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Channel Exchanging Networks for Multimodal
and Multitask Dense Image Prediction

Yikai Wang, Fuchun Sun, Wenbing Huang, Fengxiang He, Dacheng Tao

Abstract—Multimodal fusion and multitask learning are two vital topics in machine learning. Despite the fruitful progress, existing
methods for both problems are still brittle to the same challenge—it remains dilemmatic to integrate the common information across
modalities (resp. tasks) meanwhile preserving the specific patterns of each modality (resp. task). Besides, while they are actually
closely related to each other, multimodal fusion and multitask learning are rarely explored within the same methodological framework
before. In this paper, we propose Channel-Exchanging-Network (CEN) which is self-adaptive, parameter-free, and more importantly,
applicable for multimodal and multitask dense image prediction. At its core, CEN adaptively exchanges channels between subnetworks
of different modalities. Specifically, the channel exchanging process is self-guided by individual channel importance that is measured
by the magnitude of Batch-Normalization (BN) scaling factor during training. For the application of dense image prediction, the validity
of CEN is tested by four different scenarios: multimodal fusion, cycle multimodal fusion, multitask learning, and multimodal multitask
learning. Extensive experiments on semantic segmentation via RGB-D data and image translation through multi-domain input verify the
effectiveness of CEN compared to state-of-the-art methods. Detailed ablation studies have also been carried out, which demonstrate
the advantage of each component we propose. Our code is available at https://github.com/yikaiw/CEN.

Index Terms—Multimodal Fusion, Multitask Learning, Channel Exchanging, Semantic Segmentation, Image-to-Image Translation.
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1 INTRODUCTION

ENCOURAGED by the growing availability of low-cost
sensors, multimodal fusion that takes advantage of mul-

tiple data sources for classification or regression becomes
one of the central problems in machine learning [1]. Joining
the success of deep learning, multimodal fusion is recently
specified as deep multimodal fusion by introducing end-to-end
neural integration of multiple modalities [2], and it has ex-
hibited remarkable benefits against the unimodal paradigm
in semantic segmentation [3], [4], action recognition [5], [6],
[7], visual question answering [8], [9], and many others [10],
[11], [12]. Multitask learning [13] is another crucial topic in
machine learning. It aims to seek models to solve multiple
tasks simultaneously, which enjoys the benefit of model
generation and data efficiency against the methods that
learn each task independently. Similar to multimodal fusion,
multitask learning has also been developed from previously
shallow methods [14] to deep variants [15], [16], [17], [18],
[19] by taking advantage of deep learning. The successful
applications of multitask learning include navigation [20],
robot manipulation [21], etc.

In general, dense image prediction could be a collec-
tion of computer vision tasks that aim at classifying (e.g.,
segmentation [3], [22], [23], [24]) or regressing (e.g., image-
to-image translation [25], [26], [27], [28]) every pixel in an
image, namely, producing pixel-wise output based on the
given input pixels. The learning pipeline for dense predic-
tion is usually expected to capture rich spatial details or
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strong semantics, which also benefits greatly from multi-
modal data sources or the multitask joint training. A variety
of works tailored for dense image prediction have been
done towards multimodal fusion and multitask learning.
For multimodal fusion, regarding the type of how they fuse,
existing methods are generally categorized into aggregation-
based fusion [4], [29], [30], alignment-based fusion [7], [31],
and the mixture of them [1]. As for multitask learning, in the
context of deep learning, two types of contemporary tech-
niques are identified: hard parameter-sharing [32], [33] and
soft parameter-sharing [15], [34]. Despite the fruitful progress,
existing methods for both problems are still brittle to the
same challenge—it remains dilemmatic to integrate the com-
mon information across modalities (resp. tasks) meanwhile
preserving the specific patterns of each modality (resp.
task) for multimodal fusion (resp. multitask learning). To be
more specific, for multimodal fusion, the aggregation-based
fusion is prone to underestimating the intra-modal propa-
gation, whereas the alignment-based fusion mostly delivers
ineffective inter-modal fusion owing to the weak message
exchanging by solely training alignment losses [30], [35],
[36]. A similar issue exists in multitask learning. Current
hard/soft parameter sharing schemes could be vulnerable
to the negative transfer issue across different tasks owing
to the insufficient balance between inter-task knowledge
sharing and intra-task information processing [37]. When
focusing on dense image prediction, multimodal fusion
and multitask learning can also be regarded as the dual
problem of each other. As will be described in § 3, mul-
timodal fusion corresponds to the multiple-input-single-
output problem while multitask learning, inversely, is of
the single-input-multiple-output formulation. Yet, most pre-
vious works study these two problems separately without
revealing their common property.
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In this paper, we propose Channel-Exchanging-Network
(CEN) which is self-adaptive, parameter-free, and applica-
ble for multimodal and multitask dense image prediction.
For unification, we refer to both the modality-specific net-
work in multimodal fusion and the task-specific network
in multitask learning as a subnetwork. To enable message
passing among different modalities/tasks, CEN adaptively
exchanges the channels between subnetworks. The core of
CEN lies in its smaller-norm-less-informative assumption
inspired by network pruning [38], [39]. To be specific, we
utilize the scaling factor (i.e., γ) of Batch-Normalization
(BN) [40] or Instance-Normalization (IN) [41] as the im-
portance measurement for each corresponding channel, and
replace the channels associated with close-to-zero factors
of each subnetwork with the mean of other subnetworks.
Such message exchanging is self-adaptive in determining
when to exchange, and hence it is capable of accomplish-
ing better trade-off between inter-subnetwork knowledge
sharing and intra-subnetwork information processing, in
contrast to conventional multimodal and multitask learning
methods. Further, the channel exchanging operation itself is
parameter-free, making CEN less prone to overfitting, while,
for example, the attention-based fusion [4] needs extra pa-
rameters to adjust the importance of each subnetwork. An-
other hallmark of CEN is that the encoder parameters except
for BN layers of all subnetworks are shared with each other
(§ 3.2). Apart from compacting the model size, we apply
the idea here to serve specific purposes in CEN: by using
private BNs, we can determine the channel importance for
each individual modality; by sharing convolutional filters,
the corresponding channels among different modalities are
embedded with the same mapping, thus more capable of
modelling the modality-common statistic.

CEN is generally powerful, capable of addressing four
different problems in image dense prediction: multimodal
fusion, cycle multimodal fusion, multitask learning, and
multimodal multitask learning. For multimodal fusion, we
conduct channel exchanging on the encoder side to allow
information integration between different input modalities.
We also design cycle multimodal fusion to reuse the knowl-
edge among different generation flows, which can promote
performance for each flow. As natural extensions, channel
exchanging could be applied to the decoder side or both the
decoder and encoder to exchange task-specific information
for multitask learning or for multimodal multitask learning.
These details will be provided in § 3.

To sum up, our contributions are as follows:

• We propose CEN for message fusion, which is self-
adaptive and parameter-free. The core of CEN is to
replace the channels associated with close-to-zero BN
or IN scaling factors of each subnetwork with the
mean of others.

• CEN is generally powerful and is applied to mul-
timodal fusion, cycle multimodal fusion, multitask
learning, and multimodal multitask learning. To the
best of our knowledge, it is the first time that one
single technique is explicitly employed to address
multimodal fusion, multitask learning, or both, par-
ticularly on dense image prediction.

• Experimental evaluations are conducted on semantic

segmentation via RGB-D data [42], [43] and im-
age translation through multi-domain input [44]. It
demonstrates that CEN yields remarkably superior
performance to various kinds of multimodal fusion
methods and multitask learning methods under a
fair condition of comparison.

2 RELATED WORK

We introduce the methods of deep multimodal fusion and
deep multitask learning, especially using dense image pre-
diction as examples. We also discuss other related concepts.

Deep multimodal fusion. Regarding dense image pre-
diction, deep multimodal fusion uses multiple data sources
to enhance pixel-level semantics and fine-grained details
against the single-modality counterpart. To this end, related
methods toward dense image prediction are basically cate-
gorized into aggregation-based fusion and alignment-based
fusion. Aggregation-based fusion methods apply a certain
operation (e.g., averaging [29], concatenation [30], [45], and
attention-based modules [4], [46]) to fuse high-resolution
feature maps and combine multimodal subnetworks into
a single network. For example, U2Fusion [47] concatenates
source images and puts forward the information measure-
ment for unsupervised learning. RDFNet [36] adopts multi-
layer fusion and iteratively refines fused features with ad-
ditional convolutional blocks for aggregation. Due to the
weakness in intra-modal processing, recent aggregation-
based works perform feature fusion while still maintaining
the subnetworks of all modalities [35], [48]. Alignment-
based fusion methods [7], [31], instead, adopt regulation
losses to align the embedding of subnetworks while keeping
full propagation for each of them. These methods align
multimodal features by applying the similarity regulation,
where Maximum-Mean-Discrepancy (MMD) [49] is usually
adopted for the measurement. However, simply focusing
on unifying the whole distribution may overlook the spe-
cific patterns in each domain/modality [7], [50]. Hence,
[31] provides a way that might alleviate this issue, which
correlates modality-common features while simultaneously
maintaining modality-specific information. Another cate-
gorization of multimodal fusion towards dense prediction
could be generally specified as early, middle, and late fusion,
depending on when to fuse, which have been discussed in
earlier works [51], [52], [53], [54] and also in the current deep
learning literature [1], [55], [56], [57]. Besides, evaluations in
[36] indicate that the single-layer fusion can not effectively
exploit multimodal features, especially for addressing high-
resolution predictions torward dense image prediction. [29]
points out that the performance of dense feature fusion is
highly affected by the choice of which layer to fuse. Beyond
dense image prediction, there are other portions of the mul-
timodal learning literature, e.g., based on modulation [57],
[58], [59]. Different from these categories of fusion methods,
we propose a new fusion method by channel exchanging,
which potentially enjoys the guarantee of both sufficient
inter-model interactions and intra-modal learning.

Deep multitask learning. In general, multitask visual
perception predicts multiple output domains based on one
same vision domain. Typical approaches could include de-
signing hard parameter-sharing and soft parameter-sharing.
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Specifically, hard parameter-sharing imposes a fixed subset
of hidden layers to be shared across tasks and other layers to
be task-specific, for example, UberNet [32], U2Fusion [47],
and others [33], [60], [61]. Differently, for soft (or partial)
parameter-sharing, there could be a separate set (or a sig-
nificant fraction) of parameters per task, and models are
correlated either by adaptive feature sharing or by aligning
parameters to be similar, for example, Cross-stitch [15],
Sluice [34], and NDDR [62]. Yet, compared with the learning
upon single modalities, multitask learning is not always
beneficial, since the performance might be harmed by the
negative transfer (negative knowledge transfer across tasks),
which is discussed in [63], [64], [65]. In addition, many mul-
titask learning methods are specifically designed for dense
image prediction, which is also the main focus of this paper.
For example, MTI-Net [66] distills dense features across dif-
ferent tasks with multimodal feature aggregation. [65], [67]
explicitly enforce cycle-based consistency between domains
to improve performance and generalization. U2Fusion [47]
develops joint training and sequential training that lever-
ages a shared model to handle multitask learning for image-
to-image translation. In this paper, we integrate the benefits
of both hard parameter-sharing and soft parameter-sharing.
Specifically, for multitask learning, we share the parameters
of encoders for all tasks (hard parameter-sharing) and then
conduct CEN on decoders (soft parameter-sharing).

Other related concepts. The idea of using the BN scaling
factor to evaluate the importance of CNN channels has been
studied in network pruning [38], [39] and representation
learning [68]. Moreover, [38] enforces `1 norm penalty on
the scaling factors and explicitly prunes out filters meeting
sparsity criteria. Here, we apply this idea as an adaptive
tool to determine where to exchange and fuse. CBN [57]
performs cross-modal message passing by modulating BN
of one modality conditional on the other, which is different
from our method that directly exchanges channels across
modalities for fusion. ShuffleNet [69] proposes to shuffle
a portion of channels among multiple groups for efficient
propagation in light-weight networks, which is similar to
our idea of exchanging channels for message fusion. Yet,
while the motivation of our paper is highly different, the
exchanging process is self-determined by the BN scaling
factors, instead of the random exchanging in ShuffleNet.

3 CHANNEL EXCHANGING NETWORKS

We first introduce the general formulation of CEN, and
then follow it up by specifying the design of four differ-
ent settings: multimodal fusion, cycle multimodal fusion,
multitask learning, and multimodal multitask learning.

3.1 The general mechanism
For either multimodal or multitask learning, we are inter-
ested in studying the relationship between subnetworks on
different streams of input-output pairs. Suppose we have
the data of M streams {(xm,ym)}Mm=1, where xm and ym
represent the input data point and output label, respectively.
The subnetwork of the m-th stream is dubbed as fm. The
notion of “stream” can be flexibly specified: for multimodal
fusion, a different stream corresponds to a different modal-
ity where xm varies but ym keeps unchanged in terms

of different m; for multitask learning, on the contrary, a
different stream implies a different task, where xm usually
keeps the same and ym represents the label for task m.

A trivial training paradigm is minimizing the loss of
each subnetwork fm independently, which leads to the loss
between the prediction ŷm := fm(xm) and the label ym1,

min
f1:M

M∑
m=1

L
(
fm(xm),ym

)
. (1)

However, the independent training strategy fails to char-
acterize the affinity between different streams, limiting the
expressivity of multimodal information fusion or multitask
knowledge transfer.

In this work, we propose CEN that adaptively exchanges
the knowledge between different subnetworks in an end-to-
end manner. In form, the training objective in Eq. 1 can be
rewritten as

min
f1:M

M∑
m=1

L
(
fm(x1:M ),ym

)
+ λ‖γ̂m‖1 (2)

where,

• The subnetwork fm(x1:M ) (instead of fm(xm) in
Eq. 1) fuses multimodal information by channel ex-
changing from other subnetworks to the m-th sub-
network, as we will detail later;

• Each subnetwork is equipped with BN layers con-
taining the scaling factors γm, and we will penalize
the `1 norm of their certain portion γ̂m for sparsity.
The `1 norm is uniformly applied to all BN layers.
Here, we omit the layer index for simplicity.

Prior to introducing the mechanism of channel exchang-
ing, we first review the Batch-Normalization (BN) layer [40],
which is used widely in deep learning to eliminate covariate
shift and improve generalization. For a certain BN layer,
we denote by xm the feature map of the m-th subnetwork,
and by xm,c the c-th channel. The BN layer performs a
normalization of xm followed by an affine transformation,
namely,

x′m,c = γm,c
xm,c − µm,c√
σ2
m,c + ε

+ βm,c, (3)

where, µm,c and σm,c compute the mean and the standard
deviation, respectively, of all activations over all pixel loca-
tions (H and W ) for the current mini-batch data; γm,c and
βm,c are the trainable scaling factor and offset, respectively;
ε is a small constant to avoid divisions by zero. The follow-
ing layer takes {x′m,c}c as input after a non-linear function.

The factor γm,c in Eq. 3 evaluates the correlation between
the input xm,c and the output x′m,c during training. The
gradient of the loss w.r.t. xm,c will approach 0 if γm,c → 0
at one training step, implying that xm,c will almost lose
its influence to the final prediction and become redundant
thereby at this traing step.

In addition, as will be shown in Fig. 8 (a), if the scaling
factor of one channel (with sparsity constraints) is lower
than the small threshold at one training step, this channel

1. Note that this loss should be summed over all data points in real
implementation. Here we consider a single data point throughout the
paper for simplicity.
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Sparsity constraints

Scaling factors of BN Feature maps after BN

Subnetwork 1

Subnetwork 2

Sparsity constraints

Channel exchanging

Width

Height

Channel

Channel
1

1

Fig. 1: An illustration of CEN. The sparsity constraints on
scaling factors are applied to disjoint channel regions of
different modalities. A feature map will be replaced by that
of other modalities at the same position, if its scaling factor
is lower than a threshold.

will hardly recover and almost become redundant during
the later training process.

It motivates us to replace the channels of small scaling
factors with the ones of other subnetworks, since those
channels potentially are redundant. To do so, we have

x′m,c =


γm,c

xm,c−µm,c√
σ2
m,c+ε

+ βm,c, if γm,c > θ;

1
M−1

M∑
m′ 6=m

γm′,c
xm′,c−µm′,c√

σ2
m′,c+ε

+ βm′,c, else;
(4)

where the current channel is replaced with the mean of
other channels if its scaling factor is smaller than a certain
threshold θ ≈ 0+. In a nutshell, if one channel of one
modality has little impact on the final prediction, then we
replace it with the mean of other modalities. We apply Eq. 4
for each modality before feeding them into the nonlinear
activation followed by the convolutions in the next layer.
Gradients are detached from the replaced channel and back-
propagated through the new ones.

Fig. 11 illustrates our channel exchanging process in each
of the layers. In order to In our implementation, we equally
divide the whole channels into M sub-parts and only per-
form the channel exchanging in each corresponding sub-
part for each modality. This is mainly to avoid a portion of
channels being redundant w.r.t. all modalities. More detailed
reasons are described in § 4.5. We denote the scaling factors
that are allowed to be replaced as γ̂m. We further impose the
sparsity constraint on γ̂m in Eq. 2 to discover unnecessary
channels. As the exchanging in Eq. 4 is a directed process
within only one sub-part of channels, it hopefully can not
only retain modal-specific propagation in the other M − 1
sub-parts but also avoid unavailing exchanging since γm′,c,
different from γ̂m,c, is out of the sparsity constraint.

Regarding specific tasks where Instance-Normalizations
(INs) are used for normalization instead of BNs, the sparsity
constraints are similarly applied to scaling factors of INs,
and the channel exchanging design (Eq. 4) is still applicable.

We summarize the advantages of our CEN below:

• Prameter-free. As specified in Eq. 4, CEN involves no
additional parameter and applies BN scaling factors
to control the exchanging process.

• Self-adaptive. The channel exchanging could take
place at every layer throughout the encoder or/and
decoder. BN scaling factors are learned from the data,
which adaptively balances the inter-subnetwork pro-
cessing and inter-subnetwork fusion.

3.2 Multimodal fusion via CEN on encoders

In this part, we focus particularly on multimodal fusion
{xm}Mm=1→ y, where xm denotes the m-th input modal-
ity, and all subnetworks generate the same output y, i.e.,
ym = y,∀m = 1, · · · ,M . Given that this paper mainly
copes with dense prediction problems (such as depth esti-
mation or semantic segmentation), the subnetwork fm is of
the encoder-decoder style. The goal of multimodal fusion
is to effectively fuse the information of all modalities to
improve the prediction accuracy for the target output. It is
thus natural to fix the same decoder for all subnetworks
and conduct CEN between their encoders. The architecture
of multimodal fusion is depicted in Fig. 2 (a).

We first carry out sparsity penalty on BN scaling factors
for the m-th encoder following Eq. 2, and then perform
channel exchanging. Besides, the final output of the decoder
is an ensemble of all modalities associated with the decision
scores {αm}Mm=1

2; in our implementation, these decision
scores are learned by an additional softmax output to meet
the simplex constraint

∑M
m=1 αm = 1.

It is known in [70] that leveraging individual BN layers
characterizes the traits of different domains or modalities.
In our method, specifically, different scaling factors (Eq. 3)
evaluate the importance of the channels of different modal-
ities, and they should be decoupled. With the exception of
BN (or IN) layers, all subnetworks share all parameters (e.g.
convolutional filters3) in the encoder with each other. The
hope is that we can further reduce the network complexity
and therefore improve the predictive generalization. Rather,
considering the specific design of our framework, sharing
convolutional filters is able to capture the common patterns
in different modalities, which is a crucial purpose of multi-
modal fusion. This design further compacts the multimodal
architecture to be almost as small as the unimodal one, as
will be evaluated in Table 2. In our experiments, we conduct
multimodal fusion on RGB-D images or on other domains
of images corresponding to the same image content. In this
scenario, all modalities are homogeneous in the sense that
they are just different views of the same input. Thus, shar-
ing parameters between different subnetworks still yields
promisingly expressive power. Nevertheless, when we are
dealing with heterogeneous modalities (e.g., images and text
sequences), it would impede the expressive power of the
subnetworks if keeping sharing their parameters, hence a
more dexterous mechanism is suggested, and the discussion
of which is left for future exploration.

3.3 Cycle multimodal fusion via CEN on encoders

In the previous section (§ 3.2), we have introduced how to
apply CEN on multimodal fusion. Here, we discuss a more
complicated setting: cycle multimodal fusion. Assuming
we have {xm}Mm=1 → xM+1, where the output is speci-
fied as the (M + 1)-th modality for consistent denotation.
Note that such learning task is related to a different task

2. The decision scores are learnable scalars, optimized by comparing
ensembled outputs with labels while temporally freezing (detaching)
the subnetworks. The decision scores are fixed during inference.

3. If the input channels of different modalities are different (e.g., RGB
and depth), we will broaden their sizes to be the same as their Least
Common Multiple (LCM).
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Fig. 2: Structures of CENs for multimodal fusion, cycle multimodal fusion, multitask learning, and multimodal multitask
learning. For cycle multimodal learning, given the case with three modalities, only two of the three forward passes are
performed at each time. Here, “conv” and “indiv” are abbreviations for “convolutional” and “individual”, respectively. L
and L′ denote layer numbers of the encoder and the decoder, respectively.

{xm}M+1
m=1,m 6=j → xj , which, inversely, uses modality M+1

along with the remaining modalities to generate modality j.
Actually, we can go through all the M + 1 cases by cycling
different output modality, which leads to a set of cycle
multimodal fusion tasks {Tj := {xm}M+1

m=1,m6=j → xj}M+1
j=1 .

By § 3.2, a straightforward way is applying CEN inde-
pendently to each multimodal fusion task Tj for fusing the
input modalities. Nevertheless, such an independent learn-
ing fashion is unable to reveal the relationships between
Tjs. Although different tasks conduct different generation
directions, these tasks are tackling overlapping modalities,
hence potentially, their learning knowledge might be reused
and the learning processes could be coupled. Towards this
purpose, we enforce all Tjs to share the same encoder except
the BN parameters. Specifically, for each task Tj , we utilize
distinct sets of BN parameters for different input modalities,
giving rise to the total number of BN parameter sets for all
tasks as M(M + 1). With the separated BNs, we then carry
out CEN on the encoder for multimodal fusion for each task
Tj . The sketched pipeline is illustrated in Fig. 2 (b). Note that
for the case with three modalities, channels are still divided
into two parts, since for cycle multimodal fusion, only two
of the three modalities are sent to the encoder at each time.

Obviously, cycle multimodal fusion is a multitask gener-
alization of the multimodal fusion in § 3.2. The key benefit
is that it simultaneously addresses all combinations of the
cycling generation tasks with only one single pair of the en-
coder and decoder, which dramatically decreases the model
complexity. More interestingly, as we will demonstrate in
our experiments, the cycle multimodal fusion can improve
each of the single-task multimodal fusion, probably thanks
to the knowledge transfer by parameter sharing and joint
training. We will provide more details and evaluations for
cycle multimodal fusion in the experiment section.

3.4 Multitask learning via CEN on decoders
Different from multimodal fusion, multitask learning re-
quires to predict different labels for different subnetworks:

x → {ym}Mm=1, where we assume all tasks have the same
input, i.e., xm = x,∀m = 1, · · · ,M and the output label
is ym for the task m. The advantage of multitask learning
is to improve model generalization and data efficiency,
by sharing task-common knowledge while retaining task-
specific information. One of the widely-used methods is
employing the hard parameter-sharing mechanism [71] that
shares the encoder and uses task-specific decoders. Despite
its popularity in previous applications, modelling the multi-
task relationship by solely sharing the encoder is insufficient
in characterizing high-level patterns, particularly the related
features across decoders.

To address the aforementioned issues, we propose to
perform channel exchanging on the decoders. Our goal of
employing CEN on decoders lies in adaptively discover-
ing the redundant channels in decoders and compensating
for the information from the channels of other tasks. The
methodology is illustrated is in Fig. 2 (c). Specifically, the
sparsity penalty of BN (or IN) scaling factors is added to
the decoder part. Accordingly, for the m-th subnetwork,
channel exchanging is conducted from other decoders to the
m-th decoder.

3.5 Multimodal multitask learning via CEN on both en-
coders and decoders
It could be straightforward to combine the designs in § 3.2
and § 3.4 to handle multimodal multitask learning tasks,
with multiple input and output modalities, as illustrated in
Fig. 2 (d). It requires to address {{xm1}

M1
m1=1 → ym2}

M2
m2=1,

where M1 and M2 are the numbers of input and output
modalities, respectively. To enable simultaneous multimodal
fusion and multitask learning, we perform CEN on both en-
coders and decoders. The input for each decoder is given by
CEN on all encoders. In this case, we share the convolutional
layers at the encoder part and privatizeM1M2 groups of BN
(or IN) parameters. Similarly, for the m2-th task/decoder
(where m2 = 1, · · · ,M2), we adopt {αm2

m1
}M1
m1=1 as decision

scores for ensemble that meet
∑M1

m1=1 α
m2
m1

= 1.
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4 EXPERIMENTS

We contrast the performance of CEN against existing meth-
ods on the four problems in Fig. 2. For multimodal fusion,
we conduct experiments on the two tasks: semantic segmen-
tation and image-to-image translation. For the other three
problems, we evaluate the performance mainly on image-
to-image translation, since this task contains a rich number
of image modalities and is suitable for evaluations under
various settings. The datasets and implementation details
for semantic segmentation and image-to-image translation
are provided below.

Semantic segmentation. We evaluate our method on
two public datasets NYUDv2 [42] and SUN RGB-D [43],
which consider RGB and depth as input. Regarding
NYUDv2, we follow the standard settings and adopt the
split of 795 images for training and 654 for testing, predict-
ing standard 40 classes [72]. SUN RGB-D is one of the most
challenging large-scale benchmarks for indoor semantic seg-
mentation, containing 10,335 RGB-D images of 37 semantic
classes. We use the public train-test split (5,285 vs 5,050).
We consider RefineNet [3]/PSPNet [73] as our segmentation
framework whose backbone is implemented by ResNet [74]
pretrained from ImageNet dataset [75]. The initial learning
rates are set to 5 × 10−4 for the encoder and 3 × 10−3 for
the decoder, respectively, both of which are reduced to their
halves every 100/150 epochs (of total epochs 300/450) on
NYUDv2 with ResNet101/ResNet152 and every 20 epochs
(of total epochs 60) on SUN RGB-D. The mini-batch size,
momentum, and weight decay are selected as 6, 0.9, and
10−5, respectively, on both datasets. We set λ = 5 × 10−3

in Eq. 2 and the threshold to θ = 2 × 10−2 in Eq. 4. Unless
otherwise specified, we adopt the multi-scale strategy [3],
[36] during the test time. We employ common evaluation
metrics including Mean IoU, Pixel Accuracy, and Mean
Accuracy [3]. Full implementation details are provided in
the appendix.

Image-to-image translation. We adopt Taskonomy [44],
a dataset with 4 million images of indoor scenes gathered
from about 600 buildings. Each image in Taskonomy has
more than 10 multimodal representations, including depth
(euclidean/zbuffer), shade, normal, texture, edge, principal
curvature, etc. For efficiency, we sample 1,000 high-quality
multimodal images for training, and 500 for validation.
We also provide experiments with 15,000 sampled images
for training in the appendix. Following Pix2pix [25], we
adopt the U-Net-256 structure for image translation with
the consistent setups with [25]. The BN computations are
replaced with Instance Normalization layers (INs), and our
method (Eq. 4) is still applicable. We adopt individual INs
in the encoder, and share all other parameters including INs
in the decoder. We set λ to 10−3 for sparsity constraints and
the threshold θ to 10−2. FID [76] and KID [77] are adopted
as evaluation metrics, as will be introduced in the appendix.

4.1 Evaluations on multimodal fusion

We first assess the importance of each component in CEN
solely on the semantic segmentation dataset NYUDv2, and
then compare the performance with other multimodal fu-
sion baselines and SOTA methods on semantic segmenta-
tion and image-to-image translation.

TABLE 1: Detailed results for different versions of our CEN
on NYUDv2. All results are obtained with the backbone
RefineNet (ResNet101) of single-scale evaluation for test.
“Ens.” is the abbreviation for “Ensemble”.

Convs BNs `1 Regulation Exchange Mean IoU (%)
RGB Depth Ens.

Unshared Unshared × × 45.5 35.8 47.6
Shared Shared × × 43.7 35.5 45.2
Shared Unshared × × 46.2 38.4 48.0

Shared Unshared × X (fixed 30%) 44.9 40.3 47.2
Shared Unshared × X (random) 44.2 40.5 46.8

Unshared Unshared All-channel × 44.6 35.3 46.6
Unshared Unshared All-channel X 46.8 41.7 49.1
Shared Unshared All-channel × 46.1 37.9 47.5
Shared Unshared All-channel X 48.6 39.0 49.8

Unshared Unshared Half-channel × 45.1 35.5 47.3
Unshared Unshared Half-channel X 46.5 41.6 48.5
Shared Unshared Half-channel × 46.0 38.1 47.7
Shared Unshared Half-channel X 49.7 45.1 51.1

4.1.1 Semantic Segmentation
The validity of each proposed component. Table 1 summa-
rizes the results of different variants of CEN on NYUDv2.
We have the following observations:

• Compared to the unshared baseline, sharing convo-
lutional parameters greatly boosts the performance,
particularly on the Depth modality (35.8 vs 38.4). Yet,
the performance will encounter a clear drop if we
additionally share the BN layers. This observation is
consistent with our analyses in § 3.2 due to the differ-
ent roles of convolutional filters and BN parameters.

• As `1 enables the discovery of unnecessary chan-
nels, naively exchanging channels with a fixed por-
tion (without using `1) could not reach good per-
formance. For example, exchanging a fixed portion
of 30% channels (close to the averaged number of
exchanged channels in CEN) only gets IoU 47.2.
Besides, we try to exchange channels randomly like
ShuffleNet or directly discard unimportant channels
without channel exchanging, the IoUs of which are
46.8 and 47.5, respectively.

• After carrying out directed channel exchanging un-
der the `1 regulation, our model gains a huge im-
provement on both modalities, i.e. from 46.0 to 49.7
on RGB, and from 38.1 to 45.1 on Depth, and finally
increases the ensemble Mean IoU from 47.6 to 51.1.
It thus verifies the effectiveness of our proposed
mechanism on this task.

• Note that the channel exchanging is only available on
a certain portion of each layer, i.e., exchanging only
half of the channels in the two-modal case. When
we remove this constraint and allow all channels
to be exchanged by Eq. 4, the accuracy decreases,
which we conjecture is owing to the detriment by
impeding modal-specific propagation, if all channels
are engaged in cross-modal fusion.

After training CEN (with sparsity constraints on disjoint
channel regions, as illustrated in Fig. 11), each certain chan-
nel belongs to one of the three categories: (γrgb ≈ 0, γdepth >
0), (γrgb > 0, γdepth ≈ 0), and (γrgb > 0, γdepth > 0). There
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replaced

replaced

RGB

Depth

γ"#$ γ"#$%&≈ 0 > 0, γ"#$ γ"#$%&> 0 ≈ 0, γ"#$ γ"#$%&> 0> 0,

Fig. 3: Visualization of the averaged feature maps for RGB and Depth. From left to right: the input images, the channels of
(γrgb ≈ 0, γdepth > 0), (γrgb > 0, γdepth ≈ 0), and (γrgb > 0, γdepth > 0). The feature maps are collected in a single layer,
specifically, the 9th layer of ResNet, i.e. the 2nd layer of the 3rd stage (with 256 channels) of ResNet. Values under color
bars correspond to the actual values of averaged feature maps.

TABLE 2: Comparison with three typical fusion methods including concatenation (concat), fusion by alignment (align), and
self-attention (self-att.) on NYUDv2. All results are obtained with RefineNet (ResNet101) of single-scale evaluation for test.
“Ens.” is the abbreviation for “Ensemble”.

Modality Approach
Commonly-used setting Same with our setting

Params. used
for fusion (M)Mean IoU (%) Params.

in total (M)
Mean IoU (%)

RGB / Depth / Ens.
Params.
in total (M)

RGB Uni-modal 45.5 118.1 45.5 / - / - 118.1 -
Depth Uni-modal 35.8 118.1 - / 35.8 / - 118.1 -

RGB-D

Concat (early) 47.2 120.1 47.0 / 37.5 / 47.6 118.8 0.6
Concat (middle) 46.7 147.7 46.6 / 37.0 / 47.4 120.3 2.1
Concat (late) 46.3 169.0 46.3 / 37.2 / 46.9 126.6 8.4
Concat (all-stage) 47.5 171.7 47.8 / 36.9 / 48.3 129.4 11.2

Align (early) 46.4 238.8 46.3 / 35.8 / 46.7 120.8 2.6
Align (middle) 47.9 246.7 47.7 / 36.0 / 48.1 128.7 10.5
Align (late) 47.6 278.1 47.3 / 35.4 / 47.6 160.1 41.9
Align (all-stage) 46.8 291.9 46.6 / 35.5 / 47.0 173.9 55.7

Self-att. (early) 47.8 124.9 47.7 / 38.3 / 48.2 123.6 5.4
Self-att. (middle) 48.3 166.9 48.0 / 38.1 / 48.7 139.4 21.2
Self-att. (late) 47.5 245.5 47.6 / 38.1 / 48.3 203.2 84.9
Self-att. (all-stage) 48.7 272.3 48.5 / 37.7 / 49.1 231.0 112.8

Our CEN - - 49.7 / 45.1 / 51.1 118.2 0.0

will not be (γrgb ≈ 0, γdepth ≈ 0) since we apply sparsity
constraints on disjoint channels. To further explain why
channel exchanging works, Fig. 3 displays the averaged
feature maps of RGB and Depth. Here, “averaged” means:
Firstly, extracting feature maps at all specific channels (in
a layer) that belong to the same (aforementioned) category;
Secondly, averaging these feature maps along the channels.
We observe from Fig. 3 that RGB channels with non-zero
scaling factors mainly characterize the texture, while Depth
channels with non-zero factors focus more on the boundary;
in this sense, performing channel exchanging can better
combine the complementary properties of both modalities.

Comparison with fusion baselines. In Table 2, we report
comparison results of our CEN with two aggregation-based
methods: concatenation [30] and self-attention [4], and one
alignment-based approach [31], using the same backbone.
All baselines are implemented with the early, middle, late,
and all stage fusion. For a more fair comparison, all base-

lines are further conducted under the same setting (except
channel exchanging) with ours, namely, sharing convolu-
tions with individual BNs, and preserving the propagation
of all subnetworks (with also the ensemble). Full details
are provided in the appendix. It demonstrates that, in both
settings, our method always outperforms others by an av-
erage improvement of larger than 2%. We also report the
parameters used for fusion, e.g. the aggregation weights of
two modalities in concatenation. While self-attention (all-
stage) attains the closest performance to ours (49.1 vs 51.1),
its parameters used for fusion are considerable, whereas our
fusion is parameter-free.

Visualizations are provided in Fig. 4. We choose the hard
cases including the images containing tables and chairs, as
well as those with low/high light intensity. We observe that
the concatenation method is more sensitive to noises in the
depth input. Both concatenation and self-attention methods
are weak in predicting thin objects, e.g., table legs and chair
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RGB (input) Depth (input) Concat Align Self-att. Our CEN Ground truth

Fig. 4: Visualization results of semantic segmentation. Images are collected from NYUDv2 and SUN RGB-D datasets. All
results are obtained with the backbone RefineNet (ResNet101) of single-scale evaluation for test.

TABLE 3: Comparison with SOTA semantic segmentation methods on NYUDv2 and SUN RGB-D datasets. † indicates our
implemented results. Evaluation metrics include Pixel Accuracy, Mean Accuracy and Mean IoU.

Modality Approach Backbone
Network

NYUDv2 SUN RGB-D
Pixel Acc.
(%)

Mean Acc.
(%)

Mean IoU
(%)

Pixel Acc.
(%)

Mean Acc.
(%)

Mean IoU
(%)

RGB
FCN-32s [22] VGG16 60.0 42.2 29.2 68.4 41.1 29.0
RefineNet [3] ResNet101 73.8 58.8 46.4 80.8 57.3 46.3
RefineNet [3] ResNet152 74.4 59.6 47.6 81.1 57.7 47.0

RGB-D

FuseNet [29] VGG16 68.1 50.4 37.9 76.3 48.3 37.3
ACNet [78] ResNet50 - - 48.3 - - 48.1
SSMA [4] ResNet50 75.2 60.5 48.7 81.0 58.1 45.7
SSMA [4] † ResNet101 75.8 62.3 49.6 81.6 60.4 47.9
CBN [57] † ResNet101 75.5 61.2 48.9 81.5 59.8 47.4
3DGNN [79] ResNet101 - - - - 57.0 45.9
SCN [80] ResNet152 - - 49.6 - - 50.7
CFN [48] ResNet152 - - 47.7 - - 48.1
RDFNet [36] ResNet101 75.6 62.2 49.1 80.9 59.6 47.2
RDFNet [36] ResNet152 76.0 62.8 50.1 81.5 60.1 47.7

Ours-RefineNet (single-scale) ResNet101 76.2 62.8 51.1 82.0 60.9 49.6
Ours-RefineNet ResNet101 77.2 63.7 51.7 82.8 61.9 50.2
Ours-RefineNet (single-scale) ResNet152 77.0 64.4 51.6 82.3 61.7 50.0
Ours-RefineNet ResNet152 77.4 64.8 52.2 83.2 62.5 50.8
Ours-PSPNet ResNet152 77.7 65.0 52.5 83.5 63.2 51.1

legs. These objects are usually missed in the depth input,
which may hinder the prediction results after fusion. On the
contrary, the prediction results of our method preserve more
details and are more robust to the light intensity.

Comparison with SOTAs. In Table 3, we contrast our
method against a wide range of state-of-the-art methods.
Their results are directly copied from previous papers if pro-
vided or re-implemented by us otherwise, as marked with
annotations. Results conclude that our method equipped
with PSPNet (ResNet152) achieves new records remarkably
superior to previous methods in terms of all metrics on
both datasets. In particular, given the same backbone, our
method is still much better than RDFNet [36]. To isolate
the contribution of RefineNet in our method, Table 3 also

provides the uni-modal results, where we observe a clear
advantage of multimodal fusion.

4.1.2 Image-to-Image Translation
Comparison with baseline fusion methods. We then eval-
uate the performance given five specific translation cases,
including Shade+Texture→RGB, Depth+Normal→RGB,
RGB+Shade→Normal, RGB+Normal→Shade and RGB+
Edge →Depth. In addition to the three baselines used in
semantic segmentation (Concat, Self-attention, Align), we
conduct an extra aggregation-based method by using the
average operation. All baselines perform fusion under four
different kinds of strategies: early (at the 1st Conv-layer),
middle (the 4th Conv-layer), late (the 8th Conv-layer), and
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RGB
+

Edge

Depth

Concat Align Self-att. Our CEN Ground truth

RGB (input) Edge (input)From RGB From edge

RGB
+

Shade

Normal

Concat Align Self-att. Our CEN Ground truth

RGB (input) Shade (input)From RGB From shade

Texture
+

Shade

RGB

Concat Align Self-att. Our CEN Ground truth

Texture (input) Shade (input)From texture From shade

Fig. 5: Visualization results of multimodal image-to-image translation including Texture+Shade→RGB (top group), RGB+
Edge→Depth (middle group), and RGB+Shade→Normal (bottom group), respectively. The resolution of each predicted
image is 256× 256. More visualizations are provided in the appendix.

all-layer fusion. Our method yields much lower FID/KID or
MAE/MSE than others, especially when predicting the RGB
modality, as detailed in Table 15. These results support the
benefit of our proposed idea once again.

Main visualizations are provided in Fig. 5. We observe
that when predicting RGB given texture and shade, the
prediction solely predicted from the texture is vague at
boundary lines, while the prediction solely from the shade
misses some opponents, e.g. the pendant lamp, and is weak
in predicting handrails. When fusing both input modalities,
the concatenation method is uncertain in the regions where
both modalities have disagreements. Alignment and self-
attention are still weak in combining both modalities at
details. Our results are clear at boundaries and fine-grained
details. When predicting depth given RGB and edge, it is
straightforward to find the benefits of multimodal fusion in
this figure. The depth predicted by RGB is good at predict-
ing numerical values, but is weak in capturing boundaries,
which results in vague and curving boundaries. Oppositely,
the depth predicted by the edge well captures boundaries,
but is relatively weak in determining numerical values.
The alignment fusion method is still weak in capturing

boundaries. Both concatenation and self-attention methods
are able to combine the advantages of both modalities, but
numerical values are still obviously lower than the ground
truth. All illustrations verify that our CEN achieves better
performance compared to baseline methods. More visual-
izations and baseline settings are provided in the appendix.

Considering more input modalities. We test whether
our method is applicable to the case with more than two
modalities. For this purpose, Table 5 presents the results of
image translation to RGB by inputting from one to four
modalities of Depth, Normal, Texture, and Shade. It is
observed that increasing the number of modalities improves
the performance consistently, suggesting much potential of
applying our method towards various cases.

4.2 Evaluations on cycle multimodal fusion
In this subsection, we evaluate CEN-cycle, a cycle multi-
modal fusion mode of CEN to simultaneously tackle three
generation flows with a compact structure. As described
in § 3.3, in cycle multimodal fusion, we go through all 6
flows where each flow contains two input modalities and
one output modality. The subnetwork is trained with all the
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TABLE 4: Comparison on multimodal image-to-image translation task. Evaluation metrics are FID/KID (×10−2) for RGB
predictions and MAE (×10−2)/MSE (×10−2) for other predictions. Lower values indicate better performance for all metrics.

Modality Our CEN Baseline Early Middle Late All-layer

Shade+Texture
→RGB 62.63 / 1.65

Concat 87.46 / 3.64 95.16 / 4.67 122.47 / 6.56 78.82 / 3.13
Average 93.72 / 4.22 93.91 / 4.27 126.74 / 7.10 80.64 / 3.24
Align 99.68 / 4.93 95.52 / 4.75 98.33 / 4.70 92.30 / 4.20
Self-att. 83.60 / 3.38 90.79 / 3.92 105.62 / 5.42 73.87 / 2.46

Depth+Normal
→RGB 84.33 / 2.70

Concat 105.17 / 5.15 100.29 / 3.37 116.51 / 5.74 99.08 / 4.28
Average 109.25 / 5.50 104.95 / 4.98 122.42 / 6.76 99.63 / 4.41
Align 111.65 / 5.53 108.92 / 5.26 105.85 / 4.98 105.03 / 4.91
Self-att. 100.70 / 4.47 98.63 / 4.35 108.02 / 5.09 96.73 / 3.95

RGB+Shade
→Normal 11.23 / 25.09

Concat 13.34 / 28.27 12.15 / 26.54 13.93 / 28.80 13.36 / 28.51
Average 14.24 / 30.47 12.62 / 27.02 14.01 / 28.95 12.82 / 28.28
Align 14.50 / 31.07 13.92 / 29.34 12.81 / 27.55 15.18 / 32.50
Self-att. 12.99 / 28.21 11.75 / 25.86 14.22 / 29.07 12.63 / 27.61

RGB+Normal
→Shade 11.03 / 17.16

Concat 15.62 / 24.49 13.81 / 21.24 12.62 / 19.17 12.83 / 20.18
Average 14.63 / 22.88 12.83 / 20.42 15.11 / 23.92 12.28 / 18.64
Align 13.88 / 22.62 13.16 / 21.55 12.73 / 20.41 14.09 / 22.05
Self-att. 12.14 / 18.26 11.52 / 17.33 14.47 / 22.82 11.79 / 17.62

RGB+Edge
→Depth 2.75 / 6.60

Concat 3.43 / 7.53 3.17 / 7.39 3.82 / 7.87 3.25 / 7.46
Average 3.62 / 7.78 3.41 / 7.64 3.56 / 7.73 3.30 / 7.44
Align 4.38 / 8.93 3.86 / 8.16 4.19 / 8.61 4.38 / 9.03
Self-att. 3.03 / 7.05 3.32 / 7.29 3.40 / 7.47 3.01 / 6.98

TABLE 5: Multimodal fusion on image translation (to RGB) with 1 ∼ 4 input modalities.

Modality Depth Normal Texture Shade Depth+Normal Depth+Normal
+Texture

Depth+Normal
+Texture+Shade

FID 113.91 108.20 97.51 100.96 84.33 60.90 57.19
KID (×10−2) 5.68 5.42 4.82 5.17 2.70 1.56 1.33

TABLE 6: Experimental results of cycle multimodal fusion. Evaluation metrics are FID/KID (×10−2) for RGB predictions
and MAE (×10−2)/MSE (×10−2) for other predictions. Lower values indicate better performance for all these metrics.
“Curve” and “SemSeg” are abbreviations for the principle curve and semantic segmentation, respectively.

Modality CEN (IN×6,
enc×3, dec×3)

CEN-random (IN×6,
enc×1, dec×3)

CEN-cycle (IN×6,
enc×1, dec×3)

CEN-cycle (IN×6,
enc×1, dec×1)

RGB+Shade→ Texture 1.74 / 3.05 2.17 / 4.53 1.54 / 2.56 1.62 / 2.81
RGB+Texture→ Shade 16.53 / 25.07 18.26 / 28.60 15.53 / 23.77 16.10 / 24.36
Shade+Texture→ RGB 62.63 / 1.65 73.27 / 2.33 61.03 / 1.50 61.25 / 1.60

RGB+Depth→ SemSeg 21.52 / 36.24 22.80 / 37.09 18.57 / 33.29 18.71 / 33.56
RGB+SemSeg→ Depth 4.63 / 8.59 5.03 / 8.81 4.02 / 7.90 4.27 / 8.26
Depth+SemSeg→ RGB 99.60 / 4.18 102.97 / 4.31 96.13 / 3.66 97.01 / 3.94

RGB+Depth→ Normal 13.03 / 28.75 15.72 / 31.15 12.26 / 27.12 11.94 / 26.79
RGB+Normal→ Depth 3.34 / 5.22 4.67 / 6.73 2.63 / 4.70 2.57 / 4.45
Depth+Normal→ RGB 84.33 / 2.70 90.49 / 3.73 82.81 / 2.64 83.73 / 2.66

RGB+Depth→ Curve 5.42 / 15.09 5.73 / 16.08 4.83 / 13.71 5.03 / 14.15
RGB+Curve→ Depth 2.62 / 3.87 2.82 / 4.23 2.14 / 3.47 2.25 / 3.67
Depth+Curve→ RGB 85.13 / 2.82 88.69 / 3.39 83.85 / 2.42 84.52 / 2.64

Depth+Normal→ Shade 7.10 / 11.22 7.47 / 11.45 7.03 / 10.65 6.60 / 10.31
Shade+Depth→ Normal 13.11 / 31.57 13.74 / 32.20 13.12 / 31.65 12.92 / 31.30
Shade+Normal→ Depth 1.62 / 2.91 1.92 / 3.18 1.56 / 2.94 1.50 / 2.87

Total params. (M) Gen: 163.3; Dis: 8.3 Gen: 124.2; Dis: 8.3 Gen: 124.2; Dis: 8.3 Gen: 54.5; Dis: 8.3

three flows at each step. For each flow, our default setting
is employing the encoders and decoders with shared con-
volution parameters but unshared INs. To demonstrate the
benefit of CEN-cycle, we also implement these baselines in
Table 6: independent CEN that trains each flow separately,
CEN-random that randomly samples one of the three flows
per training step, and CEN-cycle with unshared decoders.

We observe that compared with independent CEN, CEN-
cycle with unshared decoders not only compacts the overall
model but also achieves provably better prediction perfor-
mance. By further sharing the decoders, CEN-cycle further
reduces the model size (needing about 1/3 parameter) and

still yields better results than independent CENs. In addi-
tion, CEN-random is inferior to independent CEN, probably
because it is ineffective to balance the training between
different flows if only one flow is trainable per step. In sum-
mary, the results here support that performing CEN-cycle is
valuable, and it is able to reuse the information in different
generation flows that involve overlapping input/output
modalities by parameter sharing and joint training.

4.3 Evaluations on multitask learning
This subsection evaluates multitask learning which adopts
a single modality as input and simultaneously predicts two
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Texture          RGB + Depth

Texture (input)

RGB (Indiv)

Depth (Indiv) Depth (Our CEN-dec) Depth (Ground truth)

RGB (Our CEN-dec) RGB (Ground truth)

RGB (input)

Normal (Indiv)

Curve (Indiv) Curve (Our CEN-dec) Curve (Ground truth)

Normal (Our CEN-dec) Normal (Ground truth)

RGB          Normal + Curve

Fig. 6: Visualization results of multitask image-to-image translation including Texture→RGB+Depth (left group) and RGB→
Normal+Curve (right group), respectively. “Curve” is the abbreviation for the principle curve modality. We compare the
individual (Indiv) baseline with unshared encoders and our CEN-dec. The resolution of each predicted image is 256× 256.

TABLE 7: Experimental results of multitask learning. Evaluation metrics are FID/KID (×10−2) for RGB predictions and
MAE (×10−2)/MSE (×10−2) for other predictions. Lower values indicate better performance. Individual (Indiv) learning
and Cross-Task Consistency (X-TC) [65] are served as baselines. We provide numbers of groups for instance normalization
(IN), encoder (enc) and decoder (dec), and the total parameters (params.) in generator (Gen) and discriminator (Dis),
respectively. “Curve” and “SemSeg” are abbreviations for the principle curve and semantic segmentation, respectively.

Modality Indiv (IN×2,
enc×2, dec×2)

Indiv (IN×2,
enc×1, dec×2)

X-TC [65] (IN×2,
enc×1, dec×2)

CEN-dec (IN×2,
enc×1, dec×2)

CEN-dec + X-TC [65]
(IN×2, enc×1, dec×2)

RGB→
{

SemSeg
Depth

26.71 / 40.15 27.14 / 41.90 23.83 / 38.10 23.02 / 37.54 21.78 / 37.32
5.35 / 9.13 5.51 / 9.42 5.22 / 8.98 4.82 / 8.50 4.76 / 8.43

RGB→
{

Normal
Curve

18.74 / 37.24 18.15 / 36.82 18.18 / 36.49 16.74 / 32.26 14.85 / 29.33
6.24 / 16.97 6.02 / 16.70 5.33 / 14.76 4.92 / 14.08 4.50 / 13.81

RGB→
{

Shade
Texture

24.04 / 33.85 23.63 / 32.92 19.04 / 29.87 18.77 / 27.94 17.07 / 27.10
2.40 / 4.93 2.19 / 4.66 2.33 / 4.85 1.83 / 3.67 1.64 / 2.99

Texture→
{

RGB
Depth

97.51 / 4.82 96.81 / 4.57 95.81 / 3.94 92.92 / 3.25 90.85 / 2.81
4.20 / 8.16 4.05 / 7.94 3.54 / 6.07 3.19 / 5.05 2.90 / 4.87

Normal→
{

Depth
Shade

2.59 / 3.92 2.72 / 4.16 2.20 / 3.54 1.97 / 3.30 1.85 / 3.04
8.08 / 12.40 7.90 / 12.03 7.26 / 11.52 7.09 / 11.14 6.94 / 10.88

Total params. (M) Gen: 108.7; Dis: 8.3 Gen: 89.3; Dis: 8.3 Gen: 89.3; Dis: 8.3 Gen: 89.3; Dis: 8.3 Gen: 89.3; Dis: 8.3

or three different modalities. As introduced in § 3.4, CEN is
conducted on the decoder side, abbreviated as CEN-dec.

Table 7 reports the case of predicting two modalities.
Besides individual training with shared/unshared encoders,
we consider a stronger baseline named Cross-Task Consis-
tency (X-TC) [65] under the triangle loss setting. X-TC basi-
cally enforces an addition supervision to let one predicted
modality generate the other one. As observed, CEN-dec
outperforms individual learning and X-TC in all tasks, and
its performance is further promoted if used along with X-
TC, showing the compatibility between CEN-dec and X-TC.

In Fig. 6, we further provide visualizations of multitask
learning. We observe that by simultaneously predicting RGB
and depth from texture, our CEN-dec predicts noticeably
better results. By simultaneously normal and the principle
curve from RGB, predicted normal boundaries of the table
and wall are more accurate with CEN-dec.

We also consider the case of predicting three modalities.
To this end, we implement two recent popular methods

including AdaShare (AS) [81] and Task-Grouping (TG) [64]
which consider multitask learning by parameter sharing. Ta-
ble 8 summarizes the experimental results. We find that both
AS and TG usually achieve better accuracy than individual
learning on some tasks (for example RGB→Depth) but at the
sacrifice of other tasks (RGB→SemSeg), probably owing to
the negative transfer. Yet, our CEN-dec, which simply shares
the encoders with individual INs and performs channel
exchanging in the decoder, outperforms all methods by
noticeable margins in all tasks, supporting the superiority
of channel exchanging for message fusion between different
tasks. Interestingly, when combined with TG, the perfor-
mance of CEN-dec is boosted remarkably, implying the
flexibility of integrating our method with other techniques.

4.4 Evaluations on multimodal multitask learning

We evaluate our multimodal multitask CEN as a combina-
tion of multimodal fusion and multitask learning, as shown
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TABLE 8: Experimental results of simultaneously predicting three tasks. Evaluation metrics and abbreviations follow
Table 7. AdaShare (AS) [81] and Taskgrouping (TG) [64] are additionally served as baselines.

Modality Indiv (IN×3,
enc×3, dec×3)

AS [81] (IN×1,
enc×2, dec×3)

TG [64] (IN×2∼3,
enc×2∼3, dec×3)

CEN-dec (IN×3,
enc×1, dec×3)

CEN-dec + TG [64]
(IN×3, enc×2∼3, dec×3)

RGB→


SemSeg
Depth
Normal

26.68 / 40.11 29.50 / 43.71 26.72 / 40.15 25.30 / 39.64 22.97 / 37.50
5.35 / 9.15 5.02 / 8.71 5.15 / 8.80 4.81 / 8.51 4.71 / 8.40

18.70 / 37.18 17.57 / 33.80 17.92 / 34.39 17.05 / 33.19 16.63 / 32.02

Texture→


RGB
Depth
Edge

97.45 / 4.80 99.23 / 5.11 97.40 / 4.78 94.04 / 3.76 92.71 / 3.20
4.24 / 8.19 4.16 / 8.05 4.27 / 8.25 3.19 / 5.05 3.08 / 4.96
0.97 / 1.73 1.16 / 2.24 0.95 / 1.70 0.90 / 1.66 0.86 / 1.61

Normal→


RGB
Depth
Shade

108.28 / 5.42 114.74 / 5.89 108.13 / 5.40 102.55 / 5.20 99.18 / 4.86
2.60 / 3.92 2.77 / 4.30 2.41 / 3.80 1.93 / 3.25 1.83 / 3.01
8.11 / 12.38 7.86 / 11.95 7.75 / 11.77 6.86 / 10.82 6.79 / 10.73

Total params. (M) Gen: 163.1;
Dis: 12.5

Gen: 143.7;
Dis: 12.5

Gen: 143.7∼163.1;
Dis: 12.5

Gen: 124.3;
Dis: 12.5

Gen: 143.7∼163.1;
Dis: 12.5

TABLE 9: Experimental results of multimodal multitask learning. Evaluation metrics are FID/KID (×10−2) for RGB
predictions and MAE (×10−2)/MSE (×10−2) for other predictions. Lower values indicate better performance. Individual
(Indiv) learning is served as the baseline. We provide numbers of groups for instance normalization (IN), encoder (enc)
and decoder (dec), and the total parameters (params.) in generator (Gen) and discriminator (Dis). “Curve” and “SemSeg”
are abbreviations for the principle curve and semantic segmentation, respectively.

Modality Indiv (IN×4,
enc×2, dec×2)

CEN-enc (IN×4,
enc×1, dec×2)

CEN-dec (IN×4,
enc×1, dec×2)

CEN-enc & dec
(IN×4, enc×1, dec×2)

RGB
Depth

}
→
{

SemSeg
Curve

26.86 / 40.24 21.17 / 36.05 25.22 / 39.36 20.25 / 35.17
5.97 / 16.51 5.49 / 15.30 5.76 / 16.04 5.27 / 14.93

RGB
Depth

}
→
{

Nomal
Shade

18.68 / 37.11 13.54 / 29.03 16.81 / 32.75 12.23 / 27.39
8.62 / 12.76 7.37 / 11.09 8.20 / 12.14 7.08 / 10.91

RGB
Edge

}
→
{

Depth
Normal

4.49 / 9.80 2.81 / 6.77 4.02 / 8.53 2.47 / 6.33
16.56 / 33.40 13.28 / 29.32 15.14 / 32.72 12.62 / 28.71

Texture
Shade

}
→
{

RGB
Depth

97.31 / 4.76 62.47 / 1.63 87.50 / 3.72 60.26 / 1.57
2.66 / 4.20 1.64 / 3.03 2.18 / 3.77 1.58 / 2.94

Total params. (M) Gen: 108.7; Dis: 8.3 Gen: 89.3; Dis: 8.3 Gen: 89.3; Dis: 8.3 Gen: 89.3; Dis: 8.3

in Table 9. We compare four different settings including
individual training (Indiv), CEN on the encoder (CEN-
enc), CEN on the decoder (CEN-dec), and CEN on both
the encoder and decoder (CEN-enc & dec). All the settings
maintain four individual INs that correspond to the four
different input-output combinations, respectively.

Results indicate that performing CEN either on the en-
coder or decoder is beneficial compared with the individ-
ual training baseline. Generally speaking, CEN-enc obtains
more benefits compared with CEN-dec. This is natural as
each input modality contains complementary information
for predicting each output modality, hence CEN-enc is
particularly advantageous. But different output modalities
might not be necessarily related, and as a result, CEN-dec
gains smaller improvement. As expected, combining CEN-
enc and CEN-dec can further improve each of them and
delivers the best performance in all considered cases.

4.5 Discussions
Why dividing channels into M sub-parts. We describe in
§ 3.1 and Fig. 11 that we evenly divide the whole channels
into M sub-parts (where M is the number of input modal-
ities), and apply sparsity constraints only to one sub-part
for each modality. Otherwise, if we do not divide channels
and apply sparsity constraints to all scaling factors for each

Without sparsity constraints

With sparsity constraints on all channels

With sparsity constraints on disjoint channels (default of CEN)

DepthShade Texture

Channel
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s

Fig. 7: We adopt shared Convs and unshared INs, and plot
the proportion of scaling factors for each modality at the 7th
Conv-layer, i.e. γm,c/(γ1,c + γ2,c + γ3,c), where m = 1, 2, 3
being Shade, Texture and Depth, respectively. Note that we
use the white space to represent a channel c if all of the three
scaling factors (γ1,c, γ2,c, γ3,c) are less than the threshold.

modality, there is likely to be a portion of channels with
close-to-zero scaling factors w.r.t. all modalities. We provide
the illustration in Fig. 12. We observe that with sparsity
constraints on all channels, Fig. 12 (middle) has a number of
channels with small scaling factors, which are thus consid-
ered to be redundant w.r.t. all modalities, which might lead
to the decline of model capacity. Besides, it is hard to decide
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the exchanging direction on these redundant channels based
on Eq. 4. We provide corresponding experimental results in
Table 1 and the appendix (Table 13).

Typical values of scaling factors. Fig. 8 demonstrates
typical values of BN scaling factors vs training steps, con-
sisting of four combinations: within/beyond sparsity con-
straints, and with/without channel exchanging. Experimen-
tal details are provided in the caption of Fig. 8. From the first
two subfigures, we observe that whether applying channel
exchanging or not, scaling factors that are close to zero
can hardly recover (in the later training process). In addi-
tion, according to the last two subfigures, it seems channel
exchanging increases the learning speed of a portion of
scaling factors without sparsity constraints, probably due
to the accumulated gradient on both the RGB branch and
the depth branch by channel exchanging (Eq. 4).

Effect of zeroing out channels and channel exchanging.
This part provides the sensitivity analysis for two essential
hyper-parameters of CEN, including the weight λ (Eq. 2)
of sparsity constraint, and the threshold θ (Eq. 4) that
identifies close-to-zero scaling factors. Experimental details
are provided in the caption of Fig. 9. To isolate the advantage
of channel exchanging, Fig. 9 (a) indicates that by zeroing
out channels with small scaling factors (instead of channel
exchanging), the performance slightly drops with the in-
crease of λ or θ since the percentage of zeroing out channels
increases accordingly. Nevertheless, such a drop is moder-
ate, given that under the sparsity constraints, the zeroed-
out channels are less influential (as analyzed in § 3.1).
Fig. 9 (b) provides the sensitivity analysis of our channel
exchanging. We observe that both hyper-parameters λ and
θ are not sensitive around their default settings. It is also
noticeable that without channel exchanging, simply zeroing
out channels reaches much inferior performance.

Importance of the exchanging process. We provide ad-
ditional experiments in the appendix (Table 12), to evaluate
the importance of the exchanging process. We try other ap-
proaches to replace zeroed-out channels with: concatenated
multimodal features (followed by a Conv-layer) instead of
the average, evenly spaced channels from the same modality
or other modalities, channels with the largest scaling factors,
etc. Results indicate the superiority of our current design. In
summary, albeit the simplicity of using the average of other
modalities in CEN, it is also effective and competitive.

Evaluation for the unsupervised learning. In a part of
multimodal fusion tasks, there is no ground truth during
training [27], [47], [82]. As a general multimodal/multitask
method, CEN is also potentially applicable to unsupervised
learning tasks. For example, we apply CEN to the Saliency
Network in [82] for RGB-D unsupervised saliency detection,
a dense image prediction task aiming to effectively find and
segment the most distinctive objects in a scene. Quantitive
results and visualizations are provided in the appendix (Fig.
15 and Table 14), where improvements are also achieved,
indicating the effectiveness of CEN in this case.

5 CONCLUSION
We propose Channel-Exchanging-Network (CEN), a novel
framework for multimodal fusion and multitask learning,
which is parameter-free and self-adaptive. The motivation

Training step

(d)  Scaling factors of the last 128 channels 
(beyond sparsity constraints) when channel 

exchanging is applied

Sc
al

in
g 

fa
ct

or
!

0 200 400 600 800 1000 1200

0.02

0.04

0.06

0.08

0.10

0.12

Training step

(b)  Scaling factors of the first 128 channels 
(within sparsity constraints) when channel 

exchanging is applied

Sc
al

in
g 

fa
ct

or
!

0 200 400 600 800 1000 1200

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Threshold    

Training step

(c)  Scaling factors of the last 128 channels 
(beyond sparsity constraints) when channel 

exchanging is NOT applied

Sc
al

in
g 

fa
ct

or
!

0 200 400 600 800 1000 1200

0.02

0.04

0.06

0.08

0.10

0.12

Training step

(a)  Scaling factors of the first 128 channels 
(within sparsity constraints) when channel 

exchanging is NOT applied

Sc
al

in
g 

fa
ct

or
!

0 200 400 600 800 1000 1200

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Threshold    

Fig. 8: Typical values of BN scaling factors (w.r.t. the RGB
modality) within/beyond sparsity constraints vs training
steps. We compare circumstances when channel exchang-
ing is and is not applied. Experiments are conducted on
NYUDv2 with RefineNet (ResNet101). We choose the 8th
layer of convolutional layers that have 3 × 3 kernels, and
there are 256 channels. Regarding RGB, sparsity constraints
to scaling factors are applied on the first 128 channels.
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(a)  Sensitivity analysis when simply zeroing 
out channels with small scaling factors (channel 

exchanging is NOT applied)

(b)  Sensitivity analysis when channel 
exchanging is applied on channels with 

small scaling factors

97.3±0.6

63.2±0.6

97.3±0.6

63.2±0.6

47.5±0.4 47.5±0.4
51.0±0.3 51.0±0.3

Backbone: ResNet-101. Dataset: NYUDv2.

Backbone: U-Net-256. Dataset: Taskonomy.

Fig. 9: Effect when zeroing out channels (without channel
exchanging) as well as the sensitivity analysis for λ and θ.
Experiments include RGB-D semantic segmentation (Sem-
Seg) on NYUDv2 (top group) and Texture+Shade→RGB on
Taskonomy (bottom group). We conduct five experiments
for each parameter setting. Default settings are λ = 10−3

and θ = 10−2. The left y-axis indicates the metric (mIoU ↑
or FID score ↓). The right y-axis indicates the percentage of
channels that are lower than θ and these channels will be
replaced by zeros (left group) or by cross-modal channels
(right group). Metric results at default settings are marked.

behind this is to boost inter-subnetwork fusion while simul-
taneously keeping sufficient intra-subnetwork processing.
The channel exchanging is self-guided by channel impor-
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tance measured by individual BNs, making our framework
self-adaptive and compact. Extensive evaluations in four
cases (multimodal fusion, cycle multimodal fusion, multi-
task learning, and multimodal multitask learning) verify the
effectiveness of our method.

APPENDIX A
IMPLEMENTATION DETAILS

In our experiments, we adopt ResNet101 and ResNet152
for semantic segmentation, and U-Net-256 for image-to-
image translation. We use an NVIDIA Tesla V100 with 32GB
for each experiment. Regarding both ResNet structures,
we apply sparsity constraints on Batch-Normalization (BN)
scaling factors w.r.t. each Convolutional-layer (Conv-layer)
with 3 × 3 kernels. These scaling factors further guide the
channel exchanging process that exchanges a portion of
feature maps after BN. For the Conv-layer with 7×7 kernels
at the beginning of ResNet, and all other Conv-layers with
1×1 kernels, we do not apply sparsity constraints or channel
exchanging. For U-Net, we apply sparsity constraints on
Instance-Normalization (IN) scaling factors w.r.t. all Conv-
layers (eight layers in total) in the encoder of the generator,
and each is followed by channel exchanging.

We mainly adopt three multimodal fusion baselines in
our paper, including concatenation, alignment, and self-
attention. Regarding the concatenation method, we stack
multimodal feature maps along the channel, and then add a
1× 1 convolutional layer to reduce the number of channels
back to the original number. The alignment fusion method
is a re-implementation of [31], and we follow its default
settings for hyper-parameter, e.g. using 11 kernel functions
for the multiple kernel Maximum Mean Discrepancy. The
self-attention method is a re-implementation of the SSMA
block proposed in [4], where we also follow the default
settings, e.g. setting the channel reduction ratio η to 16.

In Table 2 of our main paper, we adopt early, middle, late
and all-stage fusion for each baseline method. In ResNet101,
there are four stages with 3, 4, 23, and 3 blocks, respectively.
The early fusion, middle fusion, and late fusion refer to fus-
ing after the 2nd stage, 3rd stage, and 4th stage respectively.
All-stage fusion refers to fusing after the four stages.

Assumed zeroed-out channel to be replaced

[a] [a]
[b]

[d]
[d]

[c]
[c]

Fig. 10: Illustrations of channels as a complement to Table 12.

We now introduce the metrics (including FID and KID)
used in our image-to-image translation task.

Firstly, Fréchet-Inception-Distance (FID) [76] mainly con-
trasts the statistics of generated samples against real sam-
ples. FID fits a Gaussian distribution to the hidden acti-
vations of InceptionNet for each compared image set and
then computes the Fréchet distance (also known as the
Wasserstein-2 distance) between those Gaussians. Lower
FID is better, indicating that the generated images are more
similar to the real ones.

TABLE 10: We compare training multimodal features in a
parallel manner with different parameter sharing settings.
Results of the proposed fusion method are reported in
the last column. Evaluation metrics are FID/KID (×10−2).
We observe that the convolutional layers can be shared as
long as we leave individual INs for different modalities,
achieving even better performance.

Modality Network
stream

Unshared Convs
unshared INs

Shared Convs
shared INs

Shared Convs
unshared INs

Multi-modal
fusion

Shade
+Texture
→RGB

Shade 102.21 / 5.25 112.40 / 5.58 100.69 / 4.51 72.07 / 2.32
Texture 98.19 / 4.83 102.28 / 5.22 93.40 / 4.18 65.60 / 1.82

Ensemble 92.72 / 4.15 96.31 / 4.36 87.91 / 3.73 62.63 / 1.65

Shade
+Texture
+Depth
→RGB

Shade 101.86 / 5.18 115.51 / 5.77 98.49 / 4.07 69.37 / 2.21
Texture 98.60 / 4.89 104.39 / 4.54 95.87 / 4.27 64.70 / 1.73
Depth 114.18 / 5.71 121.40 / 6.23 107.07 / 5.19 71.61 / 2.27

Ensemble 91.30 / 3.92 100.41 / 4.73 84.39 / 3.45 58.35 / 1.42

Shade
+Texture
+Depth
+Normal
→RGB

Shade 100.83 / 5.06 131.74 / 7.48 96.98 / 4.23 68.70 / 2.14
Texture 97.34 / 4.77 109.45 / 4.86 94.64 / 4.22 63.26 / 1.69
Depth 114.50 / 5.83 125.54 / 6.48 109.93 / 5.41 70.47 / 2.09
Normal 108.65 / 5.45 113.15 / 5.72 99.38 / 4.45 67.73 / 1.98

Ensemble 89.52 / 3.80 102.78 / 4.67 86.76 / 3.63 57.19 / 1.33

TABLE 11: An Instance-Normalization layer consists of four
components, including scaling factors γ, offsets β, running
mean µ and variance σ. Following Table 5, we further com-
pare the evaluation results with only unshared γ,β, or only
unshared µ,σ. Evaluation metrics are FID/KID (×10−2).
We observe that using unshared scaling factors and offsets
seems to be more important. `1 regulation and channel
exchanging are not applied throughout these experiments.

Modality Network
stream

Unshared Convs
unshared INs

Shared Convs
unshared INs

Shared Convs,γ,β
unshared µ,σ

Shared Convs,µ,σ
unshared γ,β

Shade
+Texture
+Depth
→RGB

Shade 101.86 / 5.18 98.49 / 4.07 107.86 / 5.53 105.29 / 5.29
Texture 98.60 / 4.89 95.87 / 4.27 105.46 / 5.25 102.90 / 5.06
Depth 114.18 / 5.71 102.07 / 4.89 118.35 / 6.07 114.35 / 5.80

Ensemble 91.30 / 3.92 84.39 / 3.45 96.30 / 4.41 92.25 / 4.02

Shade
+Texture
+Depth
+Normal
→RGB

Shade 100.83 / 5.06 96.98 / 4.23 113.56 / 5.65 102.74 / 5.17
Texture 97.34 / 4.77 94.64 / 4.22 105.36 / 5.32 97.53 / 4.56
Depth 114.50 / 5.83 109.93 / 5.41 119.31 / 6.20 112.73 / 5.60
Normal 108.65 / 5.45 99.38 / 4.45 108.01 / 5.06 100.34 / 4.53

Ensemble 89.52 / 3.80 86.76 / 3.63 95.56 / 4.64 89.26 / 3.91

Secondly, Kernel-Inception-Distance (KID) [77] is a met-
ric similar to the FID score but uses the squared Maximum-
Mean-Discrepancy (MMD) between Inception representa-
tions with a polynomial kernel. Unlike FID, KID has a sim-
ple unbiased estimator, making it more reliable especially
when there are much more inception feature channels than
image numbers. Lower KID indicates more visual similarity
between real and generated images. Regarding our imple-
mentation of KID, the hidden representations are derived
from the Inception-v3 pool3 layer.

APPENDIX B
ADDITIONAL DISCUSSIONS AND RESULTS

Dividing channels into sub-parts. Here we provide addi-
tional descriptions of why dividing channels into M sub-
parts and individually applying sparsity constraints. We
first use the case with 2 modalities for example. As shown
in Fig. 11, we divide channels into 2 disjoint sub-parts and
apply sparsity constraints. During training, each certain
channel belongs to one of the three categories: A (where
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TABLE 12: Additional experiments on the NYUDv2 dataset based on RefineNet (ResNet101) to evaluate the importance
of the exchanging process. Results include multimodal fusion on image translation (to RGB) with 2 ∼ 4 input modalities.
Evaluation metrics are FID/KID (×10−2) and lower values indicate better performance.

For modality m, replacing (the feature map) at a zeroed-out channel (channel index i) with: Depth+Normal Depth+Normal
+Texture

Depth+Normal
+Texture+Shade

A zero embedding (only fusion by ensemble) 107.32 / 5.39 96.90 / 4.75 95.50 / 4.68
The i-th channel from another one modality m′ 6= m Same with CEN 63.14 / 1.73 62.76 / 1.69
Average of evenly spaced channels [a] (Fig. 10) (beyond sparsity constraints) from the same modality m 106.62 / 5.29 95.63 / 4.64 95.90 / 4.71
One random channel in the region [b] (Fig. 10) (beyond sparsity constraints) from the same modality m 109.71 / 5.62 97.06 / 4.92 96.64 / 4.85
Average of evenly spaced channels [c] (Fig. 10) from other modalities ∀m′ 6= m 89.52 / 3.56 68.11 / 2.06 66.15 / 1.91
Average of channels including both [c] and [d] (Fig. 10) from other modalities ∀m′ 6= m 85.08 / 2.92 64.73 / 1.82 61.99 / 1.64
Average of unused channels with the largest scaling factors from other modalities ∀m′ 6= m 88.61 / 3.13 68.09 / 2.10 68.87 / 2.15
Weighted average of the i-th channels [d] (Fig. 10) from other modalities ∀m′ 6= m Same with CEN 61.07 / 1.59 58.26 / 1.40
Concatenation (followed by a 1× 1 Conv) of the i-th channels [d] (Fig. 10) from other modalities ∀m′ 6= m Same with CEN 63.32 / 1.73 61.70 / 1.64
Average of the i-th channels [d] (Fig. 10) from other modalities ∀m′ 6= m (our CEN) 84.33 / 2.70 60.90 / 1.56 57.19 / 1.33

Sparsity constraints

Scaling factors of BN Feature maps after BN

Subnetwork 1
(RGB)

Subnetwork 2
(Depth)

Sparsity constraints

Channel exchanging

Width

Height

Channel

Channel
1

1

B B BA AC C C C C C C

Fig. 11: An illustration of CEN. The sparsity constraints on
scaling factors are applied to disjoint channel regions of dif-
ferent modalities. As annotated, each channel is categorized
to A, B, or C, based on its γrgb and γdepth.
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With sparsity constraints on disjoint channels

Fig. 12: We adopt shared Convs and unshared INs, and plot
the proportion of scaling factors for each modality at each
Conv-layer, i.e. γm,c/(γ1,c + γ2,c + γ3,c), where m = 1, 2, 3
being Shade, Texture and Depth, respectively.Proportion of
scaling factors in all Conv-layers, and sparsity constraints
are applied on disjoint channels.

γrgb ≈ 0, γdepth > 0), B (where γrgb > 0, γdepth ≈ 0),
and C (where γrgb > 0, γdepth > 0). There won’t be
(γrgb ≈ 0, γdepth ≈ 0) as we apply sparsity constraints
on disjoint sub-parts. However, if we apply sparsity con-
straints on all scaling factors for each modality (without
dividing 2 sub-parts), there is likely be a portion of channels
with close-to-zero scaling factors w.r.t. both modalities, i.e.,

TABLE 13: Multimodal fusion on image translation (to RGB)
with or without (w/o) dividing channels into M sub-parts.
Evaluation metrics are FID/KID (×10−2). Lower values
indicate better performance for both metrics.

Method Depth+Normal Depth+Normal
+Texture

Depth+Normal
+Texture+Shade

Dividing M sub-parts (default) 84.33 / 2.70 60.90 / 1.56 57.19 / 1.33
W/o dividing M sub-parts 87.63 / 3.49 65.12 / 1.90 64.87 / 1.85

(γrgb ≈ 0, γdepth ≈ 0). These channels are considered to
be unimportant/redundant for both modalities. Regarding
multimodal fusion, it is kind of waste of channels, which
might lead to the decline of model capacity. Besides, it is
hard to decide the exchanging direction on these channels
according to Eq. 4 (main paper).

Similarly, when there are 3 (or M ) modalities as input,
dividing the whole channels into 3 (or M ) sub-parts avoids
a channel from being redundant for all modalities. As a
result, we divide channels into M sub-parts and apply
sparsity constraints on one sub-part for each modality. As an
example, for Shade+Texture+Depth→RGB image-to-image
translation with shared Convs and unshared INs, channels
are evenly divided into three sub-parts. We plot the propor-
tion of IN scaling factors at each Conv-layer in the encoder
of U-Net in Fig. 12.

Comparison results to support the channel dividing have
been provided in Table 1 of our main paper: semantic
segmentation “All-channel” (49.8) vs “Half-channel” (51.1).
Additional results for image-to-image translation are shown
in Table 13. All these results indicate the superiority of
applying sparsity constraints on sub-parts of channels.

Effect of network sharing. In Table 10, we verify that
sharing convolutional layers (Convs) but using individual
Instance-Normalization layers (INs) allows 2∼4 modalities
trained in a single network, and even achieve better per-
formance than training with individual networks. Again, if
we further share INs, there will be an obvious performance
drop. More detailed comparison is provided in Table 11.

Visualization of indoor experiments. We provide addi-
tional visualizations of the image-to-image translation task
in Fig. 13, as a complement to Fig. 5 (main paper). Regard-
ing baseline implementation in all these visualizations, we
adopt all-layer fusion (fusion at all eight Conv-layers in the
encoder) for concatenation and self-attention methods, and
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Fig. 13: Additional visualization results of image-to-image translation including Texture+Shade→RGB (top group),
RGB+Edge→Depth (middle group), and RGB+Normal→Shade (bottom group), respectively. The resolution of each
predicted image is 256× 256.

adopt middle fusion (fusion at the 4th Conv-layer) for the
alignment method. These settings achieve relatively high
performance regarding baseline methods according to their
numerical results.

Visualization of outdoor experiments. In this part, we
additionally conduct outdoor semantic segmentation exper-
iments on the Cityscapes dataset [83] and provide the visu-
alization comparison. Cityscapes is an outdoor dataset con-
taining images from 27 cities in Germany and neighboring
countries. The dataset contains 2,975 training, 500 validation
and 1,525 test images. There are 20,000 additional coarse
annotations provided by the dataset, which are not used for
training in our experiments. All results are obtained with
the backbone PSPNet (ResNet101) of single-scale evaluation
for test. These visualizations are provided in Fig 14.

Evaluation for unsupervised learning. Apart from the
common supervised training settings for dense image pre-
diction [99], [100], we show the potential of CEN for unsu-
pervised learning, e.g., [27], [47], [82]. As an example shown
in Fig. 15 and Table 14, we apply CEN to the Saliency
Network in [82] for RGB-Depth unsupervised saliency de-
tection, which also achieves promising results, indicating

TABLE 14: Quantitave results of applying CEN to the unsu-
pervised RGB-D saliency detection. We follow the training
settings in [82]. Evaluation datasets include NJUD [84],
NLPR [85], STERE [86], and DUTLF-Depth [87]. We adopt
Mean Absolute Error (MAE) [88] as the evaluation metric
following [82]. Lower values indicate better performance.

Method NJUD NLPR STERE DUTLF-Depth

MST [89] .281 .199 .269 .279
BSCA [90] .216 .178 .179 .181

GP [91] .204 .144 .182 -
CDB [92] .200 .108 .166 -
SE [93] .164 .085 .143 .196

DCMC [94] .167 .196 .148 .243
MB [95] .202 .089 .178 .156

CDCP [96] .181 .114 .149 .159
USD [97] .163 .119 .146 .157

DeepUSPS [98] .159 .088 .124 .149
SP [82] (RGB-D) .135 .065 .099 .107

CEN (RGB-D) .132 .059 .095 .103

the effectiveness of CEN in this case. Further discussion of
unsupervised learning is left for future exploration.

Enlarging the sampled dataset. In our image-to-image
translation experiments on the Taskonomy dataset, we
find that CEN with 1,000 training images already achieves
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Fig. 14: Visualization for the semantic segmentation on Cityscapes [83]. For the baseline methods, we use white frames to
highlight the regions with poor prediction results. We observe that when the light intensity is high, baseline methods are
weak in capturing the boundary between the sky and buildings using the depth information. Besides, the concatenation
and self-attention methods do not preserve fine-grained objects, e.g. traffic signs, and are sensitive to noises of the depth
input (see the rightmost vehicle in the last group). In contrast, the prediction of our CEN is better in these aspects.

RGB input Depth input RGB-D fusion
by PS

RGB-D fusion
by our CEN Ground truth

Fig. 15: Visualization of applying CEN to the unsupervised
RGB-D saliency detection. We compare our method with
another RGB-D-based method Promoting Saliency (PS) [82]
which recently achieves SOTA.

promising results. Here, we enlarge the sampled set with
15,000 training images and conduct the experiments. Since
the training cost becomes quite large given the 15× ex-
pansion of the default sampled training dataset, we choose
typical experiments to evaluate our CEN. Results provided
in Table 15 include multimodal fusion, cycle multimodal

fusion, multitask learning, and multimodal multitask learn-
ing based on 15,000 sampled training images. By compar-
ison, we observe that mostly, training with 1,000 images
and training with 15,000 images achieve similar relative
improvements of CEN over baselines. These results indicate
that using 1,000 images for training already demonstrates
the general advantages of CEN.
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