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Towards Accurate Reconstruction of 3D Scene
Shape from A Single Monocular Image

Wei Yin, Jianming Zhang, Oliver Wang, Simon Niklaus, Simon Chen, Yifan Liu, Chunhua Shen

Abstract—Despite significant progress made in the past few years, challenges remain for depth estimation using a single monocular
image. First, it is nontrivial to train a metric-depth prediction model that can generalize well to diverse scenes mainly due to limited
training data. Thus, researchers have built large-scale relative depth datasets that are much easier to collect. However, existing relative
depth estimation models often fail to recover accurate 3D scene shapes due to the unknown depth shift caused by training with the
relative depth data. We tackle this problem here and attempt to estimate accurate scene shapes by training on large-scale relative
depth data, and estimating the depth shift. To do so, we propose a two-stage framework that first predicts depth up to an unknown
scale and shift from a single monocular image, and then exploits 3D point cloud data to predict the depth shift and the camera’s focal
length that allow us to recover 3D scene shapes. As the two modules are trained separately, we do not need strictly paired training
data. In addition, we propose an image-level normalized regression loss and a normal-based geometry loss to improve training with
relative depth annotation. We test our depth model on nine unseen datasets and achieve state-of-the-art performance on zero-shot
evaluation. Code is available at: https://github.com/aim-uofa/depth/

Index Terms—Monocular depth prediction, 3D reconstruction, 3D scene shape estimation
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1 INTRODUCTION

3D scene reconstruction is a fundamental task in computer
vision. Current established approaches to address this task
mainly employ multi-view geometry [1], which reconstructs
3D scenes based on feature-point correspondence with con-
secutive frames or multiple views. In contrast, we aim to
recover dense 3D scene shape up to a scale from a single in-
the-wild image. With sparse guided depth points, our method
can further achieve metric shape. From a single image input,
some methods [2] propose to reconstruct both seen and oc-
clusion surfaces and represent them in a volumetric model
or 3D meshes, while our method only recovers the seen
surfaces and use the point cloud for representation. Under
this setting, without multiple views available, we rely on
monocular depth estimation. However, as shown in Fig. 1,
existing monocular depth estimation methods [3], [4], [5]
alone are unable to faithfully recover an accurate 3D point
cloud. Even with sparse guided points, it is still challenging
to generalize to diverse scenes. The key challenges are: 1) it
is difficult to collect large-scale metric depth datasets with
diverse scenes, which are needed to achieve good monocu-
lar depth estimation models; 2) alternatively, one can train
models on large-scale relative depth datasets which are much
easier to collect. We discover that learning depth on such
datasets requires estimating the depth shift and focal length
to generate accurate 3D scene shapes. This problem was
rarely studied in the literature, which we attempt to tackle
here.
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Recent works have shown great progress by training
deep neural networks on diverse in-the-wild data, e.g., web
stereo images and stereo videos [3], [6], [7], [8], [9], [10],
[11]. Chen et al. [6] propose the first large-scale and in-the-
wild dataset, termed DIW. Each image only provides a pair
of points and annotates their depth relations, i.e., one is
farther or closer than the other one. Xian et al. [3] propose
to collect diverse web stereo images and use optical flow
for finding pixel-wise correspondence so as to create dense
relative ground-truth depth because camera parameters are
unknown and differ for each pair of stereo images.

However, web stereo images and videos can only pro-
vide depth supervision up to a scale and shift due to the un-
known camera baselines and stereoscopic post-processing
[12]. Moreover, the diversity of the training data also poses
challenges for the model training, as training data captured
by different cameras can exhibit significantly different image
priors for depth estimation [13].

As a result, state-of-the-art in-the-wild monocular depth
estimation models use various types of objective functions
that are invariant to scale and shift to facilitate training.
While an unknown scale in depth does not cause scene
shape distortion, as it scales the 3D scene shape uniformly,
an unknown depth shift does (see Sec. 2.1. As shown in
Fig. 1, the walls are not flat because of the unknown shift). In
addition, the camera focal length of a given image may not
be accessible at the testing time, leading to more distortion
of the 3D scene shape (see the angle between two walls of
“Recovered shift” in Fig. 1). This scene shape distortion can
cause critical problems for some downstream tasks such as
3D view synthesis and 3D photography.

To address these challenges, we propose a novel two-
stage monocular scene shape estimation framework that
consists of 1) a depth prediction module; and 2) a point
cloud reconstruction module. The depth prediction module
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RGB / Depth          Distorted Point Cloud   Recovered shift       Recovered Shift & Focal Length    
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Fig. 1 – 3D scene structure distortion of projected point clouds. While the predicted depth map appears very good, the
3D scene shape of the point cloud suffers from noticeable distortions due to an unknown depth shift and focal length (2nd
column). Our method recovers these parameters using the 3D point cloud information. With the recovered depth shift, the
wall and bed edges become straight. However, the overall scene is stretched (3rd column). Finally, with recovered focal length,
an accurate 3D scene can be reconstructed (4th column).

is a convolutional network trained on a mix of existing
datasets that predicts depth maps up to a scale and shift. The
point cloud reconstruction module leverages point cloud
encoder networks that predict shift and focal length adjust-
ment factors from an initial guess of the scene point cloud
reconstruction. A key observation that we make here is that,
when operating on point clouds derived from depth maps, and not
on images themselves, we can train models to learn 3D scene
shapes using synthetic 3D data or data acquired by 3D laser
scanning devices. The domain gap is significantly less of an issue
for point clouds than that for images. We empirically show that
the point cloud network generalizes well to unseen datasets.
Moreover, as two modules can be trained separately, we do
not need paired “RGB-Point Cloud” training data.

To obtain a robust model, we propose to mix multiple
sources of data for training, including high-quality LiDAR
sensor data, medium-quality calibrated stereo data, and
low-quality web stereo data. Considering the quality dif-
ference, we propose to distinguish them and use heteroge-
neous losses instead of a uniform form. For example, the
low-quality data can only provide reliable depth ordinal
relations, thus the ranking loss [3], [10] is used. Other
data sources may have more accurate depths, but cameras
are various. The training schedule on multiple heteroge-
neous data sources can show great impact on the final
performance. We propose a simple yet effective normalized
regression loss for high-quality and medium-quality data.
It transforms the depth data to a canonical scale-shift-
invariant space for more robust training. Furthermore, to
improve the geometry quality of the depth, we propose a
pair-wise normal regression loss, which can account for both
local and global geometry constraints. From high-quality
data, reliable local normal information and global planes
relations are extracted, while other data can only provide
co-plane information from semantics. Explicitly using these
relations can significantly improve the depth quality.

From a single image input, we can reconstruct the scene
shape up to a scale. To further retrieve metric reconstruction,
we input some sparse depth points as guidance. However,
current state-of-the-art depth completion methods [14], [15]

often suffer from poor generalization. They work well on
one specific sparsity pattern but generalize poorly to other
types of sparse depth. They are often sensitive to the domain
source of the data and the noisy sparse inputs. To solve these
limitations, first, we employ our proposed heterogeneous
losses for training on mixed datasets. Second, we create
a diverse set of synthetic sparsity patterns in training to
improve the model’s robustness to various sparsity types.
Furthermore, to make our method robust to noise, we
leverage the depth map predicted by our single image
depth prediction method as a data-driven scene prior. By
incorporating sparse metric depth cues and a single image
relative depth prior, our method is able to robustly produce
a metric depth map.

To summarize, our main contributions are as follows.

• We propose a novel framework for in-the-wild monoc-
ular 3D scene shape estimation. To our knowledge, this
is the first approach tackling this task, and the first
method to leverage 3D point cloud neural networks
for improving the estimation of the structure of point
clouds derived from depth maps.

• We propose an image-wise normalized regression loss
and a pair-wise normal regression loss for improving
monocular depth estimation models trained on mixed
multi-source datasets.

• We propose to employ the mixed data training strategy
for depth completion, which can boost its robustness
to diverse scenes, various sparsity patterns, and noisy
inputs. Remarkably, With very sparse depth points and
even noisy inputs, we show promising metric recon-
struction results.

Experiments show that our point cloud reconstruction
method can recover accurate 3D shapes from single monoc-
ular images (up to scale). Moreover, with sparse points as
guidance, we can obtain metric 3D shapes. Also, for depth
prediction, our method achieves state-of-the-art results on
zero-shot evaluation on 10 unseen datasets. Our depth com-
pletion is much more robust than state-of-the-art methods
on diverse scenes and various sparsity types.



3

1.1 Related Work

Monocular depth estimation. Monocular depth prediction
is an ill-posed problem by nature. Many supervised and
self-supervised methods [5], [16], [17], [18], [19], [20] have
been proposed to improve the performance on benchmarks,
such as NYU [21] and KITTI [22]. Fu et al. [17] propose
to apply the atrous spatial pyramid pooling (ASPP), and
enforce the ordinal regression loss to predict the metric
depth. Yin et al. [20] propose the high-order virtual normal
loss to leverage the long-range geometry structure, which
significantly improves the quality of the reconstructed 3D
point cloud. Godard et al. [16] propose a minimum re-
projection loss and an auto-masking loss to leverage the
geometry relations between consecutive frames and left-
right views under the self-supervised learning framework.
It can achieve comparable performance on KITTI with state-
of-the-art supervised learning methods. Although impres-
sive performance can be achieved, all of these metric depth
prediction methods only work well on limited scenes, and
poorly generalize to diverse scenes.

To solve this problem, a few methods are proposed to
tackle the issue of estimating depth “in the wild”. Recently,
we have witnessed impressive progress [3], [6], [7], [9], [10],
[11], [23]. The key here is to collect large-scale training
data of either metric depth or relative depth. When metric
depth supervision is available, networks can be trained to
directly regress the metric depth [4], [5], [19]. However,
obtaining metric ground-truth depth for diverse datasets is
challenging. On the other hand, Chen et al. [6] collect the first
diverse relative depth annotations for internet images, while
other approaches propose to employ stereo images or videos
from the internet [3], [8], [9], [10], [11]. Such diverse data is
important for good generalization. As the metric depth is
unavailable, depth regression losses cannot be used directly.
Instead, these methods rely either on the ranking losses
[3], [6], [10] or scale and shift invariant loss functions [8],
[9]. In general, the ranking loss alone cannot fully exploit
the supervision and thus can only produce coarse depth
maps. As the camera model is unknown, thus the depth
can be predicted only up to scale and shift (so-called affine-
invariant depth estimation [11], [24]). The 3D shape cannot
be reconstructed from the predicted depth maps accurately.
Here, we tackle this problem: we aim to accurately recover
the 3D shape from a single image (i.e., 3D scene reconstruction
up to a scale).
3D reconstruction from a single image. Several works have
addressed reconstructing various types of objects from a
single image [25], [26], [27]. According to the representa-
tion used, methods can be classified into voxels [28], [29],
meshes [25], [30], point clouds, and implicit functions. Both
rigid and non-rigid object reconstruction was studied in
the literature. For example, Pixel2Mesh [25] proposes to
reconstruct the 3D shape from a single image and express it
in a triangular mesh. Recently, continuous implicit functions
[14], [31] are employed to represent shapes [32], [33]. Note
that, these methods cannot be directly applied to reconstruct
3D scenes from single images.

On the other hand, a few methods reconstruct 3D scenes
from a single image. Saxena et al. [34] segment a scene into
planes and predict the orientation and the location of these

planes and stitch them together to represent the scene. Other
works propose to use image cues, such as shading [35] and
contour edges [36] for the scene reconstruction.
Camera intrinsic parameter estimation. Recovering a cam-
era’s focal length is an important sub-task in 3D scene un-
derstanding. Traditional methods exploit reference objects
such as a planar calibration grid [37] or vanishing points
[38], which can then be used to estimate the focal length.
Other methods [39], [40] propose a data-driven approach
where a CNN recovers the focal length directly from an
image. Here, our point cloud module estimates the focal
length directly in 3D, which is an easier task than operating
on the images directly.
Depth completion. Depth completion aims to predict a
dense depth map from a sparse or an incomplete depth.
According to the type of the sparse depth, methods [15],
[41], [42], [43], [44], [45] can be categorized into two main
classes. The LiDAR for automotive vehicles or time-of-flight
(ToF) for smartphones can only provide sparse depths with
only a few hundred of pixels. Several methods [14], [15], [41]
leverage such sparse information. Park et al. [42] propose a
non-local spatial propagation network to aggregate relevant
information based on the predicted spatially-varying affini-
ties, demonstrating state-of-the-art performance on NYU
and KITTI. By contrast, commodity-level RGBD cameras,
such as Kinect and RealSense, can produce a more complete
depth map but still miss data in some regions which are
too glossy, bright, thin, close, or far from the camera. Some
methods [46], [47] apply inpainting methods to fill the
depth holes. Zhang et al. [44] use the surface normals and
occlusion boundaries for depth completion and optimize
global surface structures from those predictions with soft
constraints provided by observed depths.

2 OUR METHODS

Our two-stage pipeline for 3D shape estimation from single
images is shown in Fig. 2. It consists of a depth recovery
module and a point cloud module. The two modules are
trained separately on different data sources and are then
combined at the inference time. When there is only a single
image input, the depth recovery module outputs a depth
map [11] with unknown scale and shift in relation to the
true metric depth map. In contrast, if some sparse depth
points are available, the depth recovery module will take
both RGB image and sparse points as input, and outputs
the metric depth. The point cloud module takes as input a
distorted 3D point cloud that is computed using a predicted
depth map d and an initial estimation of the focal length
f ,1 and outputs shift adjustments to the depth map and the
focal length to improve the geometry of the reconstructed
3D scene shape. We describe the two modules next.

2.1 Point Cloud Module

We assume a pinhole camera model for the 3D point cloud
reconstruction, which means that the un-projection from 2D

1. This initial value does not need to be very accurate.
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Fig. 2 – The overall pipeline of our method. During training, the depth prediction model (top left) and point cloud module
(top right) are trained separately on different sources of data. During inference (bottom), the two networks are combined to
predict depth d; and the depth shift ∆d, the focal length f · αf using the predicted d, which together enable an accurate scene
shape reconstruction. Note that we employ point cloud networks to predict shift and focal length scaling factors separately.
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Fig. 3 – Illustration of the distorted 3D shape caused by
incorrect shift and focal length. A ground-truth depth map
is projected in 3D, which can create the ground truth point
cloud (see the first row). A and B annotate the walls. When
the focal length is incorrectly estimated (f > f∗ or f <
f∗), we observe significant structural distortion, e.g., see the
angle between two walls A and B (see the third column).
Second column: a shift (d∗ + ∆d or d∗ −∆d) also causes the
shape distortion, see the roof. Note that different distortions
are caused by the negative or positive shift.

coordinates and depth to 3D points is:
x = u−u0

f d

y = v−v0
f d

z = d

(1)

where (u0, v0) are the camera optical center; f is the focal
length, and d is the depth. The focal length affects the point
cloud shape as it scales x and y coordinates, but not z.
Similarly, a depth shift ∆d affects the x, y, and z coordinates
non-uniformly, which results in shape distortions.

For a human observer, these distortions are immediately
recognizable when viewing the point cloud at an oblique
angle, although they cannot be observed by looking at a
depth map alone. In Fig. 3, we can see that a shift for the
depth will cause planes camber, while the focal length will
change the angle between two planes (see the last column).

As a result, we propose to directly analyze the point cloud
to estimate the unknown shift and focal length, instead of working
with 2D images. We tried several network architectures that
take unstructured 3D point clouds as input and found that
the recent PVCNN [48] performs well for this task. Thus, we
build our method on the PVCNN architecture.

During training, a perturbed input point cloud with
incorrect shift and focal length is synthesized by perturbing
the known ground-truth depth shift and focal length. The
ground-truth depth d∗ is transformed by a shift ∆∗

d drawn
from U(−0.25, 0.8), and the ground truth focal length f∗ is
transformed by a scale α∗

f drawn from U(0.6, 1.25) to keep
the focal length positive and non-zero.

When recovering the depth shift, the perturbed 3D point
cloud F(u0, v0, f

∗, d∗ + ∆∗
d) is given as input to the shift

point cloud network Nd(·), trained with the objective:

L = min
θ
|Nd(F(u0, v0, f

∗, d∗ + ∆∗
d), θ)−∆∗

d| (2)

where θ are network weights and f∗ is the true focal length,
F(·) is the mapping defined in Eq. (1).

Similarly, when recovering the focal length, the point
cloud F(u0, v0, α

∗
ff

∗, d∗) is fed to the focal length point
cloud network Nf (·), trained with the objective:

L = min
θ

∣∣Nf (F(u0, v0, α
∗
ff

∗, d∗), θ)− α∗
f

∣∣ (3)

During the inference, the ground-truth depth is replaced
with the predicted affine-invariant depth d, which is nor-
malized to [0, 1] prior to the 3D reconstruction. We use an
initial guess of focal length f , giving us the reconstructed
point cloud F(u0, v0, f, d), which is fed to Nd(·) and Nf (·)
to predict the shift ∆d and focal length scaling factor αf
respectively. In our experiments, we simply use an initial
focal length with a field of view (FOV) of 60◦. We have also
tried to employ a single network to predict both the shift
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and the scaling factor, but have empirically found that two
separate networks achieve better performance.

2.2 Monocular Depth Prediction Module

When there is only an RGB image input, we propose a
monocular depth prediction module (DPM, see Fig. 2),
which takes Irgb as input and produces an affine-invariant
depth map d. We train our depth prediction on multiple data
sources including high-quality LiDAR sensor data, medium-
quality calibrated stereo data, and low-quality web stereo
data [8], [9], [10] (see Sec. 3). As these datasets have varied
depth ranges and web stereo datasets contain unknown
depth scale and shift, we propose an image-level normalized
regression (ILNR) loss to facilitate the training. Moreover,
we propose a pair-wise normal regression (PWN) loss to
exploit local geometry information.
Image-level normalized regression loss. Depth maps of
different data sources can have varied depth ranges. Nor-
malization is a critical step to transform data with variable
ranges to a comparable range where large features no longer
dominate smaller features [49]. Therefore, we propose to
normalize the data to make the model training easier. Simple
Min-Max normalization [49], [50] is sensitive to depth value
outliers. For example, a large value at a single pixel will
affect the rest of the depth map after the Min-Max normal-
ization. We investigate more robust normalization methods
and propose a simple but effective image-level normalized
regression loss for mixed-data training.

Our image-level normalized regression loss transforms
each ground-truth depth map to a similar numerical range
based on its individual statistics. To reduce the effect of out-
liers and long-tail residuals, we combine tanh normalization
[49] with a trimmed Z-score normalization, after which we
can simply apply a pixel-wise mean average error (MAE)
between the prediction and the normalized ground-truth
depth maps. The ILNR loss is formally defined as follows.

LILNR =
1

N

N∑
i

∣∣∣di − d∗i ∣∣∣+
∣∣tanh(di/100)− tanh(d

∗
i/100)

∣∣
where d

∗
i = (d∗i −µtrim)/σtrim and µtrim and σtrim are the mean

and the standard deviation of a trimmed depth map which
has the nearest and farthest 10% of pixels removed. d is the
predicted depth, and d∗ is the ground-truth depth map.

We have tested a number of other normalization meth-
ods such as Min-Max normalization [49], Z-score normaliza-
tion [51], and median absolute deviation normalization [49].
In our experiments, we observe that our proposed ILNR loss
achieves the best performance and generalization.
Pair-wise normal loss. Surface normals are an important
geometric property, which has been shown to be a comple-
mentary modality to depth [21]. Many methods have been
proposed to use normal constraints to improve the depth
quality, such as the virtual normal loss [5]. However, as the
virtual normal only leverages global structure, it may not
help improve the local geometric quality, such as edges and
planes. Recently, Xian et al. [10] proposed a structure-guided
ranking loss, which can improve edge sharpness. Inspired
by these methods, we follow their sampling method but en-
force the supervision in the surface normal space. Moreover,

our samples include not only edges but also planes. Our
proposed pair-wise normal (PWN) loss can better constrain
both the global and local geometric relations.

The detailed sampling method is described here. The
first step is to locate image edges. Following [5], we calculate
the surface normal from the depth map with the local least
squares fitting method. The Sobel edge detector is applied
to find edges from the surface normal map and the input
image. At each edge point, we then sample pairs of points
on both sides of the edge. The ground-truth normals for
these points are N∗ = {(n∗

A,n
∗
B)i|i = 0, ..., n}, while the

predicted normals are N = {(nA,nB)i|i = 0, ..., n}. Before
calculating the predicted surface normal, we align the pre-
dicted depth and the ground-truth depth with a scale and
shift factor, which are retrieved by the least squares fitting
[8]. To locate the object boundaries and intersection edge of
planes, where the normals change significantly, we set the
angle difference of two normals greater than arccos(0.3). To
balance the samples, we also get some negative samples,
where the angle difference is smaller than arccos(0.95) and
they are also detected as edges on the input image. The
sampling method is as follows:

S1 = {n∗
A ·n∗

B > 0.95,n∗
A ·n∗

B < 0.3|(n∗
A,n

∗
B)i ∈ N∗} (4)

Apart from samples on edges, we also sample points on
the same plane to improve the quality of predicted planes.
We enforce the co-plane supervision on samples that are on
the same plane. Specifically, we calculate their normals and
enforce their normals to be the same. We tried the surface
normal and virtual normal [24] on samples for the co-plane
constraint and found that they have a similar performance.
During training, we sample around 100K paired points per
training sample on average. The samples are {(Ai, Bi), i =
0, ..., N}. The PWN loss is:

LPWN =
1

N

N∑
i

|nAi · nBi
− n∗Ai · n∗Bi| (5)

where n∗ denotes ground truth surface normals. Note that
if points are on the same plane, n∗Ai · n∗Bi = 1. As this loss
accounts for both local and global geometry, we find that it
improves the overall reconstructed shape.
Creating instance planes. To enforce the PWN loss on
planes, we create instance planes on the high-quality Li-
DAR data (Taskonomy [52]) and medium-quality data
(DIML [53]). On Taskonomy, we use the least-squares fitting
method [5] to compute surface normals from depths. Then
we employ the DBSCAN algorithm [54] to cluster planes
that have the same surface normals. As the dataset DIML
is much noisier than Taskonomy, we cannot use such fitting
methods to obtain instance planes. Fig. 4 shows the compar-
ison. We use [55] to segment roads, which we assume to be
planar regions.

Finally, we also use a multi-scale gradient loss (MSG)
[56] and structure-guided ranking loss (SR) [10]. The MSG
loss is as follows:

LMSG =
1

N

K∑
k=1

N∑
i=1

∣∣∣5kxdi −5kxd∗i ∣∣∣+
∣∣∣5kydi −5kyd∗i ∣∣∣ (6)
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RGB Surface Normal        Edges

Fig. 4 – Detected edges on high-quality (Taskonomy [52], the
first row) and medium-quality data (DIML [53], the second
row). There are more artifacts on DIML (see red arrows).

LSR LILNR
LPWN

(Edges)
LPWN

(Planes) LMSG

High-quality (Taskonomy [52], 3D Ken Burn [57]) X X X X X
Medium-quality (DIML [53]) X X X X
Low-quality (HRWSI [10], Holopix [58]) X

TABLE 1 – Losses used for different datasets based on their
depth quality.

The structure-guided ranking loss is as follows:

LSR =
1

N

N∑
i=0

{
log (1 + exp [−l (di0 − di1)]) ; l 6= 0

(di0 − di1)
2
, l = 0,

(7)

where l =


+1, if d∗i0/d

∗
i1 ≥ 1 + τ ;

−1, if d∗i1/d
∗
i0 ≥ 1 + τ ;

0, otherwise.
.

The training strategy for mixed datasets. We mix 5 datasets
to train the depth model. Based on their depth quality, they
are categorized to high-quality data (Taskonomy [52] and
3d ken burns [57]), medium-quality data (DIML [53]), and
low-quality data (Holopix50K [58] and HRWSI [10]). Some
examples of such datasets are illustrated in Fig. A2.

For the low-quality web-stereo data, as their inverse
depths dinv have unknown scale and shift, i.e., dinv =
s · d∗inv + ∆d inv , the depth map (d = 1/dinv = 1/(s · d∗inv +
∆d inv)) can only demonstrate the relative depth relations.
Therefore, we only enforce the structured-guided ranking
loss on those data in the depth space. In Fig. A2, we can
see the reconstructed point cloud of low-quality data has
noticeable distortions.

For the medium-quality data, such as DIML [53], we
enforce the proposed image-level normalized regression
loss, multi-scale gradient loss, and ranking loss. As depths
contain much noise in local regions (see Fig. 4), enforcing the
pair-wise normal regression loss on noisy edges will cause
many artifacts. Therefore, we enforce the pair-wise normal
regression loss only on planar regions.

For the high-quality data, we apply all the three loss
terms. The overall loss functions for different datasets are
reported in Table 1.

2.3 Depth Completion Module

To recover accurate metric reconstruction, we propose to
combine a depth completion module with PCM. Note that

LSR LMAE
LPWN

(Edges)
LPWN

(Planes)
High-quality (Taskonomy [52]) X X X X
Medium-quality (DIML [53]) X X X

TABLE 2 – Losses used on different datasets for the depth
completion.

we only need the PCM to predict the focal length. Existing
depth completion methods are mainly classified into two
categories according to the input sparsity pattern: depth
inpainting methods that fill large holes [43], [44], [59], and
sparse depth completion methods that fill depths with only
hundreds of sparse points [15], [41], [42], [60], [61]. Current
methods [15], [42], [61], [62] can achieve impressive per-
formance on a specific sparsity pattern and scene, e.g., on
NYU [21], KITTI [63], and Matterport3D [64]. However, in
real-world scenarios, the problem is that the specific sparsity
pattern may be unknown, as it is conditioned on hardware,
software, and the configuration of the scene itself. Due to
the above reasons, multiple models have to be trained to
solve various sparse depth situations. Furthermore, outliers
and depth sensor noises are unavoidable in any depth
acquisition method. Most of previous methods only take an
RGB image and a sparse depth as the input, and they do not
have any extra source of information with which it could
distinguish the outliers.

Our proposed mixed-data training strategy is an effec-
tive approach to improve the generalization of the DPM.
During training, we synthetically create the sparse depth
input by sampling from the ground-truth depth. We cre-
ate a few different sparsity patterns, including 1) Uniform
sampling. We sample uniformly distributed points, from
hundreds to thousands of points; 2) Sampling feature points.
we use a feature detector to sample points from textured re-
gions and edge or corner parts. In our experiment, FAST [65]
feature detector is employed; 3) Creating holes. We mask
the depth by using a random polygonal region or at a
certain distance. Examples of sparsity patterns are shown
in Figure A4. Furthermore, to improve the robustness to
noisy inputs, we propose to input a data prior, which is from
our DPM, to help resolve incorrect constraints when there
is a significant discrepancy between the two. In order to
encourage the network to learn this, we add outliers during
training. Specifically, we randomly sample several points
and scale their depth by a random factor from 0.1 to 2.

During training, we only use the high-quality data
(Taskonomy [52]) and medium-quality data (DIML [53])
to train the model. The RGB image, sparse depth, and
guidance map are concatenated to be input to ESANet-R34-
NBt1D [66] network. The framework is shown in Figure A5.
Heterogeneous losses are enforced on two datasets, see
Table 2 for details. LMAE is the mean average error loss.

3 EXPERIMENTS

Datasets and implementation details. To train the PCM,
we sample 100K Kinect-captured depth maps from ScanNet,
114K LiDAR-captured depth maps from Taskonomy, and
51K synthetic depth maps from the 3D Ken Burns paper
[57]. We train the network using SGD with a batch size of
40, an initial learning rate of 0.24, and a learning rate decay
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Method ETH3D NYU KITTI Sintel DIODE
AbsRel↓

Baseline (Aligned scale) 23.7 25.8 23.3 47.4 46.8
Recovered shift + aligned scale 15.9 15.1 17.5 40.3 36.9
Aligned scale & shift 17.1 9.1 14.3 31.9 27.1

TABLE 3 – Effectiveness of recovering the shift from 3D
point clouds with the PCM. Compared with the baseline,
the AbsRel↓ is much lower after recovering the depth shift
over all test sets.
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Fig. 5 – Zero-shot evaluation of the focal length on the
2D-3D-S dataset. Following [39], we use the percentage of
correctly estimated images for evaluation. Left: our method
outperforms Hold-Geoffroy et al. [39]. Right: we experiment
on the effect of the initialization of field of view (FOV). Our
method remains robust across different initial FOVs, with a
slight degradation in quality beyond 25◦ and 65◦.

of 0.1. For parameters specific to PVCNN, such as the voxel
size, we follow the original work [48].

To train the DPM, we sample 114K RGBD pairs from
LiDAR-captured Taskonomy [52], 51K synthetic RGBD pairs
from the 3D Ken Burns paper [57], 121K RGBD pairs
from calibrated stereo DIML [53], 48K RGBD pairs from
web-stereo Holopix50K [58], and 20K web-stereo HRWSI
[10] RGBD pairs. Note that for the ablation study about
the effectiveness of PWN and ILNR, we sample a smaller
dataset which is composed of 12K images from Taskonomy,
12K images from DIML, and 12K images from HRWSI.
During training, 1000 images are withheld from all datasets
as a validation set. We use the depth prediction archi-
tecture proposed in Xian et al. [10], which consists of a
standard backbone for feature extraction (e.g., ResNet50 [67]
or ResNeXt101 [68]), followed by a decoder, and train it
using SGD with a batch size of 40, an initial learning rate
0.02 for all layer, and a learning rate decay of 0.1. Images
are resized to 448×448, and flipped horizontally with a 50%
chance. Following [11], we load data from different datasets
evenly for each batch. More details about training refer to
the appendix.
Evaluation details. The accuracy of focal length prediction
is evaluated on 2D-3D-S [69] following [39]. Furthermore,
to evaluate the accuracy of the reconstructed 3D shape,
we use the Locally Scale-Invariant RMSE (LSIV) [7] metric
on both OASIS [7] and 2D-3D-S [69]. It is consistent with
the previous work [7]. The OASIS [7] dataset only has the
ground-truth depth on some small regions, while 2D-3D-S
has the ground truth for the whole scene.

To evaluate the robustness of our depth prediction
method, we test on 9 datasets which are unseen during
training, including YouTube3D [70], OASIS [7], NYU [21],

KITTI [22], ScanNet [71], DIODE [72], ETH3D [73], Sintel
[74], and iBims-1 [75]. On OASIS and YouTube3D, we use
the Weighted Human Disagreement Rate (WHDR) [3] for
evaluation. On other datasets, except for iBims-1, we use the
absolute mean relative error (AbsRel↓) and the percentage
of pixels with δ1 = max( did∗i

,
d∗i
di

) < 1.25. We follow Ranftl et
al. [8] and align the scale and shift before evaluation.

To evaluate the geometric quality of the depth, i.e., the
quality of edges and planes, we follow [10], [57] and eval-
uate the depth boundary error [75] (εacc

DBE, ε
comp
DBE ) as well as

the planarity error [75] (εplan
PE , εorie

PE ) on iBims-1. εplan
PE and εorie

PE
evaluate the flatness and orientation of reconstructed 3D
planes compared to the ground truth 3D planes respectively,
while εacc

DBE and ε
comp
DBE demonstrate the localization accuracy

and the sharpness of edges respectively. More details as well
as a comparison of these test datasets are shown in Table A1.

3.1 3D Shape Reconstruction
Shift recovery. To evaluate the effectiveness of our depth
shift recovery, we perform the zero-shot evaluation on 5
datasets unseen during training. We recover a 3D point
cloud by unprojecting the predicted depth map and then
compute the depth shift using our PCM. We then align
the unknown scale [16], [18] of the original depth and our
shifted depth to the ground-truth and evaluate both using
the AbsRel↓ error. The results are shown in Table 3, where
we see that, on all test sets, the AbsRel↓ error is lower
after recovering the shift. We also trained a standard 2D
CNN to predict the shift given an image composed of the
un-projected point coordinates, but this approach did not
generalize well to samples from unseen datasets.
Focal length recovery. To evaluate the accuracy of our
recovered focal length, we follow Hold-Geoffroy et al. [39]
and test on the 2D-3D-S dataset, which is unseen during
training for both methods. The model of [39] is trained on
the in-the-wild SUN360 [76] dataset. We pre-define a degree
error threshold in classifying whether the recovered focal
length for one image is correct or not. Results are shown in
Fig. 5. We can see that our method demonstrates better gen-
eralization. Note that PVCNN is very lightweight and only
has 5.5M parameters, but shows promising generalization
capability. It indicates that there is a much smaller domain
gap between datasets in the 3D point cloud space than that
in the image space where appearance variation can be large.

Furthermore, we analyze the effect of different initial
focal lengths during inference. We set the initial field of
view (FOV) from 20◦ to 70◦ and evaluate the accuracy of
the recovered focal length, Fig. 5 (right). The experimental
results demonstrate that our method is not particularly
sensitive to different initial focal lengths.
Evaluation of 3D shape quality. Following OASIS [7], we
use LSIV for the quantitative comparison of recovered 3D
shapes on the OASIS [7] dataset and the 2D-3D-S [69]
dataset. OASIS only provides the ground truth point cloud
on small regions, while 2D-3D-S covers the whole 3D scene.
Following OASIS [7], we evaluate the reconstructed 3D
shape with two different camera models, i.e., the ortho-
graphic projection camera model [7] (infinite focal length)
and the (more realistic) pinhole camera model. As MiDaS
[8] and MegaDepth [56] do not estimate the focal length,
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RGB  MiDaS Ours-Baseline  Ours   MiDaS Ours-Baseline  Ours 

Left    View Top    View

Fig. 6 – Qualitative comparison. We compare the reconstructed 3D shape of our method with several baselines. As MiDaS [8]
does not estimate the focal length, we use the focal length recovered from [39] to convert the predicted depth to a point cloud.
“Ours-Baseline” does not recover the depth shift or focal length and uses an orthographic camera, while “Ours” recovers the
shift and focal length. Our method can better reconstruct the 3D shape, especially at edges and planar regions (see arrows).

Method OASIS 2D-3D-S
LSIV ↓ LSIV↓

Orthographic Camera Model
MegaDepth [56] 0.64 2.68
MiDaS [8] 0.63 2.65
Ours-DPM 0.63 2.65

Pinhole Camera Model
MegaDepth [56] + Hold-Geoffroy [39] 1.69 1.81
MiDaS [8] + Hold-Geoffroy [39] 1.60 0.94
MiDaS [8] + Ours-PCM 1.32 0.94
Ours 0.52 0.80

TABLE 4 – Quantitative evaluation of the reconstructed
3D shape quality on OASIS and 2D-3D-S. Our method can
achieve better performance than previous methods. Com-
pared with the orthographic projection, our method using
the pinhole camera model can obtain better performance.
DPM and PCM refer to our depth prediction module and
point cloud module, respectively.

we use the focal length recovered from Hold-Geoffroy [39]
to convert the predicted depth to a point cloud. We also
evaluate a baseline using MiDaS instead of our DPM with
the focal length predicted by our PCM (“MiDaS + Ours-
PCM”). Table 4 shows that, with an orthographic projection,
our method (“Ours-DPM”) performs roughly as well as
existing state-of-the-art methods. However, for the pinhole
camera model, our combined method significantly outper-
forms existing approaches. Furthermore, “MiDaS + Ours-
PCM” and “MiDaS + Hold-Geoffroy” show that our PCM is
able to generalize to different depth prediction methods.

A qualitative comparison of the reconstructed 3D shape
for in-the-wild scenes is shown in Fig. 6. It demonstrates that
our model can recover significantly more accurate 3D scene

Method iBims-1
εacc

DBE ↓ ε
comp
DBE ↓ ε

plan
PE ↓ εorie

PE ↓ AbsRel↓↓
Xian [10] 7.72 9.68 5.00 44.77 0.301
MegaDepth [56] 4.09 8.28 7.04 33.03 0.20
MiDaS [8] 1.91 5.72 3.43 12.78 0.104
3D Ken Burns [57] 2.02 5.44 2.19 10.24 0.097

Ours† w/o PWN 2.05 6.10 3.91 13.47 0.106
Ours† 1.91 5.70 2.95 11.59 0.101
Ours Full 1.90 5.73 2.0 7.41 0.079

TABLE 5 – Quantitative comparison of the quality of depth
boundaries (DBE) and planes (PE) on the iBims-1 dataset.
We use † to indicate when a method was trained on the
small training subset.

shapes. For example, planar structures such as walls, floors,
and roads are much flatter in our reconstructed scenes,
and the angles between surfaces (e.g., walls) are also more
realistic. Also, the shape of the car has fewer distortions.

3.2 Monocular Depth Estimation Module

In this section, we conduct several experiments to demon-
strate the effectiveness of our depth prediction method, in-
cluding a comparison with state-of-the-art methods, a com-
parison of our proposed image-level normalized regression
loss with other methods, and an analysis of the effectiveness
of our pair-wise normal regression loss.
Comparison with state-of-the-art methods. In this compari-
son, we test on datasets unseen during training. We compare
with methods that have been shown to best generalize to in-
the-wild scenes. Their results are obtained by running the
publicly released code. Each method is trained on its own
proposed datasets. When comparing the AbsRel↓ error, we
follow Ranftl [8] and align the scale and shift before the
evaluation. The results are shown in Table 6. Our method
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Fig. 7 – Qualitative comparisons with state-of-the-art methods, including MegaDepth [56], Xian et al. [10], and MiDaS [8]. It
shows that our method can predict more accurate depths at far locations and regions with complex details. In addition, we
see that our method generalizes better to in-the-wild scenes.

Method Backbone OASIS YT3D NYU KITTI DIODE ScanNet ETH3D Sintel Rank↓WHDR↓ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑
OASIS [7] ResNet50 32.7 27.0 21.9 66.8 31.7 43.7 48.4 53.4 19.8 69.7 29.2 59.5 60.2 42.9 6.7

MegaDepth [56] Hourglass 33.5 26.7 19.4 71.4 20.1 66.3 39.1 61.5 19.0 71.2 26.0 64.3 39.8 52.7 6.7
Xian et al. [10] ResNet50 31.6 23.0 16.6 77.2 27.0 52.9 42.5 61.8 17.4 75.9 27.3 63.0 52.6 50.9 6.7

WSVD [9] ResNet50 34.8 24.8 22.6 65.0 24.4 60.2 35.8 63.8 18.9 71.4 26.1 61.9 35.9 54.5 6.6
Chen et al. [70] ResNet50 33.6 20.9 16.6 77.3 32.7 51.2 37.9 66.0 16.5 76.7 23.7 67.2 38.4 57.4 5.6

DiverseDepth [11], [24] ResNeXt50 30.9 21.2 11.7 87.5 19.0 70.4 37.6 63.1 10.8 88.2 22.8 69.4 38.6 58.7 4.4
MiDaS [8] ResNeXt101 29.5 19.9 11.1 88.5 23.6 63.0 33.2 71.5 11.1 88.6 18.4 75.2 40.5 60.6 3.5

Ours ResNet50 30.2 19.5 9.1 91.4 14.3 80.0 28.7 75.1 9.6 90.8 18.4 75.8 34.4 62.4 1.9
Ours ResNeXt101 28.3 19.2 9.0 91.6 14.9 78.4 27.1 76.6 9.5 91.2 17.1 77.7 31.9 65.9 1.1

TABLE 6 – Quantitative comparison of our depth prediction with state-of-the-art methods on eight zero-shot (unseen during
training) datasets. Our method achieves better performance than existing state-of-the-art methods across all test datasets.

outperforms prior works, and using a larger ResNeXt101
backbone further improves the results. Some qualitative
comparisons are shown in Fig. 7.

Pair-wise normal loss. To evaluate the quality of our full
method and dataset on edges and planes, we compare our
depth model with previous state-of-the-art methods on the
iBims-1 dataset. In addition, we evaluate the effect of our
proposed pair-wise normal (PWN) loss through an ablation
study. As training on our full dataset is computationally
demanding, we perform this ablation on the small training
subset. The results are shown in Table 5. We can see that
our full method outperforms prior methods for this task. In
addition, under the same settings, both edges and planes
are improved by adding the PWN loss. We further show a
qualitative comparison of depths and reconstructed point
clouds in Fig. A8 and Fig. A9 respectively. We can see
that the edges in depths are more accurate and sharper

than those without PWN supervision, and the reconstructed
point clouds have much fewer distortions.

Image-level normalized regression loss. To show the effec-
tiveness of our proposed image-level normalized regression
(ILNR) loss, we compare it with the scale-shift invariant loss
(SSMAE) [8] and the scale-invariant multi-scale gradient
loss [9]. Each of these methods is trained on the small
training subset to limit the computational overhead, and
comparisons are made to datasets that are unseen during
training. All models have been trained for 50 epochs, and
we have verified that all models are fully converged by
then. The quantitative comparison is shown in Table 7,
where we can see an improvement of ILNR over other scale-
shift invariant losses. Furthermore, we also analyze different
options for normalization, including image-level Min-Max
(MinMax) normalization and image-level median absolute
deviation (MAD) normalization, and found that our pro-
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Method RedWeb NYU KITTI ScanNet DIODE
WHDR↓ AbsRel↓

SMSG [9] 19.1 15.6 16.3 13.7 36.5
SSMAE [8] 19.2 14.4 18.2 13.3 34.4

MinMax 19.1 15.0 17.1 13.3 46.1
MAD 18.8 14.8 17.4 12.5 34.6

ILNR-W/o Tanh 18.6 14.3 16.3 12.5 34.5
ILNR 18.7 13.9 16.1 12.3 34.2

TABLE 7 – Quantitative comparison of different losses on
zero-shot generalization to 5 datasets unseen during train-
ing.

Method Si-hum↓ Si-env↓ Si-RMS↓ AbsRel↓
DeMoN [79] 0.360 0.302 0.866 0.220
Li-I [77] 0.294 0.334 0.318 0.204
Li-IFCM [77] 0.302 0.330 0.316 0.206
Li-IDCM [77] 0.293 0.238 0.272 0.147
DiverseDepth [11] 0.272 0.270 0.272 0.192
Ours 0.258 0.247 0.251 0.175

TABLE 8 – Comparison of the foreground people on the
TUM-RGBD datasets. Our overall performance is compa-
rable with previous methods, while our depths are more
accurate on foreground people. Note that [77] needs extra
input such as the semantic human masks.

posed loss performs a bit better. We further investigate the
effectiveness of ‘Tanh’ term in our ILNR. It can slightly
improve the performance.
Comparison of depth prediction on people. Li et al. [77]
propose the first work to solve the depth prediction of mov-
ing people. Apart from RGB image, they propose to input
the background depth which is obtained by the structure-
from-motion method, and the mask of humans as guidance
(see Li-IFCM and Li-IDCM in Table 8) to predict the high-
quality depth of moving people. In comparison, our method
only takes a single RGB image. Following [77], we conduct
the comparison on the TUM-RGBD [78] dataset. The quan-
titative comparison illustrated in Table 8 shows that our
method can achieve comparable performance with them. On
humans, our depth is more accurate than other methods.
Moreover, the visual results are illustrated in Fig. A3. We
can see that our predicted depths have fewer artifacts and
sharper edges than Li et al. [77] and DiverseDepth [11], [24].
Additional qualitative results on in-the-wild scenes. Fig. 8
demonstrates more in-the-wild scenes examples. We can see
that the predicted depths exhibit fine details on the edges.
Furthermore, we show reconstructed point clouds.

3.3 Depth Completion

In this section, we conduct several experiments to report the
effectiveness of our method for depth completion. To show
the generalization of our method, we conduct the zero-shot
testing on a few benchmark datasets. Note that we only train
a single model to solve different sparse depth situations,
while previous methods [42], [43] train different models for
different sparse patterns.
Comparison with state-of-the-art depth completion meth-
ods. We test on standard benchmarks, NYU [21] and Matter-
port3D [64]. Note that our models were not trained on these
datasets. Two benchmarks have different types of sparse
patterns: On NYU, the sparse depth only has 500 valid
pixels, while Matterport3D provides the incomplete sensor-

captured depth map. We include a baseline method (Ours-
baseline) where the model does not make use of depth
guidance, that is, it directly predicts the complete depth
from RGB and sparse depth without the guidance map.
‘Ours’ input another guidance map, which is from our DPM.

Table 10 reports the results on NYU. Our method perfor-
mance is close to these state-of-the-art methods, and better
than the baseline. Similarly, Table 11 shows the comparison
on the Matterport3D dataset. Ours can outperform previous
methods on some metrics, and are better than the baseline.
Note that we do not fine-tune our model on the target
Matterport3D dataset.
Illustration of metric reconstruction. We show some vi-
sual comparisons of reconstructed metric shape in Fig. 9.
Note that ‘ours’ employs PCM to predict the focal length,
while others use the ground truth focal length. Although
the state-of-the-art depth completion method can achieve
better quantitative performance than ours, our method—
supervised by the geometric loss—can reconstruct a more
accurate scene structure. It is clear that our reconstructed
walls are flatter than [43].
Effectiveness of completing sparse depth. To evaluate the
robustness of our method to noisy sparse inputs, we use
COLMAP [84] to densely reconstruct 16 scenes of NYU.
We use the ground truth to remove some outliers to obtain
the sparse depth as inputs. There are over 4000 images for
evaluation. Results are shown in 12. We mainly compare
with NLSPN [42] and Senushkin et al. [43], which have
achieved the state-of-the-art performance on benchmarks.
Our method can achieve better accuracy than existing meth-
ods. Comparing with our baseline, using the guidance map
further boosts performance. Some qualitative comparisons
are shown in Fig. A6, we can see that our completed depths
have much less outliers and noise (see the wall).
Generalization to different sparse depth types. To demon-
strate the robustness of our methods to zero-shot test
datasets and some unseen sparsity patterns, we create 3
sparse depth patterns on 3 unseen datasets for evaluation.
Note that such synthesized sparsity patterns are different
from that used in training. Sparsity patterns are: 1) Unpaired
FOV. We propose to remove 25% region along the 4 borders
of the ground truth depth as the sparse depth. 2) Sparse ToF.
To simulate Time-of-flight sensors captured sparse depth we
downsample the ground truth depth map to a low resolu-
tion, up-project to the original size, and mask the distant
regions to obtain the sparse depth. 3) Short Range. We mask
the 50% most distant regions of ground-truth to obtain the
incomplete depth. We compare our methods to the state-of-
the-art methods of NYU and Matterport3D benchmarks, i.e.,
NLSPN [42] and Senushkin et al. [43]. NLSPN method aims
to complete the depth with only hundreds of valid points,
while Senushkin et al. [43] method designs to complete
contiguous holes. We can see that, although NLSP [42] and
Senushkin et al. [43] can achieve state-of-the-art performance
on NYU and Matterport3D dataset respectively, they cannot
generalize to different types of sparse depth and unseen
datasets. In contrast, our method can achieve comparable
performance on different datasets. We believe that our
mixed-data training strategy and inputting a guidance map
can significantly improve the model’s robustness. Some
visual comparison is shown in Figure A7.
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Fig. 8 – Qualitative results on some in-the-wild scenes. The reconstructed point clouds and depth maps of some in-the-wild
scenes are illustrated.

Methods
NYU ScanNet DIODE

AbsRel↓ AbsRel↓ AbsRel↓
Unp. FOV Sparse ToF Short Range Unp. FOV Sparse ToF Short Range Unp. FOV Sparse ToF Short Range

NLSP [42] 0.150 0.190 0.114 0.716 1.413 0.202 6.684 11.370 1.005
Senushkin et al. [43] 0.224 0.615 0.093 0.255 0.793 0.166 0.687 6.120 0.623
Ours-Baseline 0.046 0.018 0.041 0.049 0.022 0.047 0.150 0.143 0.144
Ours 0.031 0.013 0.030 0.028 0.014 0.037 0.139 0.111 0.137

TABLE 9 – Comparison of our method with state-of-the-art methods on zero-shot test datasets. We create 3 different sparse
depth types for evaluation. It is clear that our method has better generalization than previous methods on unseen data and
unseen sparsity patterns.

Methods RMSE↓ AbsRel↓ δ1 ↑ δ2 ↑ δ3 ↑
S2D [80] 0.230 0.044 97.1 99.4 99.8
S2D+SPN [81] 0.172 0.031 98.3 99.7 99.9
DepthCoeff [82] 0.118 0.013 99.4 99.9 -
CSPN [62] 0.117 0.016 99.2 99.9 100.0
DeepLiDAR [61] 0.115 0.022 99.3 99.9 100.0
DepthNormal [60] 0.112 0.018 99.5 99.9 100.0
NLSP [42] 0.092 0.012 99.6 99.9 100.0
Lee et al. [83] 0.104 0.014 99.4 99.9 100.0
Ours-baseline 0.210 0.036 98.4 99.6 99.9
Ours 0.183 0.022 98.7 99.7 99.9

TABLE 10 – Depth completion results on the NYU dataset.
Following [42], we uniformly sample 500 points from
ground truth as the sparse depth. Our method is not trained
on NYU but is comparable with state-of-the-art methods
show here that are trained on NYU. With guidance map,
the performance is better.

3.4 Applications

Our depth predictions can be used to apply a range of
depth-based visual effects such as defocus, view synthesis,

Methods RMSE↓ MAE↓ δ1.05 ↑ δ1.1 ↑ δ1 ↑ δ2 ↑ δ3 ↑
Huang et al. [59] 1.092 0.342 66.1 75.0 85.0 91.1 93.6
Zhang et al. [44] 1.316 0.461 65.7 70.8 78.1 85.1 88.8
Senushkin et al. [43] 1.03 0.299 71.9 80.5 89.0 93.2 95.0
Ours-baseline 2.35 0.574 68.9 78.6 86.1 91.5 96.0
Ours 1.03 0.320 71.2 79.0 87.1 93.1 96.0

TABLE 11 – Depth completion results on the Matterport3D
dataset. Our method is not trained on Matterport3D but is
comparable with state-of-the-art methods that are trained
on Matterport3D. RMSE and MAE are given in meters. With
the guidance map, the performance is improved.

Metrics NLSPN
[42]

Senushkinet al.
[43]

Ours
(baseline)

Ours
(W Guidance)

AbsRel (%)↓ 24.9 18.26 6.41 5.25
δ1 (%) ↑ 54.7 70.3 93.6 95.2

TABLE 12 – Comparison on completing noisy sparse depth,
showing robustness to noisy input.

and so on. Here we show an example of using our predicted
depth to create a 3D photo. We take the method of [85] to
synthesize new views, which takes the single image and our
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RGB GT Sparse depth Senushkin et al.         Ours Senushkin et al. Ours GT point cloud

Fig. 9 – Qualitative comparison of the depth and reconstructed 3D shapes. Our metric depths show finer details. The
reconstructed 3D shape is more accurate than previous methods.

RGB Depth RGB Depth

Fig. 10 – Failure cases of the monocular depth prediction
module. It is challenging to predict accurate monocular
depth for blurry background, mirror, 2D paintings, and
cartoon scenes.

predicted depth map to create new views. Furthermore, we
also show an example of using our predicted depth to create
the defocus image. Results are shown in Fig. A10.

3.5 Limitations
We have observed a few limitations of our method. Here we
analyze some failure cases of the depth prediction module
and the point cloud module.
Failure cases of DPM. We show some typical failure cases
of DPM in Fig. 10. 1) Out of focus. This may be due to the
fact that our training images are all-in-focus. 2) Paintings (or
mirrors) can cause ambiguity to the network. 3) Cartoons.
Since the domain gap exists between cartoons and real
photos, the network cannot work well. We believe that such
problems can be largely solved with more training data.
Failure cases of PCM. Our PCM cannot recover accurate
focal length or depth shift when the scene does not have
enough geometric cues, e.g., when the whole image is mostly
a wall or a sky region (see the ‘Example 3’ in Fig. 11). The
accuracy of our method will also decrease with images taken
from uncommon view angles (e.g., top-down) (see ‘Example
4’ in Fig. 11) or extreme focal lengths. More diverse 3D
training data may address these failure cases. In addition,
our method does not model the effect of radial distortion
from the camera and thus the reconstructed scene shape can
be distorted in cases with severe radial distortion. Studying

how to recover the radial distortion parameters using our
PCM can be an interesting future direction.

Furthermore, we also obverse that our system will fail
on 3D paintings, see the ‘Example 1’ in Fig. 11. Our method
falsely predicts the 3D painting ‘hat’ in a 3D shape (see the
first row), while the problem is relieved a lot when seeing
this scene in another view (see the second row). Besides,
‘Example 2’ shows that curvy walls are another difficult case
for our method.

4 CONCLUSION

In summary, we have presented, to our knowledge, the
first fully data-driven method that reconstructs 3D scene
shapes from single monocular images. To recover the shift
and focal length for 3D reconstruction, we have proposed to
use point cloud networks trained on datasets with known
global depth shifts and focal lengths. This approach has
demonstrated strong generalization capabilities, and we are
under the impression that it may be helpful for related depth
and 3D reconstruction tasks. Our extensive experiments
verify the effectiveness of our scene shape reconstruction
method and the superior generalization to unseen data.
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under a second-order smoothness prior,” in Scandinavian Confer-
ence on Image Analysis, pp. 555–566, Springer, 2013.

[47] Y. Zuo, Q. Wu, J. Zhang, and P. An, “Explicit edge inconsistency
evaluation model for color-guided depth map enhancement,”
IEEE Trans. Circuits Syst. Video Technol., vol. 28, no. 2, pp. 439–453,
2016.

[48] Z. Liu, H. Tang, Y. Lin, and S. Han, “Point-voxel cnn for efficient
3d deep learning,” in Proc. Advances in Neural Inf. Process. Syst.,
2019.

[49] D. Singh and B. Singh, “Investigating the impact of data nor-
malization on classification performance,” Applied Soft Computing,
p. 105524, 2019.

[50] S. Garcı́a, J. Luengo, and F. Herrera, Data preprocessing in data
mining. Springer, 2015.

[51] K. Fukunaga, Introduction to Statistical Pattern Recognition. Elsevier,
2013.

[52] A. Zamir, A. Sax, , W. Shen, L. Guibas, J. Malik, and S. Savarese,
“Taskonomy: Disentangling task transfer learning,” in Proc. IEEE
Conf. Comp. Vis. Patt. Recogn., IEEE, 2018.

[53] Y. Kim, H. Jung, D. Min, and K. Sohn, “Deep monocular depth
estimation via integration of global and local predictions,” IEEE
Trans. Image Process., vol. 27, no. 8, pp. 4131–4144, 2018.

[54] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in Int. Conf. on Know. Disc. and Data Min., p. 226–231, 1996.

[55] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for semantic
image segmentation,” in Proc. Eur. Conf. Comp. Vis., 2018.

[56] Z. Li and N. Snavely, “Megadepth: Learning single-view depth
prediction from internet photos,” in Proc. IEEE Conf. Comp. Vis.
Patt. Recogn., pp. 2041–2050, 2018.

[57] S. Niklaus, L. Mai, J. Yang, and F. Liu, “3d ken burns effect from a
single image,” ACM Trans. Graph., vol. 38, no. 6, pp. 184:1–184:15,
2019.

[58] Y. Hua, P. Kohli, P. Uplavikar, A. Ravi, S. Gunaseelan, J. Orozco,
and E. Li, “Holopix50k: A large-scale in-the-wild stereo image
dataset,” in IEEE Conf. Comput. Vis. Pattern Recog. Worksh., June
2020.

[59] Y.-K. Huang, T.-H. Wu, Y.-C. Liu, and W. H. Hsu, “Indoor depth
completion with boundary consistency and self-attention,” in Proc.
IEEE Int. Conf. Comp. Vis. Worksh., pp. 0–0, 2019.

[60] Y. Xu, X. Zhu, J. Shi, G. Zhang, H. Bao, and H. Li, “Depth
completion from sparse lidar data with depth-normal constraints,”
in Proc. IEEE Int. Conf. Comp. Vis., pp. 2811–2820, 2019.

[61] J. Qiu, Z. Cui, Y. Zhang, X. Zhang, S. Liu, B. Zeng, and M. Polle-
feys, “Deeplidar: Deep surface normal guided depth prediction
for outdoor scene from sparse lidar data and single color image,”
in Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pp. 3313–3322, 2019.

[62] X. Cheng, P. Wang, and R. Yang, “Depth estimation via affinity
learned with convolutional spatial propagation network,” in Proc.
Eur. Conf. Comp. Vis., pp. 103–119, 2018.

[63] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and
A. Geiger, “Sparsity invariant cnns,” in Int. Conf. 3D. Vis.

[64] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner,
M. Savva, S. Song, A. Zeng, and Y. Zhang, “Matterport3d: Learn-
ing from rgb-d data in indoor environments,” Int. Conf. 3D. Vis.,
2017.

[65] E. Rosten and T. Drummond, “Machine learning for high-speed
corner detection,” in Proc. Eur. Conf. Comp. Vis., pp. 430–443,
Springer, 2006.
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We provide experiment details and some additional re-
sults here.

APPENDIX A
DETAILS FOR DCM AND PCM TRAINING

A.1 Networks

Depth

Multi-sources Data

Inverse Depth 

Fig. A1 – The network architecture for the DPM. The net-
work has two output branches. The decoder outputs the
depth map, while the auxiliary path outputs the inverse
depth. Different losses are enforced on these two branches.

A.2 Training

We use the depth prediction model proposed by Xian et
al. [10].

We follow [11] and combine the multi-source training
data by evenly sampling from all sources per batch. As
HRWSI and Holopix50K are both web stereo data, we
merge them together. Therefore, there are four different
data sources, i.e. high-quality Taskonomy, synthetic 3D Ken
Burn, middle-quality DIML, and low-quality Holopix50K
and HRWSI. For example, if the batch size is 8, we sample
2 images from each of the four sources. Furthermore, as the
ground truth depth quality varies between data sources, we
enforce different losses for them.

For the web-stereo data, such as Holopix50K [58] and
HRWSI [10], as their inverse depths have unknown scale
and shift, these inverse depths cannot be used to compute
the affine-invariant depth (up to an unknown scale and shift
to the metric depth). The pixel-wise regression loss and
geometry loss cannot be applied for such data. Therefore,
during training, we only enforce the ranking loss [3] on
them.

For the middle-quality calibrated stereo data, such as
DIML [53], we enforce the proposed image-level normalized
regression loss, multi-scale gradient loss and ranking loss.
As the recovered disparities contain much noise in local
regions, enforcing the pair-wise normal regression loss on
noisy edges will cause many artifacts. Therefore, we enforce
the pair-wise normal regression loss only on planar regions
for this data.

For the high-quality data, such as Taskonomy [52] and
synthetic 3D Ken Burns [57], accurate edges and planes
can be located. Therefore, we apply the pair-wise normal
regression loss, ranking loss, and multi-scale gradient loss
for this data.

Furthermore, we follow [86] and add a light-weight
auxiliary path on the decoder. The auxiliary outputs the
inverse depth and the main branch (decoder) outputs the
depth. For the auxiliary path, we enforce the ranking loss,
image-level normalized regression loss in the inverse depth
space on all data. The network is illustrated in Fig. A1.

When training the point cloud network, we follow
PVCNN [48] classification training setting but replace the
cross-entropy loss with our proposed regression loss. To
train the PCM, we sampled 100K Kinect-captured depth
maps from ScanNet, 114K LiDAR-captured depth maps
from Taskonomy, and 51K synthetic depth maps from the
3D Ken Burns. We train the network using SGD with a batch
size of 40, an initial learning rate of 0.24, and a learning rate
decay of 0.1. For parameters specific to PVCNN, such as the
voxel size, we follow the original work.

APPENDIX B
DETAILS FOR DEPTH COMPLETION TRAINING

The depth completion module takes an RGB image, a sparse
depth map, and our DPM predicted depth as the guidance
map. The ESANet-R34-NBt1D network [87] is employed.
The framework is illustrated in A5. During training, we
used Taskonomy [52] and DIML [53] as the training data.
The SGD is used for optimization with an initial learning
rate of 0.02. The learning rate is decayed every 40000 itera-
tions with the ratio 0.1. The batch size is 24.
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Low quality High quality Middle quality

Fig. A2 – Some examples of training data. High-quality and medium-quality data are from Taskonomy and DIML respectively.
Low-quality data is from HRWSI, of which the unprojected point cloud exhibit significant distortion.

Dataset # Images Scene type Evaluation metric Supervision type
NYU 654 Indoor AbsRel & δ1 Kinect
ScanNet 700 Indoor AbsRel & δ1 Kinect
2D-3D-S 12256 Indoor LSIV LiDAR

iBims-1 100 Indoor AbsRel &
εPE &εDBE

LiDAR

KITTI 652 Outdoor AbsRel & δ1 LiDAR
Sintel 641 Outdoor AbsRel & δ1 Synthetic
ETH3D 431 Outdoor AbsRel & δ1 LiDAR
YouTube3D 58054 In the Wild WHDR SfM, Ordinal pairs

OASIS 10000 In the Wild WHDR & LSIV User clicks,
Small patches with GT

DIODE 771 Indoor & Outdoor AbsRel & δ1 LiDAR

TUM-RGBD 1815 Indoor AbsRel & SiLog Kinect

TABLE A1 – Overview of the test sets in our experiments.
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RGB         GT    DiverseDepth Li et al .     Ours

Fig. A3 – Qualitative comparison on the TUM-RGBD dataset. Following Li et al. [77], we compare the depth of moving people
on the TUM-RGBD dataset.
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(a) (b)

(c) (d)

Fig. A4 – Visualization of sampled sparse depths. We simulate three different patterns from (a) the dense depth to train models:
(b) random uniform sampling, (c) feature point based sampling, and (d) region-based sampling.

Depth Completion 

Network

Depth Completion 

Network

RGB    Sparse depth       Guidance map        Completed depth

Depth Completion 

Network

RGB Sparse depth Guidance map Completed depth

Fig. A5 – Framework of depth completion. We propose to input an RGB image, a sparse depth, and a guidance map for the
depth completion. The guidance map is obtained from our monocular depth estimation method.
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RGB       COLMAP     Sparse depth Senushkin et al. Ours GT

Fig. A6 – Qualitative comparison for completing noisy sparse depth. The noisy sparse depths are obtained by masking
COLMAP [84] depths. Our completed results have less outliers and errors.
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Fig. A7 – Qualitative completion results on the DIODE [72] dataset. Note that none of the methods are trained on this dataset.
We compare our method with Senushkin et al. [43] and NLSP [42] using 3 different unseen sparsity patterns.
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RGB          GT       W/o PWN  W PWN

Fig. A8 – Qualitative comparison. Using the pair-wise normal loss (PWN), we can see that predicted depths exhibit finer
details on edges.

RGB GT point cloud  W/o PWN W PWN

Fig. A9 – Qualitative comparison of reconstructed point clouds. Using the pair-wise normal loss (PWN), we can see that
edges and planes are better reconstructed (see highlighted regions).
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Raw Image Defocus  

View 1     View 2         View 3

Fig. A10 – Demonstration of some applications. We use the predicted depth to create some visual effects on a single input
image. The first row out of focus synthesis, while the second row is new views synthesis.
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