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Abstract—Noninvasive medical neuroimaging has yielded many discoveries about the brain connectivity. Several substantial
techniques mapping morphological, structural and functional brain connectivities were developed to create a comprehensive road map
of neuronal activities in the human brain —namely brain graph. Relying on its non-Euclidean data type, graph neural network (GNN)
provides a clever way of learning the deep graph structure and it is rapidly becoming the state-of-the-art leading to enhanced
performance in various network neuroscience tasks. Here we review current GNN-based methods, highlighting the ways that they have
been used in several applications related to brain graphs such as missing brain graph synthesis and disease classification. We
conclude by charting a path toward a better application of GNN models in network neuroscience field for neurological disorder
diagnosis and population graph integration. The list of papers cited in our work is available at

https://github.com/basiralab/GNNs-in-Network-Neuroscience.

Index Terms—Brain graph, Connectome, Graph neural network, Graph topology, Graph theory, Geometric deep learning

1 INTRODUCTION

NDERSTANDING how the underpinning connections in
Uthe biological neural system account for human brain
functions has been a preoccupation of researchers for several
years [1]-[3]. To accomplish this aim, network neuroscience
field has emerged with the aim of mapping the endogenous
activity generated by neurons. Particularly, neuroscientists
modeled the brain as a graph where nodes represent the
anatomical brain regions connected by edges referring to
morphological, functional, or structural connectivities relat-
ing pairwise nodes [4]-[6]. Conventionally, three types of
brain graphs can be defined from different medical modali-
ties: morphological, structural, and functional brain graphs,
which are derived from structural T1-weighted, diffusion-
weighted and resting-state functional MRI, respectively [7]-
[11]. Such graph representation of the brain gives rise to the
understanding of the life span of brain wiring across three
axes. The first one represents the time axis where we can
track the brain connectivity changes over time from birth to
age or foresee a transition from a healthy to a disordered
state. By deepening our understanding of the relationship
between the brain connectivities at a first timepoint and its
follow-up acquisitions, we may produce novel diagnostic
tools for better identifying neurological disorders at a very
early stage (e.g., Alzheimer’s disease and autism) [12], [13].
The second axis refers to the resolution of the brain graph
which yields to discovering new inter-regional connections
that hold the brain. Specifically, a brain can be modeled by
a low-resolution or super-resolution connectome where the
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former one has fewer nodes (i.e., region of interest (ROIs))
and edges than the latter. Mainly, each connectome scale
represents its own specific window into the topographic
organization of the brain [14]. Thus, this diversity in resolu-
tion will certainly increase the performance of early disease
diagnosis [15] as it helps better capture the multi-level
nested complexity of the brain as a connectome. Ultimately,
knowing that neurological disorders affect the brain in dif-
ferent ways, one may boost the diagnosis by leveraging the
complementary information present in multiple modalities
such as functional and morphological connectivities [7],
[16], [17]. Therefore, the third axis refers to the domain in
which the brain data was collected, which is commonly
referred to in network neuroscience as the neuroimaging
modality” (e.g., functional MRI or diffusion MRI) utilized
to generate the brain connectome type (e.g., functional or
structural). Such cross-domain multimodal representation of
the brain connectivity provides invaluable complementary
information for brain mapping in health and disease.
Ideally, one would have a connectomic dataset that spans
all these dimensions to benefit from the complementary
between different brain network representations. Such mul-
timodal dataset will provide rich information that helps
generate a holistic connectional roadmap encoding different
facets of the brain thereby understanding typical and atypi-
cal brain connectivities [3], [6]. Several connectomic datasets
have been proliferated such as the Human Connectome
Project (HCP) [18], the Baby Connectome Project (BCP) [19]
and the Connectome Related to Human Disease (CRHD)
[20]. In these datasets, connectivity matrices were estimated
using different tools. For instance, functional connectivity
matrices were generated using CONN toolbox or groupwise
whole-brain parcellation approaches [21], [22]. On the other
hand, structural and morphological connectivity matrices
were measured using FSL toolbox and Desikan-Killiany at-
las via FreeSurfer software [23], [24], respectively. Although
existing connectomic datasets were used to evaluate various
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Fig. 1. Three axes to generate brain graphs. From a single brain
graph, existing works can generate different types of brain connectivities
(domain axis), produce higher resolution graphs (resolution axis) and
predict graph topological changes over time (time axis).

GNN-based frameworks referred in our review, they often
have missing observations due to various reasons such as
high-cost of clinical scans and time-consuming preprocess-
ing step of neuroimaging data.

To overcome this obstacle, various graph generative
models emerged [15], [25]-[28] based on different machine
learning (ML) architectures. Such models aim to generate
a holistic mapping of the brain from minimal resources
where the prediction of multimodal [25], high-resolution
[15], [27] and temporal evolution [26], [28] of brain networks
is achieved from single-domain, single-time and single-
scale source brain graph, respectively. Leveraging such brain
graph generative models in a real clinical setting will be
beneficial in several aspects: for a disordered subject hav-
ing only a morphological brain graph derived from T1-
weighted MRI, one can chart out all the missing modal-
ities (diffusion and functional) over time and at various
resolutions. This will reduce the scanning time as well as
the time-consuming neuroimage processing pipelines. Basi-
cally, from one single baseline brain graph, we can predict
all its variations across different domains, resolutions and
timepoints. Another line of ML-based generative models
have been implemented via graph integration [29]-[32]. The
integration aims to generate a representative template of a
population of brain muligraphs with a shared neurologi-
cal state (e.g., autistic). This generated connectional brain
template (CBT) encodes a holistic mapping of shared traits
within a population of brain multigraphs.

Another set of ML methods have been developed for
learning the embedding of brain graphs into different
spaces such as geometric and hyperbolic spaces, thereby
enabling a better visualization of the complex topology of
brain connectivity. For instance, [33] proposed BRAINtrinsic
which represents the first dimensionality reduction study
without inferring anything substantive about the intrinsic
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geometry of brain connectivity. Owing to previous works
which demonstrated that linear dimensionality reduction
techniques such as principal component analysis (PCA)
have been used to explore biomarkers related to various
diseases such as breast cancer, [33] proposed a nonlinear
dimensionality reduction technique which embeds the brain
by considering the topology depicted in the connectivity
matrix rather than the anatomic distances. While novel, this
brain graph embedding technique is minimally related to
neuroanatomy. Later on, [34] proposed an alternative to
brain graph embedding in the geometric space by learning
the coalescent embedding of brain connectivities in the
hyperbolic space. The proposed method successfully seg-
regated the brain graph into spatially distinct subgraphs
representing the brain lobes. Mainly, the proposed work
represents the first network geometry markers for brain dis-
eases and the coalescent embedding allowed the detection
of geometrical pathological changes in the connectomes of
Parkinson’s Disease patients with respect to control subjects.
[35], [36] have further demonstrated the hyperbolic geome-
try has led to valuable mapping of brain graphs, where an
essential finding is that the closer coordinates in hyperbolic
space denoting nodes in the graph the more likely to be
connected. More recently, [37] proposed a framework to
discover the best geometry space for functional brain graphs
where brain graphs were embedded onto 2-D hyperbolic
discs. Interestingly, evaluating this method on disordered
subjects demonstrated the existing of abnormal pathways
by comparing internodal hyperbolic distances. The impor-
tance of such brain connectivity spatial embedding methods
has been demonstrated in several applications such as graph
navigation [38], [39] where the goal is modeling communica-
tion strategy within the graph that propagates signals based
on the distance between nodes.

A separate line of work leveraged deep learning (DL)
models such as convolutional neural network (CNN) for
learning brain graphs [40]. An artificial neural network
(ANN) is generally represented as a graph of connections
between neurons. Based on this definition a recent study
[41] was conducted to understand the relationship between
the graph structure of the neural network and its predictive
performance. To achieve this, the authors of the paper
proposed to create a relational graph which represents the
neural network: the link between nodes does not represent
the data flow as in the computational graph of ANN but
a message exchange in the relational graph. Interestingly,
they discovered that the relational graph that leads to
improvement of the predictive performance of ANN were
highly similar to brain connectomes. While effective when
compared to traditional machine learning methods, still
DL methods do not generalize well to non-Euclidean data
types (e.g., graphs). More specifically, directly applying DL
methods to graphs overlooks the relationships between
nodes and their local connectedness patterns. This causes an
important loss of topological properties inherently encoded
in a graph representation.

Recently, graph neural networks (GNNs) have been
proposed to tackle this issue. GNNs are the core of a
nascent field dealing with various graph-related tasks such
as graph classification and graph representation learning.
The main advantage of this domain is that it preserves graph
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topological properties while learning to perform a given
task [42]-[44]. Such learning frameworks encapsulate both
graph representation learning via embedding and scoring
prediction via different operations such as pooling. The
first GNN was designed for node classification where each
node in the graph is associated with a label [45]. It mainly
performs a propagation rule encapsulating node and edge
features to generate prediction scores. Notably, the brain
graph is a natural fit for GNN models thus there is a need
to outline the reason of GNNs being worth investigating
in network neuroscience and highlight a selection of current
and future works. While several review papers already exist,
they are all different from our review. For instance, [42]-[44],
[46], [47] and [1]-[6], [14], [16], [48] do not discuss specific
GNN-based methods for solving neuroscience problems,
but instead act as a reference for a specific topic (i.e., GNN or
neuroscience). Therefore, it is necessary to provide a high-
quality review that analyzes the trends and highlights the
future directions for the applications of GNNSs to the field of
connectomics, which can generalize to the broader field of
“omics” (e.g., genomics) [49], [50]. We particularly conduct
in this survey a comprehensive review of graph learning
tasks such as graph prediction, classification and integration
with application to network neuroscience where the main
data structure is brain graph.

The rest of this review is organized as follows. In Section
2, we first give an overview of existing GNN models. Next,
we propose a taxonomy of existing models and discuss
the limitations of each category. Finally, in Section 3 we
propose several future research directions and we conclude
by summarizing our findings from this study.

2 WHAT DO GRAPH NEURAL NETWORKS
OFFER TO NETWORK NEUROSCIENCE?

2.1 GNN overview

GNNs are among the hottest topics nowadays thanks to
their benefits in learning on a wide range of graphs, both
directed and undirected. GNNs have emerged as subfield
of the broader field of “geometric deep learning” on non-
Euclidean data. Broadly, GNNSs can be categorized into three
big classes [46], either by aggregating the features of neigh-
borhood nodes with a learnable filter, as in Graph Convo-
lutional Network (GCN) [51] or based on the self-attention
strategy which identifies the most important neighbors to
be aggregated, as in Graph Attention Network (GAT) [52]
or even based on a message-passing mechanism where
features of both node in consideration and its neighboring
nodes are combined to learn the local graph representation,
as in [53]. While it presents an attractive opportunity for
network neuroscience, only a few GNN architectures have
so far been applied to the brain connectome and the most
used GNN model is GCN [51]. Therefore, we choose to
cover it in detail in this section and for a more in-depth
review of other variants of GNNs, we kindly refer the reader
to [42]-[44], [46].

At the individual level, we define a graph as G =
(N, E,A,F) representing a brain connectome, where A
in R™"*™ is a connectivity matrix capturing the pairwise
relationships between n ROIs and F in R"*/ is a feature
matrix where f is the dimension of node’s feature. It is
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initialized using an identity matrix since in a brain graph
there are no features naturally assigned to brain regions. At
the population level, a graph can encode the relationship
between a set of connectomes, where A denotes an affinity
matrix capturing the similarity between n brain graphs
and F in R"*/ is a feature matrix stacking the feature
vector of size f of each node (i.e, a single subject) in the
population graph (Figure 5). Therefore, N is a set of nodes
(i.e, ROIs or subjects), I is a set of edges denoting either
the biological connectivity between the brain regions or the
similarity between brain graphs. In case the nodes do not
have features, F can be represented by an identity matrix.
Thus, we define the propagation rule of the GCN model as
follows:

Z = f4(F,A|®) = (D 2 AD :F®)

Z is the learned graph representation resulting from a
specific GCN layer. ¢ denotes the activation function such as
Rectified Linear Unit (ReLU). Note that different activation
functions can be used for different layers. © is a filter
denoting the graph convolutional weights. We define the
graph convolution function as f() where A = A + I with
I being an identity matrix and D=3 Aij is a diagonal
matrix.

J

2.2 Brain graph overview

To create a brain graph, one could consider the neurons
and their synapses as the basic building blocks of graph
(i.e., nodes and edges). However, this was demonstrated
to be a computationally expensive task as it requires an
intensive data acquisition and processing steps [14]. Hence,
the scalable method of constructing a brain graph is to
consider a set of neurons as a single node in the graph. This
is achieved via several anatomical parcellation schemes ap-
plied to a particular imaging modality such as MRI (Figure
3). Conventionally, a connectome is an undirected graph
which means that there is no inferences about possible
directions of information flow between brain regions [14].
Therefore, a distinction is often drawn between three types
of brain graphs: morphological brain graph, functional brain
graph and structural brain graph [7], [8], [11]:

e Morphological brain graphs. Such graph were recently
proposed in [7], [17], [54], [55]. This type of brain
graphs involves cortical measures such as sulcal
depth and cortical thickness to estimate the distance
in morphology between brain regions. It is extracted
from T1-weighted images which is first preprocessed
using Freesurfer [56]. The preprocessing step mainly
includes skull stripping, motion correction, T1-w in-
tensity normalization, topology correction, segmen-
tation of the sub-cortical white matter and deep grey
matter volumetric structures and cortical hemisphere
construction [57]. Next, each hemisphere is parcel-
lated into a set of brain regions using a particular
atlas (e.g., Desikan-Killiany Atlas). First, the average
value of a particular cortical attribute is computed
for each ROIL The absolute difference between the
average cortical attributes of a pair of brain regions
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gGAN: graph-based Generative Adversarial Network
GAE: Graph autoencoder

RNN: recurrent neural networks

GraphNet: Graph-constrained Elastic-Net

U-Net: convolutional network with skip connection
s-GCN: siamese graph convolutional neural network
LSTM: long short term memory network
BrainNetCNN: Convolutional neural networks for brain
networks

NN: neural network architecture

Fig. 2. Categorization landscape of GNN-based methods for network neuroscience. Existing methods fall into three broad categories: brain graph
prediction (blue box down), disease classification (blue box top-right) and brain graph integration (blue box middle-left) approaches.
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Fig. 3. Mathematical representation of a brain graph. Conventionally, a
brain graph is represented by an adjacency matrix A € R"*" where n
is the number of brain regions extracted by the parcellation step and in
this example n = 4. Each element in this connectivity matrix encodes
the weighted edges describing the connection existing between brain
ROls (nodes) [5].

is then computed which denotes the weighted edge
linking two ROlIs.

e Functional brain graphs. Conventionally, a func-
tional graph is constructed from functional MRI
(fMRI), more specifically from the blood-oxygen-
level-dependent (BOLD) signal which shows the
changes in blood oxygenation over time linked to
neural activity [11] in a particular region in the
brain. First, the reported signal is averaged within
each brain ROIL Next, a measure of correlation such
as Pearson’s correlation coefficient is computed be-
tween pairwise regions which results in the func-
tional connectivity depicting the communication be-
tween pairs of brain regions. In functional brain
graphs, nodes do not have features and edges are
generally undirected and weighted.

e Structural brain graphs. A structural graph consists
of a graph derived from diffusion tensor imaging
(DTI) or diffusion spectrum imaging (DSI) [2], [8],
[10]. Such neuroimaging data measure the diffusion
of water molecules to generate contrast in MRI which
allows for distinguishing gray matter from underly-
ing white matter. There are several variants in gener-
ating structural connectomes among which we find
computing the number of fibers connecting different
brain regions and taking their absolute difference as
a weight for structural connectivity. [58].

2.3 Literature search and taxonomy definition

This review paper is both a position paper and a primer,
promoting awareness and application of GNNs in network
neuroscience along with giving a systematic taxonomy of
existing models. Particularly, we focus on papers published
between 1st of January 2017 to the 31th of December
2020. We have searched several electronic databases in-
cluding IEEExplore, PubMed, Research Gate, Arxiv Sanity
and Google Scholar using the following keywords: “brain
graph”, “brain network”, “connectome”, “GNN”, “graph
representation learning”, “network neuroscience”, “graph
neural networks”. We collected 30 papers from the Medi-
cal Image Computing and Computer Assisted Intervention
conference (MICCAI), the Information Processing in Med-
ical Imaging (IPMI) conference, Journal of Neuroscience
Methods, IEEE Transactions on Medical Imaging journal,
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Frontiers in Neuroscience, Neuroimage, Cerebral Cortex
journals and bioRxiv. Non-GNN based papers related to
brain graphs were excluded from our review such as those
proposing CNN-based architectures for a connectomic re-
lated task or ML-based works such as [54], [55], [59]. We
refer the reader to our GitHub link where all papers cited
in our work are available at https:/ /github.com/basiralab/
GNNs-in-Network-Neuroscience.

As shown in Figure 2, GNN-based network neuroscience
comes in three different flavors: brain graph prediction, inte-
gration and classification. Each of these flavors is further di-
vided into three and two subcategories respectively, exclud-
ing the third one. Interestingly, we depict in our study two
different groups of models: graph-based and population-
based models. In the first group, designed frameworks learn
from a brain graph where nodes represent anatomical brain
regions and edges denote the morphological, functional or
structural connectivities (Figure 5). Conversely, the second
group harbours frameworks that take as input a graph of
subjects where each node represents a single brain graph
(i.e., subject) and each edge quantifies the pairwise similar-
ity between two brain graphs (subjects).

2.4 Brain graph prediction

Due to the high costs of medical scans, patients might have
an MRI acquired at one timepoint and lack the follow-up
MRI acquisition, or they might lack other scans such as
diffusion MRI or resting-state functional MRI. Since brain
graphs are derived from medical images, real-world connec-
tomic datasets are usually incomplete. Furthermore, lever-
aging a small number of graphs for training learning-based
models is unfeasible since it results in poor results [60].
Therefore, brain graph synthesis is important for boosting
models designed for early disease diagnosis. We review in
the three following subcategories all works belonging to
the brain graph prediction flavor. This involves methods
seeking to predict brain graphs across one of the three
dimensions: domain, resolution, and time (Figure 2). The
full list of brain graph prediction works is summarized
in Table 1 and descriptions for different loss terms are
displayed in Table 5 and Table 6.

2.4.1 Cross-domain graph prediction

Problem statement. Given a source graph Gg, our objective
is to learn a mapping function f : (Ag,Fs) — (Ar,Fr),
which maps Gs onto the target graph Gr. We note that Gr
conventionally refers to a single target graph but it might
refer to a tensor of target graphs which is the case of multi-
graph prediction (Figure 4-A-2).

Existing works. Existing GNN-based graph prediction
frameworks lie into two groups: single graph prediction
[44], [61]-[65] and multi-graph prediction tasks [66]. The
main goal of the first group of works is to predict a target
brain graph from a single source graph (Figure 4-A-1). For
example, [44], [61], [63]-[65] proposed geometric deep learn-
ing frameworks based on generative adversarial network
(GAN) [67] to predict a target morphological brain graph
from a source one and a structural brain graph from a
functional one, respectively. Specifically, both frameworks
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Fig. 4. Schematic diagram of variants of network neuroscience-based goals achieved by existing GNN-methods. (A-1) Single graph prediction refers
to the task of learning a mapping function f for a cross-domain graph prediction purpose. (A-2) Multi-graph prediction, another subcategory of
cross-domain graph prediction, refers to methods predicting multiple target graphs simultaneously from a single source graph. (B) Super-resolution
prediction depicts the task of generating high-resolution graph with more nodes and connectivities given a low-resolution brain graph. (C) Graph
integration refers to methods aiming to normalize a population of brain graphs by generating a representative connectional brain template. (F) Brain
graph evolution prediction refers to the task of learning a mapping function f: that generates time-series brain graphs given a single brain graph
acquired at baseline. (D) Disease fingerprint prediction is the task of discovering discriminative biomarkers existing in brain graphs. (E) Brain graph
classification is the task of predicting the brain state of a subject (e.g., mild cognitive impairment (MCI) and Alzheimer’s disease (AD)) either by
learning on the whole brain graph or its learned embedding or even on a graph population. In the legend, we show an example of a brain graph
which is an abstract graph representation of brain connectivities and we explain the abbreviations and mathematical symbols used in each block of

the figure.

built the generator and discriminator networks based on
graph convolution network (GCN) [51]. In addition to
the GAN loss function, these works added new terms to
strengthen the learning of the model. For instance, [61]
proposed a topology-based loss term which enforces the
alignment of the graph node strength distribution of the
predicted target graphs and the ground truth ones, while
[44] adopted a structure-preserving loss term to maximize
the similarity between ground truth and predicted graphs
from the generator. Other efforts to predict a target brain
graph from a source one [63]-[65] considered the domain
alignment field as a solution for this problem which aims
to match the statistical distribution of the source domain
to the target one. For example, [63], [65] leveraged two
discriminators to align the training source and target brain
graphs and adversarially regularize the training and testing

source graphs embeddings. On the other hand, [64] pro-
posed a hierarchical domain alignment strategy to match
the distribution of the source graphs to the target graphs
and simply used a single discriminator to regularize the
whole framework. Other works adopted the autoencoder
architecture to perform the graph prediction task. For in-
stance, [62] proposed a graph autoencoder based on a multi-
stage graph convolution kernel. It represents the proposed
propagation rule to the framework which involves the atten-
tion mechanism to perform the feature aggregation. Clearly,
all these models perform one-to-one brain graph prediction.
The shared aspect between these methods lies in solely
performing one-to-one brain graph prediction. Using such
models for predicting multiple target brain graphs from a
source one, each model needs to be trained independently
for each target domain. This hinders their scalability when
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predicting a multi-graph from a single source grain graph.
Ideally, one would train a single model that simultaneously
predicts a multi-graph from a single source brain graph such
as synthesizing functional and structural brain graphs from
a single morphological graph (Figure 4-A-2). To address
this issue, a recent approach belonging to the multi-graph
prediction group of works has been proposed and achieved
better performance on morphological connectomic dataset
[66]. It mainly consists in a GCN-based graph autoencoder
including an encoder and a set of decoders all adversarially
regularized by a single discriminator. Specifically, this work
leveraged the data clustering and a topology conservation
loss to avoid the mode collapse problem in GAN and
preserve the brain graph structure, respectively. We provide
a summary of all reviewed works in Table 1.

Challenges and insights. There are a few challenges
that need to be considered when predicting brain graphs.
First, several frameworks are not built in an end-to-end
fashion which may lead to accumulated errors across the
learning steps. Second, for GAN-based frameworks, the
mode collapse is an important issue to consider. However,
a few are the works that handled this problem. Third,
preserving brain graph topology is less considered in the
prediction task. Devising topological-based convolutional
functions may help improve graph representation learning.
Fourth, we identified a single work in the category of multi-
graph prediction which we consider more sophisticated for
jointly synthesizing a set of brain graphs. Moreover, this
model was evaluated only on morphological brain graphs.
Further evaluations on different connectomic datasets might
be valuable for clinical application. Finally, we identified
graph-based [44], [61], [62] and population-based models
[63]-[66]. It would be better to have a denser explanation on
the cases of using these two strategies and design a better
topological properties conservation technique in the case of
population-based models.

2.4.2 Cross-resolution graph prediction

Problem statement. To generate a brain graph, one needs
to pre-process and register the MRI data to a specific atlas
space for automatic labelling of brain ROIs. This will result
in a parcellation of the brain into n anatomical brain regions
defining the resolution of the graph [68], [69]. In other
word, low-resolution and super-resolution brain graphs are
generally derived from different MRI atlases which are the
products of error-prone and time-consuming image pro-
cessing pipelines [69]. To circumvent the need for heavy
image processing pipelines, prior works belonging to this
subcategory of graph prediction aim to learn how to gen-
erate a high-resolution brain graph given a low-resolution
one (Figure 4-B). Specifically, given a low-resolution brain
graph G; = (N;, E;, A;, Fy), the goal is to learn a mapping
function f : (A;,F;) — (As,Fs), which maps G; onto
the high-resolution graph G5 = (N, Es, A5, F;), where
N; < Ng.

Existing works. While several machine learning mod-
els have been proposed [15], [27], the road to GNN-
based super-resolution graph prediction is less traveled.
[70] conducted the first GNN-based work to generate a
high-resolution brain graph from a single low-resolution
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one, with a detailed evaluation on real-world connectomic
dataset. Inspired by the U-Net architecture, the authors
proposed a graph U-autoencoder composed of a set of GCN
layers and introduced a superresolving propagation rule
based on grap eigendecomposition to generate the new con-
nectivity matrix (i.e., brain graph). Their work demonstrated
that the GNN-based model is a powerful tool to circumvent
the time-consuming problem of medical image processing
to estimate high-resolution brain graphs. The loss function
proposed by [70] can be found in Table 1. Such a multi-
resolution representation of the brain connectivity provides
a more holistic mapping of the brain as modular interactive
system [5].

Challenges and insights. Future research should pro-
vide better GNN-based frameworks for superresolving
brain graphs along with considering the computational
efficiency of the model and the accurate prediction of the
graph structure. One may provide a new propagation rule
that superresolves a graph while considering the topological
properties of the original graphs as well as addressing the
domain shift (i.e., distribution change) that exists between
the low- and super-resolution graph distributions. We note,
also, that [70] is solely designed for uni-resolution graph
synthesis (i.e., mapping a source resolution onto a single
target one) where the output of the model is a single super-
resolution graph. Thus, future works might consider the
case of multi-resolution graph synthesis where the trained
model superresolves input brain graphs at multiple scales.

2.4.3 Cross-time graph prediction

Problem statement. Given a time-series brain graph data
Gy, = (N,E,A,,Fy,), i € {1,...,n} acquired at mul-
tiple timepoints, the goal is to learn a mapping function
ft + (A, Ft,) — (7)), which maps the baseline graph
G, observed at the initial timepoint ¢; onto its evolution
trajectory 7 = {GY,,, }i~, that represents the follow-up
brain graphs foreseeing the brain wiring evolution trajectory
at future timepoints.

Existing works. Models that foresee the evolution of
brain connectivity from a single baseline graph can be
especially useful for both scientific discovery and clinical
decision-making [26], [28]. Therefore, prior works proposed
different GNN-based architectures that can be divided into
two families: dichotomized learning-based models [71], [72]
and end-to-end learning-based models [73]. These works
aim to produce a trajectory either represented with one
brain graph such as predicting brain connectivities of an
Alzheimer’s disease patient at 9-month after first scans
or multiple follow-up brain graphs acquired at different
timepoints (Figure 4-C). The first group of works relies on
a population-based brain template which is the topic of the
following section. Intuitively, they hypothesize that learning
how a brain graph deviates from the brain template allows
the identification of its most similar graphs. To do that,
one can compute the similarity between brain graphs and
the brain template. Ultimately, averaging the most simi-
lar graphs at a specific timepoint represents the predicted
follow-up brain graph.

To do so, [71] developed a GCN-based graph autoen-
coder adversarially regularized by a discriminator network



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

that maps the brain graphs and the population template
into a low-dimensional space. Next, a computation of the
residual between the graphs and the template embeddings
is performed and finally the most similar graphs to the
input one based on the resulting residual embeddings were
selected. On the other hand, [72] learns how to normalize
a brain graph with respect to a graph population template
by developing a GAN-based graph autoencoder where they
leverage the edge-conditioned convolution (ECC) function
which incorporates the edge weights into the convolution
operation and performs pooling using a downsampling
method based on eigenvector decomposition of the matrix.

This operation was designed to learn from graphs that
lack node features which is the case of brain graphs studied
in their work [72]. Since these models were not designed in
an end-to-end fashion, [73] introduced a unified brain graph
evolution prediction framework. Specifically, a cascaded
GAN-based architecture was designed where a generator
synthesizing a brain graph at timepoint ¢; benefits from the
previously synthesized graph at timepoint ¢;,_; thereby fore-
seeing the full evolution trajectory of a brain graph. Similar
to [72], edge convolution operations were leveraged for both
generator and discriminator architectures. Reviewed works
in this subsection are summarized in Table 1.

Challenges and insights. Although [71], [72] methods
can reliably predict the future brain connectivities, their
performance is still less promising since their dichotomized
learning strategy limits the scalability to predict jointly the
follow-up brain graphs. Even though [73] is an end-to-end
learning framework, it is still based on the edge convolution
operation which hinders its scalability in terms of train-
ing time when applied on large-scale graphs. Essentially,
such convolutional operation has been shown to be time-
consuming when learned on large graphs [74] which hin-
ders the capability of existing models in synthesizing brain
longitudinal brain graphs. Therefore, more evolution trajec-
tory prediction models that can help foster robust, scalable,
and accurate prediction are highly desired. Ultimately, all
these models overlook the synthesis of multiple trajectories
representing brain graphs derived from different modalities.
More advanced methods for jointly predicting evolution
trajectories of multimodal brain graphs are compelling to
design.

2.5 Brain graph integration

Problem statement. Consider the case where a subject is
represented by a set of brain graphs derived from the same
modality G/ = {G™}]"_, where G™ = (N, E, A, F), n,,
is the number of modalities and i € {1,...,n,,}. The goal
of this category of models is to learn a mapping function
[ :{G"}72, — C, which integrates {G*}"*, the multimodal
brain graphs of all subjects in a given population into a
single holistic fingerprint brain graph C that represents the
shared common connectivity patterns across subjects. Such
a representative connectional brain template called CBT is
important for spotting biological patterns that alter when
comparing typical to atypical populations.

Existing works. [75] proposed a clustering-based GNN
model that produces a brain template given a set of graphs
(Figure 4-D). After clustering the population into groups,
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the proposed MGINet architecture basically integrates the
different graphs that represent subjects belonging to the
same cluster into a single graph by extracting the most
representative edges linking two nodes that represent meta-
paths of the graph. Next, a learning averaging method
is leveraged to produce the final CBT of the population.
While effective, this model is not trained in an end-to-end
fashion since the clustering, cluster-specific CBT genera-
tion, and the population CBT estimation blocks are learned
disjointly. Therefore, cumulated errors across these blocks
might produce a less centered brain template. More recently,
[76] proposed Deep Graph Normalizer (DGN), a GNN-
based model that integrates a population of multiview brain
graphs named “multigraph” into a connectional brain tem-
plate (CBT) in an end-to-end learning fashion. Specifically,
a multigraph encodes different facets of the brain where
the exisiting connection between two nodes is encoded in
a set of edges of multiple types. Each edge type denotes a
particular form of brain connectivity derived from a partic-
ular neuroimage data. DGN was proposed to integrate the
complementary information across all subjects of the popu-
lation by (i) training a set of edge conditioned convolutional
layers each learns the embeddings of brain regions in the
graph, (ii) introduce a series of tensor operations to calculate
the pairwise absolute difference of each pair of the learned
node embeddings which results in a subject-based CBT, and
finally, (iii) estimate the CBT of the population by selecting
the median of all subject-based CBTs. All loss functions
proposed in the aforementioned works are summarized in
Table 2.

Challenges and insights. While offering a tool to distin-
guish between healthy and disordered populations, the pro-
posed GNN-based CBT learning architectures are limited to
some extent. First, they solely generate CBTs of a population
of multimodal fixed-size brain graphs (i.e., number of nodes
and edges are the same across all graphs) which hinders
their integration capability when subjects are represented
by non-isomorphic (i.e., multi-resolution) brain graphs with
varying topologies. Second, they do not explain which
brain graph connectivity types contributes most to the CBT
learning process. Seminal works on GNN explainability
including GNNExplainer and GraphLIME [77], [78] aimed
to explain a graph by extracting the crucial features in the
graph that affect the prediction of the GNN. The rationale
behind the explanation of brain graph integration models
can be motivated from a neuroscience perspective: different
brain connectivity types might be more representative of the
brain wiring than others. Besides, there is evidence that the
sub-graphs identified by the explainer model represent the
shared connectivities in a population that are integrated by
the GNN model. Indeed, the identification of representative
modules in the graph might help reduce the errors made by
integrator models. Therefore, considering the explanation
of GNN-based multigraph integration models needs to be
developed to optimize the connectional template estimation
and propel the field of disease prediction.

2.6 Brain graph classification

Perhaps the first and most fundamental question that one
can ask about a brain graph is whether it is useful for early



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 1

Brain graph prediction publications. In the first column, we list the name of existing works along with their citations for easy reference. In
the second and third columns, we list the GNN model used and we briefly summarize all losses used to regularize the existing models. In
the three last columns, symbols «vand Xdenote whether the corresponding model is learned in an end-to-end fashion (E2E), learned from

a brain graph (GM), or a population graph (PM), respectively.

Method GNN Loss E2E | GM | PM
L= Lgenl (le Dl) + »C'genQ (G27 D2)+
CGTS [61] GCN? a1[Ltopo(G1, D1) + Ltopo(Ga, D2)]+ v v X
O42£cyc(Gla G2)
MGCN-GAN [44] GCN L=Lgan +aLyse + BLpcc v v X
DMBN [62] MGCKP L = oL giobal + BLiocal + Lsup v/ x
Ehm = Eflog(D(Z"~1))] 4 E[log(1 — D(G"™1)]
HADA [64 GCN L= X X v
[64] z: — Ellog(D(Zsr.))] + Ellog(1 — D(G)]
Lsym = E[log(D1(Zpa))] + Ellog(1 — D1(G)]
SymDADA [65] GCN Lauair = E[log(D1(Zsrc))] + Ellog(1 — D1(G)] X X v
Liuarz = E[log(D2(F))] + E[log(1 — D2 (F)]
Latign = E[log(D1(Fs))] + E[log(1 — D1(Z¢)]
LG-DADA [63] GCN Lauat, = Ellog(D1(Zs))] + Ellog(1 — D1(Fs)] X X v
Lpred, = Ellog(D2(Ft))] + Eflog(1 — D2(F¢)]
L, c? L
MultiGraphGAN [66] | GCN £p =35 (Elyp +e1Lyq. +2Ls) x| x| v
EG ([’ en3 +a1£top02 +a2£rec +a3£1nfo)

GSR-Net [70] GCN L= Lhr + Leig + aLrec v v/ X
RESNet [71] GCN Lemp = E[log(D1(A+,))] + Efllog(1 — D1(z4,)] X v X
gGAN [72] ECC® L= Lagy +aL1(N) X v X

EvoGraphNet [73] ECC L=>T" (c1Laqu(Gi, Di) + S50 L1(Giy8) + 22 305 L (ti,8) v v X

2Graph convolutional networks; PMulti-stage graph convolution kernel; °Edge-conditioned convolution

TABLE 2
Brain graph integration publications. A brief description of the GNN, loss functions training
manner and data representations used in each paper. Symbols vand Xdenote whether the
corresponding model is learned in an end-to-end fashion (E2E), learned from a brain graph
(GM), or a population graph (PM), respectively.

Method GNN

Loss E2E | GM | PM

£

Me T k=1

ZIIC — AP

MGINet [75] | GCN#*

+ZZII

s=1k=1

Lsub X v/ X
Z.— Aj |?

Leit

DGN [76] | ECCP

L= DS IC T k)

Nm Ms

v=1s=1 \/ / X

LSNLg

aGraph convolutional networks; bEclge—conditioned convolution

diagnosing a disease. A straightforward way is to train
a classifier to distinguish between healthy and unhealthy
subjects and to build a model that identifies the most
discriminative connectivities in the brain that fingerprints
a typical disease. For this reason, we divide the brain graph
classification flavor into two categories: brain state classifi-
cation and biomarker identification (Figure 4-E-F). The first
one asks how to classify brain states such as predicting if
a subject is disordered or healthy. This category gives rise
to three other groups (Figure 2 orange boxes top): graph
embedding-based, graph-based and population-based clas-
sification methods. The first one depicts models classifying
brain states using the learned brain graph embedding. In
the second one, models learn to classify subjects using the
whole brain graph where a node denotes a brain region.
Rather than learning on a whole-brain graph, methods be-

longing to the third group performs brain state classification
by learning on graph population where a node denotes
a subject’s brain graph. The second category asks how to
identify discriminative biomarkers that have the potential
to be used in clinical settings to characterize disease-related
brain connectivities in patients and treatment response. We
provide a summary of different disease classification works
in Table 3.

2.6.1 Brain state classification
A- Graph embedding-based classification
Problem statement. Given a brain graph G =

(N,E,A,F), the goal is to learn the compressed low-
representation of the graph that is the embedding Z and
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A- Graph-based models B- Population-based models

Fig. 5. GNN-based methods at a glance. Tow different families of existing
models are depicted. (A) Graph-based models learn from a brain graph
where nodes represent anatomical brain regions and edges denote the
morphological, functional or structural connectivities. (B) Population-
based models learn from a graph of subjects where nodes denote a
brain graph of a particular subject and edges represent the similarity
between nodes.

leverage it to learn a mapping function f : Z — y, which
maps the input graph embedding Z onto its label y (e.g.,
normal control or autistic).

Existing works. [79] designed a GAN-based approach
where the generator is a set of GCN layers learning the deep
low-dimensional representation of the input graph. Next,
the graph embeddings of all graphs are passed to a linear
support vector machine (SVM) to classify connectomes of
late mild cognitive impairment and Alzheimer’s disease
patients. Leveraging the brain graph embedding to pre-
dict the clinical depression scores of patients were further
designed in [80]. Assuming that a brain graph does not
capture the high-order relation between brain regions, [81],
[82] introduced a hyperconnectome where a node can be
linked to more than one node. Specifically, [81] learned the
embedding of a multi-view brain hyperconnectome using a
hypergraph neural network (HGNN) encoder. In that way,
they classify the brain state using different brain modalities.
Instead of considering an ROI as a node in the hypergraph,
[82] designed a hypergraph of subjects where a brain graph
of a patient represents a node. The authors proposed a new
hypergraph pooling-unpooling layer to learn embedding
capturing the relationships between subjects then lever-
aged it to predict their corresponding brain states. Other
works preferred to learn the graph embedding using graph
attention network (GAT) which focuses on learning from
the most relevant nodes in the graph. For instance, [83]
proposed to combine the structural and functional brain
graphs into a single graph representation. Specifically, they
learn the embedding of a single graph that is represented by
an adjacency matrix denoting the structural connectivities
and a feature matrix denoting the functional connectivities.
The resulting learned latent representation was passed to
a multi-layer perceptron classifier to predict frontal lobe
epilepsy, temporal lobe epilepsy, and healthy subjects. All
the aforementioned models lack interpretation of the cap-
tured features in the embedding space which can help better
understand the original connectivity pattern that yields
the illness. Therefore, [84] another attention-based network,
proposed a combination of different GNN layers (Edge-
Weighted GAT layer, followed by Diffpool layers) to learn
the graph embedding and identify the Bipolar Disorder
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patients. Essentially, they performed a visual interpretation
of the attention map generated by the edge-weighted GAT
network so that they detect the particular associations of
abnormalities in the functional brain graph.

Challenges and insights. Building models that not only
predict the brain state of the subject but also explaining why
it makes such prediction, as well as integrating all types
of brain graphs in the learning process, is a compelling
research direction that remains unexplored.

B-Graph-based classification

Problem statement. While the previous group of works
performed the classification of subject using the learned
graph embeddings, works belonging to the graph-based
classification group leverage the whole brain graph to make
the target prediction.

Existing works. Recently, several pioneering models
have been devised to predict brain disease by learning on
brain graphs. For instance, [85] proposed a combination of
GCN model along with long short term memory (LSTM)
network to classify functional connectivity of demented and
healthy subjects. They included the prediction of gender and
age in a regularization task to improve the disease classifi-
cation. [86], [87] proposed another combination of GCN and
recurrent neural network (RNN) models which mainly deal
with both brain structural and functional connectivities to
identify the mild cognitive impairment patients. Later on,
[88] leveraged siamese graph convolutional neural network
(s-GCN) to learn the similarity between a pair of graphs and
incorporated the learned similarity into the classification
step. From another perspective, [89] assume that detecting
the brain disease state is relative to study the brain region’s
function that can be represented by its multi-hops connec-
tivity profile. Therefore, a GNN model taking as input the
functional brain graph learns how many levels of nearest
neighbors of a specific ROI that need to be considered in a
brain graph classification task.

Challenges and insights. Despite the effectiveness of
these models, a common limitation is their difficulty to
explain the classification results in a neuroscientifically
explainable way. Future developments might include an
explainable study of how GNN-based models are learned
in a brain graph classification task.

C-Population-based classification

Problem statement. Owing to the fact that different
types of data (i.e.,, images, phonetype, connectomes, ge-
netic sequence) provide complementary information for
analyzing neurological disorders, works under this group
of brain state classification aim to construct a population
graph describing the relationship between subjects. Let
P = (N,,E,,A,,F,) be the graph population where N,
is a set of nodes (i.e, brain graphs), E, is a set of edges
denoting either the correlation or similarity between the
nodes using the brain connectivities or non-connectomic
data, A, in R"*"s is an adjacency matrix where n; is
the number of subjects, and F,, in R"*/ is a feature ma-
trix stacking the feature vector (i.e., connectomic or non-
connectomic features) of nodes in the graph. The goal is to
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learn a mapping function f : P — y, which maps P onto its
label (e.g., normal control or autistic).

Existing works. Several works have been proposed in
the state-of-the-art to early identify the brain state of a sub-
ject by creating a population graph [90], [91]. They mainly
constructed the graph using imaging and non-imaging data
where nodes are subjects represented by neuroimaging data
and edges denote the pairwise similarity between phe-
notypic data of the subjects, then a GCN-based classifier
learned from it to predict the node label (i.e, a brain graph).
While such population-based classification works provide
powerful frameworks for healthy and disordered popula-
tion analysis and a combination of imaging of non-imaging
data, we identified a single work where nodes in the graph
denote connectomes of the subjects [92]. Specifically, this
model aims to integrate both functional and structural brain
graphs to early predict Alzheimer’s disease. They intro-
duced a calibration technique to generate the adjacency
matrix representing the population. Next, they built two
different GCNs each trained on a specific modality, and
generate a clinical score of the subjects in the population.

Challenges and insights. Although the unique
population-based work that we found for brain graph clas-
sification achieved promising results on a relatively large
dataset, existing connectomic datasets are still scarce and
have missing instances. Such a case represents one of the
main difficulties encountered in building classification mod-
els as they tend to overfit. Devising GNN-based models that
from minimal resources they synthesize brain graphs along
with performing a classification task is highly needed.

2.6.2 Biomarker identification

Problem statement. A complementary but distinct line of
work capitalizes on the emerging field of interpretability of
GNN intending to develop models that identify the most
discriminative biomarkers in addition to predicting the label
of brain graphs.

Existing works. [93] proposed a GNN classifier that se-
quentially stacks a set of Message Passing Neural Networks
(NNconv) and pooling layers to estimate the class of the
functional brain graphs and generate a set of sub-graphs
(i.e., one sub-graph is a set of ROIs) which represent the
identified biomarkers. Next, they interpret the importance
of each sub-graph identified by performing an extensive
comparison between their GNN and existing classifiers. On
the other hand, [94], [95] proposed a GAT-based architecture
to predict the most discriminative ROIs for identifying a
disease. They specifically proposed a pooling layer along
with a regularization loss term to soften the distribution of
the node pooling scores generated by the network. Detailed
loss functions are included in Table 4.

Challenges and insights. For the above mentioned
works, we consider two challenges: reproducibility and
explainability.Introduced in [52], it includes the attention

Graph mechanism to propagate signals between nodes % and j:

at-
ten-
tion
con-
vo-
lu-
tion
prop-
aga-

hi = 0(3_,cn, @ijWhy). 0 is an activation function, a; is a
weighting factor denoting the importance of a node j to the
node 4, NV; is a set of neighborhood of node i in the graph
and W € R/*/ is a linear transformation weight matrix
where f is the feature dimension of a node.

11

The first limitation lies in ensuring that the proposed
GNN-based model is reproducible in identifying the dis-
criminative biomarkers. Ideally, one would design a model
that reproduces similar results when leveraging different
training strategies such as cross-validation or few shot
learning. This is of great interest since it will help under-
stand which model to trust in the network neuroscience
field. The second limitation implies that these GNN-based
models are explanation agnostic for the target prediction
task. Yet, understanding the learning process of the model
can increase the trustworthiness of the model and identify
the strength and falls of the model when applied in real-
world applications. Therefore, for a better understanding
of neurological disorders, it would be beneficial to design
explainable models that take as input the learning model
and its prediction and try to identify the most important
feature that is crucial for the task at hand.

3 DISCUSSION AND OUTLOOK

Though significant advances have been made in the research
of GNN models in the field of network neuroscience, there
still exist many open problems that are worth exploring.
In this section, we summarize our results from this review
and critical challenges with possible future directions in this
field.

3.1 Toward clinical translation

Strengths and limitations. We have performed an exten-
sive search to identify GNN-based methods applied to
network neuroscience. We identified 30 papers from the 1st
of January 2017 to the 31st of December 2020 within three
different objectives: brain graph prediction, brain graphs
integration, and disease classification. The list of these pa-
pers reviewed for our study can be found on our GitHub
repository . About 36% of these papers studied brain
graph synthesis, with cross-domain, cross-resolution and
cross-time synthesis being the most important application
of GNNs. Morphological brain graph (MBG) is ranked as
the most common brain modality explored in the studied
literature. Specifically, the brain graph synthesis models
were trained on brain graphs derived from the T1-weighted
MRI. Considering that MBGs are derived from different
brain views such as cortical thickness and sulcal depth,
they are considered as multimodal brain graph synthesis
works. We believe one of the reasons for the significant
interest in predicting MBGs is its unique representation of
brain connectivities in terms of similarity in morphology
between brain regions that can reveal unseen patterns in
structural and functional brain graphs [7], [17]. Interestingly,
all reviewed brain graph synthesis works are generic since
they are designed to predict any type of brain graph from
another given that they have the same size. Therefore, on-
going research should be adapted to non-isomorphic graphs
derived from different modalities and brain parcellations.
We further identified a single work with a goal of one-
to-many graph synthesis and six one-to-one brain graph
prediction works. Although important for alleviating the

1. https:/ / github.com /basiralab
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TABLE 3
Disease classification publications. In the first column, we list the name of existing works along with their citations for easy reference. In
the following three columns, we list the GNN models, losses for reguarization and the classifier used in different works. In the three last
columns, symbols vand Xdenote whether the corresponding model is learned in an end-to-end fashion (E2E), learned from a brain
graph (GM) or from a population graph (PM), respectively.

Method GNN Loss Classifier | E2E | GM | PM
ACE [79] GCN L =E[log(D(Z))] + E[log(1 — D(G(F, A)] SVM? X v X
HCAE [81] HGNNP L = E|log(D(Z))] + Ellog(1 — D(G(F, A)] SVM X v X
ADB-NN [83] SA° L =—> mymlog(softmaz(f(W?© B) FCd v X v/
Blind-GCN [80] GCN L=|Y-Y|lp+a1|Wlz2+as | H—H]| MLP® v X v
s-GCN [85] GCN £ = max(0,0%" — a) + max(0,m — (ut — p7)) k-NNF v X v
GC-LSTM& DS-GCN [86], [88] GCN L=a1Lyis +a2Lgen + 3Ly FC v X v
Population-method12 [90] GCN L=-3%,p%) logq(y®) FC v/ X v/
Population-method?2#, s s
IncpeptionGCN [90], [91] GCN L=—=3,p(G*)logq(G*) FC v X | v

aSupport vector machine; PHypergraph convolution; °Self attention mechanism; 9Fully connected layer; ®k-nearest neighbour;
MLP Multi layer perceptron; & we named these methods since they were not named in the original papers.

TABLE 4
Biomarker identification publications. A brief description of the GNN, loss functions training manner and data representations
used in each paper.

Method GNN Loss E2E | GM | PM
Lregr = a7 (| wh ||z —1)2
[93] NNconv® g =1 X v X
I = 5 33, tanh(loga(p(c = ¢5|Gaj)/(1 = plc = €| Gs)))))
l C
PR-GNN [94] | GATConv® L=Leetor TP, L) +02 3T, £y, v v x
Lreg2 =|| B, S8 ||
EGAT [96] GATConv® 1, _ ol@)T Wi WPx;)) v v X
2= a(x,x;)
BrainGNN [95] | Ra-GNN°® L=Leetot SE LU +al 5L 0 +alLyge | v | «x

2Message Passing Neural Networks;  Graph Attention Convolution; ¢ ROI-aware graph convolutional neural network

lack of connectomic data by predicting graphs from minimal
resources, all reviewed brain graph synthesis works did
not consider predicting graphs from multiple modalities
that exist such as leveraging both structural and functional
connectivities to predict a morphological one. This can be
beneficial in the case of having a dataset with more than
one modality (i.e., T1-w, fMRI, dMRI) so one might integrate
them in a single framework to predict the missing graphs.

Reproducibility and explainability. One of the key
rationales behind brain graph prediction models is that
synthesized graphs can boost the performance of existing
models in early disease prediction and biomarker iden-
tification. We found 56% of the GNN-based studies that
fall into the group of disease classification. Within this
category, only four papers addressed the interpretability
of the implemented architectures. These works interpreted
the biomarkers extracted from a single dataset and a sin-
gle GNN classifier. This observation leads to a series of
questions: if we train various GNN models for this task
will they produce the same classification results and the
same discovered biomarkers? Specifically, with the remark-
able growth of brain connectomics datasets future works
need to tackle the reproducibility of the learned GNNs
across multiple datasets [6]. In other words, designing a
framework that predicts which model consistently repro-
duces discriminative ROIs across different datasets will
provide more generalizable clinical interpretations of brain
disorders. Moreover, all of the existing works generated
a the brain connectome using a particular atlas such as
Desikan-Killiany Atlas. While there are different ways for

constructing brain connectomes none of the existing works
investigated the influence of such cortical parcellation on
the learning and predictive performances of GNN models
-with the exception of the cross-resolution works which
are fundamentally designed to predict a brain connectome
generated from a low-resolution parcellation atlas onto a
high-resolution one. Generally, brain graph constructions
methods use different parcellations to precisely delineate
neural populations. Here are some examples: (1) voxel-node
parcellation where an MRI voxel is treated as a brain region
in the brain graph [97], (2) anatomical parcellation which
is based on sulcal and gyral boundries to define the brain
regions [24], (3) random parcellation which results in brain
regions with approximately equal size [98]. The variation
of the cortical parcellation methods leads to a difference
in the constructed brain graphs where a set of nodes in
one connectome might be considered as a single node in
another connectome. Therefore, studying the reproducibility
of existing GNN-based frameworks is important for exam-
ining the consistency of the predictive results regardless
the parcellation scheme used to create the brain graphs.
Further 6% (2 papers) of these works are related to CBT
estimation. CBT represents a tool for not only disentangling
the connectivity patterns of healthy and disordered popu-
lations but also for augmenting brain graphs through local-
ized perturbations of the CBT. Existing data augmentation
operations are manually designed operations and are not
able to cover the whole variability of the data. Therefore,
leveraging the brain template to generate new connectomes
will further pave the way for synthesizing brain graphs



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

when minimal resources exist. However, explaining why
these models estimate a well-representative template for a
given population still untapped. This explanation can help
identify connectivity patterns of the input brain graphs
relevant to the model’s decisions in the integration task
[99]. Therefore reproducibility [100], [101] and explainability
[77], [78], [99] on brain graphs is an important direction to
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TABLE 6
A brief summary of different losses used in each paper reviewed in this
work (Part 1). The first column stands for loss terms included in Table
1, Table 2, Table 3 and Table 4. The second column describes the
meaning of each term in order to understand the full loss function
included in the previous tables.

Losses | Remark
Super-resolution loss term aims to minimize the MSE be-
Lpr tween the ground truth and predicted super-resolution
brain graphs.
TABLE 5 Eigen-decomposition loss enforcing the eigen-
A brief summary of different losses used in each paper reviewed in this | Leig | decomposition of the predicted super-resolution
work (Part 1). The first column stands for loss terms included in Table brain graph to match the one of the ground truth graph.
1, Table 2, Table 3 and Table 4. The second column describes the Reconstruction regularization loss term which is the
meaning of each term in order to understand the full loss function Lrec | MSE between the ground truth and the predicted node
included in the previous tables. feature embedding of the low-resolution brain graphs.
Adpversarial loss for regularizing the brain graph embed-
r dings at the first timepoint tq. It matches the distribution
emb | of the embedding z¢, with the original
Losses Remark data distribution.
Adversarial loss introduced in [67] to optimize the Adbversarial loss term to regularize both generator and
Lgen(Gi, Di) generator G; and discriminator D; and the absolute r discriminator to map the produced graphs by the pre-
geni=t =/ 1 difference between the output of the generators and adv vious generator at ¢;_; onto the ground-truth ones at
the ground truth where ¢ € {1, 2}. timepoint ;.
r (Gy, Dy Topology-based loss aims to preserve the node r Mean absolute error computed between two consecutive
topol i 4 sirength of the ground truth brain graphs ! predicted graphs.
Topology-based cycle consistency loss that ensures| Kullback-Leibler (KL) divergence to ensure the align-
Leyc(G1,G2) | the accurate mapping of the target to the source LKL ment of both distributions of the ground-truth and pre-
graph. dicted brain graphs at timepoint ¢i.
Domain alignment loss function for hierarchical do-| Mean absolute error that minimizes the distance be-
Cr main alignment of source to target brain graphs and| L1(N) | tween a normalized subject with respect to a CBT and
hier Lsource is the GAN loss function for learning source its corresponding real brain graph.
graph embeddings. Subject integration loss ensuring the centeredness of
is the adversarial loss, Ly;sp and Lpcc are the Lsub a subject-based CBT (i.e., Cs) computed in a specific
r element-wise loss and similarity maximization loss to cluster.
GAN ensure the similarity between the ground truth and| r Cluster integration loss ensuring the centeredness of a
predicted graph. clt CBT estimated for the whole cluster.
Edge-based topological loss that ensures the edge Subject Normalization Loss (SNL) based on Forbinious
C reconstruction in the target brain graph, £;cq; aims| r distance introduced to evaluate the centerdness of the
global to preserve the local connectivity in the graph, Lsyy is SNLs| estimated CBT using a random subset of the training
the supervised loss of generating brain saliency maps. brain graphs.
Domain alignment loss that enforces the symmetric r Classification loss which cross entropy computed to
Lsym domain adaptation of the source brain graphs to the ce regularize the GNN classifier of the brain graph.
target ones and the target graphs to the source ones. Maximum mean discrepancy or binary cross entropy
First part of dual adversarial regularization of source ﬁgi)s , | loss terms used to assign distinguishable scores for the
Lguall brain graph embedding which aligns the learned most relevant nodes and the irrelevant ones.
embeddings to the real source distribution. Regularization group-level consistency loss term ap-
Second part of dual adversarial regularization of the plied for the first pooling layer to ensure the iden-
C source domain which aligns the source distribution| re tification of group of biomarkers reliable for disease
dual2 to the target one by optimize the target brain graph| ‘?zdc, classification such as assigning a score near to 1 for the
prediction. CTL, & | most reliable brain region for a classification task and a
Discriminator loss composed by three loss terms: score near to 0 for the non valuable ones.
Lp [:{/V D [j-; de and L';p, Regularizqtion losses to optimize the pooling aggrega-
j Adversarial loss of the discriminator based on the Lreg1, | tion .le'armng for .the GNN and EGAT and BrainGNN
Livp Wasserstein distance. Lyreg2, | classifiers, respectively.
] Graph domain classification loss computed for a spe- £<rle)g
Lf} de cific cluster j which is the mean squared loss between| Biomarker identification score so that a higher score
the ground truth and generated target graph labels. I means a distinguishable biomarker, and gradient sen-
ri Gradient penalty loss term used to improve the train-| 172 sitivity score to disentangle the relationship across fea-
gp ing stability of the model tures.
Generator loss composed by four loss terms: £7__ . Lg;s, | Diagnosis and gender classification loss leveraging the
Lo i e 4. gen Lgen, | cross-entropy between real and predicted labels and age
topo2s ~rec ANA Ly, o _ La prediction loss based on MSE metric.
r Adversarial loss term used to train the generator|
gen3 network of the cluster j.
) Topology-based loss which enforces the generator j
EiopoQ to preserve the centralﬁty scores of nodes in the target investigate in network neuroscience.
graph as well as learning the global graph structure. . ..
v Topology-based reconstruction loss that guarantees GNN selection and learning improvement. A key chal-
Lo that the predicted target brain graphs can be used lenge hampering the field is that it is not always known
to recreate the source graph. a priori which GNN model should be used for a specific
i Information maximization loss term to ensure thatthel ¢} Hare we identified 50% of the frameworks are based
4 predicted graphs are correlated when predicted from| . .
info the generator ;. on GCN while the other 50% are based on various graph

convolution operations (e.g.,, ECC, NNConv, GATConv).
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While GCN was designed to learn from graphs having node
features, it was leveraged for both population-based and
graph-based models. Consequently, a key question arises:
how to choose a GNN model to learn from brain graphs?
Additionally, 53% of the GCN works are GAN-based frame-
works trained with different loss functions (Table 1, Table
3). We found that some works added a topological loss
term to the overall function to ensure the conservation of
hubness and modularity properties of brain graphs. They
mainly refer to centrality measures from the graph theory
field such as closeness and betweenness and seemed to
perform better than the basic GNN models that do not
include such loss terms. Several important and unresolved
questions about graph learning are raised: Are propagation
rules of existing GNNSs not able to learn the local node
properties of the graph? Is there any evidence of choosing a
specific centrality metric? Future work might include efforts
in providing more effective GNN without the addition of
topological loss terms to learn the deep graph structure.

Few-shot learning. And another key question looms on
the horizon: still these models accurate when trained on a
small dataset? Conventionally, the reviewed GNN models
were learned on a large number of brain graphs which
hinders their application to a few-shot learning (FSL) setting
where the goal is to seek a better model generalization on
problems with very limited data. While several image-based
works have demonstrated the feasibility of learning given
few samples [102]-[104], FSL remains overlooked in brain
graph-based works [105]. Therefore, a promising direction
is to consider the use of FSL in network neuroscience works.
Although existing GNN models are designed to learn from
a geometric data type that is brain graph, one might ask
whether they are applied on other types such as cortical
surfaces [106]. Would it be possible to generate cortical
surfaces using the reviewed graph prediction works with
the same time and accuracy performances? One can make
an intuitively reasonable claim that brain manifold can be
considered as graphs thus all mentioned models can learn
on such data representation, but one needs to study the
scalability and robustness of existing GNN models. How-
ever, existing studies [107] leveraged CNN for learning on
3D mesh which might not learn the local neighborhood.
Specifically, meshes have a similar structure to graphs as
it includes nodes and edges except that it does not de-
note the relationship between brain regions. For example,
[108] proposed MeshCNN architecture for classification and
segmentation of 3D meshes where mesh convolution and
mesh pooling operations were introduced. Therefore, such
observation will probably be a key focus of future GNN
work that might be a combination study of graphs and
manifolds that will further boost the diagnosis of various
diseases.

3.2 Outlook

Perhaps the holy grail of brain graphs is to increase its
clinical utility for various brain disorders. Recent progress
in graph neural networks has shed new light on early
diagnosis by synthesizing brain graphs across the different
axes (i.e., domain, time, and resolution) from minimal con-
nectomic data. Graph neural network models have achieved
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state-of-the-art performance across different medical appli-
cations; however, there is still room for improvement. First,
as witnessed in several medical imaging and connectomic
applications, in which breakthrough improvements were
challenging due to the scarcity of the datasets, multimodal
brain graph synthesis framework where three axis will be
involved jointly would lead to improved performance of
diagnosis-based models. Second, it will be important to
achieve a greater understanding of the GNN models; in
particular, we need to be able to explain how such models
generate the desired results and more precisely how to select
the GNN model that is more reproducible when learned
on multiple datasets [77], [99]. It will also be important to
investigate further the link between graph theory and graph
representation learning fields for the sake of improving
the learning of the models [109], [110]. Furthermore, it is
necessary to develop GNNs that are trained with a frugal
setting where a few brain graphs will be used in the learning
step of the model as in [111]-[113]. Finally, there are not
currently available studies that motivate and explain the
advantages and disadvantages of GNN in comparison to the
other ML-based techniques such as [33], [34]. Future studies
might investigate the reason to adopt GNN in contrast to
these other popular ML-based methods.
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