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Abstract—This paper investigates a new challenging problem called defensive few-shot learning in order to learn a robust few-shot
model against adversarial attacks. Simply applying the existing adversarial defense methods to few-shot learning cannot effectively
solve this problem. This is because the commonly assumed sample-level distribution consistency between the training and test sets
can no longer be met in the few-shot setting. To address this situation, we develop a general defensive few-shot learning (DFSL)
framework to answer the following two key questions: (1) how to transfer adversarial defense knowledge from one sample distribution
to another? (2) how to narrow the distribution gap between clean and adversarial examples under the few-shot setting? To answer the
first question, we propose an episode-based adversarial training mechanism by assuming a task-level distribution consistency to better
transfer the adversarial defense knowledge. As for the second question, within each few-shot task, we design two kinds of distribution
consistency criteria to narrow the distribution gap between clean and adversarial examples from the feature-wise and prediction-wise
perspectives, respectively. Extensive experiments demonstrate that the proposed framework can effectively make the existing few-shot
models robust against adversarial attacks. Code is available at https://github.com/WenbinLee/DefensiveFSL.git.

Index Terms—Defensive few-shot learning, Adversarial attacks, Episodic training, Distribution consistency.
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1 INTRODUCTION

D EEP convolutional neural networks (CNNs) [1], [2]
have obtained impressive successes on a variety of

computer vision tasks especially in image classification [3],
[4]. Unfortunately, several pieces of recent work [5], [6] have
shown that these CNN models are vulnerable to adversarial
examples (attacks), which are crafted based on original clean
examples (i.e., images) with imperceptible perturbations.
It means that the CNN models could easily misclassify
these adversarial examples. Therefore, how to learn robust
CNN models that can effectively defend against adversarial
attacks becomes a crucial problem. Recently, many adversar-
ial defense methods, especially adversarial training based
methods, have been proposed and considerably improved
the robustness of deep CNN models [7], [8], [9], [10], [11],
[12], [13], [14].

The existing adversarial training based studies mainly
focus on generic image classification and try to make generic
deep models robust against adversarial attacks. They basi-
cally rely on a large amount of labeled data available for
each class. However, the robustness of few-shot learning
models against adversarial attacks is rarely considered in
the literature. This problem is truly important in many
real applications, where we not only face the limitation
of only accessing a few labeled samples for new, unseen
classes, but also must be concerned about the robustness
of the intelligent deep learning systems. For example, face
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recognition on automated teller machine (ATM) and mobile
phones [15] could become vulnerable to adversarial attacks
and ends up with serious consequences. Similarly, in other
applications such as malware classification [16] and medical
image analysis [17], [18], the corresponding deep learning
systems could be compromised by adversarial attacks if the
robustness issue is not sufficiently addressed. What’s worse,
under the few-shot setting, deep models could become more
vulnerable to adversarial attacks due to the serious lack of
training samples [19]. Therefore, how to learn a robust few-
shot model defensive against adversarial attacks is raised in
this work as a new and challenging issue, and we name it
defensive few-shot learning throughout this paper.

However, we cannot directly apply the existing adver-
sarial defense methods in the way that they are applied
to generic image classification, to few-shot learning to ef-
fectively tackle the defensive few-shot image classification
issue defined in this paper. The reasons are in two folds.
First, as proved by recent work [19], adversarially robust
generalization requires access to more data, but the few-
shot setting only has access to significantly fewer training
samples (e.g., only 1 or 5 samples per class) than generic
image classification. This makes defensive few-shot im-
age classification much more difficult to achieve. Second,
generic image classification can usually safely assume the
sample-level distribution consistency, i.e., the independently
and identically distributed (i.i.d.) assumption, between the
training and test sets. However, this assumption cannot be
made anymore in the few-shot case. This is because due to
the serious scarcity of training samples, few-shot learning
usually has to resort to a large but class-disjoint auxiliary
set to learn transferable knowledge. This means that the
actual training set often has a somewhat different sample
distribution from the test set of the target few-shot task.

Therefore, defensive few-shot learning should be in-
vestigated as a new challenging issue, which is different
from both generic adversarial training and standard few-
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shot learning. To address this issue, two key questions need
to be answered: (1) how to transfer adversarial defense
knowledge from one sample distribution (i.e., the auxiliary
set) to another (i.e., the unseen few-shot task)? (2) how
to narrow the distribution gap between clean and adver-
sarial examples under the few-shot setting? Note that the
goal of this paper is to study how to make existing few-
shot learning models defensive against adversarial attacks,
rather than design another new few-shot learning method.
Therefore, to achieve this goal and find answers to the above
two questions, we propose a new and general defensive
few-shot learning (DFSL) framework, which can be efficiently
tailored to the existing few-shot learning methods to learn a
defensive few-shot model.

Specifically, to answer the first question, we make a
task-level distribution consistency assumption, instead of the
original sample-level distribution consistency assumption used
in current adversarial defense methods, between the train-
ing set (i.e., the auxiliary set) and test set (i.e., the target
few-shot tasks). Based on this assumption, we propose an
episode-based adversarial training (ET) mechanism to transfer
the adversarial defense knowledge between two sample
distributions, by adversarially training a defensive few-
shot model on thousands of adversary-based few-shot tasks
(episodes) constructed from the training set. The core is
that, from the sample-level perspective, the distribution
between the training set and test set may vary. However,
from the task-level perspective (i.e., a higher level), the task
distribution between them could be assumed to be similar.
According to this assumption, i.e., both the training set and
test set share a similar (or the same) task-distribution, the
model adversarially trained on the adversary-based few-
shot tasks constructed from the training set can generalize
well to the similar adversary-based few-shot tasks of the
test set. In this way, the adversarial defense knowledge
can be transferred from one sample distribution to another
through such a task-level assumption. Note that although
the transferability of adversarial examples, i.e., adversarial
examples can be transferred across different models, has
been a common sense in the adversarial learning com-
munity [20], the research on the transferability of defense
knowledge has not been well investigated in the literature
of adversarial learning. We highlight that we take a small
step in this direction.

Furthermore, within each adversary-based few-shot
task, we shall enforce a distribution consistency between
the clean and adversarial examples (images) like the existing
adversarial defense methods to further improve the classi-
fication performance, i.e., the second question above. Note
that because the existing adversarial defense methods are
mainly designed for generic classification problems, which
are assumed to be able to access sufficient training examples,
these methods mainly work with the pooled global (logit)
representations of the clean and adversarial images and aim
to make them consistent. However, in DFSL, i.e., in the few-
shot setting, we can only have access to a small amount of
data, which makes the second question more challenging.
To alleviate this scarcity issue of training data under the
few-shot setting, we propose to switch to the richer local
descriptors instead of the global representations to represent
each clean and adversarial image. For each image, we can

extract a large number of local descriptors to represent
this image. Based on such local-descriptor-based repre-
sentations, we especially propose a novel kind of feature-
wise consistency criteria to enforce a local-descriptor-based
distribution consistency between the clean and adversarial
examples. Specifically, we design two distribution measures,
i.e., a Kullback-Leibler divergence based distribution measure
(KLD) and a task-conditioned distribution measure (TCD), to
align the local-descriptor-based distributions between the
clean and adversarial examples. In addition, following the
existing adversarial defense methods [9], [11], [21], we can
also enforce a kind of prediction-wise consistency between
each clean example and its adversarial counterpart, by
making their predicted posterior probability distributions
of the classes to be similar. However, the existing methods
usually employ tight regularizers to achieve this goal, which
we find is no longer suitable for the few-shot setting in
DFSL. The reason is that, in the few-shot setting, the test set
generally has a certain distribution gap with respect to the
training set. Using such tight regularizers on the training set
will weaken the adversarially robust generalization ability
of the defensive few-shot models on the test set. To tackle
this issue, different from the existing methods, we propose
a slacker Symmetric Kullback-Leibler divergence measure (SKL)
to obtain a better adversarially robust generalization ability.
In summary, by taking the above two aspects (i.e., the task-
level distribution consistency assumption and distribution
consistency criteria within each task) into consideration, our
proposed DFSL framework is able to learn a defensive few-
shot model against adversarial attacks.

In addition, we find that the existing adversarial defense
methods often report two kinds of classification accuracy,
i.e., clean example accuracy and adversarial example accu-
racy, to show the effectiveness of their proposed defense
methods. However, there may be a trade-off between these
two kinds of accuracies [13], [21], which means that the
gain of the adversarial accuracy can be the loss of the clean
accuracy or vice versa. This makes a direct comparison of
different methods awkward, if not impossible. Therefore, it
is desirable to have a unified criterion to facilitate the eval-
uation and comparison of different defense methods under
the same principle, which has been largely overlooked in
the existing literature. To this end, we propose a unified Fβ

score to conveniently evaluate the overall performance of
different defense methods under the same principle.

Last but not least, we also find that randomness matters
in adversarial training, especially in defensive few-shot
learning. In other words, the randomness will make the
comparison between different defense methods unfair. This
is because different runs of the same defense method on the
same platform may end up with quite different results due
to random initializations of network parameters, random
data shuffles, or the randomness of CUDA and CuDNN
backends. In particular, the last point, i.e., the randomness
of CUDA and CuDNN backends, is easily overlooked (See
Section 5.7 for more details). Therefore, in this work, to
make the comparison of different defense methods fairer
and make the results reproducible, we completely control
the randomness by fixing both the network initialization
and data shuffle, including the randomness of both CUDA
and CuDNN backends, for all comparison methods. More
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importantly, all the comparison methods are implemented
under the same framework with the same single codebase.

In summary, the main contributions of this paper are:

• We define a new challenging issue, i.e., defensive few-
shot learning (DFSL), for the first time in the literature.
This poses two key questions (challenges): how to
transfer defense knowledge during adversarial train-
ing and narrow the distribution gap between clean
and adversarial examples under the few-shot setting.

• We propose a novel and general DFSL framework
to address the above two challenges, by performing
an episode-based adversarial training at the task level
and enforcing the distribution consistency between
clean and adversarial examples from the feature-wise
or prediction-wise perspectives within each task.

• We further design three new distribution consistency
criteria, i.e., Kullback-Leibler divergence based distribu-
tion measure (KLD), task-conditioned distribution mea-
sure (TCD), and Symmetric Kullback-Leibler divergence
measure (SKL), to specially narrow the distribution
gap under the defensive few-shot setting.

• We tailor the proposed DFSL framework to the state-
of-the-art few-shot learning methods and conduct
extensive experiments on six benchmark datasets
to verify the effectiveness of this framework. This
provides rich baseline results for this new problem,
i.e., defensive few-shot learning, and meanwhile, fa-
cilitates future research on this topic.

2 RELATED WORK

Our work is related to few-shot learning and adversarial
training, both of which have a large body of work. Here, we
only discuss the most relevant studies in these two fields. In
addition, we will introduce the episodic training mechanism
used in the standard few-shot learning and review multiple
state-of-the-art attack methods.

Few-shot learning (FSL) attempts to learn a classifier
with good generalization capacity for new unseen classes
with only a few samples [22], [23], [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36]. Due to the scarcity of
data, a large-scale but class-disjoint auxiliary set is generally
used to learn transferable knowledge for the target few-shot
tasks. Specifically, in [23], Vinyals et al. propose a Match-
ing Net by directly comparing the query images with the
support classes. In particular, in the work of Matching Net,
they also propose an episodic training mechanism, which is
widely adopted and taken as the default in the subsequent
studies. Along this way, a variety of methods have been
proposed, such as ProtoNet [37], RelationNet [38], IMP [24],
CovaMNet [39], CAN [40], DeepEMD [41] and DN4 [25].

As a special problem setting in FSL, the proposed defen-
sive few-shot learning (DFSL) aims to make the existing FSL
methods robust against adversarial attacks.

Episodic training mechanism plays an important role
in the above FSL methods, which tries to train a few-
shot model by constructing tens of thousands of simulated
episodes (tasks) from an auxiliary set. To be specific, each
episode (task) is a simulation of the target few-shot task,
which also consists of two akin subsets, i.e., a support set

and a query set. At each iteration, one episode (task) is
adopted to train the current model.

However, although the promising performance of the
episodic training mechanism has been verified in the stan-
dard FSL methods [23], [37], [42], the effectiveness of this
mechanism under the defensive few-shot setting has not
been investigated. In this work, we interpret this mechanism
from the perspective of task-level distribution consistency
and develop transferable adversarial defense upon it.

Adversarial training (AT) is a specific training mecha-
nism that trains a model with both adversarial examples and
clean examples in order to make the model robust against
adversarial attacks [5], [7], [8], [13], [21], [43]. For example,
to improve the robustness of semi-supervised classification,
Miyato et al. [9] propose a semi-supervised virtual adversar-
ial training method (VAT) by calculating the KL divergence
between the predictions on the clean examples and the
adversarial examples. Similarly, Kannan et al. [11] present an
adversarial logit pairing (ALP) strategy, encouraging similar
logit representations (i.e., unscaled probability distributions)
of the clean and the corresponding adversarial examples.
Recently, Song et al. [44] introduce domain adaptation into
adversarial training (ATDA) to learn domain invariant rep-
resentations for both clean and adversarial domains. Zhang
et al. [21] theoretically identify a trade-off between robust-
ness and accuracy, and propose TRADES to optimize a
regularized surrogate loss.

The main differences between our DFSL framework and
these methods are: (1) the above methods only consider the
generic image classification setting, rather than the more
challenging few-shot setting considered in this paper; (2)
these methods mainly focus on the global prediction-wise
consistency between the clean and adversarial examples,
while our DFSL framework proposes a new feature-wise
consistency from a perspective of local-descriptor-based
distribution consistency, which provides an effective way
for capturing the distributions of both clean and adversarial
examples in the few-shot case; (3) all these above methods,
taken as regularizers, can be tailored into the proposed
DFSL framework.

Attack Methods can not only be used to attack or test
a system, but can also be employed to make this system
more robust against such kinds of attacks. A variety of
attack methods have been proposed in the literature [5],
[8], [9], [45], [46], [47]. For example, both L-BFGS [45] and
C&W [47] attempt to find an adversarial example through
an optimization way, by optimizing a constrained minimiza-
tion problem, i.e., a minimum ℓ2 norm distance between
this misclassified adversarial example and the correspond-
ing clean example. These kinds of methods are generally
time-consuming due to the optimization process adopted.
Differently, Goodfellow et al. [5] propose a one-step fast
gradient sign method (FGSM), which generates an adversarial
example through a single backward propagation of the
neural network with respect to the clean input. In this way,
the adversarial examples can be quickly constructed because
FGSM does not need the optimization process. After that,
a stronger iterative variant of FGSM, i.e., projected gradient
descent (PGD) is proposed in [8], which mainly applies the
FGSM iteratively for multiple times with a small step size.
Different from L-BFGS and C&W, which try to optimize
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Fig. 1. Proposed framework of the defensive few-shot learning (DFSL) on a 3-way 1-shot task, which is decoupled into two modules, i.e., a feature
embedding module gφ and a classifier module fθ . Specifically, a support set S, a clean query set Q and an adversarial query counterpart Qadv

are fed into the model, supervised by three kinds of losses, e.g., the cross entropy loss (i.e., LCE
Q and LCE

Qadv ), the feature-wise loss LFea
Q◦Qadv and the

prediction-wise loss LClass
Q◦Qadv , which will become clear shortly.

an ℓ2 norm distance, both FGSM and PGD are usually
optimized for an ℓ∞ norm distance metric. Because FGSM
is much faster than other attack methods to generate an
adversarial example, we will mainly adopt it to generate
adversarial examples in the training phase and adopt it to
test the robustness of the learned DFSL models. In addition,
PGD is also employed and evaluated in Section 5.5.

3 THE PROPOSED DEFENSIVE FEW-SHOT LEARN-
ING FRAMEWORK

In this section, we first introduce the notations used in this
paper, and then present the definition of the new topic,
defensive few-shot learning (DFSL). Finally, we provide the
details of the proposed defense framework.

3.1 Notation
Following the literature, let S and Q denote the support
set and query set in an FSL task, which corresponds to
the training set and test set in generic image classification,
respectively. Differently, S contains C classes but only has
K images per class (e.g., K = 1 or K = 5). A indicates an
additional auxiliary set A, which contains a larger number
of classes and samples than S but has a totally disjoint label
space with S .

Let gφ(·) denote a convolutional neural network based
embedding module, which can learn feature representations
for any input image x, i.e., gφ(x). Suppose fθ(gφ(x),S)
be a classifier module, which assigns a class label y for a
query image x in Q, according to S . Note that the classifier
module fθ(·) can be integrated with the embedding module
gφ(·) into a unified network and trained in an end-to-end
manner. The cost function L

(
fθ(gφ(x),S), y

)
is denoted as

L(x,S, y) for simplicity.
It is easy to use a small perturbation δ to construct an

adversarial image xadv =x+δ to fool the classifier, making
fθ(gφ(x

adv),S) ̸= y. Generally, the clean image x and the
adversarial image xadv are perceptually indistinguishable,
and their difference (i.e., the perturbation δ) can be bounded
by a distance metric D(x,xadv) ≤ ϵ, such as the ℓ∞ norm.
That is to say, if ϵ indicates the maximum magnitude of the
perturbation δ, we have ∥δ∥∞ ≤ ϵ. Note that, all clean im-
ages are normalized into a range of [0, 1], and all adversarial
images are clipped into the same range. Following the work
in [46], a white-box attack setting [6] is employed to generate
all the training adversarial images in this paper.

3.2 Defensive Few-shot Learning (DFSL)
As mentioned above, a few-shot task normally consists of
a support set S and a query set Q. Given S , which has
C classes with K images per class, the target of FSL is to
infer the correct class label for each unlabeled sample in Q.
This setting is typically called a C-way K-shot classification
setting. Since the number of K is generally small (e.g., 1 or
5), it is almost impossible to learn an effective classifier only
from S . Therefore, in FSL, an additional auxiliary set A is
usually adopted to learn transferable knowledge to help the
classification on Q.

Unlike the standard FSL, here, we mainly focus on how
to learn a robust few-shot classification model to defend
against adversarial attacks, i.e., defensive few-shot learning
(DFSL). In DFSL, we always assume that the adversary is
capable of manipulating the query images in the query set
Q, but doesn’t have access to the support set S . In other
words, for one few-shot task which has been adversarially
attacked by the adversary, we will have three kinds of sets
in this task, i.e., a support set S , a clean query set Q, and
an adversarial query set Qadv. Without loss of generality, we
assume each image in Q has one corresponding adversarial
counterpart in Qadv. Typically, we call an attacked few-shot
task as an adversary-based few-shot task. Our goal in DFSL is
to learn a robust model which can correctly classify query
images no matter if they are manipulated, i.e., query images
in both Q and Qadv. The framework can be seen in Fig. 1.

3.3 Analysis and Answers to the Two Questions
Due to the scarcity of training data, few-shot models need
to learn transferable knowledge from a class-disjoint auxil-
iary set, which generally has a somewhat different sample
distribution with respect to the target few-shot task. This
situation makes the problem of DFSL quite different from
the generic adversarial defense problems, and thus raises
two new questions on DFSL: (1) how to transfer adversarial
defense knowledge between two sample distributions (i.e.,
A and S)? (2) how to narrow the distribution gap between
the clean and adversarial examples in a specific adversary-
based few-shot task (i.e., the distribution gap between Q and
Qadv)?

The first question does not exist in generic image
classification, because we can usually make a distribution
consistency assumption between the training and test sets
(i.e., independently and identically distributed data) to guar-
antee the model trained on the training set can generalize
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Fig. 2. Changing the distribution consistency assumption from the sample-level to the task-level. As seen, the sample distribution gap (difference)
between the training and test sets in the sample space may be significant, while the task distribution gap (difference) in the task space between
them could be small because of the task similarity. Each color indicates one class. Solid and hollow circles indicate the clean and adversarial
examples, respectively.

well to the test set. Such an assumption is also implicitly
assumed in the existing adversarial defense methods [5],
[11], [44]. However, in DFSL, the auxiliary set (for training)
A has a totally class-disjoint label space with the support
set S in the target adversary-based few-shot task. Since
the sample distribution of A is relatively different from the
sample distribution of S , the generalization performance on
the target data set (i.e., S) cannot be well guaranteed. As
a result, the adversarial defense knowledge learned on A
by directly using the existing adversarial defense methods
is hard to be transferred to S in the target task. This is
why we cannot directly employ the existing adversarial
defense methods to address the DFSL problem. This will
be demonstrated in the experimental part later.

The above phenomenon can be visualized as the left side
in Fig. 2, i.e., there may be a large distribution gap between
the training set (i.e., A) and test set (i.e., S) in the sample
space, making the adversarial defense knowledge hard to
transfer. To address this issue, inspired by the episodic
training mechanism [23], we can assume the distribution
consistency in a task space instead of the sample space (see
the right side of Fig. 2). From the perspective of the task-
level distribution consistency between the training set and
test set, we can construct a large number of adversary-based
few-shot tasks within the auxiliary set A, by simulating
the target adversary-based few-shot task in the test set. In
doing so, the sample distribution gap can be dealt with
by leveraging the task similarity across the training and
test sets. In other words, although two sample distributions
may be relatively different from the lower sample-level
consistency perspective, they can still have similarities from
a higher task-level consistency perspective.

The contribution of our work here is to attempt to
develop transferable adversarial defense upon the episodic
training mechanism [23] in the new setting of DFSL and
especially present a new episode-based adversarial training
mechanism for the DFSL problem. To the best of our knowl-
edge, addressing this new problem in such a setting is the
first time in the literature.

The second question is essentially a common issue
that the existing adversarial defense methods are working
on. According to the adversarial learning literature [44],
there is usually a large distribution gap between the clean
and adversarial examples, making the deep models prone
to misclassifying the manipulated adversarial examples.
Therefore, the latest adversarial defense methods [11], [21],
[44] are focusing on how to narrow such a distribution gap
between the clean and adversarial examples to improve
the classification performance. However, these methods are

mainly designed for the generic classification problems,
rather than the more challenging few-shot setting consid-
ered in this paper. In fact, few-shot models are more vulner-
able to the adversarial examples than generic deep models,
because of the serious scarcity of labeled training samples
in each class. The evidence can be seen in a recent work of
adversarial training [19], where it is proved that adversari-
ally robust generalization requires access to more data. As
a result, how to make few-shot models robust against ad-
versarial attacks, especially how to narrow the distribution
gap between the clean and adversarial examples under the
few-shot setting, is of significance but challenging.

Multiple adversarial defense methods have been pro-
posed to address the above issue (i.e., the distribution gap
between clean and adversarial examples) in the generic
classification problems. They mainly focus on using global
representations for clean and adversarial images. For exam-
ple, ATDA [44] tries to minimize the distribution shift (gap)
between the clean and adversarial examples by minimizing
the covariance distance between their covariance matrices,
which are estimated upon the global logit representations.
Clearly, ATDA can not be directly applied in DFSL be-
cause of the scarcity of training examples, which makes
the covariance matrix hard to be reliably estimated. Also,
these existing adversarial defense methods are developed
under an implicit i.i.d. assumption for the training set and
test set. In this case, they usually can safely apply some
tight regularization criteria, e.g., the ℓ2 regularization loss
presented in ALP [11]. However, it is found in this work
that such tight regularization criteria will somewhat weaken
the generalization ability of the few-shot model in DFSL,
especially when the test set has a large distribution gap with
the training set.

Therefore, different from the existing adversarial defense
methods, we propose a new kind of feature-wise consistency
criteria upon richer local descriptors to narrow the distribu-
tion gap between the clean and adversarial examples in each
adversary-based few-shot task. The reason is that, even in
the few-shot setting, a large number of local descriptors can
still be extracted from each image. This can be regarded as a
kind of natural data augmentation, which can significantly
enrich the amount of data. On the other hand, the local
descriptors generally contain abundant subtle information
on the visual content. The existing adversarial defense
methods usually work on the global logit representations
that are built on the pooled local descriptors. This could
cause the loss of information, and the impact could become
pronounced in the case of a few-shot setting. Therefore, by
using a kind of local-descriptor-based feature-wise consis-
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tency criteria, the scarcity problem of training examples in
DFSL can be well alleviated.

In addition, we design a slacker prediction-wise consis-
tency criterion to address the issue caused by existing tight
regularization criteria to enhance the adversarially robust
generalization ability of the DFSL models. This is because
there is usually a distribution gap between the training set
and test set in DFSL, making the existing tight regulariza-
tion criteria easily suffer from the overfitting problem. In
contrast, by using a slack criterion, the DFSL models can
gain more generalization performance.

3.4 The Proposed Adversarial Defense Methods
The above analysis motivates us to propose a novel frame-
work for DFSL in Fig. 1, where a defensive few-shot model
F is explicitly decoupled into an embedding modules gφ
and a classifier module fθ , i.e., F = gφ ◦ fθ . To learn a
robust few-shot model F , we first employ an episode-based
adversarial training (ET) mechanism to transfer the adversarial
defense knowledge at the task level. Next, we further design
two kinds of distribution consistency criteria associated with
the two modules (i.e., gφ and fθ) in F , respectively. The
former is to address the above first question, and the latter
is used to tackle the second question above.

3.4.1 Episode-based Adversarial Training (ET)
According to the analysis of the first question in
Section 3.3, we propose the following episode-based
adversarial training (ET) mechanism. Specifically, let
{⟨S1,Q1,Qadv

1 ⟩, . . . , ⟨Sn,Qn,Qadv
n ⟩} be a set of adversary-

based few-shot tasks randomly constructed from the
auxiliary set A. The objective function of our ET mechanism
can be formulated as,

Γ =argmin
φ,θ

n∑
i=1

∑
x∈Qi

(
LCE(x,Si, y)+ max

xadv=x+δ
LCE(xadv,Si, y)

)
,

(1)

where φ and θ denote the parameters of the embedding
module gφ(·) and the classifier module fθ(·) in a DFSL
model, respectively, and LCE(·) denotes the cross-entropy
loss (i.e., LCE

Q and LCE
Qadv in Fig. 1). Other notations have been

defined in Section 3.1. The core idea here is to simulate the
target adversary-based few-shot task by conducting a lot of
similar adversary-based few-shot tasks with the auxiliary
set A. In this way, we can build a task-based distribution to
deal with the gap among different sample distributions.

At each training step, we generate adversarial examples
(i.e., Qadv

i ) within each of the sampled few-shot tasks (i.e.,
⟨Si,Qi⟩) based on the current model, and meanwhile, inject
these adversarial examples into the current few-shot tasks
(i.e., ⟨Si,Qi,Qadv

i ⟩). Both clean and adversarial examples
(i.e., Qi and Qadv

i ) are used to train the model, enhancing
its capability to defend adversarial attacks.

Essentially, the episode-based adversarial training (ET)
mechanism can be regarded as an integration of episodic
training mechanism (Ep) [23] and adversarial training (AT) [5],
i.e., ET=Ep+AT. Seemingly, the integration of Ep and AT for
addressing the DFSL problem is straightforward. However,
as mentioned in Section 3.3, the key contribution here is
that we verify that ET can indeed effectively transfer the

adversarial defense knowledge between different sample
distributions, which has not been specifically investigated
or confirmed in the literature. More importantly, we further
examine this ET mechanism and improve it to consider
the distribution gap between the clean and adversarial
examples within each adversary-based few-shot task. To
tackle this limitation, especially in the few-shot setting, we
develop new criteria upon this ET mechanism to enforce the
distribution consistency between the clean and adversarial
examples to further boost the classification performance.

3.4.2 Feature-wise Consistency Criteria
Based on the analysis of the second question in Section 3.3,
we shall further enforce a distribution consistency between
the clean example and its adversarial counterpart, within
each adversary-based few-shot task. Specifically, we can
enforce this consistency by making their feature represen-
tations (or distributions) similar from a feature-wise per-
spective. As discussed in Section 3.3, instead of the global
features, we adopt the much richer local descriptors to
represent each image, and design two distribution measures
(regularizers), i.e., a Kullback-Leibler divergence based distribu-
tion measure (KLD) and a task-conditioned distribution measure
(TCD), built on the local-descriptor-based distributions of
both clean and adversarial examples. Moreover, inspired by
ATDA [44], we also implement a new local-descriptor-based
unsupervised domain adaptation measure (Local-UDA).

Given a specific adversary-based few-shot task
⟨S,Q,Qadv⟩, S = {s1, s2, . . . , sN} denotes the support set
of a C-way K-shot few-shot task (where N = C × K),
Q = {x1,x2, . . . ,xNq

} indicates the query set which
has Nq query images, and Qadv = {xadv

1 ,xadv
2 , . . . ,xadv

Nq
}

is the corresponding adversarial query set. As seen
in Fig. 1, in DFSL, the embedding module gφ(·) will
represent each image xi as a c × h × w feature map, i.e.,
a set of local descriptors gφ(xi) = [z1, . . . ,zm] ∈ Rc×m

(where m = h × w), instead of a pooled global feature
vector. Similarly, for an adversarial example xadv,
gφ(x

adv
i ) = [zadv

1 , . . . ,zadv
m ] ∈ Rc×m. In this work, we

assume that the local descriptors of each clean example
and each adversarial example follow multivariate normal
distributions, i.e., z∼N (µ,Σ) and zadv ∼N (µadv,Σadv). µ
and Σ are the mean vector and covariance matrix of gφ(x),
respectively. Also, µadv and Σadv are the mean vector and
covariance matrix of gφ(xadv), respectively.

Kullback-Leibler divergence based distribution mea-
sure (KLD). Since both the clean query image x and the ad-
versarial query image xadv have been represented by a local-
descriptor-based distribution, the KLD criterion between x
and xadv can be formulated as below,

Lfea
KLD(x,x

adv) =
1

2

[
Tr

(
(Σadv)−1Σ

)
+ ln

(detΣadv

detΣ

)
+ (µadv − µ)⊤(Σadv)−1(µadv − µ)− c

]
,

(2)

where Tr(·) is the trace operation of matrix, ln(·) denotes
the natural logarithm, det indicates the determinant of a
square matrix, and c is the feature dimension of each local
descriptor. The purpose of the KLD criterion is to align the
local-descriptor-based distributions of xadv and x within
each adversary-based few-shot task. The advantage is that
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KLD can not only narrow the distribution gap between the
clean and adversarial examples to some extent, but also
enjoys the characteristic of being a slacker criterion which
is good for the generalization performance. The reason why
KLD is regarded to be slacker is that we do not strictly make
the features of two images (i.e., x and xadv) exactly the same,
but just enforce their local-descriptor-based distributions to
be aligned.

Task-conditioned distribution measure (TCD). Since
we attempt to apply the proposed episode-based adver-
sarial training (ET) mechanism to DFSL, many simulated
adversary-based few-shot tasks from the auxiliary set will
be used to train a robust few-shot model. However, different
adversary-based few-shot tasks have their own characteris-
tics. To take the task characteristic into account and make
the few-shot model better handle different adversary-based
few-shot tasks, we further design a task-conditioned distribu-
tion measure (TCD) as follows,

Lfea
TCD(x,x

adv) =
(
µ− µadv)⊤Σ−1

S
(
µ− µadv)

+ ∥Σ− 1
2

S ΣΣ
− 1

2
S −Σ

− 1
2

S ΣadvΣ
− 1

2
S ∥2F ,

(3)

where Σ−1
S denotes the inverse covariance matrix of the

support set S . Specifically, we use the local descriptors of
all the samples in S to estimate ΣS , which can be seen as
an overall characterization of the current adversary-based
few-shot task. In particular, the first term of Eq. (3) is a
squared Mahalanobis distance between µ and µadv, depend-
ing on S . The second term aims to measure the distribution
distance between the clean and adversarial examples with
the second-order information, which is also depended on
S . Note that Σ

− 1
2

S is the square root of Σ−1
S , which can be

regarded as a transformation matrix to project both clean
and adversarial examples of the query set (i.e., x ∈ Q
and xadv ∈ Qadv) into another new feature space. In the
new feature space, we use an approximate 2-Wasserstein
distance [48] to calculate a distance between the local-
descriptor-based distributions of x and xadv (see the supple-
mentary material for more analyses). In this way, the distribu-
tion gap between the clean and adversarial examples can be
adaptively narrowed according to the task information of
the current adversary-based few-shot task.

It is worth mentioning that the calculation of matrix
square rooting (e.g., obtain Σ

− 1
2

S by eigen-decomposition)
may make the gradient computation of Eq. (3) complicated
in backpropagation. To handle this, we propose Theorem 1
(the proof is provided in the supplementary material) to convert
Eq. (3) into an efficient form without matrix square rooting
to facilitate the gradient computation.

Theorem 1. Suppose Σ1, Σ2 and Σ are all positive semi-definite
matrices, and Σ− 1

2 is the square root of the inverse of Σ, it can
be obtained that

Tr
(
∥Σ− 1

2Σ1Σ
− 1

2 −Σ− 1
2Σ2Σ

− 1
2 ∥2F

)
= Tr

[
Σ1Σ

−1 ·Σ1Σ
−1]

− 2Tr
[
Σ1Σ

−1 ·Σ2Σ
−1]+Tr

[
Σ2Σ

−1 ·Σ2Σ
−1] .

(4)

Local-descriptor-based unsupervised domain adapta-
tion measure (Local-UDA). Seemingly, the recent work
of adversarial training with domain adaptation (ATDA) [44],
especially the unsupervised domain adaptation (UDA) loss

it proposed, is closely related to the above proposed KLD or
TCD criteria. The difference is clarified as follows. The UDA
loss in ATDA [44] is originally proposed to minimize the
distribution gap of the logit representations (i.e., unscaled
probability distributions) between the clean and adversarial
examples. That is to say, ATDA is a kind of prediction-
wise consistency criteria. Unfortunately, because the original
UDA loss in ATDA adopts the logit representations to
estimate the mean vectors and covariance matrices of the
clean and adversarial examples, it is not suitable anymore
for DFSL due to the limited examples under the few-shot
setting. In this paper, inspired by ATDA, we instead design
a new local-descriptor-based unsupervised domain adaptation
measure (Local-UDA) as follows,

Lfea
Local-UDA(x,x

adv) =
1

m

∥∥µ− µadv∥∥
1
+

1

m2

∥∥Σ−Σadv∥∥
1
, (5)

where ∥ · ∥1 denotes ℓ1 norm of a vector or a matrix, and m
indicates the number of local descriptors of each image. As
seen, like the above proposed KLD and TCD criteria, Local-
UDA attempts to align the local-descriptor-based distribu-
tions of x and xadv by also taking both the first-order (i.e.,
mean vectors µ and µadv) and second-order (i.e., covariance
matrices Σ and Σadv) information into account.

3.4.3 Prediction-wise Consistency Criteria
In addition to the above feature-wise consistency criteria, we
also propose a kind of prediction-wise consistency criteria Lclass

to enforce the class predictions of both clean and adversarial
examples to be similar, following the existing adversarial
defense methods in the literature.

Specifically, we can develop adversarial logit pair-
ing (ALP) [11], virtual adversarial training (VAT) [9] or
TRADES [21] to achieve this goal. The formulation of ALP
can be defined as

Lclass
ALP (x,x

adv) = ∥fθ
(
gφ(x),S

)
− fθ

(
gφ(x

adv),S
)
∥22 , (6)

where y = fθ(gφ(x),S) ∈ RC and yadv = fθ(gφ(x
adv),S) ∈

RC denote the posterior probability distributions of class
predictions on the clean query image x and adversarial
query image xadv, respectively. ∥ · ∥2 indicates the ℓ2 norm
of a vector.

As for VAT [9] and TRADES [21], they employ an
asymmetric Kullback-Leibler (KL) divergence (for univari-
ate probability distributions) to minimize the difference
between the class predictions of the clean example and that
of its adversarial counterpart, which can be formulated as,

Lclass
KL (x,xadv) =

∑
y,yadv∈Y

fθ
(
gφ(x),S

)
· log

fθ
(
gφ(x),S

)
fθ
(
gφ(xadv),S

) ,

(7)
where Y denotes the probability space of y and yadv.

However, such an asymmetric KL divergence, i.e., Lclass
KL ,

will suffer from saturating gradients as claimed in [11],
which may be unstable during optimization. Although
ALP [11] has used a symmetric least squares loss (i.e., ℓ2
loss) for two images (i.e., x and xadv), it is too strict and
will easily suffer from the overfitting problem especially in
DFSL. As discussed in the second question in Section 3.3,
there is generally a distribution gap between the actual
training set (i.e., the auxiliary set A) and the target test set
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(i.e., the unseen few-shot tasks). If we employ an overly strict
regularization criterion at the training stage, we can indeed
effectively narrow the distribution gap between the clean
and adversarial examples on the training set, but will sig-
nificantly weaken the model’s generalization ability on the
diverse target test sets (e.g., some cross-domain scenarios).

Symmetric Kullback-Leibler divergence measure
(SKL). To overcome the above issue, we further propose a
Symmetric Kullback-Leibler divergence measure (SKL) as

Lclass
SKL (x,xadv) =

1

2

[
Lclass

KL (x,xadv) + Lclass
KL (xadv,x)

]
. (8)

The key advantages of Lclass
SKL are in two folds: (1) Lclass

SKL is
still a kind of distribution measure, which only requires the
class predictions of xadv close to the class predictions of x
and vice versa, rather than forcing their class predictions
exactly to be the same. In this sense, Lclass

SKL can enjoy a
good generalization ability. (2) different from Lclass

KL , the
proposed Lclass

SKL is symmetric, which is more stable during
optimization. This proposed SKL criterion is regarded as
our minor contribution to the topic of DFSL.

Note that Lclass
SKL is different from Lfea

KLD. The main dif-
ference is that Lfea

KLD is built on the intermediate feature
representation (i.e., local descriptors obtained from the con-
volutional feature map) to calculate the difference between
the sets of local descriptors from the clean and adversarial
examples, while Lclass

SKL is built on the prediction results
to calculate the distance between the class predictions of
the clean example and its adversarial counterpart. In other
words, Lfea

KLD tries to make the feature representation of the
clean example and that of the corresponding adversarial
example similar. In contrast, Lclass

SKL aims to make the class
prediction of the clean example and that of its adversarial
counterpart similar.

3.4.4 Overall Formulation of DFSL
According to the above analysis, we can define the overall
optimization formulation of DFSL in two ways, i.e., feature-
wise consistency criteria based overall formulation

Γ fea
overall = argmin

φ,θ

n∑
i=1

∑
x∈Qi

(
LCE(x,Si, y)

+ max
xadv=x+δ

LCE(xadv,Si, y) + λ · Lfea(x,xadv)
)
,

(9)

or prediction-wise consistency criteria based overall formu-
lation as,

Γ class
overall = argmin

φ,θ

n∑
i=1

∑
x∈Qi

(
LCE(x,Si, y)

+ max
xadv=x+δ

LCE(xadv,Si, y) + λ · Lclass(x,xadv)
)
,

(10)

where λ is a balancing parameter.
During the training stage, to learn a specific DFSL model,

we can just choose an optimization algorithm, e.g., stochastic
gradient descent (SGD) or Adam [49], to minimize the above
objective Γoverall to optimize the parameters of both the
embedding module gφ and classifier module fθ from scratch
in an end-to-end manner. During the test stage, we directly
apply the learned DFSL model, including gφ and fθ , to the
target adversary-based few-shot tasks to classify the images
in a query set based on its support set.

3.5 Generality of the DFSL Framework

We highlight that the proposed DFSL framework is a general
framework. This framework consists of two explicitly de-
coupled modules, i.e., an embedding modules gφ and a clas-
sifier module fθ , and thus most existing few-shot learning
(FSL) methods, such as ProtoNet [37], RelationNet [38] and
DN4 [25], can be easily tailored into this framework. To be
specific, we can just replace the classifier module fθ with the
corresponding few-shot classifier of different FSL methods,
by using the same embedding module gφ. Similarly, because
of such a decoupled architecture of this framework, either
the feature-wise consistency criteria or the prediction-wise
consistency criteria (i.e., adversarial defense criteria) can be
easily integrated into this DFSL framework. In summary, to
construct a specific DFSL model, we can just select a specific
FSL method and a specific adversarial defense criterion, and
tailor them to this framework.

Typically, to demonstrate the effectiveness of the pro-
posed DFSL framework, we take DN4 [25], one of the
state of the arts, as the default FSL method, and compare
different adversarial defense methods (criteria). Specifically,
five state-of-the-art generic adversarial defense methods,
including the standard adversarial training (AT) [5], VAT [9],
ALP [11], ATDA [44] and TRADES [21], are modified
and re-implemented into this unified framework. Based on
the methods proposed in Sections 3.4.2 and 3.4.3, we can
obtain four new DFSL models, i.e., DFSL-DN4-AT, DFSL-
DN4-KL, DFSL-DN4-ALP and DFSL-DN4-Local-UDA. Note
that DFSL-DN4-Local-UDA essentially can be seen as our
own implementation, inspired by ATDA [44]. Moreover, we
further construct another three DFSL models, i.e., DFSL-
DN4-KLD (ours), DFSL-DN4-TCD (ours) and DFSL-DN4-SKL
(ours), by using our proposed KLD, TCD and SKL criteria,
respectively.

In addition, we have also tailored another five represen-
tative few-shot learning methods to this DFSL framework,
including ProtoNet [37], RelationNet [38], CovaMNet [39],
CAN [40] and DeepEMD [41]. This part will be discussed in
detail in Section 5.2.

4 A NEW UNIFIED EVALUATION CRITERION

Training a model with adversarial examples can indeed
improve the robustness of this model. At the same time,
it could jeopardise the performance of this model on the
original clean examples. There may exist a trade-off between
robustness (against adversarial examples) and accuracy (on
clean examples). Several recent works have been trying to
show this issue [13], [21]. In the literature, adversarial train-
ing based work generally reports two kinds of classification
accuracy, i.e., accuracy on clean examples and accuracy on
adversarial examples. However, in real cases, it could be
awkward to compare two defense methods overall with two
accuracies1. To this end, inspired by the case of Recall and
Precision in information retrieval, we introduce Fβ score as
a unified criterion to evaluate different defense methods un-
der the same principle. Specifically, Fβ score is formulated

1. If one method achieves a higher adversarial accuracy at the expense
of a lower clean accuracy, we cannot say it is better than another with a
lower adversarial accuracy but a higher clean accuracy.
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with both clean accuracy ACCclean and adversarial accuracy
ACCadv as below,

Fβ = (1 + β2) · ACCclean · ACCadv
β2 · ACCclean +ACCadv

. (11)

For instance, if we would like to maintain high accuracy on
the clean examples, and meanwhile, improve the robustness
as higher as possible, we can use F0.5 score. In contrast, if
we mainly concern the robustness, F2 score can be adopted.
Similarly, we can use F1 score to consider these two parts
equally. In addition, we can also generate the curve of
Fβ scores by varying β as a more comprehensive way to
compare different methods.

5 EXPERIMENTS

In this section, we perform defensive few-shot image clas-
sification on six benchmark datasets to demonstrate the
effectiveness of the proposed DFSL framework.

Datasets. Following the literature, six datasets are
used as the benchmark datasets, i.e., miniImageNet [23],
tieredImageNet [50], CIFAR-100 [51], Stanford Dogs [52],
Stanford Cars [53] and CUB Birds-200-2011 [54].
miniImageNet consists of 100 classes, and there are
600 images in each class with a resolution of 84×84. We
follow [55] and take 64, 16 and 20 classes for training,
validation and test, respectively. tieredImageNet contains
608 classes with more than 1000 images per class. We
follow the splits in [50] and take 351, 97 and 160 classes
for training, validation and test, respectively. CIFAR-100
has 100 classes, containing 600 images per class. For this
dataset, we follow [56] and take 60, 20 and 20 classes for
training, validation and test, respectively. Stanford Dogs is
a fine-grained dog dataset, which has 120 classes of dogs
and has a total number of 20, 580 images. We follow [39]
and take 70, 20 and 30 classes for training, validation and
test, respectively. Stanford Cars is a fine-grained car dataset,
which contains 196 classes of cars and has a total number
of 16, 185 images. Following [39], we take 130, 17 and 49
classes for training, validation and test, respectively. CUB
Birds-200-2011 is a fine-grained bird dataset. It consists
of 200 bird classes containing a total number of 11, 788
images. We also follow [39] and adopt 130, 20 and 50
classes for training, validation and test, respectively. Note
that all the images in the above datasets are resized to a
resolution of 84×84.

Network Architecture. A commonly used four-layer
CNN in generic few-shot learning [25], [57] is adopted as
the embedding module gφ. It consists of four convolutional
blocks, each of which contains a convolutional layer, a batch
normalization layer, and a LeakyReLU layer. As for the
classifier module fθ , it is associated with the selected FSL
method. For example, if we choose ProtoNet [37] as the FSL
method, there will be a fully-connected layer or a global av-
erage pooling layer in fθ . Also, if we choose RelationNet [38]
as the FSL method, fθ is consists of two convolutional blocks
and two fully-connected layers. In contrast, if we adopt the
DN4 [25] as the base FSL method, the classifier module fθ
consists of an image-to-class module and a nearest neighbor
classifier, which does not have trainable parameters, i.e., fθ
is non-parametric.

Attack Setting. We apply the popular FGSM [5] attacker
to find adversarial examples to train robust DFSL models.
During training, we follow [46] and randomly choose a
perturbation ϵ for each training few-shot task from a normal
distribution in the range of [0, 0.02]. To be specific, for each
input clean image (i.e., query image), we construct its corre-
sponding one adversarial counterpart based on a specific ϵ.
The hype-parameter λ in Eq. (9) or Eq. (10) is selected from
λ = {0.1, 0.5, 1.0, 2.0, 3.0} by cross-validation according to
the validation set for each defense method. During test, we
evaluate the robustness of the trained DFSL models in de-
fense of three levels of attacks, i.e., ϵ = {0.003, 0.007, 0.01}.
Basically, the larger ϵ, the stronger the attack.

Experimental Setting. For fairness, all experiments are
conducted around a 5-way 5-shot (or 1-shot) task on the
benchmark datasets. At the training stage, we train all the
models for 20 epochs, and in each epoch, we randomly sam-
ple and construct 10, 000 adversary-based few-shot tasks. In
each conducted few-shot task, there are 5 support classes
with 5 support images (or 1 support image) and 15 query
images per class. Adam algorithm [49] is used to update
all the models. The initial learning rate is set as 0.001 and
halved per 10 epochs. All the models are trained from
scratch in an end-to-end manner. At the test stage, 5000
adversary-based few-shot tasks are constructed from the
test set for evaluation. The top-1 mean accuracy and the
proposed Fβ score are taken as the evaluation criteria.
Without loss of generality, we set β = 1, which means that
the clean accuracy (the weight is 1/2) is regarded as equally
important as the adversarial accuracy (the weight is 1/2).

Experimental Summary. In Section 5.1, we will first con-
duct an experiment on the miniImageNet dataset to verify
the effectiveness (i.e., the defense transfer ability) of the pro-
posed episode-based adversarial training (ET) mechanism. Next,
Section 5.2 provides details of the generality of the proposed
DFSL framework on different few-shot learning methods.
In Section 5.3 and Section 5.4, we conduct experiments on
three general image datasets and three fine-grained image
datasets to compare different DFSL models, respectively.
Moreover, the PGD-adversarial training is also introduced
to train more robust DFSL models for defending against
various attacks in Section 5.5. In Section 5.6, we further
conduct an experiment in cross-domain scenarios to verify
the defense transfer ability across domains of the proposed
DFSL framework. In Section 5.7, we show the important
impact of the randomness. The qualitative comparison, i.e.,
curves of Fβ scores, between different DFSL models is given
in Section 5.8.

According to the analyses and results in Section 5.7, we
know that randomness indeed matters. That is to say, ran-
domness will make the comparison between different DFSL
models unfair. Therefore, for fairness, we will completely fix
the randomness for all comparison DFSL models, including
implementing all the models with the same single codebase.

5.1 Verifying the Defense Transfer Ability of ET

One of our concerns is how to transfer the adversarial
defense knowledge from a sample distribution to another
different one. We propose an episode-based adversarial training
(ET) mechanism to achieve this. To verify the effectiveness of
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TABLE 1
Comparison (%) of DN4, DN4+AT, DN4+Ep and DN4+ET on mini ImageNet under the 5-way 5-shot setting. A FGSM attacker is used.

Method AT Ep ACCclean
ϵ=0.003 ϵ=0.007 ϵ=0.01

ACCadv F1 ACCadv F1 ACCadv F1

DN4 without without 57.74 33.99 42.79 24.07 33.97 21.54 31.37
DN4+AT with without 52.12 44.63 48.08 40.99 45.88 38.19 44.08
DN4+Ep without with 70.39 16.18 26.31 9.81 17.22 8.65 15.40
DN4+ET with with 71.54 63.31 67.17 58.92 64.61 54.97 62.16

TABLE 2
Generality of the proposed DFSL framework with adversarial training (AT) [5] to different FSL methods, including ProtoNet [58], RelationNet [38],

CovaMNet [39], CAN [40], DeepEMD [41] and DN4 [25]. A FGSM attacker is used on mini ImageNet under the 5-way 5-shot setting.

Method ET Feature ACCclean
ϵ=0.003 ϵ=0.007 ϵ=0.01

ACCadv F1 ACCadv F1 ACCadv F1

ProtoNet+AT without Global 54.61 48.81 51.54 41.51 47.16 36.58 43.81
DeepEMD+AT without Local 55.09 49.13 51.93 42.06 47.70 37.61 44.70
DN4+AT without Local 52.12 44.63 48.08 40.99 45.88 38.19 44.08

DFSL-ProtoNet-AT with Global 63.70 55.68 59.42 45.91 53.36 39.05 48.41
DFSL-RelationNet-AT with Global 62.45 54.94 58.45 46.04 53.00 39.86 48.66
DFSL-DeepEMD-AT with Local 60.20 52.65 56.17 43.97 50.82 38.35 46.85
DFSL-CAN-AT with Local 64.64 56.04 60.03 45.96 53.72 38.83 48.51
DFSL-CovaMNet-AT with Local 64.65 57.57 60.90 49.19 55.87 43.10 51.72
DFSL-DN4-AT with Local 71.54 63.31 67.17 58.92 64.61 54.97 62.16

ET, we conduct a comparison experiment on miniImageNet,
built on one state-of-the-art FSL method DN4 [25]. Specif-
ically, four variants of DN4 are constructed by consider-
ing whether to perform the standard adversarial training
(AT) [5] and whether to perform the standard episodic train-
ing mechanism (Ep for short) [23]. They are DN4, DN4+AT,
DN4+Ep, and DN4+ET (i.e., DN4+Ep+AT).

The first variant, i.e., DN4, is trained without any of
AT and Ep. To achieve this, we first train a 64-classes
classification network on the auxiliary set A (64 classes) of
miniImageNet, and then, based on this pre-trained network,
we directly perform the non-parametric classifier module
of the original DN4 in [25] on the test set (20 classes).
DN4+AT is trained in a similar way, but with additional
adversarial training (AT) at the training stage of the 64-
classes classification network. DN4+Ep is trained on the
auxiliary set A by using Ep like the original work in [25]
but without using any adversarial defense technique. As for
DN4+ET, we train it on A with the proposed episode-based
adversarial training (ET), and evaluate it on the test set.

All the results are reported in Table 1. As seen, without
AT, DN4 is much vulnerable to adversarial attacks, drop-
ping its accuracy from 57.74% (clean accuracy) to 21.54%
(adversarial accuracy) when ϵ = 0.01. In contrast, DN4+AT,
which is trained with AT, can indeed defend the adversarial
attacks as expected (from 21.54% to 38.19%). However, both
clean and adversarial accuracies of DN4+AT are still far
from the normal accuracy on miniImageNet (70.39%).

Fortunately, the episodic training makes DN4+ET per-
form much better than DN4+AT (which is trained without
Ep) on both clean and adversarial examples. For instance,
when ϵ = 0.01, DN4+ET obtains 19.42% and 16.78% im-
provements over DN4+AT on the clean accuracy and ad-
versarial accuracy, respectively. More importantly, the clean
accuracy (71.54%) is even better than the normal clean
accuracy (70.39%). Therefore, it suggests that the episode-
based adversarial training (ET) can not only transfer the
adversarial defense knowledge but also maintain the clean
classification knowledge. This verifies that the traditional

sample-level distribution consistency assumption may not
guarantee the model’s generalization on both clean and
adversarial examples, but the task-level distribution con-
sistency assumption during episodic training can properly
make it, as stated in the first question in Section 3.3.

5.2 Generality of DFSL to Different FSL Methods
To verify the generality of the proposed DFSL frame-
work, we first extend this framework to six representative
FSL methods, i.e., ProtoNet [58], RelationNet [38], CovaM-
Net [39], CAN [40], DeepEMD [41] and DN4 [25], and then
compare these models with each other. For fairness, we
just select the standard adversarial training (AT) [5] as the
adversarial defense method for these models. In addition,
note that in the original papers CAN [40] leverages a global
classification as an additional training task by using the
global true labels of the auxiliary set, and DeepEMD [41]
employs the pre-training on the auxiliary set as a pre-
processing operation. This is somewhat not fair for other
methods in comparison and is also not consistent with
our setting in DFSL. Therefore, we re-implement CAN and
DeepEMD with their core components by removing the
global classification part or the pre-training part. In this
sense, we can obtain six corresponding DFSL models, i.e.,
DFSL-ProtoNet-AT, DFSL-RelationNet-AT, DFSL-CovaMNet-
AT, DFSL-CAN-AT, DFSL-DeepEMD-AT and DFSL-DN4-AT.

Moreover, to show the effectiveness of the above mod-
els, we take ProtoNet+AT, DeepEMD+AT and DN4+AT as
the baselines. Specifically, ProtoNet+AT and DeepEMD+AT
are trained in the same way as DN4+AT (see Section 5.1
for more details). Note that, we do not implement Rela-
tionNet+AT, CovaMNet+AT and CAN+AT, because their
classifier modules have trainable parameters and thus can-
not be directly integrated with an adversarially pre-trained
embedding network like ProtoNet+AT, DeepEMD+AT and
DN4+AT at the test stage without fine-tuning. The com-
parison results of the above models on miniImageNet are
reported in Table 2. As seen, all the six DFSL-based meth-
ods can significantly improve both the clean accuracy and
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TABLE 3
Comparison (%) of different DFSL models on mini ImageNet under the 5-way 5-shot setting. Both training and test are based on a FGSM attacker.

For each evaluation criterion, the best and the second best results are highlighted in bold.

Method ET ACCclean
ϵ=0.003 ϵ=0.007 ϵ=0.01

ACCadv F1 ACCadv F1 ACCadv F1

DN4+Ep without 70.39 16.18 26.31 9.81 17.22 8.65 15.40
DFSL-DN4-AT with 71.54 63.31 67.17 58.92 64.61 54.97 62.16
DFSL-DN4-KL with 71.61 64.96 68.12 62.29 66.62 59.55 65.02
DFSL-DN4-ALP with 72.14 64.56 68.13 62.56 67.00 60.87 66.02
DFSL-DN4-Local-UDA with 72.30 64.32 68.07 61.46 66.44 59.07 65.01
DFSL-DN4-KLD (ours) with 72.24 63.38 67.52 61.06 66.18 59.24 65.09
DFSL-DN4-TCD (ours) with 72.33 64.98 68.45 62.76 67.20 60.65 65.97
DFSL-DN4-SKL (ours) with 71.68 66.44 68.96 64.55 67.92 62.68 66.98

TABLE 4
Comparison (%) of different DFSL models on tiered ImageNet under the 5-way 5-shot setting. Both training and test are based on a FGSM

attacker. For each evaluation criterion, the best and the second best results are highlighted in bold.

Method ET ACCclean
ϵ=0.003 ϵ=0.007 ϵ=0.01

ACCadv F1 ACCadv F1 ACCadv F1

DN4+Ep without 74.11 23.99 36.24 12.58 21.50 10.34 18.14
DFSL-DN4-AT with 73.04 63.06 67.68 58.07 64.70 53.73 61.91
DFSL-DN4-KL with 72.31 64.60 68.23 61.96 66.76 59.26 65.13
DFSL-DN4-ALP with 72.61 65.37 68.80 62.84 67.37 60.55 66.03
DFSL-DN4-Local-UDA with 72.48 64.12 68.04 60.65 66.03 57.04 63.83
DFSL-DN4-KLD (ours) with 72.71 66.58 69.51 64.27 68.23 61.89 66.86
DFSL-DN4-TCD (ours) with 72.66 67.39 69.92 65.55 68.92 63.67 67.86
DFSL-DN4-SKL (ours) with 72.43 65.57 68.82 63.73 67.80 61.64 66.60

TABLE 5
Comparison (%) of different DFSL models on CIFAR-100 under the 5-way 5-shot setting. Both training and test are based on a FGSM attacker. For

each evaluation criterion, the best and the second best results are highlighted in bold.

Method ET ACCclean
ϵ=0.003 ϵ=0.007 ϵ=0.01

ACCadv F1 ACCadv F1 ACCadv F1

DN4+Ep without 59.93 9.18 15.92 6.87 12.32 6.70 12.05
DFSL-DN4-AT with 55.03 44.88 49.43 43.30 48.46 41.67 47.42
DFSL-DN4-KL with 54.84 46.15 50.12 44.17 48.93 42.37 47.80
DFSL-DN4-ALP with 55.59 45.25 49.88 42.07 47.89 40.59 46.92
DFSL-DN4-Local-UDA with 55.26 45.94 50.17 43.89 48.92 42.22 47.86
DFSL-DN4-KLD (ours) with 56.12 46.38 50.78 44.86 49.86 43.39 48.94
DFSL-DN4-TCD (ours) with 54.77 45.85 49.91 43.89 48.73 42.08 47.59
DFSL-DN4-SKL (ours) with 55.51 48.88 51.98 46.37 50.53 44.79 49.57

adversarial accuracy over ProtoNet+AT, DeepEMD+AT and
DN4+AT. This verifies the generality and effectiveness of
the proposed DFSL framework. In addition, it also verifies
that the existing adversarial method (e.g., AT) indeed should
be combined with the episodic training mechanism to make
FSL methods more robust.

As aforementioned, we prefer to use DN4 [25] as
the default FSL method, because DN4 is one of the
state-of-the-art FSL methods. From Table 2, we can see
that DFSL-DN4-AT indeed performs significantly better
than the other five models on both the clean and ad-
versarial accuracies. For example, on the clean accu-
racy, DFSL-DN4-AT gains 7.84%, 9.09%, 11.34%, 6.90%
and 6.89% improvements over DFSL-ProtoNet-AT, DFSL-
RelationNet-AT, DFSL-DeepEMD-AT, DFSL-CAN-AT, and
DFSL-CovaMNet-AT, respectively. Also, on the adversarial
accuracy (ϵ=0.01), DFSL-DN4-AT obtains 15.92%, 15.11%,
16.62%, 16.07%, and 11.87% improvements over these
methods, respectively. This is because DN4 [25] employs
an image-to-class module to perform the final classification,
enjoying the exchangeability of local patterns inside each
class, which can significantly improve the robustness of a
DFSL model against the adversarial perturbations. There-
fore, in the remaining experiments, we will employ DN4 as
the default FSL method of our DFSL framework.

5.3 Performing DFSL on General Image Datasets

In this section, we perform DFSL on three general image
datasets, i.e., miniImageNet, tieredImageNet and CIFAR-100,
to further verify the effectiveness of this framework. Note
that we don’t perform data augmentation on miniImageNet
and tieredImageNet. We only perform simple data augmen-
tation on CIFAR-100 because it has a much lower resolution.
In addition, because there are no existing methods devel-
oped in the literature for the proposed problem, defensive
few-shot learning (DFSL), we modify and re-implement the
general state-of-the-art adversarial defense methods into the
DFSL framework as the benchmarks. This also can be seen
as our one minor contribution to the topic of DFSL.

Specifically, as mentioned in Section 3.5, seven DFSL-
based models will be compared with each other, including
DFSL-DN4-AT, DFSL-DN4-KL, DFSL-DN4-ALP and DFSL-
DN4-Local-UDA, DFSL-DN4-KLD (ours), DFSL-DN4-TCD
(ours) and DFSL-DN4-SKL (ours). DN4+Ep is taken as the
baseline, which is just an episodically trained DN4 [25] with-
out using any adversarial defense technique. The results on
miniImageNet, tieredImageNet and CIFAR-100 are reported
in Table 3, Table 4 and Table 5, respectively.

From the results, we can see that all the DFSL models
can significantly improve the adversarial accuracy over
DN4+Ep on all three levels of adversarial attacks. This
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TABLE 6
Comparison (%) of different DFSL models on mini ImageNet under the 5-way 1-shot setting. Both training and test are based on a FGSM attacker.

For each evaluation criterion, the best and the second best results are highlighted in bold.

Method ET ACCclean
ϵ=0.003 ϵ=0.007 ϵ=0.01

ACCadv F1 ACCadv F1 ACCadv F1

DN4+Ep without 50.57 22.73 31.36 17.01 25.45 14.45 22.47
DFSL-DN4-AT with 50.35 44.43 47.20 42.63 46.16 41.01 45.20
DFSL-DN4-KL with 50.65 45.12 47.72 43.66 46.89 42.32 46.11
DFSL-DN4-ALP with 50.32 43.96 46.92 41.29 45.36 39.30 44.13
DFSL-DN4-Local-UDA with 51.08 45.06 47.88 43.58 47.03 42.14 46.18
DFSL-DN4-KLD (ours) with 51.96 46.10 48.85 43.57 47.39 42.12 46.52
DFSL-DN4-TCD (ours) with 50.82 44.56 47.48 42.99 46.57 41.73 45.82
DFSL-DN4-SKL (ours) with 52.00 46.67 49.19 44.16 47.76 42.46 46.74

TABLE 7
Comparison (%) of different DFSL models on tiered ImageNet under the 5-way 1-shot setting. Both training and test are based on a FGSM

attacker. For each evaluation criterion, the best and the second best results are highlighted in bold.

Method ET ACCclean
ϵ=0.003 ϵ=0.007 ϵ=0.01

ACCadv F1 ACCadv F1 ACCadv F1

DN4+Ep without 53.76 14.43 22.75 4.68 8.61 3.01 5.70
DFSL-DN4-AT with 49.27 43.87 46.41 42.27 45.50 40.51 44.46
DFSL-DN4-KL with 49.04 42.93 45.78 41.73 45.09 40.30 44.24
DFSL-DN4-ALP with 49.85 44.10 46.79 41.33 45.19 39.28 43.93
DFSL-DN4-Local-UDA with 49.00 43.55 46.11 41.67 45.03 39.44 43.70
DFSL-DN4-KLD (ours) with 49.60 43.39 46.28 41.91 45.43 40.44 44.55
DFSL-DN4-TCD (ours) with 49.23 42.71 45.73 41.43 44.99 40.06 44.17
DFSL-DN4-SKL (ours) with 50.06 44.88 47.32 43.24 46.40 41.00 45.07

TABLE 8
Comparison (%) of different DFSL models on CIFAR-100 under the 5-way 1-shot setting. Both training and test are based on a FGSM attacker. For

each evaluation criterion, the best and the second best results are highlighted in bold.

Method ET ACCclean
ϵ=0.003 ϵ=0.007 ϵ=0.01

ACCadv F1 ACCadv F1 ACCadv F1

DN4+Ep without 37.55 4.37 7.82 1.27 2.45 0.93 1.81
DFSL-DN4-AT with 38.29 31.51 34.57 25.17 30.37 21.26 27.33
DFSL-DN4-KL with 38.71 32.66 35.42 31.37 34.65 30.18 33.91
DFSL-DN4-ALP with 38.46 31.92 34.88 25.64 30.76 21.68 27.72
DFSL-DN4-Local-UDA with 38.20 31.54 34.55 25.16 30.38 21.26 27.31
DFSL-DN4-KLD (ours) with 38.77 33.28 35.81 32.06 35.09 30.82 34.34
DFSL-DN4-TCD (ours) with 38.13 31.83 34.68 25.57 30.61 21.77 27.71
DFSL-DN4-SKL (ours) with 39.41 33.83 36.40 32.89 35.85 31.98 35.30

further verifies that the proposed episode-based adversar-
ial training (ET) can effectively defend against the adver-
sarial attacks. As feature-wise consistency based models,
both DFSL-DN4-KLD (ours) and DFSL-DN4-TCD (ours)
can dramatically improve the clean accuracy. For example,
on miniImageNet in Table 3, DFSL-DN4-TCD (ours) can
achieve the best clean accuracy (72.33%), which is even
much higher than DN4+Ep (70.39%) which is specially
trained on the clean examples. Analogously, DFSL-DN4-
KLD (ours) obtain the second best clean accuracy (56.12%)
on CIFAR-100 in Table 5, which gains 1.09%, 1.28%, 0.53%
and 0.86% improvement over DFSL-DN4-AT, DFSL-DN4-
KL, DFSL-DN4-ALP and DFSL-DN4-Local-UDA, respec-
tively. This is because KLD and TCD are distribution mea-
sure based criteria, which can effectively leverage the local-
descriptor-based distributions of both clean and adversarial
images. Notably, as explained in Section 3.4.2, TCD encodes
the task information with a covariance matrix of the entire
support set of the current task, which is able to adapt to
diverse adversary-based few-shot tasks.

We can also observe that the prediction-wise consistency
based methods, such as DFSL-DN4-KL, DFSL-DN4-ALP
and DFSL-DN4-SKL (ours), tend to significantly improve
the adversarial accuracy, compared to DFSL-DN4-AT. More
importantly, the proposed DFSL-DN4-SKL (ours) can fur-

ther improve the adversarial accuracy over DFSL-DN4-KL,
DFSL-DN4-ALP. For example, on the miniImageNet dataset
in Table 3, when ϵ = 0.01, DFSL-DN4-SKL (ours) further
gains 3.13% and 1.81% improvements over DFSL-DN4-
KL, DFSL-DN4-ALP, respectively. Also, on the CIFAR-100
dataset in Table 5, when ϵ = 0.01, such further improve-
ments are 2.42% and 4.2%, respectively. As explained in
Section 3.4.3, the reason is that the proposed SKL is sym-
metric which is more stable than the asymmetric KL [9],
[21]. On the other hand, SKL is somewhat slack, and thus it
enjoys a good generalization ability.

In addition to the clean accuracy and adversarial ac-
curacy, we also calculate F1 scores for each model by
considering both the clean accuracy and adversarial ac-
curacy together. To explain the necessity of this unified
evaluation criterion, we can pay attention to a specific
example. On the CIFAR-100 dataset, we notice that DFSL-
DN4-ALP has higher clean accuracy (55.59%) than that
(54.84%) of DFSL-DN4-KL, but obtains a lower adversarial
accuracy (45.25% when ϵ = 0.003) than that (46.15% when
ϵ = 0.003) of DFSL-DN4-KL. In this case, it is difficult
to conclude which one of these two models is better. In
contrast, by calculating a unified F1 score for each of these
models, we can concretely draw a conclusion that DFSL-
DN4-KL (F1 = 50.12%) performs better than DFSL-DN4-
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TABLE 9
Comparison (%) of different DFSL models on Stanford Dogs under the 5-way 5-shot setting. Both training and test are based on a FGSM attacker.

For each evaluation criterion, the best and the second best results are highlighted in bold.

Method ET ACCclean
ϵ=0.003 ϵ=0.007 ϵ=0.01

ACCadv F1 ACCadv F1 ACCadv F1

DN4+Ep without 75.95 15.41 25.62 6.89 12.63 5.69 10.58
DFSL-DN4-AT with 74.63 59.98 66.50 53.62 62.40 49.86 59.78
DFSL-DN4-KL with 74.12 60.09 66.37 55.11 63.21 51.81 60.98
DFSL-DN4-ALP with 67.22 55.94 61.06 42.92 52.41 35.63 46.57
DFSL-DN4-Local-UDA with 75.25 61.20 67.50 55.22 63.69 51.48 61.13
DFSL-DN4-KLD (ours) with 75.35 63.92 69.16 60.26 66.96 57.55 65.25
DFSL-DN4-TCD (ours) with 74.47 62.35 67.87 58.53 65.54 55.79 63.79
DFSL-DN4-SKL (ours) with 74.85 62.92 68.36 58.65 65.76 55.73 63.89

TABLE 10
Comparison (%) of different DFSL models on Stanford Cars under the 5-way 5-shot setting. Both training and test are based on a FGSM attacker.

For each evaluation criterion, the best and the second best results are highlighted in bold.

Method ET ACCclean
ϵ=0.003 ϵ=0.007 ϵ=0.01

ACCadv F1 ACCadv F1 ACCadv F1

DN4+Ep without 90.73 47.83 62.63 33.18 48.59 30.74 45.92
DFSL-DN4-AT with 89.66 75.30 81.85 63.33 74.22 56.08 69.00
DFSL-DN4-KL with 85.71 76.56 80.87 66.22 74.71 59.12 69.97
DFSL-DN4-ALP with 87.60 79.03 83.09 68.74 77.03 61.54 72.29
DFSL-DN4-Local-UDA with 87.55 72.29 79.19 56.17 68.43 47.35 61.46
DFSL-DN4-KLD (ours) with 89.72 77.42 83.11 63.44 74.32 54.94 68.14
DFSL-DN4-TCD (ours) with 89.33 76.67 82.51 62.92 73.83 54.28 67.52
DFSL-DN4-SKL (ours) with 85.17 79.09 82.01 70.90 77.38 65.22 73.87

TABLE 11
Comparison (%) of different DFSL models on CUB Birds under the 5-way 5-shot setting. Both training and test are based on a FGSM attacker. For

each evaluation criterion, the best and the second best results are highlighted in bold.

Method ET ACCclean
ϵ=0.003 ϵ=0.007 ϵ=0.01

ACCadv F1 ACCadv F1 ACCadv F1

DN4+Ep without 88.24 43.95 58.67 30.19 44.98 26.75 41.05
DFSL-DN4-AT with 87.43 75.46 81.00 69.56 77.47 66.15 75.31
DFSL-DN4-KL with 87.69 80.14 83.74 76.36 81.63 73.66 80.06
DFSL-DN4-ALP with 83.89 75.12 79.26 64.46 72.90 57.61 68.30
DFSL-DN4-Local-UDA with 84.00 72.24 77.67 68.69 75.57 65.61 73.67
DFSL-DN4-KLD (ours) with 87.65 80.51 83.92 77.68 82.36 75.04 80.85
DFSL-DN4-TCD (ours) with 87.17 78.52 82.61 74.86 80.54 72.22 78.99
DFSL-DN4-SKL (ours) with 88.03 82.41 85.12 79.50 83.54 76.99 82.14

ALP (F1 = 49.88%). Notably, the proposed methods (i.e.,
KLD, TCD and SKL) can obtain the highest F1 scores on all
three levels of adversarial attacks on all three datasets.

Furthermore, as seen in Tables 6, 7 and 8, we also
perform all the DFSL models on the three general image
datasets under the 5-way 1-shot setting, respectively. From
Table 6, we can see that the seven DFSL models consistently
improve the adversarial accuracy over DN4+Ep, and the
proposed variants with KLD, TCD and SKL can further
boost the clean accuracy or adversarial accuracy over other
competitors. Notably, the proposed DFSL-DN4-SKL (ours)
consistently performs best on both the clean accuracy and
adversarial accuracy at all the three levels of adversar-
ial attacks. Moreover, the proposed DFSL-DN4-KLD (ours)
also shows competitive performance in most of cases. The
proposed DFSL-DN4-TCD (ours) is not so competitive as
SKL and KLD. This is because it is truly challenging to
effectively estimate the covariance matrix of the support set
under the 1-shot setting (i.e., only one sample is available
for estimation) for TCD. In addition, in Tables 7 and 8, we
can obtain observations similar to Table 6. For example, the
proposed DFSL-DN4-SKL (ours) is consistently superior to
other competitors.

5.4 Performing DFSL on Fine-grained Datasets

To show the consistent effectiveness of the proposed DFSL
framework, we conduct experiments on three fine-grained
image datasets, i.e., Stanford Dogs [52], Stanford Cars [53]
and CUB Birds-200-2011 [54], and report the results in
Table 9, Table 10 and Table 11, respectively. Because the data
sizes of these three datasets are relatively small, we perform
simple data augmentation on these datasets. All the other
settings are similar to the settings in Section 5.3.

Specifically, we can see that DFSL-DN4-SKL (ours), as a
prediction-wise consistency based method, can obtain con-
sistently better results than other competitors on both clean
accuracy and adversarial accuracy on all three fine-grained
datasets. For example, on the CUB Birds-200-2011 dataset in
Table 11, when ϵ = 0.01, DFSL-DN4-SKL (ours) gains sig-
nificantly improvements over DFSL-DN4-AT, DFSL-DN4-
KL, DFSL-DN4-ALP and DFSL-DN4-Local-UDA by 10.84%,
3.33%, 19.38% and 11.38%, respectively. Similarly, the pro-
posed DFSL-DN4-TCD (ours) and DFSL-DN4-KLD (ours)
also perform superiorly on the three datasets. For example,
DFSL-DN4-KLD (ours) achieves the best adversarial accu-
racies on all three levels of attacks on the Stanford Dogs
dataset. Also, on the Stanford Cars dataset, DFSL-DN4-KLD
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TABLE 12
Comparison (%) of different DFSL models on Stanford Dogs under the 5-way 1-shot setting. Both training and test are based on a FGSM attacker.

For each evaluation criterion, the best and the second best results are highlighted in bold.

Method ET ACCclean
ϵ=0.003 ϵ=0.007 ϵ=0.01

ACCadv F1 ACCadv F1 ACCadv F1

DN4+Ep without 58.06 11.15 18.70 3.39 6.40 1.84 3.56
DFSL-DN4-AT with 51.52 43.01 46.88 40.90 45.59 38.54 44.09
DFSL-DN4-KL with 51.21 42.21 46.27 40.70 45.35 38.45 43.92
DFSL-DN4-ALP with 51.52 42.52 46.58 39.33 44.60 36.73 42.88
DFSL-DN4-Local-UDA with 51.02 42.30 46.25 40.69 45.27 38.08 43.61
DFSL-DN4-KLD (ours) with 52.11 42.86 47.03 40.98 45.87 38.51 44.28
DFSL-DN4-TCD (ours) with 50.65 40.78 45.18 39.79 44.56 37.44 43.05
DFSL-DN4-SKL (ours) with 50.82 43.91 47.11 42.97 46.56 41.16 45.48

TABLE 13
Comparison (%) of different DFSL models on Stanford Cars under the 5-way 1-shot setting. Both training and test are based on a FGSM attacker.

For each evaluation criterion, the best and the second best results are highlighted in bold.

Method ET ACCclean
ϵ=0.003 ϵ=0.007 ϵ=0.01

ACCadv F1 ACCadv F1 ACCadv F1

DN4+Ep without 59.65 19.23 29.08 8.65 15.10 5.68 10.37
DFSL-DN4-AT with 47.41 36.75 41.40 36.26 41.09 34.56 39.97
DFSL-DN4-KL with 52.12 40.68 45.69 38.03 43.97 35.97 42.56
DFSL-DN4-ALP with 48.11 37.43 42.10 35.44 40.81 33.77 39.68
DFSL-DN4-Local-UDA with 53.24 40.88 46.24 38.14 44.44 36.22 43.11
DFSL-DN4-KLD (ours) with 52.07 38.99 44.59 38.34 44.16 36.66 43.02
DFSL-DN4-TCD (ours) with 50.25 36.64 42.37 36.12 42.02 34.75 41.08
DFSL-DN4-SKL (ours) with 52.97 41.78 46.71 40.18 45.69 38.50 44.59

TABLE 14
Comparison (%) of different DFSL models on CUB Birds under the 5-way 1-shot setting. Both training and test are based on a FGSM attacker. For

each evaluation criterion, the best and the second best results are highlighted in bold.

Method ET ACCclean
ϵ=0.003 ϵ=0.007 ϵ=0.01

ACCadv F1 ACCadv F1 ACCadv F1

DN4+Ep without 71.92 28.89 41.22 14.40 23.99 10.42 18.20
DFSL-DN4-AT with 67.08 54.37 60.05 42.24 51.83 36.28 47.09
DFSL-DN4-KL with 69.36 54.61 61.10 41.41 51.85 35.14 46.64
DFSL-DN4-ALP with 66.30 58.23 62.00 47.80 55.55 42.25 51.61
DFSL-DN4-Local-UDA with 66.40 54.24 59.70 43.22 52.35 37.73 48.11
DFSL-DN4-KLD (ours) with 66.75 55.21 60.43 43.74 52.84 37.95 48.38
DFSL-DN4-TCD (ours) with 66.75 55.37 60.52 44.24 53.21 38.58 48.89
DFSL-DN4-SKL (ours) with 66.78 58.63 62.44 48.48 56.17 43.09 52.38

(ours) obtains the best clean accuracy (89.72%) than other
adversarial defense methods, which is competitive to the
result (90.73%) of DN4+Ep, which is trained only using
clean examples without any adversarial examples. Typically,
on both Stanford Dogs and CUB Birds-200-2011 datasets,
our proposed DFSL methods (i.e., KLD, TCD and SKL) can
achieve the highest or second highest F1 scores on all three
levels of adversarial attacks.

In addition, we also conduct experiments with the 5-
way 1-shot setting on the three fine-grained image datasets,
where the results are reported in Tables 12, 13 and 14, respec-
tively. As seen, on all the three datasets, the proposed DFSL-
DN4-SKL (ours) can obtain the best adversarial accuracy
and the highest F1 score at all three levels of adversarial at-
tacks. It is worth noting that our modified DFSL-DN4-Local-
UDA also shows competitive results on the Stanford Cars
dataset. This is because we use the richer local descriptors
instead of the original global logit representations in [44] for
the UDA loss, which is more suitable for the DFSL setting.

5.5 Performing DFSL with PGD-adversarial Training

Besides the FGSM attacker, we also apply a PGD [8] attacker
to train more robust DFSL models for defending against
various stronger attacks. Specifically, we set the fixed per-
turbation ϵ, the number of iteration steps and step size

of PGD as 0.02, 10 and 1/255, respectively, i.e., a PGD-10
attacker is used to adversarially train all the DFSL models.
Moreover, various attackers, such as PGD-10 [8], Deep-
Fool [59], C&W [47] and FGSM [5], are adopted to verify the
robustness of PGD-adversarial trained DFSL models. For
the DeepFool, the maximum number of iteration is set as 30.
As for C&W, the learning rate and the maximum iteration
number are set as 0.001 and 10, respectively.

The results on miniImageNet under both 5-shot and 1-
shot settings are reported in Tables 15 and 16. Compar-
ing DFSL-DN4-AT (PGD) with DFSL-DN4-AT (FGSM) in
Table 15, we can see that although the FGSM-adversarial
trained model enjoys a great clean accuracy and has a
good defense ability for the FGSM attack, it fails to defend
against the stronger attacks, e.g., PGD, DeepFool and C&W.
In contrast, the PGD-adversarial trained model, i.e., DFSL-
DN4-AT (PGD), has a much stronger defense ability for
these stronger attacks, which gains more than 10% adversar-
ial accuracy improvements under the DeepFool and C&W
attacks, and gains more than 20% adversarial accuracy
improvements under the PGD attack over DFSL-DN4-AT
(FGSM). Nevertheless, the standard AT will suffer from a
loss on the clean accuracy with a drop of 4.9%.

On the contrary, the proposed KLD, TCD and SKL can
not only improve the clean accuracy, but also significantly
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TABLE 15
Comparison (%) of different DFSL models with PGD-adversarial training on mini ImageNet under the 5-way 5-shot setting. For each evaluation

criterion, the best and the second best results are highlighted in bold.

Method ET Defense ACCclean
PGD-10 DeepFool C&W FGSM (ϵ=0.01)

ACCadv F1 ACCadv F1 ACCadv F1 ACCadv F1

DFSL-DN4-AT with FGSM 71.86 28.60 40.91 37.25 49.06 19.57 30.76 58.51 64.50
DFSL-DN4-AT with PGD 66.96 50.31 57.45 48.99 56.58 29.63 41.08 59.86 63.21
DFSL-DN4-KLD (ours) with PGD 68.68 58.03 62.90 50.67 58.31 31.90 43.56 64.58 66.56
DFSL-DN4-TCD (ours) with PGD 68.43 58.83 63.26 50.55 58.14 32.39 43.96 64.47 66.39
DFSL-DN4-SKL (ours) with PGD 68.98 58.04 63.03 42.21 52.37 22.77 34.23 64.48 66.65

TABLE 16
Comparison (%) of different DFSL models with PGD-adversarial training on mini ImageNet under the 5-way 1-shot setting. For each evaluation

criterion, the best and the second best results are highlighted in bold.

Method ET Defense ACCclean
PGD-10 DeepFool C&W FGSM (ϵ=0.01)

ACCadv F1 ACCadv F1 ACCadv F1 ACCadv F1

DFSL-DN4-AT with FGSM 50.00 26.40 34.55 35.73 41.67 10.52 17.38 40.77 44.91
DFSL-DN4-AT with PGD 47.87 37.72 42.19 38.09 42.42 16.06 24.05 43.55 45.60
DFSL-DN4-KLD (ours) with PGD 47.93 37.35 41.98 39.24 43.15 17.01 25.10 43.89 45.82
DFSL-DN4-TCD (ours) with PGD 48.34 39.11 43.23 39.44 43.43 17.41 25.60 44.55 46.36
DFSL-DN4-SKL (ours) with PGD 48.79 40.17 44.06 38.43 42.99 17.94 26.23 45.01 46.82

TABLE 17
Cross-domain defense transferability of DFSL when the attack level is ϵ=0.01. Both training and test are based on a FGSM attacker under the

5-way 5-shot setting. For each evaluation criterion, the best and the second best results are highlighted in bold.

Method ET miniImageNet→Stanford Dogs miniImageNet→Stanford Cars miniImageNet→CUB Birds
ACCclean ACCadv F1 ACCclean ACCadv F1 ACCclean ACCadv F1

DN4+AT without 37.30 22.31 27.92 38.60 24.18 29.73 46.88 33.87 39.32
DFSL-DN4-AT with 55.89 38.67 45.71 48.71 34.54 40.41 65.23 44.21 52.70
DFSL-DN4-KLD (ours) with 56.30 42.01 48.11 49.73 37.69 42.88 66.20 52.95 58.83
DFSL-DN4-TCD (ours) with 56.52 42.94 48.80 50.31 39.27 44.10 65.81 53.75 59.17
DFSL-DN4-SKL (ours) with 55.23 44.83 49.48 49.05 40.68 44.47 65.31 57.01 60.87

improves the adversarial accuracy under all kinds of at-
tacks. For example, TCD obtains 8.52%, 1.56%, 2.76% and
4.61% adversarial accuracy improvements over AT (PGD)
under the attacks of PGD, DeepFool, C&W and FGSM,
respectively. The similar results can also be observed in
Table 16 under the 5-way 1-shot setting. The above results
indicate that the proposed methods could consistently gain
improvements over AT (PGD) in terms of both the clean
accuracy and adversarial accuracy.

5.6 Performing DFSL on Cross-domain Datasets
It will be interesting to further investigate the defense trans-
fer ability of the proposed DFSL framework in cross-domain
scenarios. To this end, following the cross-domain FSL work
in the literature [60], we conduct an experiment on three
cross-domain scenarios, i.e., miniImageNet→Stanford Dogs,
miniImageNet→Stanford Cars and miniImageNet→CUB
Birds. In this experiment, all the models are adversarially
trained on the source domain dataset (i.e., miniImageNet)
and directly tested on the target domain dataset (e.g., CUB
Birds) without fine-tuning, by using a FGSM attacker with
the attack level of ϵ=0.01.

Specifically, DN4+AT, DFSL-DN4-AT, DFSL-DN4-KLD
(ours), DFSL-DN4-TCD (ours) and DFSL-DN4-SKL (ours)
are selected as representatives. From Table 17, we can ob-
serve that DFSL-DN4-AT can significantly improve both the
clean and adversarial accuracies over DN4+AT. It verifies
that ET (i.e., Ep+AT) indeed has the ability of transferring
defense knowledge even in cross-domain scenarios. More
importantly, DFSL-DN4-KLD (ours), DFSL-DN4-TCD (ours)
and DFSL-DN4-SKL (ours) can further improve the ad-
versarial accuracy over DFSL-DN4-AT, which also further

verifies that the proposed feature-wise or prediction-wise
distribution consistency criteria are effective.

5.7 Randomness Matters
There is a highly important but easily overlooked is-
sue in both fields of the generic adversarial training and
generic few-shot learning in the literature, that is the non-
reproducibility of one model caused by the randomness.
One clear consequence of ignoring the randomness is that
the fairness of the comparison cannot be guaranteed. In
other words, sometimes the improvement obtained may
simply be due to the randomness.

Typically, we can roughly summarize the randomness
into five categories: (1) randomness introduced by different
hardware platforms (e.g., different servers); (2) randomness
introduced by different software platforms (e.g., different
deep learning platforms or releases); (3) randomness in-
troduced by different codebases, including the optimizer,
learning rate and training epochs, etc; (4) randomness in-
troduced by different initializations of network parameters
and different data shuffles; (5) randomness introduced by
the nondeterminism of CUDA and CuDNN backends.

To fix the first two kinds of randomness, we run all
the comparison methods in the same server and use the
same Pytorch release. For the third kind of randomness,
we re-implement all the comparison methods with the
same single codebase including using the same settings
of optimization and learning rate, except the core parts of
the method itself and hyper-parameters. As for the fourth
kind of randomness, we set the same fixed seed for all
comparison methods. For the last kind of randomness, we
seed manually for CUDA and make CuDNN deterministic.
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Fig. 3. Fβ curves of different DFSL models on six datasets, by varying the value of β from 0 to 2, where the attack level is ϵ = 0.01.
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Fig. 4. Randomness matters. On the same server with the same code-
base, DFSL-DN4-AT, DFSL-DN4-ALP and DFSL-DN4-KL are repeat-
edly run (trained) six times, where only the seed of generating random
number is varied. Left subfigure: clean accuracy of these models at
different runs; Right subfigure: adversarial accuracy (ϵ=0.01) of these
models at different runs.

In this way, we can make sure that both the initialization
of network parameters and data shuffling is the same for all
the comparison methods, and the results of any methods are
reproducible on the same server.

To further demonstrate the randomness’s impact on the
final results, we fix the first three kinds of randomness and
repeatedly run a method multiple times. Specifically, under
the 5-way 5-shot setting, we run DFSL-DN4-AT, DFSL-DN4-
ALP and DFSL-DN4-KL six times on miniImageNet, respec-
tively. The results are plotted in Fig. 4. As seen, although the
computing environment and code haven’t changed at all,
the performance of each method varies significantly because
of the random initializations (seeds) at different runs. In
this sense, we cannot draw a conclusion that one method
performs strictly better than another method. Therefore, in
all of our experiments, we have well fixed the randomness
to strictly compare different methods for fairness.

5.8 Qualitative Comparison: Curve of Fβ Scores
In addition to the F1 score, we can also generate the curves
of Fβ scores by varying the value of β for qualitative com-
parison. To be specific, we first calculate a series of Fβ scores
with the clean accuracy ACCclean and adversarial accuracy
ACCadv according to Eq. (11) by varying β from 0 to 2. After
that, we can plot a Fβ curve via these Fβ scores for each

DFSL model. With the results in Tables 3, 4, 5, 9, 10 and 11,
the Fβ curves are worked out and plotted in Fig. 3. As seen,
in most cases, the proposed DFSL-DN4-KLD, DFSL-DN4-
TCD and DFSL-DN4-SKL perform consistently superior to
other competitors for any value of β.

6 CONCLUSIONS

In this paper, we propose a new challenging issue for the
first time, i.e., defensive few-shot learning (DFSL), aiming to
learn robust few-shot models against adversarial attacks.
To tackle this issue, we propose a unified DFSL framework
with solutions from two aspects, i.e., task-level distribution
consistency and distribution consistency within each task.
Extensive experiments have verified that: (1) the proposed
episode-based adversarial training (ET) mechanism can effec-
tively transfer adversarial defense knowledge by leveraging
the task-level distribution consistency; (2) the proposed
feature-wise and prediction-wise consistency criteria, i.e.,
Kullback-Leibler divergence based distribution measure (KLD),
task-conditioned distribution measure (TCD), and Symmetric
Kullback-Leibler divergence measure (SKL) can reliably narrow
the distribution gap between the clean and adversarial ex-
amples and enjoy good generalization performance. More-
over, we modify and re-implement multiple existing ad-
versarial defense methods and multiple representative FSL
methods into this unified framework as well as rich baseline
results, which can significantly facilitate future research on
the topic of DFSL. In addition, we propose a unified evalua-
tion criterion, i.e., Fβ scores, which is also of significance for
the community. Many future directions are worth exploring
for the new topic of DFSL. Especially, we are going to extend
the proposed DFSL framework to the transductive setting
and further investigate the cross-domain scenarios on the
large-scale dataset, e.g., Meta-Dataset [61].
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