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BiFuse++: Self-supervised and Efficient
Bi-projection Fusion for 360◦ Depth Estimation

Fu-En Wang, Yu-Hsuan Yeh, Yi-Hsuan Tsai, Wei-Chen Chiu, and Min Sun

Abstract—Due to the rise of spherical cameras, monocular 360◦ depth estimation becomes an important technique for many
applications (e.g., autonomous systems). Thus, state-of-the-art frameworks for monocular 360◦ depth estimation such as bi-projection
fusion in BiFuse are proposed. To train such a framework, a large number of panoramas along with the corresponding depth ground
truths captured by laser sensors are required, which highly increases the cost of data collection. Moreover, since such a data collection
procedure is time-consuming, the scalability of extending these methods to different scenes becomes a challenge. To this end,
self-training a network for monocular depth estimation from 360◦ videos is one way to alleviate this issue. However, there are no
existing frameworks that incorporate bi-projection fusion into the self-training scheme, which highly limits the self-supervised
performance since bi-projection fusion can leverage information from different projection types. In this paper, we propose BiFuse++ to
explore the combination of bi-projection fusion and the self-training scenario. To be specific, we propose a new fusion module and
Contrast-Aware Photometric Loss to improve the performance of BiFuse and increase the stability of self-training on real-world videos.
We conduct both supervised and self-supervised experiments on benchmark datasets and achieve state-of-the-art performance.

Index Terms—360, omnidirectional vision, monocular depth estimation
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1 INTRODUCTION

D EPTH estimation from a single image is a crucial technique
for many applications. For indoor autonomous systems, the

geometric information of depth maps is necessary to improve
navigation and exploration efficiency. Moreover, a thoughtful
understanding of the environment provided by depth maps is also
required to ensure the safety of the surrounding people. Tradi-
tionally, depth maps are captured by scanners such as LiDARs,
structured light, or other time-of-flight (ToF) sensors. Such sensors
are typically costly and, thus, have limited usages depending
on the scenarios. With the advance of deep neural networks,
depth estimation from the perspective cameras becomes a possible
solution for these tasks. For instance, FCRN [1] is one popular
framework for monocular depth estimation. However, most exist-
ing frameworks are designed only for perspective cameras with
limited field-of-view (FoV), whereas some depth sensors (e.g.,
LiDARs) offer 360◦ field-of-view.

With the rising availability of consumer-level spherical cam-
eras, the omnidirectional camera turns into a good choice for
indoor autonomous systems. By capturing the 360◦ information
into a single panorama, 360◦ cameras can significantly increase
the navigation and exploration efficiency. Coming along with
this, 360◦ perception has become an important topic in computer
vision. For instance, OmniDepth [2] and BiFuse [3] are frame-
works for monocular 360◦ depth estimation. These frameworks
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use the ground truth depth maps captured by depth sensors as
the supervisory signals to train the network. In general, there are
two major issues for such 360◦ depth estimation frameworks: 1)
Unlike common perspective cameras, the distortion introduced
by equirectangular projection is extremely large, especially near
the north and south poles on equirectangular coordinates. 2) the
large number of depth maps captured by sensors is necessary
to train the networks and thus highly increases the cost of data
collection. Since the distortion can be removed by converting a
single equirectangular image into several perspective ones where
each of them only covers limited FoVs (e.g., cubemap projec-
tion), BiFuse [3] utilizes the combination of equirectangular and
cubemap projection as input to the framework. In this way, the
360◦ context can be preserved with the equirectangular projection,
while the areas with large distortions can be resolved by the
cubemap one. However, it is still necessary for the training of
BiFuse to adopt a large-scale dataset consisting of precise depth
ground truths from depth sensors, and the cost of data collection is
usually large since the depth sensors with 360◦ FoV are expensive
and not affordable by most consumers. Therefore, the requirement
for a large amount of ground truth depth maps still prevents
BiFuse from being extended to various scenes, thus reducing its
scalability.

To reduce the cost of data collection, self-supervised learning
approaches of monocular depth estimation like SfMLearner [4] are
designed for normal FoV cameras. By utilizing SfMLearner and
the cubemap projection, 360-SelfNet [5] is the first framework
for self-supervised 360◦ depth estimation. However, only using
cubemap and cubepadding [6] cannot provide complete informa-
tion and also harms the stability of depth consistency around the
cubemap boundary as addressed in [3]. To this end, combining
both the equirectangular and cubemap projections appear to be
a potential solution for self-supervised 360◦ depth estimation, in
which such a combination has not been studied in this field.

In this paper, we extend the previous BiFuse [3] work and
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Fig. 1. Our BiFuse++ is a self-supervised framework of monocular 360◦ depth estimation. The depth estimation network (DepthNet) is a bi-projection
architecture consisting of two encoders and a shared decoder. The inputs of DepthNet are equirectangular and cubemap projections of reference
panorama It. Between each adjacent layer of encoders, the feature maps of two projections are fused by our proposed fusion module (green
arrows). To achieve self-supervised learning, an additional network (PoseNet) takes three adjacent panoramas (It−1, It, and It+1) in a video
sequence as inputs and infers the corresponding camera motions (Pt−1 and Pt+1). We then compute the photo consistency error based on the
predicted depth map and camera motions to jointly train the two networks.

propose an advanced framework “BiFuse++” for self-supervised
monocular 360◦ depth estimation. As illustrated in Figure 1,
there are two networks, DepthNet and PoseNet, in our frame-
work. DepthNet first estimates the depth map of the reference
panorama It and PoseNet estimates the corresponding camera
motions between adjacent panoramas (It−1 and It+1). We then
compute their photo consistency error to achieve self-supervised
training. Our DepthNet is a bi-projection architecture which takes
equirectangular and cubemap projections as inputs (It) to estimate
the corresponding depth map. Motivated by UniFuse [7], we adopt
a single decoder to unify feature maps from equirectangular and
cubemap branches. To improve the performance and efficiency,
we propose a new fusion module to exchange the information
between different projections. Unlike UniFuse that simply infers
equirectangular and cubemap feature maps from two independent
encoders, our fusion module first fuses feature maps from two
projections, and then the fused ones are further passed into the
next layers of encoders. In this way, our encoders can directly
retrieve the information from another branch and preserve more
complete details on the predicted depth maps.

To infer the camera motions between adjacent panoramas, 360-
SelfNet [5] adopts an additional network that takes the concate-
nation of adjacent panoramas as input and uses an encoder to
extract the camera motions. In addition, a decoder consisting of
transposed convolutional layers is adopted to infer the occlusion
masks that are further leveraged in photometric loss. Instead of fol-
lowing 360-SelfNet to adopt an encoder-decoder architecture, our
PoseNet is a single encoder that takes three adjacent panoramas
(It−1, It, and It+1) as input, and infers the backward and forward
camera motions (Pt−1 and Pt+1), i.e., the camera motions from
It to It−1 and from It to It+1. We then directly adopt additional
convolutional layers in the encoder to extract occlusion masks
at different scales. With the predicted depth map and camera
motions, we can achieve self-supervised training based on the
photo consistency assumption. However, we find that the spherical
photometric loss proposed by 360-SelfNet has a degeneration
problem in low-texture areas and severely harms the training
performance in real-world videos (see Figure 2). To this end, we

Fig. 2. 360-SelfNet [5] trained on real-world images. The spherical pho-
tometric loss cannot deal with the low-texture area and thus produces
unstable depth maps (red indicates a large depth value). Note that we
mask out the photographer at the bottom left and right region.

propose “Contrast-Aware Photometric Loss (CAPL)” to deal with
the degeneration. In addition to achieving self-supervised training
on 360◦ videos, our BiFuse++ is also efficient and effective to be
adopted in supervised training.

To validate the applicability of BiFuse++, we conduct exten-
sive experiments under both supervised and self-supervised sce-
narios. For the self-supervised scenario, we perform experiments
on the PanoSUNCG [5] dataset. For the supervised scenario, we
evaluate our method on Matterport3D [8], Stanford2D3D [9], and
PanoSUNCG [5]. In general, our BiFuse++ achieves state-of-the-
art performance under self-supervised scenarios and is comparable
with HoHoNet [10] for supervised training. To investigate the
benefit of incorporating cubemap projection, we add rotation
noise into both training and testing datasets. BiFuse++ is shown
to be robust for panoramic distortion. Furthermore, we estimate
the computational cost of different fusion architectures, and our
BiFuse++ achieves the lowest inference memory usage among the
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fusion approaches. In general, BiFuse++ reduces about 80% of
parameters compared to BiFuse, while achieving a significantly
better performance of depth estimation. Hence, our proposed
method is efficient and effective for 360◦ depth estimation.

To summarize, our contributions are the following:

1) BiFuse++ is the first work that integrates the bi-projection
fusion architecture into self-supervised monocular 360◦

depth estimation.
2) We propose a new fusion module to improve the effi-

ciency while preserving complete details in the depth
maps.

3) Our framework achieves state-of-the-art performance un-
der self-supervised training scenario and comparable with
recent approaches under supervised training.

2 RELATED WORKS

Supervised Monocular Depth Estimation. Saxena et al. [11]
is the pioneering work lifting a 2D image into a 3D model. With
the advance in deep learning, approaches based on convolutional
neural networks are studied. Eigen et al. [12] first propose using
a deep neural network to estimate the depth map from a single
image. Laina et al. [1] adopt ResNet [13] as the encoder and
propose an up-projection module to upsample the feature maps. In
addition, reverse Huber loss is proposed to balance the difference
between small and large error areas of the estimated depth maps.
To further improve the estimated depth maps, several approaches
utilizing conditional random field (CRF) are proposed [14], [15],
[16], [17], [18]. Cao et al. [15] treat depth estimation as a clas-
sification task and apply CRF to refine it. By leveraging ordinal
regression into the deep neural network, Fu et al. [19] propose
a deep ordinal regression network (DORN) that formulates depth
estimation as a classification task. Ranftl et al. [20] propose to
combine data from different sources and mix several datasets to
greatly improve monocular depth estimation. Bhat et al. [21]
propose to predict the depth maps as a linear combination of bins.

However, accurate depth maps measured by laser scanners
like LiDARs or Kinect are required for the methods above, which
significantly increases the cost of collecting a large amount of
training data, and thus self-supervised approaches are studied.

Self-Supervised Monocular Depth Estimation. Xie et al. [22]
collect the training data from 3D movies, i.e., the left and right
frames, and propose Deep3D that infers the left or right frame of
the input image to convert a 2D image into a 3D one. Garg et
al. [23] propose a stereopsis-based framework that takes a single
image of a rectified stereo pairs as input and infers the corre-
sponding depth maps by image reconstruction error. Godard et
al. [24] use the stereo image pairs and left-right photometric
consistency to achieve self-training of monocular depth estima-
tion. Since stereo cameras are still less popular than monocular
ones for consumer-level devices, self-training approaches using
sequential videos are studied. Zhou et al. [4] propose using
two sub-networks to estimate both the monocular depth map and
the camera pose of the sequential pairs in the training stage. In
this way, a depth estimation network can be directly trained with
a large number of monocular videos without any annotation or
calibration, which highly improves the scalability of depth esti-
mation. Vijayanarasimhan et al. [25] propose forward-backward
constraints and leverage [26] to deal with the rigid motions of
dynamic objects in the scene. Yang et al. [27] use depth-normal

consistency to improve the depth estimation. Godard et al. [28]
propose an automatic masking technique to efficiently mask out
the moving objects. Johnston et al. [29] use self-attention and
discrete disparity to improve depth estimation. Guizilini et al.
[30] propose PackNet to improve the generalization ability of the
depth estimation network on the out-of-domain data. Bian et al.
[31] propose a self-discovered masking scheme to detect moving
objects in the videos.

To encode the structural information into the network,
object-level information is used to improve the performance of
self-supervised depth estimation. Guizilini et al. [32] utilize an
additional segmentation network to guide the depth estimation
network. Chen et al. [33] propose SceneNet to jointly constrain
semantic and geometric understanding with content consistency.
Zhu et al. [34] propose explicit border consistency between
segmentation and depth map. Klingner et al. [35] propose
SGDepth to solve moving objects by semantic guidance. Hoyer et
al. [36] transfer the feature maps of a self-supervised depth
estimation network to improve semantic segmentation.

360◦ Perception. Recently, since omnidirectional cameras, e.g.,
fisheye and 360◦ cameras, are widely used, people have started
to focus on topics of panoramas. To extend the existing deep
neural network techniques to panoramas, the distortion introduced
by the equirectangular projection increases the instability of
performance. Cheng et al. [6] first use cubemap projection
to solve the distortion and propose cubepadding to extend the
receptive field of each face. Wang et al. [37] incorporate
circular padding and rotation invariance into the deep neural
network. In addition to avoiding the distortion with projections,
several distortion-aware convolutional approaches are proposed.
Esteves et al. [38] and Cohen et al. [39] propose spherical
CNNs by using Fourier transformation to implement the spherical
correlation. Su et al. [40], [41] use different convolutional kernels
according to the longitude and latitude on the equirectangular
projection, and also adapt a pretrained model of perspective
camera for inference procedure.

360◦ Depth Estimation. Based on the cube padding strategy
(Cheng et al. [6]), Wang et al. [5] propose 360-SelfNet that
is the first framework of self-supervised 360◦ depth estimation.
Zioulis et al. [2] incorporate SphConv (Su et al. [40]) into
the encoder to overcome the panoramic distortion and propose
a framework for 360◦ depth estimation. Zioulis et al. [42] use
CoordConv (Liu et al. [43]) and trinocular view synthesis to
improve the performance. Inspired by Yang et al. [44] adopting
a combination of different projections, Wang et al. [3] propose
BiFuse that is a two-branch architecture and utilizes cubemap
and equirectangular projections. Since the cube padding does not
follow the projection geometry, “spherical padding” based on the
spherical projection is introduced. Moreover, to better leverage the
information of two projections, i.e., equirectangular and cubemap,
“bi-projection fusion” is applied to fuse the feature maps. To
improve efficiency, Jiang et al. [7] propose UniFuse to simplify
the framework of BiFuse. To improve depth prediction, Jin et al.
[45] and Zeng et al. [46] utilize layout information to provide
more context to neural networks. By leveraging 1-D representation
proposed in HorizonNet (Sun et al. [47]), Sun et al. [10] and
Pintore et al. [48] propose HoHoNet and SliceNet to train a 360◦

depth estimation network.
However, only a few of the abovementioned works try to dis-
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cuss monocular 360◦ depth estimation under the self-supervised
training scenario. The appropriate and efficient design of networks
under such a scenario has not been studied well in the literature. In
this paper, we propose “BiFuse++”, a self-supervised 360◦ depth
estimation framework, to improve the depth estimation efficiency
and accuracy. Our framework can be adopted in both supervised
and self-supervised training scenarios, and we conduct extensive
experiments to verify BiFuse++ under the two scenarios. We will
detail our approach in the following sections.

3 APPROACH

Our BiFuse++ is the first framework that utilizes bi-projection
architecture in self-supervised training for monocular 360◦ depth
estimation. In addition, we propose several components to improve
the performance and efficiency of BiFuse [3] and 360-SelfNet [5]:

1) We propose an advanced bi-projection architecture that
significantly reduces the model size while improving
depth estimation performance compared with BiFuse.

2) We propose a new fusion module that is able to effectively
share the information between different projections while
taking the lowest number of parameters.

3) To improve the training stability of 360-SelfNet on real-
world videos (see Figure 2), we propose Contrast-Aware
Photometric Loss to balance photo consistency error
difference between high-texture and low-texture areas.

We first explain the spherical projection and introduce basic trans-
formations in Sec. 3.1. In section 3.2, we first detail the proposed
fusion module of BiFuse++. Then, we introduce the design of
our entire framework, including network architectures and the
adaptation to supervised and self-supervised training scenarios.
Lastly, we explain the proposed Contrast-Aware Photometric Loss
and other loss functions we adopted in BiFuse++.

3.1 Spherical Projection
For a cubemap representation of which side length is equal to w,
we denote i as the six faces i ∈ {B,D,F, L,R,U}, to represent
the faces of back, down, front, left, right, and up, respectively.
Since the field-of-view (FoV) of each face is equal to 90◦; each
face can be considered as a perspective camera whose focal length
is w

2 and all faces share the same center point in world coordinate.
Since the viewing direction of each face is fixed in cubemap
projection, the corresponding extrinsic matrix of each camera can
be defined by a rotation matrix Ri. For a pixel p on a certain face
i, we can transform it into the coordinate on the equirectangular
projection by the following mapping:

K =

w/2 0 w/2
0 w/2 w/2
0 0 1

 ,

q = Ri ·K−1 · p̂ ,

θ = arctan(
qx

qz
) ,

φ = arcsin(
qy

|q|
) .

(1)

where w is the dimension of i and p̂ is the homogeneous
representation of p; and θ and φ are longitude and latitude in
equirectangular projection; and qx, qy , qz are x-y-z components of
q, respectively. We call such mapping as cube-to-equirectangular

(C2E) transformation. Since C2E mapping is reversible, we call
the reverse one as equirectangular-to-cube (E2C) transformation.
We detail E2C transformation in the following:

qx = sin(θ) · cos(φ) ,
qy = sin(φ) ,

qz = cos(θ) · cos(φ) ,
p̂ = K ·RT

i · q .

(2)

Both E2C and C2E transformation are extensively used in the
architecture of BiFuse. For the convenient purpose, we use
π(q) = (θ, φ) and π−1(θ, φ) = q to represent the forward
and inverse spherical projection. To convert an equirectangular
depth map to the corresponding point cloud, and project them onto
another equirectangular image, we define the following mapping
function:

q̂ = R · d · π−1(θ, φ) + t ,

(θ̂, φ̂) = π(
q̂

|q̂|
) .

(3)

where d is the depth value, R and t are the camera pose (rotation
and translation) of target equirectangular image, and (θ̂, φ̂) are the
projected longitude and latitude on target equirectangular image,
respectively.

3.2 Our BiFuse++ Framework

The overview of our BiFuse++ is illustrated in Figure 1. To
achieve self-supervised learning for monocular 360◦ depth
estimation, our training process takes three adjacent panoramas
extracted from video sequences, and we adopt two networks,
i.e., DepthNet and PoseNet, to estimate the depth map and
camera motions. In our DepthNet, we use our proposed fusion
module to exchange the information of different projections.
With the predicted depth map and camera motions, we propose
“Contrast-Aware Photometric Loss” to self-supervise the two
networks. The details of each component are explained in the
following.

Fusion Module. The overview of our fusion module is illustrated
in Figure 4. Our fusion module consists of three convolutional
layers and their inputs are the concatenation of fequi and fcube
that are the feature maps of different projections, i.e., equirectan-
gular and cubemap. The red and blue layers are adopted as the
residual block to refine the feature maps of different projections,
while the last convolution layer (yellow) learns a fused feature
map of both projections. Thus, there are three output feature maps,
f ′equi, f

′
cube, and ffuse, from our fusion module. Specifically, we

generate the three feature maps as:

f ′equi = fequi +He(fequi ⊕ C2E(fcube)) ,

f ′cube = E2C(C2E(fcube) +Hc(fequi ⊕ C2E(fcube))) ,

ffuse = Hf (fequi ⊕ C2E(fcube)) ,
(4)

where He, Hc, and Hf are convolutional layers, and ⊕ is the
concatenation operation. ffuse is then leveraged in our decoder.
f ′equi and f ′cube are then passed into the next convolutional layer
of the encoder in our network. In this way, the image details can
be well preserved in our final predicted depth maps.

Depth Estimation Network (DepthNet). The overview of our
DepthNet is illustrated in Figure 3. We take the equirectangular
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Fig. 3. The overview of our DepthNet. Our DepthNet consists of two encoders (Be and Bc) based on ResNet-34 and a single shared decoder that
unifies the feature maps from the two encoders. The inputs are the equirectangular and cubemap projections converted from a single panorama,
and the output is the corresponding equirectangular depth map. During the encoding procedure, the feature maps of Be and Bc are fused by our
proposed fusion module (green). Unlike [3] and [7], our fusion module refines the original feature maps and the refined ones are then passed into
next layers of Be and Bc. To preserve complete details in the final predicted depth maps, we add three skip-connections by concatenating the fused
feature maps (f1

fuse, f2
fuse, f3

fuse) from fusion modules with decoded feature maps. Then, we extract multi-scale depth maps (d1, d2, d3, and d4)
from these concatenated feature maps by 1x1 convolutional layers.
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Fig. 4. The architecture of our fusion module. The feature maps from
equirectangular and cubemap branches are first concatenated and
passed into three convolutional blocks. Then, we add a skip connection
to the original feature maps and obtain the fused feature maps f ′equi and
f ′cube, which are the inputs of the next convolutional layers. In addition,
the other fused feature map ffuse are concatenated in the decoding
process later.

and cubemap projections converted from a single panoramic
image as inputs, and our DepthNet predicts the corresponding
depth map in equirectangular projection. DepthNet consists of two
encoders based on ResNet-34 [13] to extract the feature maps from
equirectangular and cubemap panoramas. We apply our fusion
module to fuse the feature maps between each ResNet layer of the
two encoders. Different from [7], we have the refined feature maps
from our fusion module (f ′equi and f ′cube in Figure 4) forwarded
into the next layers of our encoders. In this way, the benefits of
different projections can be early received in our encoders, and
we find that such a mechanism can well preserve the details of
panoramas. Similar to [7], we adopt a single UNet-like decoder to
simplify the decoder of BiFuse. We add three skip-connections by
concatenating the fused feature maps from our fusion modules
(ffuse in Figure 4 and f1,2,3fuse in Figure 3) with our decoder
layers. In addition, we adopt sub-pixel convolution [49] as our
decoder layers to improve both final accuracy and reduce memory
consumption compared to [7] and [3]. After each decoder layer,
we extract the corresponding depth maps of four scales {ds}4s=1

by 1x1 convolutional layers, and we follow [4] to add a sigmoid
layer after them, with α and β to control the range of the depth
value.

d′s = α · ρ(fs) + β ,

ds =
1

d′s
.

(5)

where s denotes the scale, fs is the output of the four
convolutional layers, α and β are hyper-parameters, ρ is the
sigmoid function, and ds is the depth map of scale s. In this
paper, we follow [4] and set α = 10 and β = 0.01.

Pose Estimation Network (PoseNet). To achieve self-supervised
depth estimation on videos, both depth and camera motion are
required to estimate photo consistency errors. Hence, we adopt an
addition network (PoseNet) to estimate the corresponding camera
motions between adjacent frames. As illustrated in Figure 5, we
adopt a single ResNet-18 [13] encoder of which inputs are the
concatenation of three sequential panoramas (It−1, It, and It+1).
We estimate the backward and forward camera motions Pt−1 and
Pt+1 to jointly calculate their photo consistency errors. Since
photo consistency has ambiguity in occluded areas; we have four
additional 3x3 convolutional layers that take the four feature
maps from ResNet-18 as inputs and estimate the occlusion masks
at four scales, which are denoted as {Xs}4s=1. We then use the
occlusion masks to suppress ambiguous areas and stabilize the
training.

Self-supervised Loss Function. We use the photo consistency as-
sumption, i.e., the image intensity is consistent across reprojected
frames given the depth and camera motion, to train our DepthNet
and PoseNet in a self-supervised fashion. Regarding the loss
function, 360-SelfNet [5] first proposes “Spherical Photometric
Loss (SPL)” to calculate the photo consistency error with spherical
projection. However, 360-SelfNet cannot estimate stable depth
maps on low-texture areas in real-world videos (Figure 2). We find
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Fig. 5. The overview of our PoseNet. Our PoseNet is based on ResNet-
18 and the inputs are three sequential panoramas (It−1, It, It+1) in a
video and PoseNet infers the corresponding camera motion Pt−1 and
Pt+1. To suppress the ambiguity of photo consistency error in occluded
areas and stabilize the training, PoseNet estimates four occlusion masks
Xs to find the occluded areas.

that there is a degeneration problem in SPL, i.e., the lower SPL
is not always equal to more accurate depth maps, and we show
supporting evidence in Section 4. The degeneration comes from
the ambiguity of photo consistency assumption that the consis-
tency errors of pixels in low-texture areas are meaningless; such
ambiguity can seriously harm the training results in real-world
videos. To this end, we propose “Contrast-Aware Photometric
Loss (CAPL)” to prevent networks from being affected by these
low-texture areas:

Ls
CAPL(It,s) =

N∑
p=1

Xs(p) · σ(It,s(p)) · δ(It,s(p)) ,

δ(It,s(p)) = |It,s(p)− Ît−1,s(p)|+ |It,s(p)− Ît+1,s(p)| ,
(6)

where p denotes pixels, N is the total number of pixels, Xs is
the predicted occlusion mask, and σ is the standard deviation
of p in a 5x5 window. δ is the photo consistency error of It,s;
Ît−1,s and Ît+1,s are the warped panoramas of It,s after being
reprojected onto It−1,s and It+1,s by the predicted depth map
ds and camera motions (Pt−1 and Pt+1), respectively. δ is first
multiplied by the occlusion mask to remove unreasonable depth
values, and then we use the standard deviation of p to solve
the degeneration problem since the standard deviation in low-
texture areas are usually small. In this way, CAPL can significantly
improve the quality of predicted depth maps in real-world videos.

In addition to CAPL, we adopt two regularization terms to
provide constraints for occlusion masks and predicted depth maps.
To prevent predicted occlusion masks from decaying to zero, we
apply a binary cross-entropy loss to the masks:

Lm(Xs) = −
N∑

p=1

log(Xs(p)) , (7)

This regularization provides a large penalty when the values in
occlusion masks are small. To reduce the noise on the predicted
depth maps, we apply smooth regularization to the predicted depth
map:

Lsm(ds) =
N∑

p=1

|∇(ds(p))| . (8)

Supervised and Self-Supervised Training. In this paper, our
proposed framework is evaluated under both supervised and self-
supervised training scenarios. In supervised training, our DepthNet

is directly trained with ground truth depth maps, and we adopt
reverse Huber loss [1] as our loss function LberHu:

LberHu =
4∑

s=1

N∑
p=1

B(ds(p), d̂s(p)) , (9)

B(ds(p), d̂s(p)) =
{
|ds(p)− d̂s(p)| |ds(p)− d̂s(p)| ≤ c ,
(ds(p)−d̂s(p))

2+c2

2c |ds(p)− d̂s(p)| > c ,
(10)

where p is pixels, while ds and d̂s are the predicted and
ground truth depth maps, respectively. c is typically set to
0.2 ·max(|ds(p)− d̂s(p)|).

In self-supervised training, DepthNet and PoseNet are trained
with three abovementioned loss terms: 1) Contrast-Aware Pho-
tometric Loss, 2) occlusion mask regularization, and 3) smooth
regularization. The final loss function is then established as:

Lss =
4∑

s=1

Ls
CAPL(It,s) + w1 · Lm(Xs) + w2 · Lsm(ds) ,

(11)
where w1 and w2 are hyper-parameters.

4 EXPERIMENTAL RESULTS

We first introduce the common evaluation metrics, the benchmark
datasets (Sec. 4.1), and implementation details (Sec. 4.2). For
performance evaluation, we validate the improved accuracy of
BiFuse++ network architecture with supervised training scenarios
(Sec. 4.3) on three datasets: Matterport3D [8], Stanford2D3D [9],
and PanoSUNCG [5]. We further test the robustness of our method
by evaluating the performance under rotation noise. Moreover, we
validate the computational efficiency of BiFuse++ with respect
to existing approaches (Sec. 4.4). Then, we use the BiFuse++
network with low inference memory to conduct self-training
efficiently on PanoSUNCG [5] (Sec. 4.5). Moreover, we also
capture several videos in the real-world environment and conduct
qualitative comparisons to show the applicability of BiFuse++.

4.1 Evaluation Metrics and Datasets
We use standard evaluation protocols in depth estimation, i.e.,
MAE (mean absolute error), MRE (mean relative error), RMSE
(root mean square error), RMSE (log) (scale-invariant root mean
square error), and δ (threshold). For RMSE (log), we use log-10
for the computation. During evaluations, we follow [3] to ignore
the area in which ground truth depth values are larger than 10
meters. Since the scale of self-training results is ambiguous, we
follow [4] and apply median alignment before evaluation for self-
supervised scheme:

d′ = d · median(d̂)
median(d)

. (12)

where d is the predicted depth map, d̂ is the ground truth one, and
d′ is the median-aligned depth map used for evaluation.

The following datasets are used in our experiments.
Matterport3D. Matterport3D contains 10,800 panoramas and
the corresponding depth ground truth captured by Matterport’s
Pro 3D Camera, a structured-light scanner. This dataset is the
largest real-world dataset for indoor panorama scenes. However,
the depth maps from sensors usually have noise or missing value
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TABLE 1
The quantitative results on Matterport3D [8].

Method MAE ↓ MRE ↓ RMSE ↓ RMSE (log) ↓ δ1 ↑ δ2 ↑ δ3 ↑

FCRN 0.4008 0.2409 0.6704 0.1244 0.7703 0.9174 0.9617
OmniDepth 0.4838 0.2901 0.7643 0.1450 0.6830 0.8794 0.9429

BiFuse 0.3470 0.2048 0.6259 0.1134 0.8452 0.9319 0.9632
UniFuse 0.3160 0.1592 0.5485 0.0926 0.8490 0.9463 0.9747
SliceNet 0.3296 0.1764 0.6133 0.1045 0.8716 0.9483 0.9716
HoHoNet 0.2862 0.1488 0.5138 0.0871 0.8786 0.9519 0.9771
BiFuse++ 0.2842 0.1424 0.5190 0.0862 0.8790 0.9517 0.9772

TABLE 2
The quantitative results on Stanford2D3D [9]. Note that SliceNet∗ is a re-implemented version.

Method MAE ↓ MRE ↓ RMSE ↓ RMSE (log) ↓ δ1 ↑ δ2 ↑ δ3 ↑

FCRN 0.3428 0.1837 0.5774 0.1100 0.7230 0.9207 0.9731
OmniDepth 0.3743 0.1996 0.6152 0.1212 0.6877 0.8891 0.9578

BiFuse 0.2343 0.1209 0.4142 0.0787 0.8660 0.9580 0.9860
UniFuse 0.2198 0.1195 0.3875 0.0747 0.8686 0.9621 0.9870

SliceNet∗ 0.2484 0.1249 0.4370 0.0873 0.8377 0.9414 0.9777
HoHoNet 0.2027 0.1014 0.3834 0.0668 0.9054 0.9693 0.9886
BiFuse++ 0.2173 0.1117 0.3720 0.0727 0.8783 0.9649 0.9884

TABLE 3
The quantitative results on PanoSUNCG [5].

Method MAE ↓ MRE ↓ RMSE ↓ RMSE (log) ↓ δ1 ↑ δ2 ↑ δ3 ↑

FCRN 0.1346 0.0979 0.3973 0.0692 0.9223 0.9659 0.9819
OmniDepth 0.1624 0.1143 0.3710 0.0882 0.8705 0.9365 0.9650

BiFuse 0.0789 0.0592 0.2596 0.0443 0.9590 0.9823 0.9907
UniFuse 0.0776 0.0528 0.2704 0.0441 0.9591 0.9825 0.9906

BiFuse++ 0.0688 0.0524 0.2477 0.0414 0.9630 0.9835 0.9911

in certain areas. In practice, we filter areas with missing values
during training. We follow the official split to train and test our
network, which takes 61 rooms for training and the others for
testing. We resize the resolution of images and depth maps into
512 × 1024.

Stanford2D3D. Stanford2D3D is collected from three kinds
of buildings in the real world, containing six large-scale indoor
areas. The dataset contains 1413 panoramas, and we use one of
the official splits that takes the fifth area (area 5) for testing, and
the others are for training. During training and testing, we resize
the resolution of images and depth maps into 512 × 1024.

PanoSUNCG. PanoSUNCG contains 103 scenes of SunCG [50]
and has 25,000 panoramas. In our experiments, we use the official
training and testing splits, where 80 scenes are for training and 23
for testing. For the supervised scheme, we resize them to 256 ×
512 and filter out pixels with depth values larger than 10 meters.
For the self-supervised one, we keep the original resolution 512 ×
1024.

4.2 Implementation Details

We implement our network using PyTorch [51]. We use
Adam [52] optimizer with β1 = 0.9 and β2 = 0.999. Our batch
size is 8, and the learning rate is 0.0003. Unlike BiFuse [3],
training the network and fusion module separately, we train the
entire framework jointly. The ResNet encoders of DepthNet and
PoseNet are first pretrained on ImageNet [53], and we apply
uniform initialization to all other layers. We train the networks
for 100 epochs for supervised scenarios, while the networks are
trained for 60 epochs for self-supervised scenarios. Following [5],
we set w1 and w2 of Equation (11) to 0.1 and 0.01, respectively.

Supervised and Self-supervised Training. In the supervised
training scenario, we directly use the monocular images and cor-
responding depth maps provided by the above-mentioned datasets
to train our DepthNet. In other words, the training is similar to
monocular depth estimation like BiFuse [3]. Since we can directly
acquire supervision from ground truth depth maps for training
DepthNet with Equation (9), our PoseNet is not involved in this
scenario. For the self-supervised scenario, since we cannot access
ground truth depth maps for training, we use the RGB video
sequences from PanoSUNCG [5] to self-supervise both DepthNet
and PoseNet. Specifically, PoseNet takes three sequential panora-
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mas (It−1, It, It+1 in Figure 5) as input and infers the camera
motions between them, while DepthNet takes only It as input
and predicts the corresponding depth map. With the predicted
monocular depth map and camera motions, we can self-supervise
the two networks with Equation (11).

4.3 Results of Supervised Scenario
For supervised scenarios, we compare BiFuse++ with works of
monocular depth estimation, including approaches designed for
both perspective and spherical cameras. 1) FCRN [1], a strong
approach designed for perspective cameras. 2) OmniDepth [2],
a framework designed for spherical cameras that incorporates
[40] into the architecture. For 1-D representation approaches, we
compare our method with SliceNet [48] and HoHoNet [10].

The quantitative results are shown in Table 1-3. BiFuse++
achieves comparable results with the latest state-of-the-art 1D-
representation HoHoNet and outperforms all other methods under
the assumption that all input images are well aligned with the
gravity direction.
Rotation Noise Evaluation. Since the spherical cameras adopted
by the abovementioned datasets are well aligned with the gravity
direction, the rotation of panoramas is usually small. This assump-
tion benefits the most for 1-D representation like HoHoNet. To
investigate the result without this assumption, we conduct the fol-
lowing experiment. For training and testing, we introduce rotation
noise (see 0◦ and 30◦ rotation in Figure 7) on the Matterport3D
and Stanford2D3D datasets. Specifically, we uniformly sample an
angle between 30◦ and −30◦ to rotate panoramas and ground
truth depth maps during each training iteration. For testing sets,
we also apply the rotation noise, but the rotated angles of each
image are consistent across all baselines. BiFuse++ is robust to
rotation noise compared to other methods, as shown in Table 4-5.

TABLE 4
The quantitative results after applying rotation noise on

Matterport3D [8].

Method MAE MRE RMSE RMSE (log)

UniFuse 0.3197 0.1627 0.5456 0.0941
SliceNet 0.3669 0.1863 0.6124 0.1058
HoHoNet 0.3085 0.1486 0.5385 0.0897
BiFuse++ 0.3054 0.1521 0.5293 0.0897

TABLE 5
The quantitative results after applying rotation noise on

Stanford2D3D [9].

Method MAE MRE RMSE RMSE (log)

UniFuse 0.2542 0.1289 0.4209 0.0819
SliceNet 0.2892 0.1459 0.5038 0.1001
HoHoNet 0.2210 0.1116 0.4001 0.0744
BiFuse++ 0.2193 0.1134 0.3890 0.0742

Qualitative Discussion. The qualitative comparison of fusion
approaches are shown in Figure 6. Compared with BiFuse [3],
BiFuse++ achieves sharper results. This is because BiFuse adopts
a simple architecture without any skip-connection layer inherited
from FCRN [1] so that the image details encoded in the low-level
feature maps cannot be well preserved. In contrast, Bifuse++
adopts a UNet-like architecture with three skip-connection
layers (c.f., Figure 3), and the details are well recovered in the

depth maps. Compared with UniFuse [7], BiFuse++ recovered
much clearer object boundaries. This is because UniFuse adopts
two ResNet to encode features maps of equirectangular and
cubemap projections independently so that the two encoders
cannot effectively leverage the information from the other branch.
In contrast, we pass the fused features (f ′equi and f ′cube in
Figure 4) to the layers of the two encoders. In this way, the
layers of encoders can directly retrieve the context from the other
projection and preserve more details on the predicted depth maps
eventually.

3D Comparison. To further show the difference in depth maps
generated from fusion approaches, we show the corresponding
point cloud visualizations in Figure 8. The point clouds of BiFuse
and UniFuse are not capable of generating sharp corners, while
BiFuse++ predicts accurate wall boundaries. Moreover, the depth
of objects like carpets is noisier than the one of BiFuse++. For
high variance areas like the edges between windows and walls, the
results of BiFuse++ are closer to the ground truth. In contrast, the
other baselines generate smooth results in these areas. Hence, our
BiFuse++ is able to predict accurate point clouds and outperform
the other baselines.

4.4 Computational Comparison
Before we apply BiFuse++ to self-training of depth estimation,
we first examine the efficiency of different fusion approaches
since the self-training procedure usually takes more resources and,
thus, a memory-efficient framework is necessary. We estimate the
efficiency with the following two aspects.
Number of Parameters. Since the number of parameters used by
fusion modules ( [3], [7], and BiFuse++) depends on the channels
of input features, we fix the channel numbers of all approaches to
512 to fairly compare the module size of different fusion modules.
As shown in Table 6, the fusion module of BiFuse takes the largest
number of parameters, and BiFuse++ uses the smallest one. Under
this setting, our new fusion module can reduce 55% of parameters
than BiFuse does.

TABLE 6
The number of parameters of different fusion modules (we set the

channels to 512).

BiFuse++ UniFuse BiFuse

Parameters 2.1 M 3.5 M 4.7 M

TABLE 7
The computational comparison of fusion approaches.

Approach GFLOPs Model size Runtime Memory

BiFuse++ 87.42 53.19 M 1762 Mb

UniFuse 62.58 30.26 M 2006 Mb

BiFuse 682.86 253.1 M 3346 Mb

Runtime Resources. To examine the computational resources of
different fusion approaches, we adopt RTX2080Ti as the platform
and use a single dummy image of resolution 512x1024x3 as the
input of all tested frameworks. The results are shown in Table 7.
Compared to BiFuse, we reduce 87% of GFLOPs and 79% of
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EQUI BiFuse UniFuse BiFuse++ GT

Fig. 6. The qualitative results on Matterport3D, Stanford2D3D, and PanoSUNCG under the supervised scenario (every two rows show qualitative
results of each dataset). Note that the dark blue and red colors indicate close and far distance, and we use red circles to highlight the inconsistent
predictions of all approaches.

TABLE 8
The quantitative results on PanoSUNCG [5] under the self-supervised scenario. Our BiFuse++ with Spherical Photometric Loss (SPL) [5] or

Contrast-Aware Photometric Loss (CAPL) outperforms other baselines. SSIM stands for structural similarity.

Method MAE ↓ MRE ↓ RMSE ↓ RMSE (log) ↓ δ1 ↑ δ2 ↑ δ3 ↑

360-SelfNet (Equi) 0.2436 0.1499 0.5421 0.0959 0.8618 0.9463 0.9714
360-SelfNet 0.2344 0.1521 0.5121 0.0934 0.8479 0.9420 0.9726

UniFuse 0.2452 0.1458 0.4978 0.0920 0.8513 0.9398 0.9691
BiFuse++ w/ SSIM 0.3125 0.1852 0.5889 0.1068 0.7847 0.9313 0.9684
BiFuse++ w/ SPL 0.2083 0.1287 0.4695 0.0838 0.8838 0.9583 0.9778

BiFuse++ w/ CAPL 0.1815 0.1176 0.4321 0.0790 0.8974 0.9546 0.9773

0! 30!

Fig. 7. The distortion introduced by equirectangular projection. When
the pitch of the camera is 0◦, the structure of the room is clear. As
the pitch becomes larger, the effect of equirectangular distortion is
more obvious. The distortion affects the training stability when applying
existing approaches designed for perspective cameras to panoramas.

parameters. Moreover, BiFuse++ only needs half of the inference
memory as BiFuse. Although our GFLOPs and parameters are
slightly larger than UniFuse, we use less inference memory since
we adopt PixelShuffle [49] in the decoding process. In general, we
significantly reduce the computational resources of BiFuse and
make it more practical to be applied in self-training.

4.5 Results of Self-Supervised Scenario

We use the framework described in Section 3.2 to self-
supervisedly train our DepthNet and PoseNet. For the qualita-
tive and quantitative comparison, we conduct experiments on
PanoSUNCG [5] to verify the applicability of BiFuse++. We
compare BiFuse++ with three baselines: 1) 360-SelfNet (Equi):
the framework of [5], but the inputs are equirectangular panora-
mas. 2) 360-SelfNet: the framework proposed in [5]. 3) UniFuse:
replace our DepthNet with the architecture of [7]. In addition, we
compare variants of BiFuse++ with three different loss functions:
1) “BiFuse++ w/ SSIM”: our framework trained with structural
similarity index (SSIM). 2) “BiFuse++ w/ SPL”: our frame-
work trained with spherical photometric loss proposed by [5]. 3)
“BiFuse++ w/ CAPL”: our framework trained with our proposed
Contrast-Aware Photometric Loss. The quantitative and qualitative
results are shown in Table 8 and Figure 9, respectively.

Compared with our previous work 360-SelfNet [5], our frame-
work “BiFuse++ w/ CAPL” quantitatively improves 360-SelfNet
by 16% in RMSE and 23% in MAE, as shown in Table 8.
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BiFuse UniFuse BiFuse++ GT

Fig. 8. The 3D reconstruction comparison of BiFuse++ with other baselines. We note that the red circles indicate the incorrect depth prediction. Our
BiFuse++ is able to preserve the corner details, while the other approaches predict inconsistent results.

EQUI 360-SelfNet UniFuse BiFuse++ GT

Fig. 9. The qualitative results on PanoSUNCG under self-supervised scenario.

Compared to UniFuse, we improved 13% in RMSE and 26% in
MAE. Since the architecture of 360-SelfNet only adopts cubemap
projection as input, the benefit of equirectangular projection is dis-
carded, and thus 360-SelfNet introduces much noise to predicted
depth maps, as shown in Figure 9. Although UniFuse can predict
sharper depth maps than 360-SelfNet does, there are still obvious
errors around object/wall boundaries. In contrast, BiFuse++ is
capable of recovering more details of objects and has smaller
errors around the object boundaries. Such an improvement comes
from our fusion approach. During the encoding process, we pass
the fused feature maps (f ′equi and f ′cube in Figure 4) to layers
of encoders to preserve more details, and thus BiFuse++ achieves
sharper depth predictions in the end.

Compared to the training results without CAPL (BiFuse++ w/
SPL), “BiFuse++ w/ CAPL” improves the RMSE and MAE by

8% and 13%, respectively (see Table 8). Such an improvement
validates the reason why we design CAPL to prevent the network
from focusing on low texture areas, i.e., to balance the difference
between high-texture and low-texture areas. Comparing to training
with SSIM loss (BiFuse++ w/ SSIM), the final performance is
worse than training with spherical photometric loss. We have
tried to apply other structure-based loss functions like weighted
local contrast normalization (WLCN) proposed by [54], but
the training fails to converge, and no reasonable related depth
maps can be generated. Both SSIM and WLCN loss functions
apply normalization to image patches, and we find such an
operation eventually harms the training stability. In contrast, our
Contrast-Aware Photometric Loss uses the standard deviation
of image patches as the weighting of photometric loss instead
of directly applying normalization, and thus we can prevent
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EQUI BiFuse++ w/ SPL BiFuse++ w/ CAPL

Fig. 10. The effect of Contrast-Aware Photometric Loss (CAPL). The
Spherical Photometric Loss (SPL) cannot deal with the low-texture area
and thus produces unstable depth maps (red indicates a large depth
value). Note that we mask out the photographer at the bottom left and
right region.

EQUI BiFuse++ w/ SPL BiFuse++ w/ CAPL

SPL=0.44 SPL=0.49

Fig. 11. The Spherical Photometric Loss (SPL) is a degenerated loss.
The BiFuse++ w/ SPL indeed reaches a lower SPL (0.44) compared to
BiFuse++ w/ CAPL (0.49). However, the quality of BiFuse++ w/ SPL is
worse than BiFuse++ w/ CAPL.

numerical instability.

Training on real-world videos. To train BiFuse++ in real-world
scenarios, we use the dataset we collected in 360-SelfNet [5], in
which there are 25 video sequences of 5 rooms recorded with
RICOH THETA V, to apply the self-training strategy adopted in
Section 4.5 for experiments. To ensure the training stability and
the small baseline between consecutive frames, we extract the
raw videos with 5 frames per second. Since we do not have laser
scanners like LiDARs to collect the depth ground truths, we show
the training results qualitatively. As addressed in Section 3.2,
directly applying spherical photometric loss [5] to the real-world
videos results in unstable depth prediction under low-texture
areas such as walls or floor, since the corresponding photometric
loss is ambiguous, i.e., there is a degeneration problem in the
spherical photometric loss. Thus, we propose CAPL to prevent the
network from focusing on these areas overly and we compare the
training results before/after applying CAPL in Figure 10. Without
CAPL, the depth maps are noisy, especially on the wall and floor,
while the results are smooth and stable after applying CAPL.
Hence, our proposed BiFuse++ along with CAPL is a general
self-supervised 360◦ depth estimation framework capable of
estimating high-quality depth maps in both virtual and real-world
environments.

Spherical Photometric Loss Degeneration. To investigate the
reason why our CAPL can improve the results on real-world
videos, we monitor the spherical photometric loss (SPL) value
of “BiFuse++ w/ SPL” and “BiFuse++ w/ CAPL”. For BiFuse++

w/ SPL, the average spherical photometric loss value over the
validation set is 0.45, while the average loss value becomes 0.48
after applying CAPL. This indicates that the network with a lower
average spherical photometric loss cannot always produce better
depth maps. As the example shown in Figure 11, the depth map
with higher spherical photometric loss is better than the lower one.
When there is no constraint on low-texture areas (w/ SPL), we
find that the networks still tend to keep minimizing the spherical
photometric error on these areas even if the corresponding value
is already small. Since there is small intensity noise introduced by
camera sensors between videos frames, the spherical photometric
loss is impossible to be zero when the perfect depth prediction and
camera motion are given. The minimizing behavior of networks in
low-texture areas severely harms the training stability. Thus, our
CAPL uses the standard deviation of neighboring pixels to directly
enforce our networks not to overly focus on these areas because
the standard deviation of low-texture areas is always small.

5 CONCLUSION

We propose “BiFuse++”, the first bi-projection architecture for
both self-supervised and supervised 360◦ depth estimation, ex-
tending our previous works 360-SelfNet [5] and BiFuse [3]. To
improve the efficiency and scalability, we propose a new fusion
module that adopts a residual connection and removes the mask
module from the original fusion module. In addition, we follow
[7] that removes a redundant decoder and adopts a pixelshffule
upsampling strategy to improve efficiency. We conduct experi-
ments on three benchmark datasets of 360◦ depth estimation and
achieve state-of-the-art performance in self-supervised scenarios
and comparable performance with state-of-the-art approaches in
supervised scenarios.
Acknowledgments. This paper is the extended version of our
previous works, 360-SelfNet [5] and BiFuse [3], and our
project is funded by Ministry of Science and Technology of
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