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performance evaluation on image classification
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Abstract—For future learning systems, incremental learning is desirable because it allows for: efficient resource usage by eliminating
the need to retrain from scratch at the arrival of new data; reduced memory usage by preventing or limiting the amount of data required
to be stored — also important when privacy limitations are imposed; and learning that more closely resembles human learning. The
main challenge for incremental learning is catastrophic forgetting, which refers to the precipitous drop in performance on previously
learned tasks after learning a new one. Incremental learning of deep neural networks has seen explosive growth in recent years. Initial
work focused on task-incremental learning, where a task-ID is provided at inference time. Recently, we have seen a shift towards
class-incremental learning where the learner must discriminate at inference time between all classes seen in previous tasks without
recourse to a task-ID. In this paper, we provide a complete survey of existing class-incremental learning methods for image
classification, and in particular, we perform an extensive experimental evaluation on thirteen class-incremental methods. We consider
several new experimental scenarios, including a comparison of class-incremental methods on multiple large-scale image classification
datasets, an investigation into small and large domain shifts, and a comparison of various network architectures.

Index Terms—Class-incremental Learning, Continual Learning, Incremental Learning, Lifelong Learning, Catastrophic Forgetting

1 INTRODUCTION

NCREMENTAL LEARNING aims to develop artificially in-

telligent systems that can continuously learn to address
new tasks from new data while preserving knowledge
learned from previously learned tasks [1f], [2]. In most
incremental learning (IL) scenarios, tasks are presented to
a learner in a sequence of delineated training sessions during
which only data from a single task is available for learning.
After each training session, the learner should be capable of
performing all previously seen tasks on unseen data. The
biological inspiration for this learning model is clear, as
it reflects how humans acquire and integrate new knowl-
edge: when presented with new tasks to learn, we leverage
knowledge from previous ones and integrate newly learned
knowledge into previous tasks [3].

This contrasts markedly with the prevailing supervised
learning paradigm in which labeled data for all tasks is
jointly available during a single training session of a deep
network. Incremental learners only have access to data from
a single task at a time while being evaluated on all learned
tasks so far. The main challenge in incremental learning is to
learn from data from the current task in a way that prevents
forgetting of previously learned tasks. The naive approach
of finetuning, so fruitfully applied to domain transfer prob-
lems, suffers from the lack of data from previous tasks and
the resulting classifier is unable to classify data from them.
This drastic drop in performance on previously learned
tasks is a phenomenon known as catastrophic forgetting [4],
[5], [6]. Incremental learning aims to prevent catastrophic
forgetting, while at the same time avoiding the problem of
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intransigence which inhibits adaptation to new tasks [7].

We adopt the viewpoint on incremental learning first
proposed along with the iCaRL approach [1] and the ter-
minology used by Van de Ven and Tolias [8]. In incremental
learning, the training is divided into a sequence of tasks,
and in any training session the learner has only access to
the data of the current task, optionally, some methods can
consider a small amount of stored data from previous tasks.
Most early methods considered the scenario, known as task-
incremental learning (task-IL), in which the algorithm has
access to a task-ID at inference time. This has the clear ad-
vantage that methods do not have to discriminate between
classes coming from different tasks. More recently, methods
have started addressing the more difficult scenario of class-
incremental learning (class-IL), where the learner does not
have access to the task-ID at inference time, and therefore
must be able to distinguish between all classes from all
tasks (see Fig.[I). Scenarios for which the task-ID is typically
absent at inference time include those that incrementally
increase the granularity of their capacity (e.g. detecting a
growing number of object classes in images). In the last
few years a wide variety of methods for class-IL have been
proposed, and the time is ripe to provide a broad overview
and experimental comparison of them.

In this survey, we set out to identify the main challenges
for class-IL, and we organize the proposed solutions in three
main categories: regularization-based solutions that aim to
minimize the impact of learning new tasks on the weights
that are important for previous tasks; exemplar-based solu-
tions that store a limited set of exemplars to prevent forget-
ting of previous tasks; and solutions that directly address
the problem of task-recency bias, a phenomenon occurring in
class-IL methods that refers to the bias towards recently-
learned tasks. In addition to an overview of progress in
class-IL in recent years, we also provide an extensive exper-



MAJOR FINDINGS OF OUR PERFORMANCE EVALUATION ON CLASS-INCREMENTAL LEARNING

o For exemplar-free class-IL, data regularization methods
outperform weight regularization methods (see Table @

o Finetuning with exemplars (FT-E) yields a good baseline
that outperforms more complex methods on several exper-
imental settings (see Figs. %I;md

o Weight regularization combines ter with exemplars than
data regularization for some scenarios (see Figs. éﬂ [13).
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Fig. 1: In incremental learning, disjoint tasks are learned
sequentially. Task-IL has access to the task-ID during eval-
uation, while the more challenging setting of class-IL does
not. Class-IL is the subject of this survey.

imental evaluation of existing methods. We evaluate several
of the more popular regularization methods (often proposed
for task-IL) and extend them with exemplars for a more fair
comparison to recently developed methods. In addition, we
perform extensive experiments comparing thirteen methods
on several scenarios and also evaluate class-IL methods on
a new, more challenging multi-dataset setting. Finally, we
are the first to compare these methods on a wide range
of network architectures. We summarize the outcomes of
our survey in the “recommendations box” at the top of
this page. Our extensible class-IL evaluation framework,
including code to reproduce results, is publicly available at
https://github.com/mmasana/FACIL.

This paper is organized as follows. In Sec. [2, we define
class-incremental learning and the main challenges which
need to be addressed. In Sec. |3} we start by defining the
scope of methods we consider for our experimental evalu-
ation based on a list of desiderata. Then we introduce the
main approaches that have been proposed for class-IL. In
Sec.[d we describe related work. In Sec.[f we outline our ex-
perimental setup and follow with an extensive experimental
evaluation in Sec. [f] In Sec.[7] we discuss several emerging
trends in class-IL and then finish with conclusions in Sec.

2 CLASS-INCREMENTAL LEARNING

Incremental learning is related to several research topics,
including lifelong and continual learning. Lifelong learning

o Random exemplar sampling yields results competitive with
herding, especially for shorter sequences (see Table [3).

e Methods that explicitly address task-recency bias outperform
those that do not.

o Network architecture greatly influences the performance of
class-IL methods, in particular the presence or absence of skip
connections has a significant impact (see Fig. @

can be thought of as the problem of building intelligent
systems capable of learning throughout an extended life-
cycle in which new knowledge must be acquired and inte-
grated to accomplish new tasks [9]], [10]. Continual learning
is one of the characteristics of a lifelong learning system,
however, even this distinction is often blurred [11], [12].
Continual learning and incremental learning are often used
interchangeably in the literature [8], [13], and neither are
restricted to only fully-supervised problems. For example,
Elastic Weight Consolidation (EWC) [5] was applied to Deep
Reinforcement Learning for video games.

Given this lack of coherent terminology in the literature,
for the purpose of this survey we define incremental learning
as continual learning systems that learn from a sequence of
tasks consisting of new, supervised data.

2.1

The notable increase in attention IL has received in the last
few years has been fueled by a demand from applications in
industry and society. There are several problems for which
incremental knowledge assimilation offers a solution.

The practical importance of incremental learning

Memory restrictions: Systems that have physical limita-
tions for the data that they can store cannot resort to joint
training strategies because they simply cannot store all seen
data. Such systems can only store a limited set of examples
for the tasks they perform, and therefore learning must be
done incrementally. This scenario is especially common in
robotics [14], where robots are faced with different tasks
at different times or locations, but should still be able to
perform all previously learned tasks.

Data security/privacy restrictions: For systems that learn
from data that should not be permanently stored, incremen-
tal learning can provide a solution. Government legislation
could restrict data storage from clients at a central location
(e.g. for applications on mobile devices). Privacy consider-
ations are also common in health applications where legis-
lation prevents the long-term storage of data from patients,
and thus incremental learning is key [15].

Sustainable artificial intelligence: The cost of training
deep learning algorithms can be exorbitant. Examples in-
clude GPT-2 (1 week training on 32 TPUvV3 [16])). The carbon
footprint of retraining such systems for every new data
update is considerable, and will likely grow in the coming
years [17]. Incremental learning provides algorithms that
are much more computationally efficient and only require
processing of new data when updating the system.

2.2 General class-incremental learning setup

Class-IL methods learn from a stream of data drawn from a
non-stationary distribution. These methods should scale to a
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large number of tasks without excessive computational and
memory growth. They aim to exploit knowledge from previ-
ous classes to improve learning new ones (forward transfer),
as well as exploiting new data to improve performance
on previous tasks (backward transfer) [18]. Our investigation
focuses on class-IL scenarios in which the algorithm must
learn a sequence of tasks (see Section [7] for discussion of
task-free scenarios). By fask, we refer to a set of classes dis-
joint from classes in other (previous or future) tasks. In each
training session, the learner only has access to data from a
single task. We optionally consider a small memory that can
be used to store some exemplars from previous tasks. Tasks
consist of a number of classes, and learners are allowed to
process the training data of the current task multiple times
during the training session (also called the offline learning
setting). We do not consider the online learning setting used
in some papers [18], [19] in which each data sample is only
seen once.

More formally, an incremental learning problem 7 con-
sists of a sequence of n tasks:

T = [(C*, DY), (C? D?),...,(C™, D", (1)

where each task t is represented by a set of classes

={ct,cb....,cl,} and training data D'. We use N’
to represent the total number of classes in all tasks
up to and including task ¢ N'= 22:1 |C?|. We con-
sider class-incremental classification problems in which
D'={(x1,y1), (x2,¥2), -, (Xpmt,¥Ymt) }, where x are in-
put features for a training sample, and y;€{ 0, 1 }N is a one-
hot ground truth label vector corresponding to x;. During
training for task ¢, the learner only has access to D'. In
our experimental evaluation, we do not allow class overlap
between tasks (i.e., C'nC7 = (F if i # j). his setting is used
in the majority of the compared methods [1], [20], [21], [22],
[23] and we therefore adopt it, even though class overlap
between tasks could occur in some real-world applications.

We consider incremental learners that are deep networks
parameterized by weights 6 and we use o(x) = h(x;0)
to indicate the output logits of the network on input x.
We further split the neural network in a feature extractor
f with weights ¢ and linear classifier g with weights V'
according to o(x) = g(f(x;¢); V). We use y = o(h(x;6))
to identify the network predictions, where o indicates the
softmax function. After training on task ¢, we evaluate the
performance of the network on all classes UZ L C*. This
contrasts with task-IL, where the task-ID ¢ is known and
evaluation is only over task C"* at inference time.

Most class-IL classifiers are trained with a cross-entropy
loss. When training only on data from the current task ¢, we
can consider two cross-entropy variants. We can consider a
cross-entropy over all classes up to the current task:

exp(0%)

yrlog ———
Z S exp(o;)

Note that in this case, since the softmax normalization is
performed over all previously seen classes from all previ-
ous tasks, errors during training are backpropagated from
all outputs — including those which do not correspond
to classes belonging to the current task. Instead, we can
consider only network outputs for the classes belonging to

L(x,y;0") = )]
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the current task ¢ and define the following cross-entropy
loss [23], [24]:

IC*|
exp(ont1
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This loss only considers the softmax-normalized predictions
for classes from the current task. As a consequence, errors are
backpropagated only from the probabilities related to these
classes from task ¢, leading to less forgetting (see Sec. [5.4).
When using exemplars from previous tasks, it is natural to
apply Eq. 2| which considers the estimated probabilities on
both previous and new classes. However, in Sec. we
confirm that, when no exemplars are used, using the loss in
Eq. B results in less forgetting and a much stronger baseline
than finetuning with Eq. 2}

2.3 Scope of our experimental evaluation

The literature on IL is vast and growing, and several defi-
nitions and interpretations of class-IL have been proposed
in recent years [1], [8]], [13], [25]. In order to narrow the
scope of this survey to a broad group of usefully comparable
methods, we consider class-IL methods that are:

1) Task-agnostic in evaluation: incremental learners able
to predict classes from all previously learned tasks
without recourse to a task oracle at inference providing
a subset of possible classes.

2) Offline: methods in which data is presented in training
sessions whose data is i.i.d and can be processed multi-
ple times before moving on to the next task.

3) Fixed network architecture: methods using a fixed
architecture for all tasks, without adding significant
amount of parameters to the architecture for new tasks.

4) Tabula rasa: incremental learners trained from scratch
which do not require pretraining on large labeled
datasets. This property eliminates potential biases intro-
duced by the class distributions seen during pretraining
and any exploits derivable from that knowledge.

5) Mature: methods applicable to complex image classifi-
cation problems.

Property 1 distinguishes class-IL from task-IL [13]. Proper-
ties 2-5 are characteristics that we use to select methods
for our evaluation: property 2 excludes online methods [18],
[19], property 3 excludes growing architectures [26], [27],
property 4 excludes methods that require a pretrained net-
work [28]], [29]], and property 5 excludes methods that are
not yet scalable to larger datasets [30], [31].
Finally, we consider one additional (optional) property:

6) Exemplar-free: methods not requiring storage of image
data from previous tasks. This is an important charac-
teristic of methods which should be privacy-preserving.

Methods not requiring any data storage are seeing increased
attention in a world where data privacy and security are
fundamental for many users and are under increased leg-
islative control.

2.4 Challenges of class-incremental learning

The fundamental obstacles to effective class-incremental
learning are conceptually simple, but in practice very chal-
lenging to overcome. These challenges originate from the
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Fig. 2: A network trained continually to discriminate be-
tween task 1 (left) and task 2 (middle) is unlikely to have
learned features to discriminate between the four classes
(right). We call this problem inter-task confusion.

sequential training of tasks and the requirement that at any
moment the learner must be able to classify all classes from
all previously learned tasks. Incremental learning meth-
ods must balance retaining knowledge from previous tasks
while learning new knowledge for the current task. This
problem is called the stability-plasticity dilemma [32]. A naive
approach to class-IL which focuses solely on learning the
new task will suffer from catastrophic forgetting: a drastic
drop in the performance on previous tasks [4], [6]. Pre-
venting catastrophic forgetting leads to a second important
problem of class-IL, that of intransigence: the resistance to
learn new tasks [7]. There are several causes of catastrophic
forgetting in class-incremental learners:

o Weight drift: While learning new tasks, the network
weights relevant to old tasks are updated to minimize
a loss on the new task. As a result, performance on
previous tasks suffers — often dramatically.

« Activation drift: Closely related to weight drift, chang-
ing weights result in changes to activations, and conse-
quently in changes to the network output. Focusing on
activations rather than on weights can be less restrictive
since this allows weights to change as long as they
result in minimal changes in layer activations.

o Inter-task confusion: in class-IL, the objective is to
discriminate all classes from all tasks. However, since
classes are never jointly trained, the network weights
cannot optimally discriminate all classes (see Fig. 2.
This holds for all layers in the network.

« Task-recency bias: Separately learned tasks might have
incomparable classifier outputs. Typically, the most
dominant task bias is towards more recent task classes.
This effect is clearly observed in confusion matrices
which illustrate the tendency to miss-classify inputs as
belonging to the most recently seen task (see Fig. [3).

The first two sources of forgetting are related to network
drift and have been broadly considered in the task-IL lit-
erature. Regularization-based methods either focus on pre-
venting the drift of important weights [5], [7], [33], [34] or
the drift of activations [20], [35].

The last two points are specific to class-IL since they
have no access to a task-ID at inference time. Most research
has focused on reducing task imbalance [21], [22], [24],
which addresses the task-recency bias. To prevent inter-
task confusion and learn representations which are optimal
to discriminate between all classes, rehearsal [1], [23]] or
pseudo-rehearsal [30], [36], [37] are commonly used.
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Fig. 3: Examples of task and class confusion matrices for
Finetuning (top row) and Finetuning with 2,000 exemplars
(bottom row) on CIFAR-100. Note the large bias towards
the classes of the last task for Finetuning. By exploiting
exemplars, the resulting classifier is clearly less biased.

3 APPROACHES

In this section, we describe several approaches to address
the above mentioned challenges of class-IL. We divide them
into three main categories: regularization-based methods,
rehearsal-based methods, and bias-correction methods.

3.1 Regularization approaches

Several approaches use regularization terms together with
the classification loss in order to mitigate catastrophic for-
getting. Some regularize on the weights and estimate an
importance metric for each parameter in the network [5],
[71, 1331, [34], [38], [39], while others focus on the importance
of remembering feature representations [20], [35], [40], [41],
[42], [43]. Most of these approaches have been developed
within the context of task-IL and have been reviewed by
other works [13]. Because of their importance also for
class-IL, we discuss them briefly. Regularization of feature
representations in particular is widely used in class-IL.
Finally, we will describe several regularization techniques
developed recently specifically for class-IL.

Weight regularization. The first class of approaches fo-
cuses on preventing weight drift determined to be relevant
for previous tasks. They do so by estimating a prior impor-
tance of each parameter in the network (which are assumed
to be independent) after learning each task. When training
on new tasks, the importance of each parameter is used to
penalize changes to them. That is, in addition to the cross-
entropy classification loss, an additional loss is introduced:

[0
1
Lrg(0') = 5 >, 67" = 0))%, (4)
i=1

where 6! is weight i of the network currently being trained,
071 is the value of this parameter at the end of training on



task ¢- 1, |#*!| is the number of weights in the network, and
2; contains importance values for each network weight.

Kirkpatrick et al. [5] proposed Elastic Weight Consolidation
(EWC) in which €); is calculated as a diagonal approx-
imation of the Fisher Information Matrix. However, this
captures the importance of the model at the minimum after
each task is learned, while ignoring the influence of those
parameters along the learning trajectory in weight space.
Liu et al. [39] improve EWC by rotating the parameter
space to one that provides a better approximation of the
Fisher Information Matrix. However, the model has to be
extended with fixed parameters during training, which does
not increase the capacity of the network but incurs in a com-
putational and memory cost. In a similar vein of improving
the approximation of the Fisher Information Matrix in EWC,
Lee et al. [44] propose an extension of the Kronecker factor-
ization technique for block-diagonal approximation of the
Fisher Information Matrix. They additionally demonstrate
how such Kronecker factorizations make accommodating
batch normalization possible.

In contrast, Zenke et al. [34] proposed the Path Integral
approach (PathInt), that accumulates the changes in each
parameter online along the entire learning trajectory. As
noted by the authors, batch updates to the weights might
lead to overestimating the importance, while starting from
pretrained models might lead to underestimating it. To ad-
dress this, Memory Aware Synapses (MAS) [33] also proposes
to calculate €2; online by accumulating the sensitivity of the
learned function (the magnitude of the gradient). Further,
Riemanian Walk (RWalk) [7] fuses both Fisher Information
Matrix approximation and online path integral in a single
algorithm to calculate the importance for each parameter. In
addition, RWalk uses exemplars to further improve results.

Data regularization. The second class of regularization-
based approaches aims to prevent activation drift and is
based on knowledge distillation [45], [46] which was orig-
inally designed to learn a more compact student network
from a larger teacher network. Li et al. [20] proposed to
use the technique to keep the representations of previous
data from drifting too much while learning new tasks. Their
method, called Learning without Forgetting (LwF) applies the
following loss:

Ntl

Zw

where 7, (x) are temperature-scaled logits of the network:

Edw X 6‘ logwk( ), (5)

ok /T

t-1
i
and o(x) is the output of the network before the softmax is
applied, and 7' is the temperature scaling parameter. We use
7! to refer to the predictions of the network after training
task t- 1. Temperature scaling was introduced to help with
the problem of having the probability of the correct class too
high [46].

The learning without forgetting loss in Eq. |5| was origi-
nally proposed for a task-IL setting. However, it has since

been a key ingredient of many class-IL methods [1], [21]],
[22], [23], [42], [47]. When the LwF method is combined with

(6)
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exemplars the distillation loss is typically also applied to
the exemplars of previous classes [1]], [21], [22], [23]. Finally,
some works have observed that the loss works especially
well when the domain shift between tasks is small (as is
typically the case for class-IL), however, when domain shifts
are large its efficacy drops significantly [11].

A very similar approach, called less-forgetting learning
(LFL), was proposed by Jung et al. [35]. LFL preserves
previous knowledge by freezing the last layer and penaliz-
ing differences between the activations before the classifier
layer. However, since this can introduce larger issues when
the domain shift is too large, other approaches introduced
modifications to deal with it. Encoder-based lifelong learn-
ing [40] extends LwF by optimizing an undercomplete au-
toencoder which projects features to a manifold with fewer
dimensions. One autoencoder is learned per task, which
makes the growth linear, although the autoencoders are
small compared to the total model size.

Recent developments in regularization. Several new regu-
larization techniques have been proposed in recent work on
class-IL. Zagoruyko and Komodakis [48] proposed to use
the attention of the teacher network to guide the student
network. Learning without Memorizing (LwM) [49] applies
this technique to class-IL. The main idea is that the attention
used by the network trained on previous tasks should not
change while training the new task. Features contributing to
the decision of a certain class label are expected to remain
the same. This is enforced by the attention distillation loss:

t=1( t
0 (50 = |G - ool O
where the attention map @) is given by:
Q' (x) = Grad-CAM (x7 6, c) 8)
Q"' (x) = Grad-CAM (x, 0", ¢) )

and is generated with the Grad-CAM algorithm [50]. Grad-
CAM computes the gradient with respect to a target class
¢ to produce a coarse localization map indicating the im-
age regions which contributed to the prediction. Here, we
cannot use the target class label, because this label did
not exist when training the previous model §'~'. Instead,
the authors propose to use the previous class predicted
with the highest probability to compute the attention maps:
¢ = argmax h (x;0°71).

Another recent method building upon LwF is Deep Model
Consolidation (DMC) [42]]. It is based on the observation
that there exists an asymmetry between previous and new
classes when training: new classes have explicit and strong
supervision, whereas supervision for old classes is weaker
and communicated by means of knowledge distillation. To
remove this asymmetry, they propose to apply a double
distillation loss on the model 6! trained on previous classes
and a newly trained model #* for the new classes (allowing
this model to forget previous tasks):

L’DD(u;H) = (10)



where 0, are normalized logits:

t-1
N
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1
OZ(u)—ﬁZof(u) if Nt < k < N*.

=1
(11)

Here o'!(u) refers to the logits from the network trained
on previous tasks, and o’(u) the ones trained on the new
classes. Because the algorithm does not have access to data
of previous tasks, they propose to use auxiliary data u,
which can be any unlabeled data from a similar domain.

Similarly, Global Distillation (GD) [43] also proposes to
use external data to distill knowledge from previous tasks.
They first train a teacher on the current task and calibrate
its confidence using the external data and exemplars. Then
they triple-distill a new model from the teacher, the previous
model, and their ensemble (plus the cross-entropy loss for
current task and exemplars). The teacher and the previous
task are used with both current task data and external
dataset data, while the ensemble is only used with the ex-
ternal data. Finally, they perform finetuning while avoiding
task-recency bias by weighting the loss according to the
amount of data. The external dataset sampling method is
based on the predictions of the model. They also propose a
version that does not require external data by replacing it
with stored exemplars from previous tasks.

In Hou et al. [51], current task data is also not trained
directly, but rather used to train an expert teacher first. The
method additionally distills an old model with a reserved
small fraction of previous task data to preserve the per-
formance on old tasks, similar to LwF but using stored
exemplars instead of new data. Based on an analysis of
iCaRL, Javed and Shafait [52] propose a dynamic threshold
moving algorithm to fix the nearest exemplar mean classifier
bias trained with distillation by maintaining an up-to-date
scaling vector.

Finally, the less-forget constraint [21] is a variant of LwE
Instead of regularizing network predictions, they propose
to regularize on the cosine similarity between the L2-
normalized logits of the previous and current network:

(0" (x), 0'(x))

ot )lfallot(x)[J2”

where (-,-) is the inner product between vectors. This
regularization is less sensitive to task imbalance because
the comparison is between normalized vectors. The authors
show that this loss reduces bias towards new classes.

Elf(x;e) =1

(12)

3.2 Rehearsal approaches

Rehearsal methods keep a small number of exemplars [1],
[22], [23] (exemplar rehearsal), or generate synthetic im-
ages [30], [53] or features [37]], [54] (pseudo-rehearsal). By
replaying the stored or generated data from previous tasks
rehearsal methods aim to prevent the forgetting of previous
tasks. Most rehearsal methods combine the usage of exem-
plars to tackle the inter-task confusion with approaches that
deal with other causes of catastrophic forgetting. The usage
of exemplar rehearsal for class-IL was first proposed in
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Incremental Classifier and Representation Learning (iCaRL) [1].
This technique has since been applied in the majority of
class-IL methods. In this section, we focus on the choices
which need to be taken when applying exemplars.

Memory types. Exemplar memory must be extended at
the end of a training session after the model has already
been adapted to the new task. If the memory has a fixed
maximum size across all tasks (fixed memory), some exem-
plars must first be removed to make space for new ones.
This ensures that the memory capacity stays the same and
the capacity is fixed. The more tasks and classes that are
learned, the less representation each class has for rehearsal.
After learning a certain amount of tasks, the memory could
be expanded to better accommodate the new distributions.
However, previously removed samples will be lost, thus
the decision of when to expand is an important one. If
the memory is allowed to grow (growing memory), then
only new samples from the current task need to be added.
This enforces the classes to have a stable representation
during rehearsal across all tasks, at the cost of having a
linear increase of memory, which might not be suitable in
some applications. In both cases, the number of exemplars
per class is enforced to be the same to ensure an equal
representation of all classes.

Sampling strategies. The simplest way to select exemplars
to add to the memory is by randomly sampling from the
available data (random), which has been shown to be very
effective without much computational cost [1f], [7].

Inspired by Welling [55], iCaRL selects exemplars based
on their corresponding feature space representations (herd-
ing). Representations are extracted for all samples and the
mean for each class is calculated. The method iteratively
selects exemplars for each of the classes. At each step, an
exemplar is selected so that, when added to the exemplars
of its class, the resulting exemplar mean is closest to the
real class mean. The order in which exemplars are added
is important, and taken into account when some need to
be removed. Although this iterative selection procedure can
outperform random, it increases computational cost.

In RWalk [7], two other sampling strategies are pro-
posed. The first one calculates the entropy of the softmax
outputs and selects exemplars with higher entropy (en-
tropy). This enforces selection of samples that have more
distributed scores across all classes. Similarly, the second
one selects exemplars based on how close they are to the de-
cision boundary (distance), assuming that the feature space
and the decision boundaries do not change too much. For
a given sample (x;,y;), the pseudo-distance to the decision
boundary is calculated by f(x;;¢)?Vy,, meaning that the
smaller the distance, the closer to the decision boundary.

For these sampling strategies (except for random), the
order which exemplars are chosen is recorded following a
decreasing order of importance. If a fixed memory is used
and some memory must be freed to make space for new
exemplars, the exemplars with the lower importance are the
ones removed first.

Task balancing. When applying rehearsal during the train-
ing of a new task, the weight of the new classes compared
to the previous ones is defined by the trade-off between the
two parts of the loss, as well as the number of samples from



each class at each training step. Most approaches sample
the training batches from the joint pool between new data
and rehearsal exemplars [1f], [7], [21], [22]. This means that
batches are clearly over-represented by new samples and
rely on the trade-off between the cross-entropy loss and
the other losses that prevent forgetting. In contrast, End-to-
End Incremental Learning (EEIL) [23] proposes having a more
balanced training where batches are equally distributed
between new and previous classes. This seems to have quite
beneficial effects in compensating for the task imbalance
during training. GDumb [56] is a baseline that ensures a
balanced training set. Their method greedily stores samples
in memory in a class-balanced way as they arrive. For
testing, they train a model from scratch using only samples
in the memory. This extremely simple baseline was shown
to obtain competitive results on several IL scenarios, but
for class-IL it was outperformed by methods that exploit
information from samples not present in the memory.

Combining rehearsal and data regularization. Several
methods [1], [21], [22], [23]] use the distillation loss from
Learning without Forgetting [20] to deal with the activation
drift in combination with exemplars. However, Beloudah
and Popescu [24] do the important observation that this
distillation term actually hurts performance when using
exemplars. The results in Table. [2| confirm this, however in
some scenarios a combination of weight regularization and
exemplar rehearsal can be beneficial (see Figs.[8} [9} [13). Ad-
ditionally, when combined with auxiliary unlabelled data
using double distillation [43], results improve further.

Recent research on task-IL [57] shows that data regular-
ization (referred to as functional regularization) can provide
a natural way to select data for rehearsal by choosing the
inducing points of the Gaussian process used to approxi-
mate the posterior belief over the underlying task-specific
function (network output). This direction was further ex-
plored in [58], however the usefulness of these approaches
for class-IL is still to be determined.

3.3 Bias-correction approaches

Bias-correction methods aim to address the problem of task-
recency bias, which refers to the tendency of incrementally
learned network to be biased towards classes in the most
recently learned task. This is mainly caused by the fact that,
at the end of training, the network has seen many examples
of the classes in the last task but none (or very few in case of
rehearsal) from earlier tasks. One direct consequence of this,
as observed by Hou et al. [21], is that the classifier norm is
larger for new classes than for the previous ones and that
the classifier bias favors the more recent classes. This effect
is shown in Fig. |4} where the lower biases and reduced norm
of the classifier make less likely for the network to select any
of the previous classes. In this section, we discuss several
approaches to address this problem.

The earlier mentioned iCaRL method [1] combines ex-
emplars and Learning without Forgetting, using a classifier
layer and cross-entropy loss during training. To prevent the
task-recency bias, they do not use the classifier at inference.
Instead they compute the class mean of the exemplars in the
feature representation, and then apply a nearest exemplar-
mean for classification. Since this process is independent of
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Fig. 4: Bias and weight analysis for iCaRL with 2,000 exem-
plars on CIFAR-100. We show the ordered biases and norm
of the last classification layer of the network for different
tasks. Note how the bias and the norm of the weights are
higher for the last tasks. This results in a task-recency bias.

the weights and biases of the final layer, the method was
shown to be much less prone to the task-recency bias.

One simple yet effective approach to prevent task-
recency bias has been proposed by Castro et al. [23] in their
method EEIL. They suggest introducing an additional stage,
called balanced training, at the end of each training session. In
this phase, an equal number of exemplars from all classes is
used for a limited number of iterations. To avoid forgetting
the new classes, they introduce a distillation loss on the
classification layer only for the classes from the current task.
Balanced training could come at the cost of overfitting to
the exemplars that have been stored, when these do not
completely represent the distribution.

Another simple and effective approach to preventing
task-recency bias was proposed by Wu et al. [22], who call
their method Bias Correction (BiC). They add an additional
layer dedicated to correcting task bias to the network. A
training session is divided into two stages. During the first
stage they train the new task with the cross-entropy loss
and the distillation loss (see Eq.[5). Then they use a split of a
very small part of the training data to serve as a validation
set during the second phase. They propose to learn a linear
transformation on top of the logits, ox, to compensate for
the task-recency bias. The transformed logits are given by:

ar = @50 + B, e C® (13)
where o and 5 are the parameters which compensate for
the bias in task s. For each task there are only two parame-
ters which are shared for all classes in that task (initialized to
ag = 1 and By = 0). In the second phase, all the parameters
in the network are frozen, except for the parameters of the
current task oy and ;. These are optimized with a standard
softmax on the transformed logits q; using the set-aside
validation set. Finally, they only apply a weight decay on /3
parameters and not on the o parameters.

As mentioned earlier, task-recency bias was also ob-
served by Hou et al. [21]]. In their method Learning a Unified
Classifier Incrementally via Rebalancing (LUCIR), they propose
to replace the standard softmax layer o with a cosine nor-
malization layer according to:

Z yx log

exp (g )
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where f(x) are the feature extractor outputs, {-,-) is the
inner product, Vj, are the classifier weights (also called class
embedding) related to class k, and 7 is a learnable parameter
which controls the peakiness of the probability distribution.

Hou et al. [21] also address the problem of inter-task
confusion. To prevent new classes from occupying a similar
location as classes from previous tasks, they apply the
margin ranking loss. This loss pushes the current embedding
away from the embeddings of the K most similar classes
according to:

K
Lo () = Y e (m = ¢ty oy + <t Ve, 0) (15)
k=1

where Vy refers to the ground truth class embedding of x, V;
is the embedding of the closest classes, and m is the margin.

Finally, another approach that addresses task-recency
bias was proposed by Belouadah and Popescu [24] with
their method called Class-IL with dual memory (IL2M). Their
method is similar to BiC [22] in the sense that they propose
to rectify the network predictions. However, where BiC
learns to rectify the predictions by adding an additional
layer, IL2M rectifies based on the saved certainty statis-
tics of predictions of classes from previous tasks. Defining
m = argmax y(x), they compute the rectified predictions
of the previous classes & as:
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Here y} (superscript p refers to past) is the mean of the
predictions ¢, for all images of class c;, after training the
task in which class ¢y is first learned (¢ € CP), and 3P
is the mean of the predictions for all classes in that task.
Both 3} and 7" are stored directly after their corresponding
training session. 7!, is the mean of the predictions ¢ for
all images of class ¢y, after training the new task (this is
computed based on the exemplars). Similarly, 7 is the mean
of the predictions for all classes in the new task. As can
be seen the rectification is only applied when the predicted
class is a new class (m € C"). If the predicted class is an old
class, the authors argue that no rectification is required since
the prediction does not suffer from task-imbalance.

<

(16)

3.4 Relation between class-incremental methods

In previous sections we discussed the main approaches to
mitigating catastrophic forgetting by incremental learning
methods. We summarize their relations in Fig. 5[ starting
from the naive finetuning approach. In the diagram we
show all methods which we compare in Sec. [6} It distin-
guishes between methods using exemplars to retain knowl-
edge (blue, orange) and exemplar-free methods (green).
Most notably, the huge impact of Learning without
Forgetting (LwF) [20] upon the whole field of class-IL is
clear. However, we expect that with the recent findings [24],
which show that when combined with exemplars finetuning
can outperform LwF, could somewhat lessen its continu-
ing influence. Weight regularization methods [5], [33], [34],
applied frequently in the task-IL setting, are significantly
less used for class-IL. They can also be trivially extended
with exemplars and we include results of this in Sec.
Finally, Fig. |5 also shows the influence of iCaRL [1] in the
development of more recent methods [21], [22].

4 RELATED WORK

In this section we broadly review related work, focusing
mainly on works not discussed in the previous section.

Existing surveys. The problem of catastrophic forgetting
has been acknowledged for many years. Already in the
eighties, McCloskey and Cohen [6] showed that algorithms
trained with backpropagation suffered from catastrophic
forgetting. Radcliff [59] confirmed this finding on a wider
range of tasks trained with backpropagation. An excellent
review on early approaches to mitigating catastrophic for-
getting is by French [3]. This review also discusses how the
brain prevents catastrophic forgetting and lays out possible
solutions for neural network design. With the resurgence of
deep learning from around 2011 [60] the problem of catas-
trophic forgetting quickly gained renewed attention [4],
[5]. This led to a surge of work in incremental learning,
continual learning and lifelong learning.

This surge of new research has also resulted in recent
surveys on the subject. Parisi et al. [61] provide an exten-
sive survey on lifelong learning. This review is especially
valuable because of its in-depth discussion of how bio-
logical systems address lifelong learning. They thoroughly
discuss biologically-motivated solutions, such as structural
plasticity, memory replay, curriculum and transfer learn-
ing. Another review [14] focuses on continual learning for
robotics, and puts special effort into unifying evaluation
methodologies between continual learning for robotics and
non-robotics applications, with the aim of increasing cross-
domain progress in continual learning. These reviews, how-
ever, do not provide an experimental performance evalua-
tion of existing methods in the field.

Some recent surveys do include evaluation of methods.
Pfulb and Gepperth [62] propose a training and evaluation
paradigm for task-IL methods, limited to two tasks. De
Lange et al. [13] perform an extensive survey of task-IL with
an experimental evaluation, including an analysis of model
capacity, weight decay, and dropout regularization within
context of task-IL. In addition, they propose a framework
for continually determining the stability-plasticity trade-off
of the learner — which we also apply in our evaluation. The



more challenging setting of class-IL has led to many new
methods to address its particular problems. The majority of
these methods were not included by De Lange et al. [13],
nor do they perform any evaluation in the class-IL setting.
There are two concurrent surveys on class-IL: Mai et
al. [19] perform a comparison of methods in the online class-
IL settings, whereas offline class-IL is the focus of our sur-
vey. Belouadah et al. [63] perform a comparison of several
class-IL methods. Our survey and performance evaluation
include methods EWC, MAS, Pathint, EEIL, RWalk, LwM,
DMC and GD, all of which are excluded from their survey.

Mask-based methods. This type of parameter isolation
methods reduce or completely eliminate catastrophic forget-
ting by applying masks to each parameter or to each layer’s
representations. However, by learning useful paths for each
task in the network structure, the simultaneous evaluation
of all learned tasks is not possible. This forces several
forward passes with different masks, which makes such
methods effective for task-aware evaluation, but impractical
for task-agnostic settings [13]], [64]. Piggyback learns masks
on network weights while training a backbone [65]. PackNet
learns weights and then prunes them to generate masks [29].
HAT [66] applies attention masks on layer activations to
penalize modifications to those that are important for a
specific task. DAN [67] combines existing filters to learn
filters for new tasks. Finally, PathNet [68] learns selective
routing through the weights using evolutionary strategies.

Dynamic architectures.  The other type of parameter
isolation method, called architecture growing, dynamically
increases the capacity of the network to reduce catastrophic
forgetting. These methods rely on promoting a more intran-
sigent model capable of maintaining previous task knowl-
edge, while extending that model in order to learn new
tasks. This makes some of these methods impractical when
the task-ID is not known, or adds too many parameters
to the network which makes them unfeasible for large
numbers of tasks. EG [11] duplicates the model for each new
task in order to completely eliminate forgetting. PNN [26]
extends each layer and adds lateral connections between
duplicates for each task. Old weights are fixed, allowing
access to that information while learning the new task.
However, complexity increases with the number of tasks.
To address this issue, P&C [25] proposes duplicating the
network only once to keep the number of parameters fixed,
and use EWC [5] to mitigate forgetting. Xiao et al. [69]
group similar classes together expanding hierarchically, at
the cost of an expensive training procedure and a rigid
architecture. ACL [70] fuses a dynamic architecture with
exemplars, explicitly disentangling shared and task-specific
features with an adversarial loss. This allows to learn shared
features that are more robust to forgetting.

Finally, Random Path Selection (RPS) [27] provides better
performance with a customized architecture by combining
distillation and rehearsal-based replay. Contrary to some of
the previously mentioned approaches, RPS does not need
a task-ID at inference time. However, in order to learn
the different paths for each task, the proposed architecture
is much larger than other class-IL approaches. Since this
approach needs to use their particular RPSNet architecture
and the capacity is not comparable to the other approaches
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compared in this survey, we provide results in Appendix
(see Sec. and Table [S3), for an analysis on different
numbers of paths and memory required.

Online incremental learning. Within the field of incre-
mental learning, online methods are based on streaming
frameworks where learners are allowed to observe each
example only once instead of iterating over a set of examples
in a training session. Lopez-Paz [18] establishes definitions
and evaluation methods for this setting and describes GEM,
which uses a per-task exemplar memory to constrain gra-
dients so that the approximated loss from previous tasks is
not increased. A-GEM [12]] improves on GEM in efficiency
by constraining based on the average of gradients from
previous class exemplars. However, Chaudhry et al. [71]
show that simply training on the memorized exemplars,
similar to the well-established technique in reinforcement
learning [72], [73], outperforms previous results. GSS [74]
performs gradient-based exemplar selection based on the
GEM and A-GEM procedure to allow training without
knowing the task boundaries. MIR [75] trains on the exem-
plar memory by selecting exemplars that will have a larger
loss increase after each training step. Riemer et al. [76] use
the memory to store discrete latent embeddings from a Vari-
ational Autoencoder that allows generation of previous task
data for training. MER [77]] combines experience replay with
a modification of the meta-learning method Reptile [78] to
select replay samples which minimize forgetting. Online
methods can be extended to the offline setting by running
them for multiple epochs on each training session. We show
some results in Sec. 6.3

Variational continual learning. Variational continual
learning is based on the Bayesian inference framework.
VCL [31] proposes to merge online and Monte Carlo vari-
ational inference for neural networks yielding variational
continual learning. It is general and applicable to both
discriminative and generative deep models. VGL [79] intro-
duces Variational Generative Replay, a variational inference
generalization of Deep Generative Replay (DGR), which
is complementary to VCL. UCL [80] proposes uncertainty-
regularized continual learning based on a standard Bayesian
online learning framework. It gives a fresh interpretation of
the Kullback-Leibler (KL) divergence term of the variational
lower bound for the Gaussian mean-field approximation
case. FBCL [81] proposes to use Natural Gradients and Stein
Gradients to better estimate posterior distributions over the
parameters and to construct coresets using approximated
posteriors. IUVCL [82] proposes a new best-practice ap-
proach to mean-field variational Bayesian neural networks.
CLAW [83] extends VCL by applying an attention mecha-
nism on the whole network which allows automation of the
architecture adaptation process that assigns parameters to
be fixed or not after each task. UCB [84] defines uncertainty
for each weight to control the change in the parameters
of a Bayesian Neural Network, identifying which are the
weights that should stay fixed or change. They further
extend their method by using a pruning strategy together
with binary masks for each task to retain performance
from previous tasks. These methods normally consider only
evaluation on task-IL. BGD [85] updates the posterior in
closed form and that does not require a task-ID.



Pseudo-rehearsal methods. In order to avoid storing
exemplars and privacy issues inherent in exemplar rehearsal,
some methods learn to generate examples from previous
tasks. DGR [30] generates those synthetic samples using
an unconditional GAN. An auxiliary classifier is needed to
assign ground truth labels to each generated sample. An im-
proved version is proposed in MeRGAN [36]], where a label-
conditional GAN and replay alignment are used. DGM [53]]
combines the advantages of conditional GANs and synaptic
plasticity using neural masking. A dynamic network expan-
sion mechanism is introduced to ensure sufficient model
capacity. Lifelong GAN [86] extends image generation with-
out catastrophic forgetting from label-conditional to image-
conditional GANs. As an alternative to exemplar rehearsal,
some methods perform feature replay [37], [54], which need
a fixed backbone network to provide good representations.

Incremental Learning beyond image classification.
Shmelkov et al. [87] propose to learn object detectors in-
crementally. They use Fast-RCNN [88] as the network and
propose distillation losses on both bounding box regression
and classification outputs. Additionally, they choose to dis-
till the region proposal with the lowest background scores,
which filters out most background proposals. Hao et al. [89)]
extend Faster-RCNN [90] with knowledge distillation. Sim-
ilarly, Michieli et al. [91] propose to distill both on the
output logits and on intermediate features for incremental
semantic segmentation. Recently, Cermelli et al. [92] model
the background by revisiting distillation-based methods and
the conventional cross entropy loss. Specifically, previous
classes are seen as background for the current task and
current classes are seen as background for distillation. In-
cremental semantic segmentation has also been applied to
remote sensing [93]] and medical data [94].

Catastrophic forgetting has been mainly studied in feed-
forward neural networks. Only recently the impact of catas-
trophic forgetting in recurrent LSTM networks was stud-
ied [95]. In this work, they observe that catastrophic forget-
ting is even more notable in recurrent networks than feed-
forward networks. This is because recurrent networks am-
plify small changes of the weights. To address catastrophic
forgetting an expansion layer technique for RNNs was pro-
posed [96]. A Net2Net technique [97] was combined with
gradient episodic memory [98]. In addition, they propose a
benchmark of tasks for training and evaluating models for
learning sequential problems. Finally, Del Chiaro et al. [99]
study preventing forgetting for the task of captioning.

The paper that introduced EWC [5] also considered
training Deep Reinforcement Learning (DRL) agents to play
multiple Atari games [72] over their lifetimes. Reinforce-
ment learning (RL) is an application area of deep learning
in which task specification is usually implicit in the definition
of the reward function to be optimized, and as such is
another example where laboratory practice often does not
completely reflect the real world since the agent’s goals must
evolve with the changing environment around them. Incre-
mental task acquisition enjoys a long tradition in the RL
community [100], and more recently the CLEAR approach
mixes on-policy learning for plasticity with off-policy learn-
ing from replayed experiences to encourage stability with
respect to tasks acquired in the past [73].
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5 EXPERIMENTAL SETUP

In this section, we explain the experimental setup and how
we evaluate the approaches. We also introduce the baselines
and the experimental scenarios used to gather the results
presented in Sec. [f} More details on the implementation of
the methods are described in Appendix

5.1 Code framework

In order to make a fair comparison between the different
approaches, we implemented a versatile and extensible
framework. Datasets are split into the same partitions and
data is queued in the same order at the start of each task. All
library calls related to randomness are synchronized and set
to the same seed so that the initial conditions for all methods
are the same. Data from previous tasks (excluding exemplar
memory) is not available during training, thus requiring
selection of any stability-plasticity-based trade-off before a
training session of a task is completed (see also Sec. [5.5).
The current version of the code includes implemen-
tations of several baselines and the following methods:
EWC [5], MAS [33], PathInt [34], RWalk [7], LwM [49],
DMC [42], GD [43], GDumb [56], LwF [20], iCaRL [1],
EEIL [23], BiC [22], LUCIR [21], and IL2M [24]. The frame-
work includes extending most exemplar-free methods with
the functionality of exemplars, facilitates using a wide
variety of network architectures, and allows running the
various experimental scenarios we perform in this paper.
As such, our framework contributes to the wider availability
and comparability of existing methods, which will facilitate
future research and comparisons of class-IL methods.

5.2 Datasets

We study the effects of CL methods for image classification
on nine different datasets whose statistics are summarized
in Appendix First, we compare the three main cate-
gories of approaches described in Sec. [3| on the CIFAR-100
dataset [101]. Next, we use several fine-grained classification
datasets: Oxford Flowers [102], MIT Indoor Scenes [103],
CUB-200-2011 Birds [104], Stanford Cars [105], FGVC Air-
craft [106], and Stanford Actions [107]. These provide higher
resolution and allow studying the effects on larger domain
shifts when used as different tasks. To study the effects on
smaller domain shifts, we use the VGGFace2 dataset [108].
Since the original dataset has no standard splits for our
setting, we keep the 1,000 classes that have the most samples
and split the data following the setup from [24]]. This means
that this dataset is not totally balanced, but at least all
used classes have a large enough pool of samples. Finally,
the ImageNet dataset [109] is used as a more realistic and
large-scale scenario. It consists of 1,000 diverse object classes
with different numbers of samples per class. Since this
dataset takes time and needs a lot of resources, we also use
the reduced ImageNet-Subset, which contains the first 100
classes from ImageNet as in [1].

In order to apply a patience learning rate schedule and
a hyperparameter selection framework, an additional class-
balanced split of 10% from training is assigned to validation
for those datasets. In the case of Flowers and Aircraft,
we fuse the official train and validation splits and then
randomly extract a class-balanced 10% validation split.



5.3 Metrics

In incremental learning, a; ) € [0,1] denotes the accuracy
of task k after learning task ¢ (kK < t), which provides
precise information about the incremental process. In order
to compare the overall learning process, the average accuracy
is defined as A; = % 25:1 a ; at task ¢. This measure is used
to compare performances of different methods with a single
value. When tasks have different numbers of classes, a class
frequency weighted version is used.

Additional metrics focusing on several aspects of IL such
as forgetting and intransigence [7] have also been proposed.
Forgetting estimates how much the model forgot about
previous tasks. Another measure, intransigence quantifies
a model’s inability to learn a new task. Both can be con-
sidered complementary measures that help understand the
stability-plasticity dilemma. These measures were originally
proposed for task-IL. However, their use in class-IL was not
found equally useful. When adding new tasks the perfor-
mance of previous tasks drops because the learner has to
perform the more complex task of classifying data in all
seen classes. This effect will incorrectly contribute to the
forgetting measure. Therefore, in this survey we use average
accuracy as the main metric.

All reported CIFAR-100 results are averages over 10
runs, while the domain shift and different architecture re-
sults are averages over 5 runs. Each run uses a different ran-
dom seed, but these are fixed across the different approaches
so that the comparison is on identical splits generated from
the same set of seeds.

5.4 Baselines

Training with only a cross-entropy loss (see Eq. [2)) is the
default Finetuning (FT) baseline common in most IL works.
This learns each task incrementally while not using any
data or knowledge from previous tasks and is often used
to illustrate the severity of catastrophic forgetting. However,
when moving to a class-IL scenario where all previous and
new classes are evaluated, other finetuning variants can be
considered. We might not update the weights corresponding
to the outputs of previous classes (FT+), which avoids the
slow forgetting due to not having samples for those classes
(see Eq. [B). As seen in Table [T} this simple modification
has an impact on the baseline performance. Since previous
classes will not be seen, freezing the weights associated with
them avoids biased modifications based only on new data.
Furthermore, in the proposed scenarios approaches usually
make use of an exemplar memory, which helps improve
overall performance and avoid catastrophic forgetting by
replaying previously seen classes. Therefore, as an addi-
tional baseline we also consider extending FT with the same
exemplar memory as exemplar-based approaches (FT-E).
The result of this is quite clearly more beneficial than the
other FT baselines, and makes the baseline more comparable
with approaches using the same memory.

In the case of Freezing (FZ), the baseline is also simple:
we freeze all layers except the last one (corresponding to
the classification layer or head of the network) after the
first task is learned. Similarly to FT, we can also make the
simple modification of not updating the weights directly
responsible for the previous classes outputs (FZ+). This
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TABLE 1: Average accuracy for different baseline variants on
CIFAR-100 (10/10). E denotes using 2,000 exemplars (fixed
memory) or 20 exemplars per class (grow) selected with
herding. All baselines start with 80.7 accuracy after task 1.

T2 T3 T4 T5 Té6 T7 T8 T9 TI10
FT 339 279 191 177 122 116 102 90 79
FT+ 382 310 226 186 157 144 131 11.6 10.1
Fz 241 184 128 127 92 82 78 63 53
FZ+ 42.2 313 245 231 205 183 17.0 15.6 14.4
FT-E (fixed) 65.7 61.7 55.0 51.7 483 46.2 41.1 38.7 379
FT-E (grow) 499 46.0 369 389 371 37.0 345 345 346
FZ-E (fixed) 50.0 37.1 26.1 242 195 194 153 143 113
FZ-E (grow) 40.5 312 220 209 166 176 13.7 138 113

extends freezing to that specific group of weights which
we know will not receive a gradient from previous class
samples. As seen in Table[l} this leads to a more robust base-
line. However, if we add exemplars (FZ-E) the performance
decreases with respect to FT-E. We have also observed that,
when starting from a larger first task, freezing can achieve
much better performance since the learned representations
before freezing are more robust.

Finally, we also use as an upper bound the joint training
over all seen data (Joint). In order to have this baseline
comparable over all learned tasks, we perform incremental
joint training which uses all seen data at each task, starting
from the model learned for the previous one. This baseline
gives us an upper bound reference for all learned tasks.

5.5 Hyperparameter selection

For a fair comparison of IL methods, two main issues with
non-IL evaluation need to be addressed. The first is that
choosing the best hyperparameters for the sequence of tasks
after those are learned is not a realistic scenario in that
information from future tasks is used. A better comparison
under an IL setting is to search for the best hyperparameters
as the tasks are learned with the information at hand for
each of them. Second, it makes the comparison very specific
to the scenario, and in particular to the end of the specific
sequence of tasks. It provides a less robust evaluation of
the results over the rest of tasks, which means that other
task sequence lengths are not taken into account. We feel
that a broader evaluation of CL methods should include
results over all tasks as if each of them were the last one for
hyperparameter selection purposes.

In order to provide this more robust evaluation, we use
the Continual Hyperparameter Framework proposed by De
Lange et al. [13]. This framework assumes that at each task,
only the data for that task is available, as in a real scenario.
For each task, a Maximal Plasticity Search phase is used with
Finetuning, and a Stability Decay phase is used with the
corresponding method. This allows to establish a reference
performance first and then find the best stability-plasticity
trade-off [13] (see also Appendix[A). The hyperparameters
that have no direct correspondence with the intransigence-
forgetting duality are set to the recommended values for
each of the methods. A list of those, together with the values
can be found in Appendix



5.6 Network architectures

As suggested by He et al. [110], ResNet-32 and ResNet-
18 are commonly used in the literature for CIFAR-100
and datasets with larger resolution (input sizes of around
224 x 224 x 3), respectively. Therefore, we use those archi-
tectures trained from scratch for most of the experiments,
but we also include an analysis on different architectures in

Sec. .8 and Appendix

5.7 Experimental scenarios

To make the following section easier to read, we define a
few experimental scenarios here. We denote a dataset with
A tasks of B classes each as (4/B). We indicate scenarios
having a different number of classes in the first task (C)
with (A4/C-B). For example, a (10/10) experiment refers to
splitting the dataset into 10 tasks of 10 classes each. Another
setting is (11/50-5), which means that the first task has 50
classes, and the remaining 10 tasks have 5 classes each.
These are the two main settings proposed for evaluating
the different approaches and their characteristics. In our
evaluation, we do not consider the case where a task consists
of only a single class. This is because several methods
cannot be straightforwardly applied to this scenario, mainly
because they train a cross-entropy loss on only the last task
(e.g. BiC, DMC). Adding tasks with multiple classes is the
most common scenario considered in class-IL literature.

6 EXPERIMENTAL RESULTS

In this section, we evaluate a large number of incremental
learning methods in terms of many aspects of incremental
learning on a broad variety of datasets.

6.1 On regularization methods

Most of the regularization approaches have been proposed
for a task-IL setting where the task-ID is known at inference
time [5], [20], [35], [38], [40]]. Since regularization is applied
to weights or representations, they can be easily extended
to a class-IL setting without much or any modification.
This makes for a more challenging problem, and several
more recent regularization methods already show results for
class-IL [7], [42], [49]. Similarly to the baselines in Sec.
when not using exemplars, methods can freeze the weights
of the final layer associated with previous classes to improve
performance based on the assumption that only data from
new classes is used during a training session. This helps the
problem of vanishing weights from learned classes and the
task-recency bias, especially when using weight decay.

In Table 2] we compare regularization-based methods for
both task-IL and class-IL. Two methods that apply data
regularization (LwF, LwM) and four weight regularization
methods (EWC, PathInt, MAS, RWalk) are compared on
CIFAR-100 (10/10). The ten tasks are learned sequentially,
and each method and setting shows average accuracy at the
second, fifth and final tasks to illustrate different sequence
lengths. We start by comparing the regularization methods
without using exemplars. Results clearly show a significant
drop in performance due to the lack of task-ID, especially
after 5 and 10 tasks. LWF obtains better results than weight-
based regularization methods, which might explain why
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distillation has been the dominant approach for most re-
hearsal methods [1f], [21], [22], [23].

We also expand the regularization methods with ex-
emplars to see how it affects their performance. Note that
these methods are originally proposed without exemplars,
except for RWalk. In Table 2} we include results with two
types of memories. The baseline method FI-E obtains the
best results, even better than LwF-E, as also noticed by
Belouadah et al. [24]. The results show that exemplars are
not straightforwardly combined with regularization, and
can often hurt performance. The only exception is LwM-E
(originally not proposed with exemplars) that outperforms
FT-E in some short sequence cases. However, it should be
noted that in some of the next experiments we find that
weight regularization and exemplars can actually achieve
good results. Note that in the remainder of the survey
we mainly include results for these methods when they
improve over FT-E — our main baseline.

6.2 On bias-correction

As seen in Fig. 3] there exists a clear bias towards recent
tasks. Here we evaluate the success of class-IL methods to
address the task-recency bias. To allow for a better visualiza-
tion, we use CIFAR-100 (5/20) with ResNet-32 trained from
scratch and a fixed memory of 2,000 exemplars. In the text,
we also give in brackets the average accuracy after the last
task for all methods we considered.

We show the task confusion matrix for different bias-
correction approaches in Fig. 3 and Fig. 6] The FT-E (40.9)
baseline, despite having improved performance due to the
use of rehearsal strategies, still has a clear task-recency
bias. iCaRL (43.5) clearly benefits from using the NME
classifier, removing most task-recency bias, although at the
cost of having slightly worse performance than the other
approaches. EEIL (47.6) ignores the task-recency bias during
training of new tasks, however at the end of each training
session it performs balanced training based only on the
exemplars. This method obtains good performance, as bal-
anced training calibrates all outputs from previous classes
and thus removes a large part of the task-recency bias.
BiC (45.7) does a very good job at avoiding the bias while
maintaining a good performance. It is clear that the newer
tasks have less inter-task classification errors. However, it
seems like the small pool of samples used for learning the «
and [ parameters (see Eq. leads to having the opposite
effect, and BiC appears to over-compensate toward previous
tasks. LUCIR (47.3) shows a more gradual task-recency bias
while maintaining good performance. This could be related
to the change in experimental scenario. LUCIR was shown
to work better when having a larger first task followed by
some smaller ones. In the more challenging setup used here
their bias-correction struggles to obtain good results. Finally,
IL2M (45.6) overcomes task-recency bias while improving
on iCaRL, although the task confusion matrix seems to point
towards more inter-task miss-classifications.

These results show that the two methods that have better
performance (EEIL, LUCIR) suffer from task-recency bias,
while approaches that have a better solution for it (iCaRL,
BiC, IL2M) still have a margin for performance improve-
ment. This leaves room for future work to create new
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TABLE 2: Average accuracy for regularization-based methods on CIFAR-100 (10/10) on ResNet-32 trained from scratch.

avg. acc. after FT+ LwF EWC PathInt MAS  RWalk LwM
N : task 2 508  72.0 615 63.8 63.4 63.4 74.2
© exin}‘i ars task 5 98 767 60.2 57.3 61.8 56.3 76.2
(task-IL) task 10 383 766 56.7 53.1 58.6 493 70.4
N : task 2 382 554 39.8 412 39.9 403 57.8
© eixemIpL ars task 5 186 416 21.9 235 21 29 374
(class-IL) task 10 101 302 13.1 13.6 13.9 14.0 21.9
avg. acc. after FI-E LwF-E EWC-E PathInt-E MAS-E  RWalk LwM-E
2,000 . task 2 657 634 615 56.8 57.6 56.9 65.5
fved exemplars L task 5 517 462 07 345 293 365 52.7
ixed memory (class-IL) task 10 379 308 28.1 185 189 27 374
20 | . task 2 499 510 47.9 451 453 44.1 53.7
exemprars perlc aSSIL task 5 389 326 32.1 26.3 29 27.0 39.4
growing memory (class-IL) task 10 346 272 254 173 15.9 203 323
1 1 1 1 1
2 2 2 2 2
I} 5} o} i) I}
3 cl 3 3 3
~3 ~3 ~3 ~3 ~3
[} [} () Q ()
2 E E E E
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Fig. 6: Task confusion matrices for CIFAR-100 (5/20) with 2,000 exemplars selected with herding.

approaches that can both have better overall performance
while simultaneously addressing the bias-correction issue.

6.3 On exemplar usage

Here, we study the effects of different characteristics related
to exemplars. The number of exemplars to store is limited by
the type and amount of memory available, and exemplars
are selected at the end of each training session following a
sampling strategy. Note, that in Section [6.5] we will discuss
the results of online exemplar-based approaches (namely

GDumb [56], ER and MIR [75]).

On memory size: We first analyze how the number of
exemplars per class affects performance as we expand the
exemplar memory. In Fig. [/] we compare several rehearsal
methods with different numbers of exemplars per class in
a growing memory. As expected, in almost all cases perfor-
mance increases as more exemplars are added. LUCIR and
iCaRL always perform equal to or better than FT+ and FZ+.
When using few exemplars per class, the weights of the last
layer can be modified by large gradients coming from new
classes while very little to no variability of gradients comes
from previous ones. We found that the freezing of the last
layer weights as used in FZ+ provides a larger advantage
than is obtained with only a few exemplars (see results with
fewer than five exemplars for EEIL, BiC, and IL2M).
Adding more samples becomes more costly after 20 ex-
emplars per class in comparison to the gain in performance
obtained. As an example, expanding the memory from 10
to 20 samples per class on BiC yields a 6.2 point gain in
average accuracy. Expanding from 20 to 40 yields a 4.8
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—=- Joint

—@— GDumb
- ER
MIR

iCaRL
EEIL
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—®— LUCIR
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-
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o
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N
o
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160 320

Fig. 7: Results for CIFAR-100 (10/10) on ResNet-32 trained
from scratch with different exemplar memory sizes.

point gain at the cost of doubling the memory size. For the
other methods, these gains are similar or worse. Although
starting with better performance with fewer exemplars per
class, iCaRL has a slight slope, which makes the cost of
expanding the memory less beneficial. LUCIR follows with
a similar curve, and both seem to be further away from Joint
training (upper bound), probably due to the differences in
how the classification layer is defined (NME and cosine
normalization, respectively). Finally, IL2M and EEIL are
quite close to Joint training when using a third of the data
as memory (160 out of 500 maximum samples per class). To
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Fig. 8: CIFAR-100 (10/10) with 2,000 exemplar fixed memory (left), and CIFAR-100 (11/50-5) with 2,000 exemplar fixed
memory (right). Results with 20 exemplars per class growing memory are available in Appendix

maintain a realistic memory budget, and given the lower
performance gains from increasing said memory, we fix
growing memories to use 20 exemplars per class.

On sampling strategies: As introduced in Sec. for
rehearsal approaches, there are different strategies to select
which exemplars to keep. In Table [3| we compare the FT-E
baseline, the two most common regularization-based meth-
ods (LwF-E, EWC-E), and two of the latest bias-correction
methods (EEIL, BiC). We use the four different sampling
strategies introduced in Sec. random, herding (mean of
features), entropy-based, and plane distance-based. These
methods and strategies are evaluated under our two main
proposed scenarios: CIFAR-100 (10/10) and (11/50-5)—the
second one available in Appendix

Results generally show a slight preference across all
approaches for the herding sampling strategy, with random
sampling closely tied or slightly close. Both these strategies
clearly outperform the others in both scenarios. When only
evaluating after two tasks for the (10/10) scenario, the gap
between them is even smaller, probably due to the large
number of exemplars available at that point (2,000). The
differences between random and herding are not statistically
significant except for some methods on the longer 10-task
sequence (see Appendix B.4).

6.4 On different scenarios

In addition, we evaluate the method on two alternative
scenarios that have been reported in the literature.

On different starting scenarios: We explore two scenarios
with different numbers of classes in the starting task. The
first one compares methods on CIFAR-100 (10/10), with
classes equally split across all tasks. For the second scenario,
we compare methods on CIFAR-100 (11/50-5) which is
similar to having the first task being a pretrained starting
point with more classes and a richer feature representation
before the subsequent 10 smaller tasks are learned. In Fig.
both scenarios are evaluated with fixed memory (2,000 total
exemplars) with herding as the sampling strategy (results

TABLE 3: CIFAR-100 (10/10) for different sampling strate-
gies with fixed memory of 2,000 exemplars on ResNet-32.

avg.acc.  sampling

FT-E LwF-E EWC-E EEIL BiC
after strategy

random 65.2 615 59.4 64.6 65.3

task 2 herding 64.0 61.5 58.9 65.1 65.0
entropy 61.1  60.6 57.7 62.7 629

distance 60.7 59.7 56.8 63.8 629

random 494 452 39.7 545 54.2

task 5 herding 514 459 40.8 55.7 54.6
entropy 39.7 382 32.6 484 49.6

distance 39.8 379 30.5 47.0 479

random 36.7 29.0 25.1 39.7 413

task 10 herding 37.8 31.0 26.6 41.8 42.0
entropy 236 193 15.1 304 335

distance 22.1 19.2 12.6 28.7 31.1

for the growing scenario are provided in Appendix [B.T).
Note that for RWalk we use the version with exemplars.

In Fig. [§] (left), the methods GD, BiC, EEIL and IL2M
achieve the best results. Note that for GD we use the version
without external data. Some methods have different starting
points on task 1 since they do not have the same initial
conditions as the other approaches (e.g. LUCIR uses cosine
linear layers, while BiC uses fewer data during training
because it stores some for bias-correction parameter train-
ing). It is quite clear that the approaches that tackle task-
recency bias have an overall better performance than the
others. Furthermore, as already noted [24], FI-E achieves
competitive performance similar to the lowest performance
of that family.

Fig.[8|(right) shows that, in general, all methods improve
when starting from a larger number of classes, probably
because anchoring to the first task already yields more
diverse features. This is especially noticeable in the case of
FZ-E. The results show the importance of comparing to this
baseline when doing experiments with pretrained models or
a very strong first task. Both LUCIR and EWC-E also seem
to perform much better in this scenario.
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Fig. 9: Small domain shifts on VGGFace2 (25/40) with
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On external data: Some methods use external data (e.g.,
ImageNet) to perform knowledge distillation from the pre-
vious model. DMC uses external data instead of exemplars
and GD uses both external data and exemplars. We found
that the gain obtained by distillation from an external
dataset to be rather small. A detailed comparison of these
approaches is given in Appendix

6.5 On online approaches for offline scenarios

An active field of research is online class-IL (see also Sec. ).
Methods that are developed for the online scenario can be
applied to the offline setting by allowing these algorithms to
cycle several epochs over the data. Here, we do this for three
methods, namely ER [71], ER-MIR [75] and GDumb [56].
The results for ER and ER-MIR are available in Figs.[7Jand
In Fig. /| we can see that MIR outperforms ER for small
memory sizes. However, when applied to large memories,
the method obtains inferior results to any of the compared
methods. On CIFAR-100 (10/10) with a 2000 exemplar fixed
memory, ER obtains an average accuracy of 37.1% (see
Fig. [8). The ER results are very similar to the baseline
method FT-E, and its performance is also similar. ER-MIR
obtains an average accuracy of 36.1% which is slightly below
ER, showing that the reported gain for a single epoch is not
maintained when data is revisited multiple times. GDumb
has only been added in Fig. [7] since it obtained inferior
results for the class-IL setting, as also reported by Prabhu et
al. [56]. In conclusion, the compared online methods obtain
similar results as the strong baseline FT-E for offline class-IL.

6.6 On the effect of domain shift

Up to this point, experiments have been on a dataset with
a small input size and a wide variety of classes from a
similar distribution. In this experiment, we study the effects
of using tasks which have different degrees of domain shifts
between them and whose images have higher resolution.

Smaller domain shift: We first conduct experiments on
very small domain shifts between different classes and
tasks, as is the case for VGGFace2 [108]]. We divide the
1,000 classes equally into 25 tasks of 40 classes, store 5,000
exemplars in a fixed memory, and train ResNet-18 from
scratch. In Fig.[9](also see Appendix[B.6) we see that LUCIR,
GD and BiC perform the best among all methods. In partic-
ular, LUCIR achieves 73.0% average accuracy after 25 tasks,
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Fig. 10: Large domain shifts with multiple fine-grained
datasets (Flowers, Scenes, Birds, Cars, Aircraft, Actions).

which is relatively high compared to previous experiments
on CIFAR-100. This indicates that LUCIR might be more
indicated for smaller domain shifts. FT-E performs only 4.2
points lower than LUCIR and close to EWC-E, which also
performs well with small domain shifts between tasks. EEIL
shows competitive performance on the first 13 tasks, but
starts to decline for the remaining ones.

Larger domain shift: We are the first to compare
class-IL methods to incrementally learn classes from mul-
tiple datasets. As a consequence, tasks have large domain
shifts and different numbers of classes. We use six fine-
grained datasets (Flowers, Scenes, Birds, Cars, Aircraft and
Actions) learned sequentially using ResNet-18 from scratch
with a growing memory of 5 exemplars per class. The
number of classes varies among the tasks, but the classes
within each of them are closely related. In Fig. [L0| we see
that most approaches have a similar performance, unlike
in previous experiments. It is noticeable that bias-correction
methods do not have a clear advantage compared to other
approaches. It seems that when the domain shift between
tasks is large, inter-task confusion becomes the major cause
for catastrophic forgetting. Solving the task-recency bias
provides a lower performance advantage than in other sce-
narios and only improves the outputs of the corresponding
task. Forgetting caused by the large weight and activation
drift deriving from the large domain shifts seems to domi-
nate. The use of triple distillation from GD (without external
data) is less effective, unlike in other scenarios. This is
probably because activation-based regularization methods
are less effective when large domain shifts occur between
tasks [11]. The fact that no method clearly outperforms
the FT-E baseline shows that scenarios with large domain
shifts, where catastrophic forgetting is caused by inter-task
confusion, are still an important direction of study since
most proposed methods focus on weight drift, activation
drift, or task-recency bias.

6.7 On “interspersed” domains:

We propose another scenario not yet explored in class-IL:
revisiting learned distributions to learn new classes. We
learn four fine-grained datasets split into four tasks of ten
classes each for a total of 16 tasks and 160 classes. A group
consists of four tasks, one from each dataset in this order:
Flowers, Birds, Actions, Aircraft. The experiment consists of
four group repetitions, where each group contains different
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Fig. 11: Forgetting when revisiting old domains with new classes from different fine-grained datasets on AlexNet.

classes. This allows us to analyze how class-IL methods per-
form when similar tasks re-appear after learning different
tasks. We refer to this scenario as “interspersed” domains
since classes from each domain are distributed across tasks.
Results of forgetting on the first group during the whole
sequence are presented in Fig. LUCIR suffers quite a
large loss on the first task at the beginning of the sequence
and after the second group is learned, never recovering any
performance for that task. However, LUCIR shows very
little forgetting for the remaining tasks in the sequence. This
seems to be related to the preference of LUCIR to have a
larger first task with more diverse feature representations,
as also observed in earlier experiments. For the remaining
methods, the first task has a lot of variation with a general
decaying trend. BiC has an initial drop right after learning
each of the other tasks, but manages to prevent further
forgetting, though with some variability on the first Aircraft
task. LwF-E and EEIL have a more cyclic pattern of forget-
ting and recovering. Forgetting is more pronounced when
the task being learned is of the same dataset as the current
one, and seems to slightly recover when learning less similar
tasks. Finally, the forgetting of IL2M shows a lot of variation,
which might be related to the lack of a distillation loss
keeping new representations closer to previous ones.

6.8 On network architectures

We compare the four most competitive methods over a
range of different network architectures in Fig. Specif-
ically, we use AlexNet [60], ResNet-18 [110], VGG-11 [111],
GoogleNet [112] and MobileNet [113]. An interesting obser-
vation is that for different networks, the performance rank-
ings of the methods can change completely. For instance, in
architectures which do not use skip connections (AlexNet,
VGG-11), iCaRL performs the best. On the other hand,
BiC performs worse without skip connections, but performs
the best with architectures that have them (ResNet-18, Mo-
bileNet and GoogleNet). IL2M is more consistent compared
to other methods using different networks, never having
the best nor the worst performance. Networks without skip
connections seem to reduce forgetting for iCaRL and IL2M.
EEIL suffers more forgetting compared to other methods
across different networks.
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Fig. 12: Average accuracy after 10 tasks on ImageNet-Subset-
100 (10/10) with different networks trained from scratch.
From left to right: MobileNet (2017), GoogleNet (2014),
ResNet-18 (2015), AlexNet (2012) and VGG-11 (2014).

ResNet-18 obtains the best result among all networks
with BiC. Note that in most of the literature, ResNet-18 is
used as the default network for this scenario and similar
ones. However, as shown above, it seems that methods ben-
efit from architectures differently. Another interesting obser-
vation is that MobileNet, which has the lowest number of
parameters/operations and can run on devices with limited
capacity, has very competitive results compared to the other
networks. These results show that existing IL approaches
can be applied to different architectures with comparable
results to the scenarios presented in the literature.

6.9 On large-scale scenarios

Finally, we compare different methods using ResNet-18 on
ImageNet (25/40) with a growing memory of 20 exemplars
per class. Fig. shows that BiC and iCaRL achieve the
best performance with 32.4% and 30.2% average accuracy
after 25 tasks, respectively. Surprisingly, EWC-E and FT-E
outperform LUCIR, EEIL and LwEF-E (19.8%) in this setting.
Note that in other settings, IL2M and LUCIR often perform
better than EWC-E and FT-E. We note that BiC, iCaRL, IL2M,
GD and LUCIR avoid a larger initial drop in performance
during the first four tasks compared to other methods and
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Fig. 13: ImageNet (25/40) on ResNet-18 with growing mem-
ory of 20 exemplars per class and herding sampling.

continue learning without major drops in performance, with
the exception of LUCIR. Of the rest of the methods, EWC-E,
FT-E and EEIL seem to stabilize after the initial drop and
exhibit less forgetting as new tasks are added. In scenar-
ios with a larger number of classes and more variability,
methods which can easily handle early tasks will perform
better afterwards. On the second half of the sequence, most
approaches have a stable behaviour since the network has
learned a robust representation from the initial tasks.

7 EMERGING TRENDS IN CLASS-IL

Here we discuss some recent developments in class-IL that
we think will play an important role in the coming years.

Exemplar learning. Recently, an exciting new direction has
emerged that parametrizes exemplars and optimizes them
to prevent forgetting [47], [114]. This enables much more
efficient use of available storage. Liu et al. [47] propose
Mnemonics Training, a method that trains the parametrized
exemplars. The exemplars are optimized to prevent the for-
getting when evaluated on the current task data. Chaudry
et al. [114] generalize the theory to a streaming setting,
where the learning of exemplars does not require multiple
loops over the data for every task. Optimizing the available
storage by computing more efficient exemplars is expected
to attract more research in the coming years.

Feature rehearsal. Pseudo-rehearsal is a good alternative
to storing exemplars [30], [36], [53]. It learns a separate
network that generates images of previous tasks. However,
current state-of-the-art image generation methods struggle
to realistically generate complex image data, and therefore
this approach has been applied to simple datasets and is
known to obtain unsatisfying results on complex ones. To
address this problem, some works have proposed to per-
form feature replay instead of image replay [37], [115], [116],
where instead a generator is trained to generate features at
some hidden layer of the network. In this way, rehearsal can
also be applied to complex datasets. Another closely related
line of research is based on the observation that storing
feature exemplars is much more compact than storing im-
ages [28]. Moving away from image replay towards different
variants of feature replay is expected to gain traction.

Self- and unsupervised incremental learning. Being able
to incrementally learn representations from an unsuper-
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vised data stream is a desirable feature in any learning
system. This direction applied to class-IL has received rel-
atively little attention to date. Rao et al. [117] propose a
method that performs explicit task classification and fits
a mixture of Gaussians on the learned representations.
They also explore scenarios with smooth transitions from
one task to another. Still in its infancy, more research on
unsupervised incremental learning is expected in coming
years. In addition, leveraging the power of self-supervised
representation learning [118] is only little explored within
the context of IL, and is expected to gain interest.

Beyond cross-entropy loss. Several recent works show
that the cross-entropy loss might be responsible for high
levels of catastrophic forgetting [[119], [120]. Less forgetting
has been reported by replacing the cross-entropy loss with
a metric learning loss [119] or by using an energy-based
method [120]. Combining these methods with the other
class-IL categories, such as bias-correction and rehearsal, is
expected to result in highly competitive methods.

Meta-learning.  Meta-learning aims to learn new tasks
leveraging information accrued while solving related
tasks [121]]. Riemer et al. [77] show that such a method can
learn parameters that reduce interference of future gradients
and improves transfer based on future gradients. Javed
and White [122] explicitly learn a representation for con-
tinual learning that avoids interference and promotes future
learning. These initial works have shown the potential of
meta-learning on small datasets. However, we expect these
techniques to be further developed in the coming years, and
will start to obtain results on more complex datasets like the
ones considered in our evaluation.

Task-free settings. Many practical applications do not
fit well into the experimental setup with non-overlapping
tasks. A more realistic scenario is one where there are
no clear task boundaries and the distribution over classes
changes gradually. This scenario is expected to receive in-
creased attention in near future. This setting was studied in
several early task-aware continual learning works, includ-
ing EWC [5] and P&C [25]. The transition to the task-free
setting is not straight-forward, since many methods have
inherent operations that are performed on the task bound-
aries: replacing the old model, updating of importance
weights, etc. Recently, several works for class-IL started
addressing this setting [120]], [123], [124].

8 CONCLUSIONS

We performed an extensive survey of class-incremental
learning. We organized the proposed approaches along
three main lines: regularization, rehearsal, and bias-
correction. In addition, we provided extensive experiments
in which we compare thirteen methods on a wide range of
incremental learning scenarios. Here we briefly enumerate
the main conclusions from these experiments:

« When comparing exemplar-free methods, LwF obtains
the best results (see Table 2). Among the other regular-
ization methods, data regularization (LwM) obtains su-
perior results compared to weight regularization (EWC
and MAS). Exemplar-free methods can currently not
compete with exemplar rehearsal methods, and given



the more restrictive setting in which they operate, we
advocate comparing them separately.

o When combining LwF with exemplars, we confirm pre-
vious results [24] showing that the added regularization
does not improve results and the baseline method of
finetuning with exemplars performs better (see Table[2).

« Allowing a model to specialize on the current task and
then using distillation to combine this new knowledge
with the knowledge of the previous tasks, as is done by
GD, obtains excellent results for class-IL (see Fig.[§).

o We found that, in several scenarios, weight regulariza-
tion method EWC-E outperforms data regularization
method LwF-E significantly (see Figs.[8] [0 and [13),
showing that the IL community choice of data reg-
ularization with LwF (see Fig. |5) instead of weight
regularization should be reconsidered.

« Herding is, on average, marginally better than random
exemplar sampling for longer sequences of tasks (see
Table B). However this is only statistically significant
for some methods (see Appendix [B.4).

e Methods that explicitly address the task-recency
bias obtain better performance for class-IL (see
Figs. [8 o} [10} [13): we found that BiC obtains state-of-
the-art on several experiments (notably on ImageNet).
IL2M obtains consistent good performance on most
datasets. Also, iCaRL and EEIL obtain good perfor-
mance on several datasets, but fail to outperform the
baseline FT-E on others. Methods like LUCIR require
a good starting representation — for example in the
scenario with the larger first task or smaller domain
shifts, LUCIR can be state-of-the-art.

e Current methods have mainly presented results on
datasets with small domain shifts (typically random
class orderings from a single dataset). When consider-
ing large domain shifts none of the methods signifi-
cantly outperform the baseline FT-E (see Fig.[10). Large
domain shift scenarios have been considered for task-
IL, but our results show that they require new tech-
niques to obtain satisfactory results in class-IL settings.

o We are the first to compare class-IL methods on a wide
range of network architectures, showing that current
class-IL works on a variety of networks. Results show
that most are sensitive to architecture and rankings
change depending on the network used. It is quite clear
that using a network with skip connections favors some
methods, while their absence favors others.
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APPENDIX A
IMPLEMENTATION AND HYPERPARAMETERS

We study the effects of CL methods for image classification
on nine different datasets whose statistics are summarized
in Table [ST} CIFAR-100 contains 32 x 32 colour images for
100 classes, with 600 samples for each class divided into 500
for training and 100 for testing. For data augmentation, a
padding of 4 is added to each side, and crops of 32 x 32 are
randomly selected during training and the center cropped
is used during testing. For all datasets except CIFAR-100,
images are resized to 256 x 256 with random crops of
224 x 224 for training and center crops for testing. Input nor-
malization and random horizontal flipping are performed
for all datasets.

As described in Section 5.5, the Continual Hyperpa-
rameter Framework (CHF) [125] is used for the stability-
plasticity trade-off hyperparameters that are associated to
intransigence and forgetting when learning a new task.
The CHF first performs a learning rate (LR) search with
Finetuning on the new task. This corresponds to the Maximal
Plasticity Search phase.

The LR search is limited to {5e-1, le-1, 5e-2} on the first
task since all experiments are trained from scratch. For the
remaining tasks, the LR search is limited to the three values
immediately lower than the one chosen for the first task
from this set: {1e-1, 5e-2, 1e-2, 5e-3, 1e-3}. We use a patience
scheme as a LR scheduler where the patience is fixed to
10, the LR factor to 3 (LR is divided by it each time the
patience is exhausted), and the stopping criteria is either
having a LR below 1le-4 or if 200 epochs have passed (100 for
VGGFace2 and ImageNet). We also do gradient clipping at
10,000, which is mostly negligible for most training sessions
except the first one. We use SGD with momentum set to 0.9
and weight decay fixed to 0.0002. Batch size is 128 for most
experiments except 32 for fine-grained datasets and 256 for
ImageNet and VGGFace2. All code is implemented using
Pytorch.

Once the shared hyperparameters are searched, the best
ones are fixed and the accuracy for the first phase is stored
as a reference. The hyperparameter directly related to the
stability-plasticity trade-off is set to a high value which
represents a heavy intransigence to learn the new task, close
to freezing the network so that knowledge is preserved.
At each search step, the performance is evaluated on the
current task and compared to the reference accuracy from
the Maximal Plasticity Search phase. If the method accuracy is
above the 80% of the reference accuracy, we keep the model
and trade-off as the ones for that task. If the accuracy is
below the threshold, the trade-off is reduced in half and
the search continues. As the trade-off advances through
the search, it becomes less intransigence and slowly con-
verges towards higher forgetting, which ultimately would
correspond to the Finetuning of the previous phase. This
corresponds to the Stability Decay phase.

The methods have the following implementations:

« LwF: we implement the £;;s distillation loss following
Egs. 5-6, and fix the temperature scaling parameter to
T = 2 as proposed in the original work (and used
in most of the literature). When combining LwF with
examplars the distillation loss is also applied to the
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TABLE S1: Summary of datasets used. We use a random
10% from the train set for validation.

Dataset #Train #Eval  #Classes
CIFAR-100 [101] 50,000 10,000 100
Oxford Flowers [102] 2,040 6,149 102
MIT Indoor Scenes [103]] 5,360 1,340 67
CUB-200-2011 Birds [104] 5,994 5,794 200
Stanford Cars [105] 8,144 8,041 196
FGVC Aircraft [106] 6,667 3,333 100
Stanford Actions [[107] 4,000 5,532 40
VGGFace2 [108] 491,746 50,000 1,000
ImageNet ILSVRC2012 [109] 1,281,167 50,000 1,000

exemplars of previous classes [1], [21], [22], [23]. This
loss is combined with the L. cross-entropy loss from
Egs. 2-3 with a trade-off that is chosen using the CHF
and starts with a value of 10. In our implementation
we choose to duplicate the older model for training to
evaluate the representations (instead of saving them at
the end of the previous session) to benefit from the data
augmentation. That older model can be removed after
the training session to avoid overhead storage.

o EWC: the fusion of the old and new importance weights
is done with a = 0.5 (chosen empirically) to avoid the
storage of the importance weights for each task. The
Fisher Information Matrix (FIM) is calculated by using
all samples from the current task and is based on the
predicted class. Referring to the definitions from [126],
we have implementations of the empirical and real
Fisher Information Matrix (FIM) in our experimental
framework, the difference being using either a fixed
label or sampling from the model’s predictive distri-
bution when computing the FIM. In the manuscript
we report results for EWC using the FIM estimated
using the maximum probability class output, which is a
variant described in [8]. The loss introduced in Eq. 4 is
combined with the L. cross-entropy loss with a trade-
off chosen using the CHF and with a starting value of
10,000.

« PathInt: we fix the damping parameter to 0.1 as pro-
posed in the original work. As in LwF and EWC, the
trade-off between the quadratic surrogate loss and the
cross-entropy loss is chosen using the CHF with a
starting value of 1.

« MAS: we implement MAS in the same way as EWC,
with o« = 0.5 and the same Fisher Information Matrix
setting. The trade-off between the importance weights
penalty and the cross-entropy loss is chosen using the
CHF and a starting value of 400.

« RWalk: since it is a fusion of EWC and PathInt, the same
parameters o = 0.5, Fisher Information Matrix setting
and damping = 0.1 are fixed. The starting value for the
CHEF on the trade-off between their proposed objective
loss and the cross-entropy loss is 10.

+« DMC: we implement the Lpp double distillation loss
from Eqgs. 10-11. We use a 32 x 32 resized version of
Imagenet as auxiliary dataset and set its batch size to
128. The student is neither initialized from the previous
tasks or new task models but random, as proposed in
the original work.



« GD: we implement both the training and the sampling
algorithms as described in [43]. Due to the withdrawal
of Tiny Images [127] (the auxiliary dataset used in the
original implementation), we use a 32 x 32 resized
Imagenet as auxiliary dataset and we set its batch size
to 128.

GDumb: we use random sampling to select exemplars,
reinitialize the model and apply cutmix regularization,
as described in [56].

LwM: we combine the cross-entropy loss with the dis-
tillation loss and L£4p attention distillation using the
B and « trade-offs respectively. The 3 trade-off is the
one that balances the stability-plasticity dilemma and
we chose it using the CHF with a starting value of 2.
The v trade-off is fixed to 1 since it does not directly
affect the stability-plasticity dilemma. Since there is no
mention in the original work on which are the better
values to balance the three losses, that last value was
chosen after a separate test with values v € (0,2] and
fixed for all scenarios in Section 6.

iCaRL: we implement the five algorithms that comprise
iCaRL. The distillation loss is combined with the cross-
entropy loss during the training sessions and chosen
using the CHF with a starting value of 4. However,
during evaluation, the NME is used instead of the
softmax outputs.

EEIL: we implement EEIl with the balanced and unbal-
anced training phases. The unbalanced phase uses the
hyperparameters shared across all methods. However,
for the balanced phase the LR is reduced by 10 and the
number of training epochs to 40. As with LwE, T' = 2
and the trade-off is chosen using the CHF starting at 10.
However, we apply a slight modification to the original
work by not using the addition of noise to the gradients.
Our preliminary results with this method showed that
it was consistently detrimental to performance, which
provided a worse representation of the capabilities of
the method.

BiC: the distillation stage is implemented the same as
LwF, as in the original paper, with 7' = 2. However, the
trade-off between distillation and cross-entropy losses
is not chosen using the CHFE. The authors already pro-
pose to setit to .7, where n is the number of previous
classes, and m is the number of new classes, and we
keep that decision. On the bias correction stage, also
following the original work, we fix the percentage of
validation split used from the total amount of exemplar
memory to be 10%.

LUCIR: for this method we make two changes on the
architecture of the model. First, we replace the classifier
layer by a cosine normalization layer following Eq. 14;
and second we remove the ReLU from the penulti-
mate layer to allow features to take both positive and
negative values. However, since this procedure is only
presented in the original work for ResNet models, we
do not extend it to other architectures. The original
code used a technique called imprint weights during
the initialization of the classifier. However, since it was
not mentioned in the original paper, and preliminary
experiments showed no significant difference, we de-
cided to not include it in our implementation.
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The cross-entropy loss is combined with the £;s less-
forget constraint from Eq. 12 and the L£,,, margin
ranking loss from Eq. 15. The number of new class
embeddings chosen as hard negatives and the margin
threshold are fixed to K = 2 and m = 0.5 as in the
original work. The margin ranking loss is combined
with the cross-entropy loss in a one-to-one ratio, while
the less-forget constraint is chosen using the CHF with
a starting value of 10, as is the trade-off related to the
stability-plasticity dilemma.

« IL2M: since it only stores some statistics on the classes
and applies them after the training is done in the same
way as Finetuning, there is no hyperparameter to tune
for this method.

Finally, the Finetuning, Freezing and Joint training base-
lines have no hyperparameters associated to them, reducing
the Continual Hyperparameter Framework to only perform-
ing the learning rate search for each task before doing the
final training.

APPENDIX B
SUPPLEMENTAL RESULTS

B.1 More on CIFAR-100

Experiments on CIFAR-100 are evaluated on 10 fixed ran-
dom seeds that are the same for all approaches, to make the
comparison fair. In Table we show mean and standard
deviation for average accuracy after learning the last task
on the CIFAR-100 scenarios from Sec. and
For most approaches and scenarios, the standard deviation
seems to be below 2.5. However, some regularization-based
methods (MAS-E, PathInt-E, RWalk) and iCaRL, seem to
have much more variation when used in the initial larger
task scenario. In the case of regularization-based methods,
some runs struggle to learn new tasks properly after the
initial ones, obtaining quite low performance and therefore
resulting in high variability in the results. In the case of
iCaRL, the variability seems to be related on how well the
output features do on the initial task, since performance
stays quite stable on the remaining ones. It is also notable
that among the bias-correction methods, IL2M is the more
stable one. We also provide results for the online class-IL
approaches (GDumb, ER and MIR) applied to our offline
scenarios. We allow those online methods to revisit the
data of a task for several epochs to be competitive in our
proposed scenarios. As shown in the original paper [56],
GDumb performs worse than most class-IL approaches for
offline class-IL. ER and MIR show results similar to those of
FT-E on their offline version.

Next to the fixed memory scenario evaluated in the
main paper, we here also provide results for the growing
memory scenario (20 examplars per class) with herding as
the sampling strategy. In Figure GD, BiC, EEIL and
IL2M achieve the best results after learning 10 tasks with
a growing memory, just as it was for a fixed memory.
In general, most methods seem to suffer less catastrophic
forgetting when using a fixed memory that allows storing
more exemplars during early tasks. That is the case for BiC,
GD and LUCIR, which have much better performance with
a fixed memory. For some approaches, the difference is quite



TABLE S2: Mean and standard deviation of average accu-
racy over 10 runs for different CIFAR-100 scenarios.
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TABLE S3: Comparison of Random Path Selection (RPS) on
CIFAR-100 (10/10) with fixed 2,000-exemplar memory.

CIFAR-100 (10/10) CIFAR-100 (11/50-5)

Approach

fixd mem. grow mem. fixd mem. grow mem.
FT-E 379+ 2.1 34.6 + 2.3 39.0 + 1.7 37532
FZ-E 11.3 4+ 0.6 11.3+ 0.6 39.8+1.3 389+21
Joint 66.3 + 2.2 66.3 + 2.2 65.8 + 2.5 65.8 + 2.5
EWC-E 28.1+2.2 25.4+21 429+ 1.5 41.7+1.4
MAS-E 18.9 + 2.2 159+ 2.2 323+ 7.8 33.5+5.9
PathInt-E 185+ 1.5 17.3 £2.2 2744+6.8 41.0+5.6
RWalk 22.7+ 1.3 20.3 + 3.0 38.3+ 8.5 35.2+ 8.5
LwM-E 37.4+1.7 323+24 383+1.3 359+ 2.0
DMC* 259+ 1.3 259+1.3 - -
DMC 20.6 + 2.8 154+ 1.5 - -
GD* 44.6 + 1.0 41.3+0.7 447+06 435+1.4
GD 43.7+ 1.6 40.5+ 2.0 445+ 1.4 424+ 1.5
LwF-E 30.8 +2.1 27.2 4+ 2.0 36.9+ 1.3 34.0+1.2
iCaRL 33.5+1.7 346+1.3 43.4+4.7 424+5.1
EEIL 41.9+ 3.0 38.7+ 2.7 426+ 1.0 40.8 + 1.6
BiC 42.0+ 2.6 36.5 + 3.5 470+ 1.1 45.1+1.6
LUCIR 36.1 +3.5 31.8+ 3.5 43.4+3.0 41.7+29
1L.2M 41.8+ 1.8 38.5+2.2 41.0+1.6 400+ 1.5
GDumb 19.8 +3.1 18.6 £ 2.9 - -
ER 37.1+1.3 314+ 1.5 39.8+ 1.5 36.9 +2.2
MIR 36.1+0.7 31.1+07 382+1.0 37.1+0.9

considerable after learning 5 tasks and slightly better after
the full 10-task sequence.

B.2 On Random Path Selection

Although Random Path Selection (RPS) [27] is not a fixed
network architecture approach, it is one of the better
performing methods from the dynamic architectures fam-
ily. In Table we provide a comparison with different
number of paths and a range of baselines. The original
CIFAR-100 (10/10) experiment was proposed with a vari-
ation of ResNet-18, however, to make it comparable with
the experiments in Sec.[f| we compare it using a customized
ResNet-32, which is even more memory efficient than the
original ResNet-18 with 3.72M instead of 89.56M parame-
ters. As expected, performance decreases when reducing the
number of paths, making this approach very competitive if
memory restrictions for the network are not an issue. With
a comparable network size, it becomes less competitive in
comparison to other approaches such as finetuning with
exemplars (FT-E). We also report the average time per epoch
for all tasks, and it is clear that the original RPS with ResNet-
18 computational cost is much larger than other methods.
When we change the network to ResNet-32 (with signif-
icantly fewer parameters), both performance and running
time reduce dramatically, but the running time is still much
more than other methods due to the execution of different
paths in parallel.

B.3 On semantic tasks

The popularity of iCaRL and the interest in comparing
with it makes it quite common to utilize the random class
ordering for experiments based on CIFAR-100 [101]. The
authors of iCaRL use a random order of classes which is
fixed in the iCaRL code by setting the random seed to 1993
just before shuffling the classes. However, this gives very
little insight on class orderings which make use of the coarse

#paths #params avg.acc. time / epoch
RPS (ResNet-18) 8 89.56M 57.0 36.4s
8 3.72M 42.1 21.1s
RPS 4 1.86M 413 18.0s
(ResNet-32) 2 0.93M 37.8 13.5s
1 0.47M 33.0 12.4s
FT-E 1 0.47M 36.5 12.1s
FZ-E 1 0.47M 10.7 11.4s
LwF-E 1 0.47M 31.8 12.8s

labels from that dataset to group classes into sharing similar
semantic concepts. This was explored for the tinylmageNet
(Stanford, CS231N [128]) dataset in [64], [125], where the
authors show that some methods report different results
based on different semantics-based class orderings. In [125],
the iNaturalist [129] dataset is split into tasks according
to supercategories and are ordered using a relatedness
measure. Having tasks with different semantic distributions
and learning tasks in different orders is interesting for real-
world applications where subsequent tasks are based on
correlated data instead of fully random. Recently, [130] also
brings attention to the learning variability between using
different class orderings when learning a sequence of tasks
incrementally.

In joint training, specific features in the network can be
learned that focus on differentiating two classes that are
otherwise easily confused. However, in an IL setting those
discriminative features become more difficult to learn or can
be modified afterwards, especially when the classes belong
to different tasks. Thus, the difficulty of the task can be
perceived differently in each scenario. Depending on the
method, this issue may be handled differently and therefore
lead to more catastrophic forgetting. This setting is different
from the one proposed in Curriculum Learning [131], since
the objective here is not to find the best order to learn
tasks efficiently, but rather to analyze incremental learning
settings (in which the order is not known in advance) and
analyze the robustness of methods under different task
orderings.

In order to investigate robustness to class orderings, we
use the 20 coarse-grained labels provided in the CIFAR-100
dataset to arrive at semantically similar groups of classes.
Then, we order these groups based on their classification
difficulty. To assess performance we trained a dedicated
model with all CIFAR-100 data in a single training session
and use this model accuracy as a proxy value for clas-
sification difficulty. Finally, we order them from easier to
harder (Dec. Acc.) and the other way around (Inc. Acc.).
Results are presented in Fig. [S2| for two methods without
exemplars (FT+, LwF), and two methods with exemplars
(FT-E, BiC). Performance can be significantly lower when
using a semantics-based ordering compared to random one.
In the examplar-free cases, special care of the used task
ordering should be taken as the final performance after
learning all classes can have quite some variability as seen
in the LwF case. However, the variation with respect to the
orderings is mitigated by the use of exemplars. Therefore,
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Fig. S2: Class ordering results for CIFAR-100 on ResNet-32 trained from scratch. For FT-E and BiC, 20 exemplars per class
are sampled using herding. Error bars indicate standard deviation over six runs.

evaluating methods which use exemplars with randomized
task orderings often suffices.

B.4 More on sampling strategies

The performance achieved by the different sampling meth-
ods is very similar in the CIFAR-100 (11/50-5) scenario. As
seen in Table for longer task sequences herding has
a slight benefit over the other sampling strategies when
using class-incremental learning methods. In the case of
shorter sequences, similar to transfer learning, performance
does not seem to specifically favour any sampling strategy.
We also add a variation of entropy and distance sampling
which chooses the samples furthest away from the task
boundaries to observe the effect of choosing the least con-
fusing samples instead. We denote these as inv-entropy and
inv-distance. It is notable that for shorter task sequences,
entropy- and distance-based perform similar to the pro-
posed inverse versions. However, for larger sequences of
tasks, the inverse versions perform better. This could be due
to samples further away from the boundaries (and closer to
the class centers) becoming more relevant when the number
of classes and their diversity increases.

To provide further context on the results between the
different sampling strategies, we extend Table [3| with the
standard deviations in Table Furthermore, we apply a
Mann-Whitney U-test to compare random and herding on
the different sequence lengths to verify if the slight perfor-
mance increase of herding is significant or not. Results are
shown in Table[S6, which indicate that there is no significant
difference between using herding or random for exemplar
selection in most cases. However, there is a tendency for
longer sequences to be more favourable towards herding,
with methods LwF-E and EEIL being significantly better
when using herding for 10 task sequences.

B.5 More on external data

DMC [42] uses external data instead of exemplars and
GD [43] uses both external data and exemplars. For GD
we use the convention that GD* refers to the version with
external data, and when using GD we replace the exter-
nal data with the standard exemplar memory. Same for
DMC* and DMC. We use the 300 classes from ImageNet-
32 as external data. The results are included in Table
DMC* obtains an average accuracy of 25.9% on CIFAR-100
(10/10). However, if the auxiliary data is not used, and it



TABLE S4: CIFAR-100 (11/50-5) with different sampling
strategies and growing memory of 20 exemplars per class
on ResNet-32 trained from scratch.
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TABLE S7: Additional results for Fig. @ Small domain shifts
on VGGFace2 (40/25) on ResNet-18 trained from scratch
amd 5,000 exemplar fixed memory.

. Approach FZ-E LwF-E LwM-E iCaRL
acc. sampling 3 - 5 .
after strategy FT-E LwF-E EWCE EEIL  BiC Accuracy at task 40  34.3 43.5 55.0 55.4
random 424 490 47.2 445 555
herding 48.0 517 45.1 479 535
task 2 entropy 396 436 386 384 461  B.6 More on small domain shifts
distance 36.0 440 33.3 374 43.6 . . . .
inv-entropy 414 445 455 433 556 For the experiment in Sec. on smaller domain shifts, we
inv-distance 443 482 439 403 479  extend the results shown in Fig. [f]in Table [S7] Interestingly,
random 385 342 304 413 432 in this setting, weight regularization method EWC-E (70.0%)
herding 365  36.6 341 408 446  outperforms data regularization method LwF-E (43.5%) by
entropy 273 244 20.2 28.2 314 ;
fask5  gistance 21 252 200 276 31p 2 Verylargemargin.
inv-entropy 345 324 30.0 359 41.6
inv-distance 331 325 30.0 37.0 383 B.7 More on network architectures
random 325 260 227 373 361 e have selected the networks in the experiment from
herding 320 263 23.6 38.8 39.1 . X .
task 10 entropy 161 14.8 107 230 259 Sec. 6.8/ to represent a wide variety of network architectures
distance 171 135 85 230 227  commonly used in deep learning, allowing us to compare
inv-entropy 287 222 218 301 328  them within a continual learning setting. We have chosen
inv-distance 292 233 20.6 271 354

TABLE S5: CIFAR-100 (10/10) with different sampling
strategies and fixed memory of 2,000 exemplars on ResNet-
32 trained from scratch.

acc.  samp

FT-E LwF-E EWC-E EEIL BiC

after strat
rand 652 + 4.0 61.5+3.2 594 +39 64.6+3.7 653 + 4.0
task herd 64.0+4.8 61.5+3.1 589+4.5 651+42 65.0+4.2
2 entr 61.1+54 60.6+4.1 57.7+3.9 62.7+51 62.9+3.1
dist 60.7+5.7 59.7+4.0 56.8+4.2 63.8+59 629+36
rand 494 +29 452+32 39.7+3.2 54.5+3.3 54.2+3.4
task herd 514 +31 459 +28 408 +3.2 557 + 3.5 54.6 + 3.3
5 entr 39.7+4.0 382+39 326+37 484+4.4 49.6+3.6
dist 39.8+4.0 37.9+3.0 30.5+3.0 47.0+5.0 479+44
rand 36.7+1.8 29.0+19 25.1+3.0 39.7+4.0 41.3+3.3
task herd 378+ 19 31.0+ 21 26.6+ 28 418+ 3.7 42.0+ 3.5
10 entr 23.6+1.7 193+25 151+2.1 304+3.1 33.5+3.3
dist 22.1+21 192+19 126+22 287+3.5 31.1+4.3

uses exemplars instead, performance drops to 20.6%. The
method provides privacy-preserving properties at the cost
of some performance. GD*, which also uses exemplars,
obtains the excellent result of 44.6%, outperforming all
methods. However, the gain with respect to GD without
exemplars is relatively small (which obtained 43.7%). In
conclusion, we found that the gain obtained by distillation
from an additional dataset is rather small.

TABLE S6: Mann-Whitney U-test between random and
herding sampling strategies from Table

after task 2 after task 5 after task 10

Approach stat. p-value stat. p-value stat. p-value
FT-E 55.5 0.675 30.0 0.070 36.5 0.163
LwF-E 53.0 0.604 43.0 0.312 26.5 0.041
EWC-E 51.5 0.560 385 0.203 32.0 0.093
EEIL 40.0 0.236 37.0 0.172 23.5 0.024
BiC 52.0 0.575 46.5 0.410 40.0 0.236

AlexNet and VGG-11 as architectures which start with a
number of initial convolutional layers followed by several
fully connected layers. ResNets have achieved superior
performance in many different computer vision tasks, and
we therefore consider ResNet-18. We have also included
GoogleNet which uses skip-connection and 1 x 1 convo-
lutions are used as a dimension reduction module to reduce
computation. We are also interested to evaluate incremental
learning on compact networks. We have therefore selected
MobileNet, which, to better trade off latency and accuracy,
propose to replace standard convolution layers by depth-
wise separable convolutions. This makes them suitable to
run on mobile devices.

We provide more detailed results on the experiment with
different architectures in Table[S8 Each network architecture
is evaluated on the same 10 random seeds and the accuracy
and forgetting presented is an average of those runs. We
also include WideResNet-50 [132] together with the ones
presented in Fig. [11] BiC exhibits the least forgetting among
all methods, even having positive forgetting which indicates
that performance improves on some tasks after learning
subsequent ones. However, this result comes at the expense
of having slightly lower performance for each task right
after learning them.

B.8 More on large-scale scenarios

In class-IL it has become more common to report re-
sults in large-scale datasets such as ImageNet-1000. Some
works [21]], [22] prefer to report in shorter sequences such
as ImageNet (10/100) or ImageNet (11/500-50), thus we
include the results on these scenarios in Tables [S9] and [S10]
respectively.



TABLE S8: ImageNet-Subset-100 (10/10) with different net-
works trained from scratch. Task accuracy when the task
was learned and forgetting after learning all classes (be-
tween brackets). Final column reports the average accuracy
after 10 tasks.

task 2 task 5 task 9 Aio

AlexNet iCaRL  39.6(232) 30.0(84) 330(52) 388
EEIL 274 (-55.0) 252(-49.0) 22.6(-494) 356

BiC  30.6(-31.8) 264 (+14.0) 21.2(+16.8) 344
IL2M 274 (-524) 21.6(-41.2) 44.0(252) 352

VGGI1 iCaRL 324 (-30.0) 34.0(24.8) 426(82) 43.2
EEIL  29.6 (-56.0) 29.0 (-50.4) 32.8(-45.6) 409

BiC  324(338) 19.6(+34) 31.0(32) 321
IL2M  27.8(-582) 31.0(-19.6) 54.0(-174) 422

GoogleNet ~ ICaRL  350(30.0) 292(-240) 436(122) 437

EEIL 182 (-684) 26.0(-49.2) 31.8(450) 36.1
BiC  272(512) 39.8(-14.2)  49.0 (44) 445
2014 IL2M  23.6 (-59.0) 23.0 (-36.6) 40.0 (-36.0) 382

ResNet.1s  ICaRL 384 (:31.8) 29.6(218) 438(:9.8) 436
€5 Ve EEIL 260 (-59.4) 26.8(-52.8) 282 (-488) 36.6
BiC  312(48.6) 41.0(+0.4) 494 (+4.4) 456
IL2M 262 (-60.8) 240 (-47.8) 350 (444) 372

. =) iCaRL 342(324) 334(222) 412(198) 427
WideResNet-50  “pr ™ 0% (614) 258 (55.6)  23.0 (-55.6)  37.0
BiC 408 (418) 344(214) 540(7.4) 450
IL2M 274 (:53.0) 29.8(240) 41.6(-332) 40.0

1 iCaRL 384 (334) 33.6(21.6) 402(238) 435
MobileNet EEIL 212 (-684) 29.0 (-52.4) 254 (-548) 37.4
BiC  39.4(-442) 412(114) 452 (-140) 447
IL2M 350 (46.6) 242 (-242) 426(30.0) 421

60m params
2012

133m params
2014

6.8m params

11m params
2015

66.8m params
2016

4.2m params
2017

TABLE S9: Average accuracy over learned tasks for Ima-
geNet (10/100) on ResNet-18 from scratch with growing
memory of 20 exemplars per class.

Approach T1 T2 T3 T4 T5 Té T7 T8 T9 TIO
FT-E 781 253 208 184 179 16.6 159 153 156 15.6

EWC-E 781 260 215 179 171 159 154 144 143 146
GD 781 282 247 218 21.6 200 192 186 184 184
EEIL 781 272 259 230 21.0 20.1 188 183 18.6 184
BiC 789 352 323 293 268 243 218 202 193 173
LUCIR 794 344 30.0 257 23.0 21.7 205 193 19.0 18.0
IL2M 781 303 253 235 229 21.0 206 20.1 20.0 20.0

TABLE S10: Average accuracy over learned tasks for Ima-
geNet (11/500-50) on ResNet-18 from scratch with growing
memory of 20 exemplars per class.

Approach T1 T2 3 T4 5 T6 17 T8 T9 T10 TI1
PP (500)  (50) (50) (50) (50) (50) (50) (50) (50) (50)  (50)

FT-E 716 472 419 392 370 372 336 316 324 316 313
EWC-E 71.6 534 500 464 446 443 410 403 386 357 346
GD 716 550 493 467 451 432 397 390 394 388 359

LwF-E 716 549 455 407 370 354 321 301 297 295 293
EEIL 716 537 456 424 425 409 386 373 351 356 349
BiC 716 669 629 595 559 518 487 457 427 393 355
1L2M 716 535 470 448 418 410 377 380 368 359 341
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