CIS [58] and MoSeg [57].
They rely on a different view of the problem. CIS
circumvents the regularization problem by inpaint-
ing the flow of the foreground region from the flow of
the background one and vice versa. In this setting,
any model, even unconstrained, could not correctly
inpaint the flow in the event of a perfect segmenta-
tion, thus alleviating the problem of regularization.
MoSeg addresses the regularization problem by em-
ploying a representational bottleneck linked to the
architectural structure of the network. Indeed, they
force the flow to be reconstructed only from two la-
tent representations of reduced size, one for the fore-
ground and the other one for the background.

On our side, we address the regularization prob-
lem by using polynomial motion models. Of course,
parametric motion models may lack expressiveness.
However, we claim that it is a well-funded choice
for the task of motion segmentation. Indeed, there
are clear relationships between 2D parametric motion
models in the image and 3D motion in the viewed
scene [8]. For instance, the 8-parameter quadratic
motion model corresponds to the projection into the
image of the rigid motion of a planar surface. Rely-
ing on those simple parametric motion models, our
method achieves excellent performance as demon-
strated in Table 1.

Compared to CIS, our method bypasses the dif-
ficulty to train a complicated inpainting generative
model. Compared to MoSeg, it is not attached to
a dedicated architectural structure and enables light
and efficient architectures for motion segmentation.
In addition, the use of parametric motion models for
flow representation and of a simple network struc-
ture makes the training easier. We advocate that this
choice allows for a better generalisation. We consider
this point as a critical feature in real-world applica-
tions and highlighted it in our evaluation protocol
(Section 5.2).

Additionally, CIS and MoSeg methods are devoted
to a two-mask configuration (moving object vs. back-
ground), whereas our method can deal with multiple
motions by design. Indeed, the use of parametric mo-
tion models allows us to perform multilayer motion
segmentation (Fig.4, Table 3), with for example the
segmentation of the background moving objects and
of articulated motions.

7 Conclusion

We have defined an original, real-time, unsupervised
method for motion segmentation taking optical flow
as input. We leveraged the EM paradigm to define
a mathematically well-founded loss function and the
training stage of our neural network. No manual an-
notation is required. We have also designed an effec-
tive and simple data augmentation scheme adapted
to optical flow fields. In contrast to the classical EM
algorithm, our method is not iterative at the infer-
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Figure 5: Illustration of the implicit temporal consistency ensured by our method with four masks. For
each group, first row: input optical flow fields displayed with the HSV color code, second row: OFS maps.
The color code is the same for all segmentation maps (dark blue: mask 1, light blue: mask 2, green:
mask 3, yellow: mask 4). Examples are drawn from DAVIS2016 (from top to bottom): libby, dance-twirl,
car-roundabout.

ence stage and does not need to estimate parametric
motion models at test time. In addition, our OFS
method can handle by design the segmentation of
multiple motions. Our method outperforms state-
of-the-art comparable unsupervised methods on the
DAVIS2016 and FBMS59 benchmarks, and is the sec-
ond best for SegTrackV2 and MoCA, yielding the
best overall performance. Additionally, the version
with more than two masks opens a promising per-
spective on this point. Interestingly, our OFS method
implicitly provides rather time-consistent segments.

Future work will further investigate the handling of
the temporal dimension of the motion segmentation
problem, the setting of the mask number in multi-
mask segmentation and the mask selection for finding
the independent moving objects, and the use of our
motion-related loss function as a plug-in regularizer
for training networks devoted to other segmentation
or interpretation tasks.
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Appendix

1 Loss Function

Our loss function, given by eq.(12), is obtained as follows.

L(f, θ, φ) = −ll(θ, φ) using (11)

= −
∑
i

∑
k

gφ(f)ki log p(fi, z
k
i |θk) +

∑
i

∑
k

gφ(f)ki log gφ(f)ki using (4)

= −
∑
i

∑
k

gφ(f)ki log p(fi|zki , θk)−
∑
i

∑
k

gφ(f)ki log p(zki ) using (9)

+
∑
i

∑
k

gφ(f)ki log gφ(f)ki

= logZ
∑
i

∑
k

gφ(f)ki +
1

α

∑
i

∑
k

gφ(f)ki δ(fi, θ
T
k · c(i)) using (10)

−
∑
i

∑
k

gφ(f)ki log p(zki ) +
∑
i

∑
k

gφ(f)ki log gφ(f)ki .

As indicated in Section 4.2, in this work, we use a uniform prior for p(zki ), i.e., p(zki ) = 1
K

. We can thus rewrite the
loss L as:

L(f, θ, φ) = log(K Z)
∑
i

∑
k

gφ(f)ki +
1

α

∑
i

∑
k

gφ(f)ki δ(fi, θ
T
k · c(i))

+
∑
i

∑
k

gφ(f)ki log gφ(f)ki .

As
∑
k gφ(f)ki = 1, ∀i, we have

∑
i

∑
k gφ(f)ki = I, where I is the number of sites i in the frame. We finally obtain:

L(f, θ, φ) = I log(K Z) +
1

α

∑
i

∑
k

gφ(f)ki δ(fi, θ
T
k · c(i))

+
∑
i

∑
k

gφ(f)ki log gφ(f)ki .

2 Data Augmentation

Theorem 1. Considering a function ll such as:

ll(θ,m, f) =
∑
i

∑
k

mk
i (log p(fi, z

k
i |θk)− logmk

i ),

where θ ∈ R12 are the parameters of a parametric (quadratic) motion model, m ∈ [0, 1]W×H×K is a segmentation
mask and f ∈ RW×H×2 is the input optical flow. We define fζ ∈ RW×H×2 as a parametric flow field generated using
parameters θζ and positions c(i) as fζ,i = θζ · c(i). We show that for all possible segmentation m and parameters θζ
we have :

max
θ
ll(θ,m, f) = max

θ
ll(θ,m, f + fζ),
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Figure 6: Data augmentation adding a quadratic global motion on the optical flow field. From top to bottom
: Optical flow field displayed with the usual HSV code [1]; Predicted mask with our network trained using
data augmentation; Predicted mask with our network trained without data augmentation; Ground-truth
segmentation mask.

Remark. In this theorem, ll and c(i) are the lower bound and the polynomial terms, respectively, both of which are
described in Sections 4.1 and 4.2 of the main paper. For the lower bound, we take m instead of gφ(f), since we
are not specifically considering the network here. The goal here is to show that the lower bound we optimize in the
paper is invariant to the added parametric global flow with respect to the segmentation. Thus, a segmentation will
correspond to the same loss value, regardless of the perturbation of the input flow through the data augmentation,
which encourages the network to produce global-motion-invariant segmentations. We can see an illustration of this
property in Fig.2. Furthermore, a direct consequence of this property is that the optimal m∗ segmentation is the
same for both the original and augmented flows:

m∗ = arg max
m

[max
θ
ll(θ,m, f)] = arg max

m
[max
θ
ll(θ,m, f + fζ)].

Proof. Starting from eq.4 and using eq.10 for the likelihood definition in Sections 4.1 and 4.2, we can write:

ll(θ,m, f) =
∑
i

∑
k

mk
i (log p(fi, z

k
i |θk)− logmk

i )

=
∑
i

∑
k

mk
i log p(fi, z

k
i |θk)−mk

i logmk
i

=
∑
i

∑
k

mk
i log p(fi|zki , θk) +mk

i log

(
p(zki )

p(mk
i )

)
= −

∑
i

∑
k

mk
i δ(fi, θ

T
k · c(i)) + κ,

where κ , mk
i log

(
p(zki )

p(mki )Z

)
is independent of f and θ. See Theorem 2 justifying this statement for the normalisation
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factor Z. Consequently, we have:

ll(θ,m, f + fζ) = −
∑
i

∑
k

mk
i δ(fi + fζ,i, θ

T
k · c(i)) + κ.

Using translation invariance of our distance function δ and the additivity property of our parametric motion models
(that are linear with respect to the parameters), we can write:

δ(fi + fζ,i, θ
T
k · c(i)) = δ(fi, θ

T
k · c(i)− fζ,i) = δ(fi, θ

T
k · c(i)− θTζ · c(i))

= δ(fi, (θk − θζ)T · c(i)) = δ(fi, θ̃
T
k · c(i)).

Thus, we have:

max
θ̃
ll(θ̃,m, f + fζ) = max

θ̃
−
∑
i

∑
k

mk
i δ(fi, θ̃

T
k · c(i)) + κ.

With a change of variable, we get:

max
θ
ll(θ,m, f) = max

θ
ll(θ,m, f + fζ).

3 Normalisation factor

Theorem 2. Let a translationally invariant function δ : RD×RD 7→ R such that, ∀ a, e, c ∈ RD×RD, δ(a+c, e+c) =
δ(a, e), and a probability density defined as:

p(y|x; θ) =
1

Z
exp(−δ(y, θTx)).

Then, the normalisation factor Z is independent of θ.

In particular, this result is true for the p-norm defined by:

δ(a, b) = ||a− b||p =
(∑

i

|ai − bi|p
)1/p

.

Proof. The normalisation factor is defined by:

Z ,
∫
RD

exp(−δ(y, θTx))dy.

Taking b , y − θTx, we get:

Z =

∫
RD

exp(−δ(b+ θTx, θTx))db =

∫
RD

exp(−δ(b, 0))db.

Thus, Z is independent of θ, x and y, and only depends on function δ.

For the p-norm:

δ(a+ c, e+ c) = ||a+ c− e− c||p = ||a− e||p = δ(a, e).
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Figure 7: Sensitivity with respect to the initialization of the classical EM algorithm in contrast to our
trained model. First, we plot the evolution of the (speculative) optimal Jaccard index of the classical EM
algorithm of Section 3 of the main text (green curve) with respect to the number of available random
initialisations of the parametric motion parameters θ on the DAVIS2016 validation set. For all videos, the
optimal (speculative) Jaccard index is obtained by selecting the best segmentation for each input flow among
all available initialisations. Secondly, the yellow curve plots the evolution of the Jaccard index of the classical
EM algorithm over the available initialisations, when selecting the initialisation with the highest likelihood,
the only means available in practice without ground-truth. The dashed red horizontal line corresponds to
the value of the Jaccard index obtained with our network on the same validation set. The dashed blue
vertical line indicates when the optimal Jaccard index of the classical EM algorithm exceeds the score of our
network. The figure on the right involves a logarithmic scale to ease the visualisation of the first part of the
graph.

4 Further analysis of the classical EM

In this subsection, we elaborate on the iterative parametric motion segmentation based on the classical EM algorithm,
described in Section 3 of the main text. More precisely, we study the influence of the initialisation of θ, parameters
of the motion models, on the classical EM algorithm performance. We perform this experiment still using quadratic
motion models. In doing so, we also highlight the impact of the neural network alone on the performance of our
method.

Even if EM algorithm is guaranteed to converge to a local optimum [2], the quality of the optimum reached is
highly dependent on the initialisation of θ. We take as conditional likelihood p(fi, z

k
i |θk) the Gaussian distribution,

which leads to the squared L2 once applying the log function. We evaluate EM on the DAVIS2016 benchmark. Let
us recall that the performance criterion is the Jaccard index computed on the primary moving object, not the value
of the likelihood being maximised.

To emphasize the dependence of EM on the initialization of θ, we study the evolution of the Jaccard index over
the validation set with respect to the number of available random initializations. For each point of the curve, we
try available initialisations, and select for each frame the one that maximizes the likelihood. We repeat a second
time this experiment, but now using the Jaccard index as selection criterion. Of course, this optimal Jaccard index
remains speculative in practice, since we need the ground truth to find the best Jaccard score for each sample. Let
us stress that the computational cost involved is enormous in both cases.

We summarize the results obtained on the DAVIS2016 validation set in Fig.7. We observe that the optimal Jaccard
index for the classical EM algorithm increases with the number of initialisations until reaching a plateau where testing
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Classical EM Our network
Number of inferences 1 500 1

Average Jaccard (DAVIS2016) 59.0 ± 0.35 63.5 69.3
Inference time / frame (in ms) 9.6 4800 8

Number of parameters W × H + 12 × K 497 millions + 66 × K
Nb. param. (for K=2,W=128,H=224) 28696 497 millions

Table 4: Quantitative comparaison between classical EM and our trained network on several aspects. Infer-
ence time is computed on Tesla-V100 in all cases. Accuracy (average Jaccard) is evaluated on DAVIS2016
validation set. The size of the input flow is noted (W,H) and the number of layers K. Figures for the
classical EM are given for two configurations: 1) just applying it once for a random initialisation, but for
the accuracy score and a fair comparison, we prefer to give the mean and standard deviation of the average
Jaccard index estimated over 3000 initialisations; 2) selecting the best initialisation on every frame among
500 initialisations.

additional initialisation does not improve the results. To ensure this behaviour, we extended this experiment up to a
huge number of 3000 initialisations. The optimal (speculative) Jaccard index for EM goes up to 72.3. The Jaccard
index for EM when selecting the initialisation with the maximum likelihood, the only means available in practice
without ground-truth, tops out at 63.7 . This demonstrates the impact of the initialisation step on the performance
of the classical EM algorithm. As mentioned above, the optimal Jaccard index is only speculative. Thus, we consider
this score of 72.3 as a gold standard.

Importantly, Fig.7 shows that the performance of our network is relatively close to the gold standard given by
the speculative optimal Jaccard index of the classical EM algorithm. Besides, the latter needs a number of 41
initialisations to exceed the score of our network. This is already a large number, since, even with our efficient GPU
implementation, it takes 25 minutes to run the 41 initialisations per sample over the DAVIS2016 validation set on a
Tesla P100.

In Fig.7, we also observe that our network outperforms by a large margin the classical EM algorithm when the
initializations are selected according to the highest likelihood, even for many tested initialisations, the only means
available in practice without ground-truth. In addition, the network does not need motion models, and of course,
does not involve any initialisation on motion parameters θ, when segmenting the optical flow. Moreover, we can
easily adopt robust loss functions for the network training instead of the squared L2 loss.

In Table 4, we report a quantitative comparison based on several aspects between our method and the classical EM.
Accuracy and inference time were computed on the DAVIS2016 validation dataset. As we mentioned above, results
using the classical EM strongly depend on the initialisation of the motion parameters. To assess the accuracy of the
classical EM, we report first the average score obtained using randomly chosen motion parameters, and secondly, the
score obtained by selecting the best initialization from a set of 500 random initialisations. We used 500 here since
this is the number of initialisations where the Jaccard score starts to plateau at its optimal value, as shown in Fig.7.
By design, our method involves a segmentation network with a very large number of parameters to train and store.
However, as demonstrated in Table 4, our method exhibits strong advantages compared to the classical EM regarding
inference time and outperforms it by a large margin in term of accuracy.
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5 Algorithm

1 def TrainingStep(Flow, ConvNet, alpha=0.01, learning_rate=0.01) :

2 Segmentation = SoftMax(ConvNet(Flow)) # Extract Segmentation Probabilistic Mask using any Convolutional Net

3 Theta = ComputeThetaOptim(Flow, Segmentation) # Compute theta for each segment minimizing ll

4 Theta = Theta.detach() # Stop Gradient on theta estimation ( alternate optimisation )

5

6 ll = CoherenceLoss(Theta) + alpha*Entropy(Segmentation) # Equation in Section 4.2

7 ConvNet = OneStepOptimiseNetwork(ll, ConvNet, learning_rate) # One step of Adam on network's weights.

8

9 def ComputeThetaOptim(Flow, Segmentation, delta='L1_norm') :

10 for k in {1..K} : # For each motion segment k

11 ll_k = Segmentation_k*delta(Flow, Theta_k . c(i)) # Coherence loss associate to the segment

12 Theta_k = Minimize(ll_k) # LBGFS to minimize ll_k

13 return Theta

14

15 def InferenceStep(Flow, ConvNet) :

16 return ArgMax(ConvNet(Flow)) # For each site return the most likely mask

Figure 8: Pseudo-Code of the training and inference steps of our method. Let us emphasize that each
training step and the inference step are not iterative.

Code available at : https://github.com/Etienne-Meunier/EM-Flow-Segmentation

6 Failure cases on SegTrackV2

We observed that the optical flow is not well estimated by the RAFT method in several frames of SegTrackV2 dataset,
causing our algorithm to fail on those frames. These failure cases are reported in Fig.5.

7 Detailed results per sequences of the datasets

Hereafter, we report detailed results through tables collecting the evaluation scores obtained by our method for every
sequence of the four datasets, DAVIS2016, SegTrackV2, FBMS59 and MoCA.
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Figure 9: Examples of motion segmentation results obtained with our method with two masks, on the videos
bmx, birds of paradise and drift of the SegTrackV2 dataset. First row: a frame of the video with the ground-
truth superimposed in yellow. Second row: the input flow field displayed with the HSV color code. Third
row: the segmentation produced by our method superimposed in green on the corresponding image.
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7.1 DAVIS2016

Sequence J (M) J (O) J (D) F (M) F (O) F (D)

blackswan 0.499 0.5 -0.091 0.608 1 -0.022
bmx-trees 0.602 0.782 0.241 0.789 0.923 0.142
breakdance 0.754 0.939 -0.013 0.789 1 0.012
camel 0.827 1 0.139 0.793 1 0.146
car-roundabout 0.908 1 -0.035 0.804 1 -0.067
car-shadow 0.89 1 0.042 0.83 1 0.044
cows 0.856 1 0.031 0.773 1 0.032
dance-twirl 0.8 1 -0.087 0.831 1 -0.024
dog 0.808 1 -0.09 0.743 0.983 -0.085
drift-chicane 0.674 0.78 -0.193 0.755 0.86 -0.065
drift-straight 0.896 1 0.04 0.855 1 0.217
goat 0.134 0 0.099 0.408 0.25 -0.049
horsejump-high 0.805 1 0.071 0.873 1 -0.001
kite-surf 0.427 0.271 0.219 0.483 0.396 0.004
libby 0.461 0.553 0.47 0.665 0.766 0.297
motocross-jump 0.651 0.737 0.037 0.576 0.658 0.093
paragliding-launch 0.623 0.667 0.308 0.327 0.205 0.406
parkour 0.563 0.551 -0.014 0.701 0.847 0.118
scooter-black 0.784 1 -0.262 0.669 1 -0.099
soapbox 0.891 1 0.015 0.865 1 0.008
Average 0.693 0.789 0.046 0.707 0.844 0.055

Table 5: Results given for every sequence of DAVIS2016 dataset. Reported score is the average Jaccard
score over frames in the sequence. Last row is the average over sequences scores. J is the Jaccard index
and F is the Countour Accuracy. The Mean (M) is the average of the score, the Recall (O) is the fraction
of frames with a score higher than 0.5 and the Decay (D) is the degradation of the score over time in the
sequence. More details in [3].
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7.2 SegTrackV2

Sequence Jacc (J )

bird of paradise 54.4
birdfall 40.7
bmx 69.7
cheetah 39.7
drift 36.1
frog 77.6
girl 64.0
hummingbird 65.5
monkey 62.0
monkeydog 12.6
parachute 92.7
penguin 32.6
soldier 72.9
worm 41.8
Seq. Avg. 54.5
Frames. Avg. 55.5

Table 6: Results given for every sequence of SegTrackV2 dataset. Reported score is the average Jaccard
score over annotated frames in the sequence.
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7.3 FBMS59

Sequence Jacc (J )

camel01 65.0
cars1 87.1
cars10 33.2
cars4 86.6
cars5 83.7
cats01 68.7
cats03 78.3
cats06 39.4
dogs01 72.9
dogs02 69.8
farm01 81.0
giraffes01 34.2
goats01 43.7
horses02 75.9
horses04 67.8
horses05 43.0
lion01 56.1
marple12 50.0
marple2 70.4
marple4 80.6
marple6 35.5
marple7 62.4
marple9 31.0
people03 53.3
people1 78.7
people2 86.1
rabbits02 44.6
rabbits03 40.2
rabbits04 42.9
tennis 72.3
Seq. Avg. 61.1
Frames. Avg. 57.8

Table 7: Results given for every sequence of FBMS59 dataset. Reported score is the average Jaccard score
over annotated frames in the sequence.

7.4 MoCA
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Table 8: Results given for every sequence of MoCA dataset. Reported
score is the average Jaccard score over frames in the sequence computed
using bounding box annotation as described in Section 5.2. of the main
text.

Sequence Jacc (J )

arabian horn viper 71.0

arctic fox 37.8

arctic fox 1 85.5

arctic wolf 0 63.4

arctic wolf 1 50.8

bear 61.3

black cat 0 53.5

black cat 1 8.6

crab 68.1

crab 1 29.3

cuttlefish 0 23.5

cuttlefish 1 20.0

cuttlefish 4 64.5

cuttlefish 5 72.1

dead leaf butterfly 1 75.7

desert fox 27.0

devil scorpionfish 90.3

devil scorpionfish 1 92.5

devil scorpionfish 2 85.7

egyptian nightjar 72.4

elephant 80.4

flatfish 0 59.9

flatfish 1 64.8

flatfish 2 82.1

flatfish 4 22.1

flounder 89.3

flounder 3 21.4

flounder 4 77.7

flounder 5 69.7

flounder 6 80.9

flounder 7 51.5

flounder 8 69.7

flounder 9 71.6

fossa 16.6

goat 0 66.6

goat 1 72.2

groundhog 56.5

hedgehog 0 43.4

hedgehog 1 55.6

hedgehog 2 69.9

hedgehog 3 50.9

hermit crab 68.8
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ibex 25.8

jerboa 54.8

jerboa 1 41.7

lichen katydid 67.8

lion cub 0 80.1

lion cub 1 54.2

lion cub 3 23.0

lioness 25.9

marine iguana 44.8

markhor 80.0

meerkat 88.6

mountain goat 73.9

nile monitor 1 38.6

octopus 63.6

octopus 1 55.4

peacock flounder 0 94.6

peacock flounder 1 86.1

peacock flounder 2 89.4

polar bear 0 0.0

polar bear 1 21.7

polar bear 2 75.5

pygmy seahorse 2 47.0

pygmy seahorse 4 68.4

rodent x 63.4

scorpionfish 0 67.2

scorpionfish 1 63.7

scorpionfish 2 85.9

scorpionfish 3 82.8

scorpionfish 4 84.1

scorpionfish 5 85.7

seal 1 86.2

seal 2 56.2

seal 3 51.3

shrimp 69.4

snow leopard 0 75.6

snow leopard 1 82.7

snow leopard 2 90.9

snow leopard 3 69.7

snow leopard 6 87.8

snow leopard 7 68.1

snow leopard 8 61.3

snowy owl 0 59.8

spider tailed horned viper 0 40.7

spider tailed horned viper 1 52.5

spider tailed horned viper 2 81.4

spider tailed horned viper 3 83.3

Seq. Avg. 61.9
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Frames. Avg. 61.8
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