
1

GH-Feat: Learning Versatile Generative
Hierarchical Features from GANs

Yinghao Xu, Yujun Shen, Jiapeng Zhu, Ceyuan Yang, and Bolei Zhou, Member, IEEE

Abstract—Recent years witness the tremendous success of generative adversarial networks (GANs) in synthesizing photo-realistic
images. GAN generator learns to compose realistic images and reproduce the real data distribution. Through that, a hierarchical visual
feature with multi-level semantics spontaneously emerges. In this work we investigate that such a generative feature learned from
image synthesis exhibits great potentials in solving a wide range of computer vision tasks, including both generative ones and more
importantly discriminative ones. We first train an encoder by considering the pre-trained StyleGAN generator as a learned loss
function. The visual features produced by our encoder, termed as Generative Hierarchical Features (GH-Feat), highly align with the
layer-wise GAN representations, and hence describe the input image adequately from the reconstruction perspective. Extensive
experiments support the versatile transferability of GH-Feat across a range of applications, such as image editing, image processing,
image harmonization, face verification, landmark detection, layout prediction, image retrieval, etc. We further show that, through a
proper spatial expansion, our developed GH-Feat can also facilitate fine-grained semantic segmentation using only a few annotations.
Both qualitative and quantitative results demonstrate the appealing performance of GH-Feat. Code and models are available at
https://genforce.github.io/ghfeat/.

Index Terms—Generative adversarial network, generative representation, feature learning, image editing.

F

1 INTRODUCTION

R EPRESENTATION learning plays an essential role in the
rise of deep learning. The learned representations are

able to express the variation factors of the complex visual
world. Accordingly, the performance of a deep learning
algorithm largely depends on the features extracted from
the input data. As pointed out by Bengio et al. [1], a good
representation is expected to have the following properties.
First, it should capture multiple configurations of the input.
Second, it should organize the explanatory factors of the
input data as a hierarchy, where more abstract concepts are
at a higher level. Third, it should have strong transferability,
not only from datasets to datasets but also from tasks to
tasks.

Deep neural networks supervisedly trained for image
classification on large-scale datasets (e.g., ImageNet [2] and
Places [3]) have resulted in expressive and discriminative
visual features [4]. However, the developed features are
heavily dependent on the training objective. For example,
the deep features learned for the object recognition task may
give more attention to the shapes and parts of the objects
while remain invariant to rotation [5], [6], and the deep
features from a scene classification model may focus more
on detecting the categorical objects (e.g., bed for bedroom
and sofa for living room) [7]. Thus the discriminative
features learned from solving high-level image classification
tasks might not be necessarily good for other mid-level and
low-level tasks, limiting their transferability [8], [9]. Besides,

• Y. Xu and C. Yang are with the Department of Information Engineering,
the Chinese University of Hong Kong, Hong Kong SAR.

• Y. Shen is with Ant Research, China.
• J. Zhu is with the School of Computer Science and Engineering, the Hong

Kong University of Science and Technology, Hong Kong SAR.
• B. Zhou is with Computer Science Department, University of California,

Los Angeles, USA.

it remains unknown how the discriminative features can be
used in generative applications like image editing.

In contrast to discriminative models, generative models
such as generative adversarial networks (GANs) [10] offer
an alternative way for representation learning. A GAN is
typically formulated to match the synthetic data distribution
to the observed data distribution. Through adversarial
training, the generator in GAN is required to capture the
multi-level variation factors underlying the input data to
the most extent, otherwise, the discrepancy between the
real and synthesized data would be spotted by the discrim-
inator. Recent studies have confirmed that the StyleGAN
family [11], [12] spontaneously encodes rich semantics in
a hierarchical manner [13], [14]. But the transferability
of the per-layer representation learned by GANs is not
fully verified in the literature. Some attempts have been
made to apply the generative representations (i.e., the
representations emerging from solving generative tasks) to
the high-level image classification task [15], [16], [17], yet
leaving mid-level and low-level tasks less explored.

In this work, we make a thorough investigation into
the utility of GAN representations and demonstrate their
wide applications to downstream tasks, including both
generative ones and more importantly discriminative ones.
To appropriately obtain the GAN-derived features from
a given image, we train a hierarchical encoder using the
pre-trained StyleGAN generator as a learned loss function.
Through that way, our encoder works together with the
generator to reconstruct the image, implicitly required to
extract the variation factors that describe the input. We call
the output visual features as Generative Hierarchical Features
(GH-Feat). We also observe in the encoder training that, only
exploiting the supervision at the image level (i.e., the per-
pixel reconstruction loss) may cause the overfitting of pixel

ar
X

iv
:2

30
1.

05
31

5v
1

 [
cs

.C
V

]
 1

2
Ja

n
20

23

https://genforce.github.io/ghfeat/

2

values, severely limiting the transferability of the extracted
representations. To mitigate such a negative effect, we intro-
duce a training regularizer from the statistical perspective. It
alleviates the problem of distribution mismatching between
the learned GH-Feat and the native GAN representations.

After the encoder is well prepared, we evaluate the
resulting GH-Feat on a broad range of downstream appli-
cations. On one hand, we verify that the representations
learned by GANs naturally support various generative
tasks. Concretely, to edit or process target images, we can
simply modulate their corresponding features, and reuse
the generator (i.e., the same as the one used in encoder
training) as a renderer to decode features back to images.
The extensive experiments show that our approach achieves
global and local image manipulation, transferring styles
between two images, image colorization, image inpainting,
image super-resolution, etc. Besides, our GH-Feat also
allows fusing objects from an image into another as the
application of image harmonization. On the other hand,
we are interested in the discriminative capability of the
generative features.For this purpose, we treat the features
extracted by our encoder as the base representations, on top
of which we learn different linear task heads for a range of
high-level and middle-level tasks. Experiments on multiple
datasets validate the effectiveness of GH-Feat on large-
scale image classification, face verification, facial landmark
detection, room layout prediction, transferring learning,
image retrieval, etc. Furthermore, to enable dense prediction
tasks, we manage to expand GH-Feat along spatial dimen-
sions with an adequate modification of our encoder. The
improved spatial-aware visual features suggest compelling
performance on fine-grained semantic segmentation using
only a few annotations.

The preliminary result of this work is published at [18]
as oral presentation. We include the following new contents
as the extension to the conference paper. (1) We find the
limitation of only using image-level supervision for encoder
training, and provide an effective solution by introducing a
distribution-level regularizer. Analyses and improvements
are illustrated in Sec. 4.2.2. (2) We include two more image
editing tasks, i.e. style transfer (Sec. 4.3.4) and semantic
manipulation (Sec. 4.3.5), to validate that our GH-Feat
can describe images moderately, aligning with human
perception. (3) We confirm in Sec. 4.3.6 that GH-Feat also
facilitates conventional image processing tasks, including
image colorization, image inpainting, and image super-
resolution. (4) We include image retrieval as an addition
discriminative task to verify the hierarchical property of
GH-Feat, whose details are explained in Sec. 4.4.5. (5) We
propose a spatial expansion to our GH-Feat via learning
a spatial-aware encoder, and show the great potential of
the improved representations in data-efficient fine-grained
semantic segmentation in Sec. 4.5.

2 RELATED WORK

Visual Features. Visual Feature plays a fundamental role
in the computer vision field. Traditional methods used
manually designed features [19], [20], [21] for pattern
matching and object detection. These features are signif-
icantly improved by deep models [22], [23], [24], which

automatically learn the feature extraction from large-scale
datasets. However, the features supervisedly learned for a
particular task could be biased to the training task and hence
become difficult to transfer to other tasks, especially when
the target task is too far away from the base task [8], [9].
Unsupervised representation learning is widely explored
to learn a more general and transferable feature [25], [26],
[27], [28], [29], [30], [31], [32], [33], [34]. However, most of
existing unsupervised feature learning methods focus on
evaluating their features on the tasks of image recognition,
yet seldom evaluate them on other mid-level or low-level
tasks, let alone generative tasks. Shocher et al. [35] discover
the potential of discriminative features in image generation,
but the transferability of such features are not fully verified.
Generative Adversarial Networks. GANs [10] are able to
produce photo-realistic images via learning the underly-
ing data distribution. The recent advance of GANs [36],
[37], [38] has significantly improved the synthesis quality.
StyleGAN [11] proposes a style-based generator with multi-
level style codes and achieves the start-of-the-art generation
performance. However, little work explores the represen-
tation learned by GANs as well as how to apply such
representation for other applications. Some recent work
interprets the semantics encoded in the internal represen-
tation of GANs and applies them for image editing [13],
[14], [39], [40], [41], [42]. But it remains much less explored
whether the learned GAN representations are transferable
to discriminative tasks.
Adversarial Representation Learning. The main reason
of hindering GANs from being applied to discriminative
tasks comes from the lack of inference ability. To fill this
gap, prior work introduces an additional encoder to the
GAN structure [15], [16]. Donahue and Simonyan [17] and
Pidhorskyi et al. [43] extend this idea to the state-of-the-
art BigGAN [38] and StyleGAN [11] models respectively.
In this paper, we also study the representation learning
using GANs, with following improvements compared to
existing methods. First, we propose to treat the well-trained
StyleGAN generator as a learned loss function. Second,
instead of mapping the images to the initial GAN latent
space, like most algorithms [15], [16], [17], [43] have done,
we design a novel encoder to produce hierarchical features
that well align with the layer-wise representation learned
by StyleGAN. Third, besides the image classification task
that is mainly targeted at by prior work [15], [16], [17], [43],
we validate the transferability of our proposed GH-Feat on a
range of generative and discriminative tasks, demonstrating
its generalization ability.

3 METHODOLOGY

This section introduces the encoder used to extract hierar-
chical visual features from the input images. This encoder
is trained in an unsupervised manner using a well-prepared
StyleGAN generator. Sec. 3.1 describes how we abstract the
multi-level representation from StyleGAN. Sec. 3.2 presents
the structure of the novel hierarchical encoder. Sec. 3.4
describes the idea of using pre-trained StyleGAN generator
as a learned loss function for representation learning.
Sec. 3.3 introduces the training regularizer to prevent the
encoder from overfitting pixel values.

3

AdaIN

Encoder GH-Feat Generator

𝐟! 𝐟"

AdaIN

AdaIN AdaIN

Discriminative Task Generative Task
(3). Layout estimation(2). Segmentation(1). Classification (1). Semantic editing (2). Style transfer

Dog

(3). Image harmonization

Fig. 1. Framework of the GH-Feat. This feature hierarchy highly aligns with the layer-wise representation (i.e., style codes of per-layer AdaIN)
learned by the StyleGAN generator. Parameters in blue blocks are learnable while others are frozen.

TABLE 1
Encoder structure, which is based on ResNet-50 [24]. Fully-connected (FC) layers are employed to map the feature maps produced by the

Spatial Alignment Module (SAM) to our proposed Generative Hierarchical Features (GH-Feat). GH-Feat exactly align with the multi-scale style
codes used in StyleGAN [11]. The numbers in brackets indicate the dimension of features at each level.

Stage Encoder Pathway Output Size SAM & Pool FC Dimension GH-Feat Style Code in StyleGAN

input − 3× 2562

conv1
7×7, 64

64× 1282stride 2, 2

pool1
3×3, max

64× 642stride 2, 2

res2

[
1×1, 64
3×3, 64
1×1, 256

]
×3 256× 642

res3

[
1×1, 128
3×3, 128
1×1, 512

]
×4 512× 322 512× 42 8192×1792

Level 1-2 Layer 14-13 (128d× 2)
Level 3-4 Layer 12-11 (256d× 2)
Level 5-6 Layer 10-9 (512d× 2)

res4

[
1×1, 256
3×3, 256
1×1, 1024

]
×6 1024× 162 512× 42 8192×4096

Level 7-8 Layer 8-7 (1024d× 2)
Level 9-10 Layer 6-5 (1024d× 2)

res5

[
1×1, 512
3×3, 512
1×1, 2048

]
×3 2048× 82 512× 42 8192×4096

Level 11-12 Layer 4-3 (1024d× 2)
Level 13-14 Layer 2-1 (1024d× 2)

3.1 Layer-wise Representation from StyleGAN

The generator G(·) of GANs typically takes a latent code
z ∈ Z as the input and is trained to synthesize a
photo-realistic image x = G(z). The recent state-of-the-art
StyleGAN [11] proposes to first map z to a disentangled
space W with w = f(z). Here, f(·) denotes the mapping
implemented by multi-layer perceptron (MLP). The w code
is then projected to layer-wise style codes {y(`)}L`=1 ,

{(y(`)
s ,y

(`)
b)}L`=1 with affine transformations, where L is the

number of convolutional layers. y(`)
s and y

(`)
b correspond to

the channel-wise scale and weight parameters in Adaptive
Instance Normalization (AdaIN) [44]. The space constructed
by these layer-wise style parameters is named as Y space.
These style codes are used to modulate the output feature
maps of each convolutional layer with

AdaIN(x
(`)
i ,y(`)) = y

(`)
s,i

x
(`)
i − µ(x

(`)
i)

σ(x
(`)
i)

+ y
(`)
b,i , (1)

MLP

FC7 AdaIN

FC1 AdaIN

FC14 AdaIN

ys,1 yb,1

ys,7 yb,7

ys,14 yb,14

Fig. 2. Multiple latent spaces of StyleGAN. FC refers to the affine layer
betweenW space and Y space.

where x
(`)
i indicates the i-th channel of the output feature

map from the `-th layer. µ(·) and σ(·) denote the mean and
variance respectively. Fig. 2 illustrates the Z ,W and Y space
of StyleGAN.

Here, we treat the layer-wise style codes of Y space,
{y(`)}L`=1, as the generative visual features that we would
like to extract from the input image. There are two

4

major advantages. First, the synthesized image can be
completely determined by these style codes without any
other variations, making them suitable to express the
information contained in the input data from the generative
perspective. Second, these style codes are organized as a
hierarchy where codes at different layers correspond to
semantics at different levels [11], [14]. To the best of our
knowledge, this is the first work that adopts the style
codes for the per-layer AdaIN module as the learned
representations of StyleGAN. Wu et al. [45] also shows Y
space can be leveraged for disentangled control of image
editing, while our work explores the potential of generative
representations in facilitating both generative and more
importantly discriminative downstream tasks.

3.2 Hierarchical Encoder

Based on the layer-wise representation described in Sec. 3.1,
we propose a novel encoder E(·) with a hierarchical
structure to extract multi-level visual features from a given
image. As shown in Fig. 1, the encoder is designed to
best align with the StyleGAN generator. In particular, the
Generative Hierarchical Features (GH-Feat) produced by the
encoder, {f (`)}L`=1 , {(f (`)

s , f
(`)
b)}L`=1, are fed into the per-

layer AdaIN module of the generator by replacing the style
code y(L−`+1) in Eq. (1).

We adopt ResNet [24] architecture as the encoder
backbone and add an extra residual block to get an
additional feature map with lower resolution.In fact, there
are totally six stages in our encoder, where the first one is a
convolutional layer (followed by a pooling layer) and each
of the others consists of several residual blocks. Besides,
we introduce a feature pyramid network [46] to learn the
features from multiple levels. The output feature maps from
the last three stages, {R4, R5, R6}, are used to produce GH-
Feat. Taking a 14-layer StyleGAN generator as an instance,
R4 aligns with layer 9-14, R5 with 5-8, while R6 with 1-4.
Here, to bridge the feature map with each style code, we first
downsample it to 4×4 resolution and then map it to a vector
of the target dimension using a fully-connect (FC) layer.
In addition, we introduce a lightweight Spatial Alignment
Module (SAM) [47], [48] into the encoder structure to better
capture the spatial information from the input image. SAM
works in a simple yet efficient way:

Ri = Widown(Ri) +W6R6 i ∈ {4, 5},

where W4, W5, and W6 (all are implemented with an 1 × 1
convolutional layer) are used to project the feature maps R4,
R5, and R6 to have the same number of feature channels
respectively. R4 and R5 are downsampled to the same
resolution of R6 before fusion.
Encoder Structure. Tab. 1 provides the detailed archi-
tecture of our hierarchical encoder by taking a 14-layer
StyleGAN [11] generator as an instance. Recall that the
design of GH-Feat treats the layer-wise style codes used
in the StyleGAN model (i.e., the code fed into the AdaIN
module [44]) as generative features. Accordingly, GH-Feat
consists of 14 levels that exactly align with the multi-scale
style codes yet in a reverse order, as shown in the last two
columns of Tab. 1.

3.3 Statistical Training Regularizer
As discussed in Sec. 3.1, our approach aims at learning the
style representations encoded in y, which are transformed
from the w code using pre-layer linear projection. Y space
is less constrained thanW space and hence may suffer from
the problem of overfitting pixel values, which further leads
to poor transferability of the learned features. To solve such
a problem, we infer {y(`)

avg}L`=1 from the averaged latent code
(i.e., a statistics from the training stage), wavg , and propose
to only learn the residual code at each layer. Thus, we have
E(x) = {∆y(`)}L`=1, which induces the final features as
{y(`)

avg + ∆y(`)}L`=1. We then penalize the l2 norm of each
residual code to prevent it from shifting too far from the
native distribution, resulting in a training regularizer

Lreg =
L∑

`=1

‖∆y(`)‖22. (2)

e4e [49] also regularizes the inversion space when
training the encoder yet from a different aspect against
GH-Feat. In particular, the regularization in e4e [49] targets
minimizing the latent code variation across layers (i.e.,
they expect the inverted codes regarding different layers
to be close to each other) to reconstruct the input image
from coarse to fine. Differently, the regularization in our
work bonds the latent code close to the distribution center
(i.e., the statistical average) to prevent the model from
overfitting pixel values. In this way, our approach could
better represent an image from the semantic level, further
facilitating downstream tasks.

3.4 StyleGAN Generator as Learned Loss
We consider the pre-trained StyleGAN generator as a leaned
loss function. Specifically, we employ a StyleGAN generator
to supervise the encoder training with the objective of
image reconstruction. We also introduce a discriminator
to compete with the encoder, following the formulation
of GANs [10], to ensure the reconstruction quality. To
summarize, the encoder E(·) and the discriminator D(·) are
jointly trained with

min
ΘE

LE = ||x−G(E(x))||2 − λ1Ex[D(G(E(x)))]

+ λ2||F (x)− F (G(E(x)))||2 + λ3Lreg,
(3)

min
ΘD

LD = Ex[D(G(E(x)))]− Ex[D(x)]

+ λ4Ex[||∇xD(x)||22],
(4)

where || · ||2 denotes the l2 norm and λ1, λ2, λ3, λ4 are loss
weights to balance different loss terms. The last term in
Eq. (3) represents the perceptual loss [50] and F (·) denotes
the conv4 3 output from a pre-trained VGG [23] model.

4 EXPERIMENTS

We evaluate Generative Hierarchical Features (GH-Feat)
on a wide range of downstream applications. Sec. 4.1
introduces the experimental settings, such as implemen-
tation details, datasets, and tasks. Sec. 4.2 presents the
analysis of our approach including ablation study and
the importance of the regularizer. Sec. 4.3 and Sec. 4.4
evaluate the applicability of GH-Feat on generative and

5

discriminative tasks respectively. Sec. 4.5 shows the results
of the introduced spatial expansion.

4.1 Experimental Settings
Implementation Details. The loss weights are set as λ1 =
0.1, λ2 = 5e−5, λ3 = 5e−4 and λ4 = 5. We use Adam [51]
optimizer, with β1 = 0 and β2 = 0.99, to train both the
encoder and the discriminator. The learning rate is initially
set as 1e−4 and exponentially decayed with the factor of 0.8.
Datasets and Models. We conduct experiments on four
StyleGAN [11] models, pre-trained on MNIST [52], FF-
HQ [11], LSUN bedrooms [53], and ImageNet [2] respec-
tively. The MNIST model is with 32× 32 resolution and the
remaining models are with 256× 256 resolution.
Generative Tasks. (1) Image editing. It focuses on manip-
ulating the image content or style, e.g., global editing,
local editing. (2) Image harmonization. This task harmonizes
a discontinuous image to produce a realistic output. (3)
Style transfer. This task focuses on transferring the style
of the reference image to the source image. (4) Semantic
manipulation. It targets at modifying the semantic meaning
of an object while preserving other characteristics. (5) Image
colorization. It focuses on colorizing the grayscale image. (6)
Image inpainting. This task reconstructs missing regions in
an image. (7) Image super-resolution. It aims at improving the
resolution of the image.
Discriminative Tasks. (1) MNIST digit recognition. It is a
long-standing image classification task. We report the Top-1
accuracy on the test set following [52]. (2) Face verification. It
aims at distinguishing whether the given pair of faces come
from the same identity. We validate on the LFW dataset [54]
following the standard protocol [54]. (3) ImageNet classifi-
cation. This is a large-scale image classification dataset [2],
consisting of over 1M training samples across 1,000 classes
and 50K validation samples. We use Top-1 accuracy as
the evaluation metric following existing work [15], [17].
(4) Pose estimation. This task targets at estimating the yaw
pose of the input face. 70K real faces on FF-HQ [11] are
split into 60K training samples and 10K test samples.
The `1 regression error is used as the evaluation metric.
(5) Landmark detection. This task learns a set of semantic
points with visual meaning. We use FF-HQ [11] dataset and
follow the standard MSE metric [55] to report performances
in inter-ocular distance (IOD). (6) Layout prediction. We
extract the corner points of the layout line and convert the
task to a landmark regression task. The annotations of the
collected 90K bedroom images (70K for training and 20K
for validation) are obtained with [56]. Following [57], we
report the corner distance as the metric. (7) Face luminance
regression. It focuses on regressing the luminance of face
images. We use it as a low-level task on the FF-HQ [11]
dataset. (8) Image retrieval. It aims at retrieving the images
with specific attributes. (9) Data-efficient image segmentation.
This task focuses on predicting the class of each spatial pixel
with limited annotated data.

4.2 Analysis on GH-Feat
4.2.1 Ablation Study
We make ablation studies on the training of encoder from
two perspectives. (1) We choose the layer-wise style codes

TABLE 2
Ablation studies on the feature space and the SAM module.

Space SAM Reg MSE↓ SSIM↑ FID↓
W 3 0.0601 0.540 22.24
Y 0.0502 0.550 19.06
Y 3 0.0464 0.558 18.48
Y 3 3 0.0494 0.551 16.84

In
pu

t
T

ra
in

in
g
G

&
 E

to
ge

th
er

O
ur

s

Fig. 3. Qualitative comparison on image reconstruction between training
the generator from scratch together with the encoder, and our GH-Feat
that treats the well-learned StyleGAN generator as a loss function.

y over the w codes as the representation from StyleGAN.
(2) We introduce Spatial Alignment Module (SAM) into the
encoder to better handle the spatial information. (3) We
involve a regularizer in the training of encoder.

Since the encoder is trained with the objective of image
reconstruction, we use mean square error (MSE), SSIM [58],
and FID [59] to evaluate the encoder performance. Tab. 2
shows the results where we can tell that our encoder
benefits from the effective SAM module and that choosing
an adequate representation space (i.e., the comparison
between the first row and the last row) results in a better
reconstruction. Introducing the regularizer alleviates the
pixel value overfitting and improves the reconstruction
quality at the distribution level. More discussion on the
differences between W space and Y space can be found in
Sec. 4.4.1.
Random Generator. Recall that, during the training of the
encoder, we propose to treat the well-trained StyleGAN
generator as a learned loss function. In this part, we
explore what will happen if we train the generator from
scratch together with the encoder. Fig. 3 and Tab. 3 show
the qualitative and quantitative results respectively, which
demonstrate the strong performance of GH-Feat. It suggests
that besides higher efficiency, reusing the knowledge from a
well-trained generator can also bring better performance.

4.2.2 Importance of Regularizer
Although GH-Feat has achieved good results in image
reconstruction, it cannot perform very well on image
editing. Compared with theW space that previous attempts
adopt as the inversion space, the Y space used by GH-
Feat ignores the linear transformation between w code and
y code, resulting in its flexibility. Hence, it is easier to
overfit a given image through a simple combination of
generative features. This leads to a mismatch between the

6

Real Image

w/o 𝐿!"# w/ 𝐿!"#

Sa
m

pl
ed

 I
m

ag
e

Fig. 4. Qualitative comparison on the style mixing task between using training regularizer or not. The first row are the sampled images. The second
row shows the results mixed with the codes predicted by our encoder. The third row presents the mixing results with original latent code.

Input ALAE e4e pSp GH-Feat GH-Feat-S

Fig. 5. Qualitative comparison on reconstructing real images. GH-Feat-S denotes the spatial GH-Feat. Our GH-Feat and GH-Feat-S, which are
built on StyleGAN, could get comparable and better performance as pSp [60] and e4e [49], which employ a more powerful StyleGAN2 generator.

TABLE 3
Quantitative comparison on image reconstruction between training the
generator from scratch together with the encoder, and our GH-Feat that

treats the well-learned StyleGAN generator as a loss function.
GH-Feat-R denotes GH-Feat trained with regularizer.

MSE↓ SSIM↑ FID↓
Training G(·) from Scratch 0.429 0.301 46.20
GH-Feat (Ours) 0.0464 0.558 18.48
GH-Feat-R 0.0494 0.551 16.84

TABLE 4
Cosine similarity of the encoder output and the native latent code.

w/o Lreg w/ Lreg
FED 0.444 0.879

learned visual features and the latent space distribution of
the generator.

We choose the task of global editing as a benchmark
to explore the mismatch problem. Specifically, we extract

the generative features of the real image first and then
randomly replace them with the randomly sampled features
in the latent space at layers 0-4 to achieve global editing.
The results are shown in the 2nd row of Fig. 4. Besides,
we also extract the visual feature of the sampled images
and do the same operation to achieve the editing result
in the third line of Fig. 4. Obviously, the mixed results
by the two sets of features both extracted by the encoder
are better, suggesting the domain shift between the visual
features and the latent space of the generator. Based on this,
we apply the constraints proposed in Sec. 3 to the encoder
training. The right part of Fig. 4 shows the editing results
with the Lreg . The global editing results with sampled
and extracted features are very similar, and both are much
better than the result without Lreg . It demonstrates that the
generative features learned with Lreg are more in line with
its distribution of latent space.

To quantitatively measure the similarity between two
domains, we use cosine distance between generative feature

7

and native code. Specifically, we sample 10k fake images
and extract the corresponding GH-Feat by our encoder, and
then cosine similarity is calculated for the two distributions.
As shown in Tab. 4, minimizing the variation of the
generative features can improve the similarity from 0.444
to 0.879, suggesting the effectiveness of this regularization.

4.3 Evaluation on Generative Tasks
Thanks to using the StyleGAN as a learned loss function,
a huge advantage of GH-Feat over existing unsupervised
feature learning approaches [29], [30], [31], [32], [34],
which mainly focus on the image classification task, is its
generative capability. In this section, we conduct a number
of generative experiments to verify this point.

4.3.1 Image Reconstruction
Image reconstruction is an important evaluation on whether
the learned features can best represent the input image.
MSE and SSIM [58] are used as quantitative metrics to
evaluate the reconstruction performance. Tab. 5 and Fig. 5
show the quantitative and qualitative comparison between
our GH-Feat and other GAN inversion methods on FF-
HQ faces [11] and LSUN bedrooms [53]. The very recent
work ALAE [43] also employs StyleGAN for representation
learning. We have following differences from ALAE: (1) We
use the Y space instead of theW space of StyleGAN as the
representation space. (2) We learn hierarchical features that
highly align with the per-layer style codes in StyleGAN. (3)
Our encoder can be efficiently trained with a well-learned
generator by treating StyleGAN as a loss function. We can
tell that GH-Feat better reconstructs the input by preserving
more information, resulting a more expressiveness represen-
tation.

Besides pSp [60], e4e [49] and Restyle [62], we include
the results of PTI [61] as well as the improved version of our
GH-Feat (i.e., spatial expansion introduced in Sec. 4.5). We
also include the inference time to help evaluate the model
efficiency. We have three observations from the table below.
(1) Our GH-Feat, which is built on StyleGAN, could get
comparable performance as pSp [60] and e4e [49], which
employ a more powerful StyleGAN2 generator. We surmise
that such an advantage originates from the replacement
from W space to Y space. (2) Restyle [62] (which requires
iterative refinement) and PTI [61] (which requires tuning of
the weights of the generator) provide good reconstruction
results but suffer from slow inference speed. (3) Our
improved version, i.e., Spatial GH-Feat, substantially im-
proves the inversion quality without sacrificing the model
efficiency, and achieves the best performance among all
encoder-based methods without generator tuning.

4.3.2 Image Editing
In this part, we evaluate GH-Feat on a number of image
editing tasks. Different from the features learned from dis-
criminative tasks [24], [31], our GH-Feat naturally supports
sampling and enables creating new data.
Style Mixing. To achieve style mixing, we use the encoder to
extract visual features from both the content image and the
style image and swap these two features at some particular
level. The swapped features are then visualized by the

generator, as shown in Fig. 6. We can observe the compelling
hierarchical property of the learned GH-Feat. For example,
by exchanging low-level features, only the image color
tone and the skin color are changed. Meanwhile, mid-level
features controls the expression, age, or even hair styles.
Finally, high-level features correspond to the face shape and
pose information (last two columns).
Global Editing. The style mixing results have suggested
the potential of GH-Feat in multi-level image stylization.
Sometime, however, we may not have a target style image
to use as the reference. Thanks to the design of the
latent space in GANs [10], the generative representation
naturally supports sampling, resulting in a strong creativity.
In other words, based on GH-Feat, we can arbitrarily sample
meaningful visual features and use them for image editing.
Fig. 7 presents some high-fidelity editing results at multiple
levels. This benefits from the matching between the learned
GH-Feat and the internal representation of StyleGAN.
Local Editing. Besides global editing, our GH-Feat also
facilitates editing the target image locally by deeply coop-
erating with the generator. In particular, instead of directly
swapping features, we can exchange a certain region of the
spatial feature map at some certain level. In this way, only
a local patch in the output image will be modified while
other parts remain untouched. As shown in Fig. 8, we can
successfully manipulate the input face with different eyes,
noses, and mouths.

4.3.3 Image Harmonization
Our hierarchical encoder is robust such that it can extract
reasonable visual features even from discontinuous image
content. We copy the patches from other images onto
the original image and feed the stitched image into our
proposed encoder for feature extraction. The extracted
features are then visualized via the pre-trained generator, as
in Fig. 9. On the bedroom, we can see that the copied bed,
window and ceiling light well blend into the “background”.
We also surprisingly find that when copying a window
into the source image, the view from the original window
and that from the new window highly align with each
other (e.g., vegetation or ocean). On face image, besides eye,
nose and mouth, GH-Feat also blends the glasses with the
background very well, benefiting from the robust generative
visual features.

4.3.4 Style Transfer
Our GH-Feat can not only edit the image attributes by
replacing the randomly sampling feature at a particular
level but also can facilitate the editing with the given
conditional input. Here, we take style transfer as an
example, aiming to transfer the style of the given image to
the source image. We first extract the generative features
of the content image Ic and style image Is, and then
style-mixing is performed by replacing the visual features
of Ic with the corresponding ones of Is at the layer 8-
16. We leverage the disentanglement of the generative
features across different layers to perform style transfer. As
shown in Fig. 10, our encoder can successfully transfer the
style of the given image to the source images, suggesting
the effectiveness of the generative features. It is worth
noting that although the texture of the given style images

8

TABLE 5
Quantitative comparison on reconstructing images from FF-HQ faces [11] and LSUN bedrooms [53]. GH-Feat-S denotes the spatial GH-Feat.

bold ones rank the best among the methods w/o generator tuning and underlined ones are the second.

Face Bedroom

Method MSE↓ SSIM↑ TIME↓ MSE↓ SSIM↑
w/ generator tuning

PTI [61] 0.009 0.74 58.02 - -

w/o generator tuning
ALAE [43] 0.182 0.40 0.023 0.275 0.32
pSp [60] 0.034 0.56 0.063 - -
e4e [49] 0.052 0.50 0.063 - -
Restyle [62] 0.030 0.66 0.304 - -
GH-Feat 0.046 0.56 0.035 0.068 0.52
GH-Feat-S 0.029 0.67 0.038 0.057 0.581

Content Image Level 0-1 Level 2-3 Level 4-5 Level 6-7 Level 8-9 Level 10-11 Level 12-13

Fig. 6. Style mixing results by exchanging the GH-Feat extracted from the content image and the style image (first row) at different levels. Higher
level corresponds to the high-level semantics like the face shape and pose information.

Level 0-1 Level 2-5 Level 6-11 Level 12-13
Fig. 7. Global image editing achieved by GH-Feat. On the left is the input image, while the others are generated by randomly sampling the visual
feature at some particular level.

Input Eyes Nose Mouth

Fig. 8. Local image editing achieved by GH-Feat. On the left is the input image, while the others are generated by randomly sampling the visual
feature and replacing the spatial feature map (for different regions) at some particular level. Zoom in for details.

rarely appears in the training dataset, our encoder can still
reconstruct it and extract reasonable visual features with
good disentangle properties. It also supports the robustness
and generalization of the visual features extracted by our
hierarchical encoder.

4.3.5 Semantic Manipulation

Here we explore the semantic editability of the generative
features. We utilize off-the-shelf semantic directions from
InterFaceGAN [13] to edit the inversion results. Fig. 11
presents the results of the manipulated faces. Obviously, the
learned generative features can preserve most other details
when manipulating a particular facial attribute. These

editing results demonstrate that generative features can not
only reconstruct the given image in high quality, but also
facilitate it with good semantic manipulation properties.

4.3.6 Image Processing

In this section, we demonstrate that our method facilitates
various image processing tasks such as image colorization,
image inpainting, and image super-resolution by utilizing
the prior knowledge learned by GANs. Generally, these
tasks can be formulated as follows:

s∗ = arg min
s∈S

L(G(s), x). (5)

9

Eye Nose Mouth

Bed Window Ceiling Light

Fig. 9. Image harmonization on bedroom and face with GH-Feat. The top left corner of the first and third rows are the original images. Pasting
a target image patch onto the original image then feeding it as the input (first and third row), our hierarchical encoder is able to smooth the image
content and produce a photo-realistic image (second and fourth row).

Source Image Transferring Results

St
yl

e
Im

ag
e

Fig. 10. Style transfer results with GH-Feat. GH-Feat can extract and then transfer the style of the reference image to the given image.

where s is the style code initialized by our encoder, L is
the l2 loss function, and x is the reference image (e.g., gray-
scale image for image colorization, corrupted image for the
inpainting, and low-resolution image for super-resolution).

Image colorization tries to restore the original color of a
gray-scale image. The results from our method are listed
in Fig. 12a. Image inpainting aims at filling the missing
pixels of the input images. As shown in Fig. 12b, when some
pixels value of the input image is missing, our method still
successfully recovers them. The last one is super-resolution,
which manages to generate a high-resolution image of the
low-resolution one. Fig. 12c shows the super-resolution
result scale 16 times using our method.

4.4 Evaluation on Discriminative Tasks
In this part, we verify that even the proposed GH-Feat
is learned from generative models, it can be applicable
to a wide range of discriminative tasks with competitive
performances. Here, we do not fine-tune the encoder for

any certain task. In particular, we choose multi-level down-
stream applications, including image classification, face
verification, pose estimation, layout prediction, landmark
detection, and luminance regression. For each task, we use
our encoder to extract visual features from both the training
and the test set. A linear regression model (i.e., a fully-
connected layer) is learned on the training set with ground-
truth and then evaluated on the test set. Besides, we include
image retrieval as an addition discriminative task to verify
the hierarchical property of GH-Feat, whose details are
explained in Sec. 4.4.5.

4.4.1 Discriminative and Hierarchical Property
Recall that GH-Feat is a multi-scale representation learned
by using StyleGAN as a loss function. As a results, it
consists of features from multiple levels, each of which
correspond to a certain layer in the StyleGAN generator.
Here, we would to explore how this feature hierarchy is
organized as well as how they can facilitate multi-level

10

Input Inversion Semantic ++
F
em
al
e

G
la
ss
es

Fig. 11. Semantic Manipulation results with GH-Feat. We utilize the off-the-shelf semantic directions from InterFaceGAN [13] to edit the gender
and glasses of the given images.

(a) Colorization (b) Inpainting (c) Super-resolution
Fig. 12. Image processing with GH-Feat. GH-Feat facilitates many image processing applications using the hierarchical encoder.

Fig. 13. Performances on different discriminative tasks using GH-Feat. Left three columns enclose the comparisons between using different spaces
of StyleGAN as the representation space, where Y space (in red color) shows stronger discriminative and hierarchical property thanW space (in
blue color). This is discussed in Sec. 4.4.1. The last column compares the two different strategies used in the face verification task, which is
explained in Sec. 4.4.2.

discriminative tasks, including face pose estimation, indoor
scene layout prediction, and luminance1 regression from
face images. In particular, we evaluate GH-Feat on each
task level by level. As a comparison, we also train encoders
by treating the w code, instead of the style code y, as the
representation. From Fig. 13, we have three observations:
(1) GH-Feat is discriminative. (2) Features at lower level are
more suitable for low-level tasks (e.g., luminance regression)
and those at higher level better aid high-level tasks (e.g.,
pose estimation). (3) Y space demonstrates a more obvious
hierarchical property than W space. The comparison on
hierarchical property between using regularizer or not is
included at Supplementay Material.

4.4.2 Digit Recognition & Face Verification
Image classification is widely used to evaluate the perfor-
mance of learned representations [17], [29], [30], [31], [32].
In this section, we first compare our proposed GH-Feat with

1. We convert images from RGB space to YUV space and use the
mean value from Y space as the luminance.

other alternatives on a toy dataset, i.e., MNIST [52]. Then, we
use a more challenging task, i.e., face verification, to evaluate
the discriminative property of GH-Feat.
MNIST Digit Recognition. We first show a toy example
on MNIST following prior work [15], [43]. We make a
little modification to ResNet-18 like [63] which is widely
used in literatures to handle samples from MNIST [52] in
lower resolution. The Top-1 accuracy is reported in Tab. 6a.
Our GH-Feat outperforms ALAE [43] and BiGAN [15]
with 1.45% and 1.92%, suggesting a stronger discriminative
power. Here, ResNet-18 [24] is employed as the backbone
structure for both MoCo [31] and GH-Feat.
LFW Face Verification. We directly use the proposed
encoder, which is trained on FF-HQ [11], to extract GH-
Feat from face images in LFW [54] and tries three different
strategies on exploiting GH-Feat for face verification: (1)
using a single level feature; (2) grouping multi-level features
(starting from the highest level) together; (3) voting by
choosing the largest face similarity across all levels. Fig. 13
(last column) shows the results from the first two strategies.

11

Fig. 14. Image reconstruction results on LFW [54]. For each pair of images, left is the low-resolution input while right is reconstructed by GH-Feat.
All samples are with the same identity.

O
ur
s

In
pu
t

B
ig
B
iG
A
N

Fig. 15. Qualitative comparison between BigBiGAN [17] and GH-Feat on reconstructing images from ImageNet [2].

TABLE 6
Quantitative comparison between our proposed GH-Feat and other

alternatives on MNIST [52] and LFW [54]. GH-Feat-R denotes GH-Feat
trained with regularizer.

(a) Digit recognition on MNIST.

Methods Acc.

AE(`1) [64] 97.43
AE(`2) [64] 97.37
BiGAN [15] 97.14
ALAE [43] 97.61
MoCo-R18 [31] 95.89

GH-Feat (Ours) 99.06
GH-Feat-R 98.78

(b) Face verification on LFW.

Methods Acc.

VAE [65] 49.3
MoCo-R50 [31] 48.9
ALAE [43] 55.7

GH-Feat (Grouping) 60.1
GH-Feat (Layer-wise) 67.5
GH-Feat (Voting) 69.7
GH-Feat-R (Voting) 69.1

Obviously, GH-Feat from the 5-th to the 9-th levels best
preserve the identity information. Tab. 6b compares GH-
Feat with other unsupervised feature learning methods,
including VAE [65], MoCo [31], and ALAE [43]. All these
competitors are also trained on FF-HQ dataset [11] with
optimally chosen hyper-parameters. ResNet-50 [24] is em-
ployed as the backbone for MoCo and GH-Feat. Our method
with voting strategy achieves 69.7% accuracy, surpassing
other competitors by a large margin. We also visualize some
reconstructed LFW faces in Fig. 14, where our GH-Feat
well handles the domain gap (e.g., image resolution) and
preserves the identity information.

4.4.3 Large-Scale Image Classification
We further evaluate GH-Feat on the high-level image
classification task using ImageNet [2]. Before the training
of encoder, we first train a StyleGAN model, with 256× 256
resolution, on the ImageNet training collection. After that,
we learn the hierarchical encoder by using the pre-trained
generator as the supervision. No labels are involved in

the above training process.2 For the image classification
problem, we train a linear model on top of the features
extracted from the training set with the softmax loss.
Then, this linear model is evaluated on the validation set.3

Tab. 7 shows the comparison between GH-Feat and other
unsupervised representation learning approaches [15], [17],
[31], [32], [67], [68], where we beat most of the competitors.
The state-of-the-art MoCo [31] gives the most compelling
performance. But different from the representations learned
with contrastive learning, GH-Feat has huge advantages
in generative tasks, as already discussed in Sec. 4.3.
Among adversarial representation learning approaches,
BigBiGAN [17] achieves the best performance, benefiting
from the incredible large-scale training. However, GH-
Feat presents a stronger ability for image reconstruction.
BigBiGAN is learned by discriminating the data-latent joint
distribution, while our GH-Feat targets image reconstruc-
tion by treating a well-trained GAN generator as a learned
loss function. Consequently, as shown in Fig. 15, BigBiGAN
can only recover the input images from the category level,
instead, our approach can recover the inputs with much
more details. The reconstruction error in Tab. 8 conveys the
same conclusion. This is also the reason why GH-Feat could
facilitate various low-level and middle-level discriminative
tasks beyond image classification. More details about Ima-
geNet training can be found in Supplementary Material.

4.4.4 Transfer Learning

In this part, we explore how GH-Feat can be transferred
from one dataset to another.

2. Our encoder can be trained very efficiently, usually 3× faster than
the GAN training.

3. During testing, we adopt the fully convolutional form as in [66]
and average the scores at multiple scales.

12

FF-HQ CelebA

Fig. 16. Landmark detection results. GH-Feat is trained on FF-HQ [11] dataset but can successfully handle the hard cases (large pose and low
image quality) in MAFL dataset [55], a subset of CelebA [74].

Bedroom Kitchen
Fig. 17. Layout prediction results using feature learned by MoCo [31] (top row) and our GH-Feat (bottom row). Both methods are trained on LSUN
bedrooms [53] and then transferred to LSUN kitchens.

TABLE 7
Quantitative comparison on the ImageNet [2] classification task.

Method Architecture Top-1 Acc.

Motion Seg (MS) [69], [70] ResNet-101 27.6
Exemplar (Ex) [70], [71] ResNet-101 31.5
Relative Po (RP) [70], [72] ResNet-101 36.2
Colorization (Col) [70], [73] ResNet-101 39.6

Contrastive Learning
InstDisc [67] ResNet-50 42.5
CPC [32] ResNet-101 48.7
MoCo [31] ResNet-50 60.6

Generative Modeling
BiGAN [15] AlexNet 31.0
SS-GAN [68] ResNet-19 38.3
BigBiGAN [17] ResNet-50 55.4

GH-Feat (Ours) ResNet-50 51.1

TABLE 8
Qualitative comparison between BigBiGAN [17] and GH-Feat on

reconstructing images from ImageNet [2].

MSE↓ SSIM↑ FID↓
BigBiGAN [17] 0.363 0.236 33.42
GH-Feat (Ours) 0.078 0.431 22.70

Landmark Detection. We train a linear regression model
using GH-Feat on FF-HQ [11] and test it on MAFL [55],
which is a subset of CelebA [74]. This two datasets have a
large domain gap, e.g., faces in MAFL have larger poses yet
lower image quality. As shown in Fig. 16, GH-Feat shows a
strong transferability across these two datasets. We compare
our approach with some supervised and unsupervised
alternatives [31], [55], [75], [76]. CLIP [77] trained with
400,000,000 image-text paired samples is also included to
serve as a strong baseline to compare with GH-Feat. For
a fair comparison, we try the multi-scale representations
from MoCo [31] and CLIP [77] (i.e., Res2, Res3, Res4, and
Res5 feature maps) and report the best results. Tab. 9
demonstrates the strong generalization ability of GH-Feat.

TABLE 9
Landmark detection results on MAFL [55]. GH-Feat-R denotes

GH-Feat trained with regularizer.

Method Supervision MSE↓
TCDCN [55] 3 7.95
MTCNN [75] 3 5.39
Cond. ImGen [76] 4.95
ALAE [43]. 10.13
MoCo-R50 [31] 9.07
CLIP-R50 4.98

GH-Feat (Ours) 5.12
GH-Feat-R 4.92

In particular, it achieves on-par or better performance than
the methods that are particular designed for this task [55],
[75], [76]. Also, it outperforms MoCo [31] on this mid-level
discriminative task. As the Tab. 9 below suggests, GH-
Feat achieves comparable performance as CLIP-R50 with
significantly better data efficiency. Such a comparison is
not 100% eye-to-eye because our approach is particularly
trained on human faces while CLIP could cover a much
larger data domain. But it still demonstrates, to some extent,
that adequately leveraging the pre-trained GAN generator
as a learned loss function yields a discriminative and
transferable visual representation.
Layout Prediction. We train the layout predictor on
LSUN [53] bedrooms and test it on kitchens to validate how
GH-Feat can be transferred from one scene category to an-
other. Feature learned by MoCo [31] on the bedroom dataset
is used for comparison. We can tell from Fig. 17 that GH-Feat
shows better predictions than MoCo, especially on the target
set (i.e., kitchens), suggesting a stronger transferability. Like
landmark detection, we also conduct experiments with the
4-level representations from MoCo [31] and select the best.

4.4.5 Image Retrieval
In this section, we verify the hierarchical property of the
proposed GH-Feat with image retrieval. Concretely, given a

13

Query Top-1 Top-2 Top-3 Top-4
H

ig
h-

L
ev

el
M

id
dl

e-
L

ev
el

L
ow

-L
ev

el

Fig. 18. Retrieval results on LSUN bedroom [53].

query image, we use encoder to extract its GH-Feat. Then,
we use different levels of GH-Feat to perform retrieval from
10K real images. Note that GH-Feat from these 10K images
are prepared in advance and `1 distance is used as the metric
for retrieval. Fig. 18 shows the retrieval results on LSUN
bedroom [53]. We can tell that when we use higher level
(first row) features for retrieval, all retrieved results are with
the same layout as the query image, but they may have
different lighting conditions. Meanwhile, when using lower
level (bottom row) features for retrieval, the retrieved results
are with similar lighting condition as the query image.

4.5 Spatial Expansion
4.5.1 Spatial GH-Feat
Spatial-Aware Style Codes. Even though the layer-wise
style codes can describe the global semantics of synthesized
images, the fine-grained semantics cannot be expressed
precisely because the style codes are too coarse to maintain
spatial semantics. To facilitate the style codes with semantic
segmentation, we equip the layer-wise style codes with
spatial dimension. It is noteworthy that the introduced
spatial dimension make the layer-wise representation more
flexible for various of vision tasks.
Spatial-Aware Encoder. For the vision tasks requiring the
spatial-aware representation of the input image, a spatial-
aware encoder is also needed to produce the spatial-aware
style codes. We inherit the backbone and FPN to fuse the
semantics encoded at different level. The last three stages
feature maps {R4, R5, R6}, are used to produce spatial-
aware GH-Feat. We also use the same instantiation for the
layer equipment. But differently, we use an 1×1 convolution
layer to embed the feature maps {R4, R5, R6} and an
upsampler to match the spatial size of the corresponding
convolution feature map. It can be formulated as:

GHj = up(WjRa[j], hCj
/hRa[j]

) j ∈ {1, N},

where GHj is the learned spatial-aware representation,
Cj is the convolutional feature map, a[j] denotes the
corresponding index of the output feature map from FPN,
and hCj

, hRa[j]
denotes the spatial dimension of feature map

Cj and Ra[j].
Ablation. The proposed spatial generative feature is
adopted to provide spatial information, and thus it is critical
to the quality of the reconstructed image. As shown in
Tab. 10, the spatial generative feature can improve the

TABLE 10
Quantitative comparison on image reconstruction between GH-Feat

and spatial GH-Feat. GH-Feat-R denotes GH-Feat trained with
regularizer.

Face Bedroom

Method MSE↓ SSIM↑ MSE↓ SSIM↑
GH-Feat 0.046 0.56 0.068 0.52
GH-Feat-R 0.049 0.55 0.070 0.50
Spatial GH-Feat 0.029 0.67 0.057 0.58

reconstruction performance, and the qualitative results in
Fig. 21 present that the spatial GH-Feat is able to reconstruct
the background and the out-of-the-distribution objects i.e.
hands and hats well. It supports the effectiveness of the
spatial-aware generative features.

4.5.2 Data-Efficient Semantic Segmentation
Compared with classification, image segmentation needs
more precise prediction along the spatial dimension. How-
ever, the generative features without spatial dimension
cannot facilitate this task because they cannot be aware
of the semantics for each pixel. To enable this task, we
use the spatial-aware encoder to obtain a set of generative
features with spatial dimension, and a segmentation head
i.e. the Style Interpreter in [78] is followed to obtain the
segmentation results. Because of the generalization of the
spatial visual features, we only need a few samples to
achieve a good segmentation head. In our experiment, we
used 20 annotated samples for the training. We visualize
predictions learned from our visual features in Fig. 19.
Obviously, the spatial-aware generative features provide
precise information for dense pixels, facilitating image
segmentation with a few annotations.

We include several extreme cases in Fig. 20 to verify the
robustness of the segmentation results achieved by GH-Feat.
Concretely, we include samples under extreme poses, as
well as samples containing out-of-distribution objects (i.e.,
the objects without annotations during the training of the
segmentation branch). We have three observations: (1) Even
there are few samples under extreme poses during training,
our approach could still produce promising segmentation
results on such challenging cases at the inference stage. (2)
The model could well recognize the eyeglass frames yet
perform poorly on eyeglass lens. We guess this is caused by
the overlap between lens and eyes. (3) Hats (recognized as
hair), earrings and microphones (recognized as background)
could be regarded as failure cases, because our segmentation
branch is learned with simple annotations (e.g., eyes, nose,
cheek, etc.). A more competitive performance could be
expected given richer segmentation labels.

5 CONCLUSION
In this work, we consider the well-trained GAN generator
as a learned loss function for learning multi-scale features.
Unlike previous work, we treat layer-wise style codes in
Y space as generative visual features rather than W space,
resulting in better hierarchical properties. A distribution-
level regularizer is introduced to overcome the limitation
of only using image-level supervision for encoder training.
The resulting Generative Hierarchical Features are shown

14

R
ea

l I
m

ag
e

Se
gm

en
ta

tio
n

Fig. 19. Data-efficient Image Segmentation with Spatial GH-Feat. We use the spatial-aware encoder to obtain a set of generative features with
spatial dimension and a segmentation head trained with limited annotated data to obtain segmentation results.

R
ea

l I
m

ag
e

Se
gm

en
ta

ti
on

Extreme Poses Earrings MicrophonesHatsSunglasses

Fig. 20. Extreme cases of data-efficient image segmentation with Spatial GH-Feat. These extreme samples (i.e. extreme pose, hat, sunglasses,
earrings as well as microphones) show the robustness of the segmentation head only trained with fewer annotated samples.

Input GH-Feat Spatial GH-Feat

Fig. 21. Qualitative comparison between GH-Feat and spatial GH-Feat.

to be generalizable to a wide range of vision tasks. Since
GH-Feat only leverages the semantics learned in GANs, the
features may lack the good properties of the discriminative
model features. In the future, we hope to learn deep
representations by unifying discriminative and generative
models that can complement each other.

ACKNOWLEDGMENTS

This work is supported in part by the Early Career Scheme
(ECS) through the Research Grants Council (RGC) of Hong
Kong under Grant No.24206219, Grant No.14204521, CUHK
FoE RSFS Grant, and Centre for Perceptual and Interactive
Intelligence (CPII) Ltd under the Innovation and Technology
Fund.

REFERENCES

[1] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE Trans. Pattern Anal. Mach.
Intell., 2013. 1

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in IEEE
Conf. Comput. Vis. Pattern Recog., 2009. 1, 5, 11, 12, 16

[3] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba,
“Places: A 10 million image database for scene recognition,” IEEE
Trans. Pattern Anal. Mach. Intell., 2017. 1

[4] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn
features off-the-shelf: an astounding baseline for recognition,” in
IEEE Conf. Comput. Vis. Pattern Recog. Worksh., 2014. 1

[5] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba, “Network
dissection: Quantifying interpretability of deep visual representa-
tions,” in IEEE Conf. Comput. Vis. Pattern Recog., 2017. 1

[6] D. Matthew and R. Fergus, “Visualizing and understanding
convolutional neural networks,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2014. 1

[7] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba,
“Object detectors emerge in deep scene cnns,” in Int. Conf. Learn.
Represent., 2015. 1

[8] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable
are features in deep neural networks?” in Adv. Neural Inform.
Process. Syst., 2014. 1, 2

[9] N. Zhao, Z. Wu, R. W. Lau, and S. Lin, “What makes in-
stance discrimination good for transfer learning?” arXiv preprint
arXiv:2006.06606, 2020. 1, 2

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
nets,” in Adv. Neural Inform. Process. Syst., 2014. 1, 2, 4, 7

[11] T. Karras, S. Laine, and T. Aila, “A style-based generator
architecture for generative adversarial networks,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2019. 1, 2, 3, 4, 5, 7, 8, 10, 11, 12

[12] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and improving the image quality of stylegan,” in IEEE
Conf. Comput. Vis. Pattern Recog., 2020, pp. 8110–8119. 1

[13] Y. Shen, C. Yang, X. Tang, and B. Zhou, “Interfacegan: Interpreting
the disentangled face representation learned by gans,” IEEE Trans.
Pattern Anal. Mach. Intell., 2020. 1, 2, 8, 10

15

[14] C. Yang, Y. Shen, and B. Zhou, “Semantic hierarchy emerges
in deep generative representations for scene synthesis,” Int. J.
Comput. Vis., 2020. 1, 2, 4

[15] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature
learning,” in Int. Conf. Learn. Represent., 2017. 1, 2, 5, 10, 11, 12

[16] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb,
M. Arjovsky, and A. Courville, “Adversarially learned inference,”
in Int. Conf. Learn. Represent., 2017. 1, 2

[17] J. Donahue and K. Simonyan, “Large scale adversarial representa-
tion learning,” in Adv. Neural Inform. Process. Syst., 2019. 1, 2, 5,
10, 11, 12, 16

[18] Y. Xu, Y. Shen, J. Zhu, C. Yang, and B. Zhou, “Generative
hierarchical features from synthesizing images,” in CVPR, 2021.
2

[19] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” Int. J. Comput. Vis., 2004. 2

[20] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in Eur. Conf. Comput. Vis., 2006. 2

[21] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in IEEE Conf. Comput. Vis. Pattern Recog.,
2005. 2

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Adv. Neural
Inform. Process. Syst., 2012. 2

[23] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Int. Conf. Learn.
Represent., 2015. 2, 4

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conf. Comput. Vis. Pattern Recog.,
2016. 2, 3, 4, 7, 10, 11, 16

[25] C. Doersch and A. Zisserman, “Multi-task self-supervised visual
learning,” in Int. Conf. Comput. Vis., 2017. 2

[26] R. Zhang, P. Isola, and A. A. Efros, “Split-brain autoencoders:
Unsupervised learning by cross-channel prediction,” in IEEE
Conf. Comput. Vis. Pattern Recog., 2017. 2

[27] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature
learning via non-parametric instance discrimination,” in IEEE
Conf. Comput. Vis. Pattern Recog., 2018. 2

[28] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised represen-
tation learning by predicting image rotations,” in Int. Conf. Learn.
Represent., 2018. 2

[29] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bach-
man, A. Trischler, and Y. Bengio, “Learning deep representations
by mutual information estimation and maximization,” in Int.
Conf. Learn. Represent., 2019. 2, 7, 10

[30] C. Zhuang, A. L. Zhai, and D. Yamins, “Local aggregation
for unsupervised learning of visual embeddings,” in Int. Conf.
Comput. Vis., 2019. 2, 7, 10

[31] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2020. 2, 7, 10, 11, 12

[32] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748,
2018. 2, 7, 10, 11, 12

[33] O. J. Hénaff, A. Srinivas, J. De Fauw, A. Razavi, C. Doersch,
S. Eslami, and A. v. d. Oord, “Data-efficient image recognition with
contrastive predictive coding,” arXiv preprint arXiv:1905.09272,
2019. 2

[34] Y. Tian, D. Krishnan, and P. Isola, “Contrastive multiview coding,”
arXiv preprint arXiv:1906.05849, 2019. 2, 7

[35] A. Shocher, Y. Gandelsman, I. Mosseri, M. Yarom, M. Irani, W. T.
Freeman, and T. Dekel, “Semantic pyramid for image generation,”
in IEEE Conf. Comput. Vis. Pattern Recog., 2020. 2

[36] A. Radford, L. Metz, and S. Chintala, “Unsupervised represen-
tation learning with deep convolutional generative adversarial
networks,” in Int. Conf. Learn. Represent., 2016. 2

[37] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing
of gans for improved quality, stability, and variation,” in Int. Conf.
Learn. Represent., 2018. 2

[38] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN
training for high fidelity natural image synthesis,” in Int. Conf.
Learn. Represent., 2019. 2

[39] A. Jahanian, L. Chai, and P. Isola, “On the ”steerability” of
generative adversarial networks,” in Int. Conf. Learn. Represent.,
2020. 2

[40] D. Bau, J.-Y. Zhu, H. Strobelt, B. Zhou, J. B. Tenenbaum, W. T.
Freeman, and A. Torralba, “Gan dissection: Visualizing and

understanding generative adversarial networks,” in Int. Conf.
Learn. Represent., 2019. 2

[41] J. Gu, Y. Shen, and B. Zhou, “Image processing using multi-code
gan prior,” in IEEE Conf. Comput. Vis. Pattern Recog., 2020. 2

[42] J. Zhu, Y. Shen, D. Zhao, and B. Zhou, “In-domain gan inversion
for real image editing,” in Eur. Conf. Comput. Vis., 2020. 2

[43] S. Pidhorskyi, D. Adjeroh, and G. Doretto, “Adversarial latent
autoencoders,” in IEEE Conf. Comput. Vis. Pattern Recog., 2020.
2, 7, 8, 10, 11, 12

[44] X. Huang and S. Belongie, “Arbitrary style transfer in real-time
with adaptive instance normalization,” in Int. Conf. Comput. Vis.,
2017. 3, 4

[45] Z. Wu, D. Lischinski, and E. Shechtman, “Stylespace analysis:
Disentangled controls for stylegan image generation,” in CVPR,
2021. 4

[46] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and
S. Belongie, “Feature pyramid networks for object detection,” in
IEEE Conf. Comput. Vis. Pattern Recog., 2017. 4

[47] C. Yang, Y. Xu, J. Shi, B. Dai, and B. Zhou, “Temporal pyramid
network for action recognition,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2020. 4

[48] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network
for instance segmentation,” in IEEE Conf. Comput. Vis. Pattern
Recog., 2018. 4

[49] O. Tov, Y. Alaluf, Y. Nitzan, O. Patashnik, and D. Cohen-Or,
“Designing an encoder for StyleGAN image manipulation,” ACM
Trans. Graph., 2021. 4, 6, 7, 8

[50] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-
time style transfer and super-resolution,” in Eur. Conf. Comput.
Vis., 2016. 4

[51] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in Int. Conf. Learn. Represent., 2015. 5

[52] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, 1998. 5, 10, 11

[53] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao, “Lsun:
Construction of a large-scale image dataset using deep learning
with humans in the loop,” arXiv preprint arXiv:1506.03365, 2015.
5, 7, 8, 12, 13

[54] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in
unconstrained environments,” Technical Report 07-49, University
of Massachusetts, Amherst, Tech. Rep., 2007. 5, 10, 11

[55] Z. Zhang, P. Luo, C. C. Loy, and X. Tang, “Facial landmark
detection by deep multi-task learning,” in Eur. Conf. Comput. Vis.,
2014. 5, 12

[56] W. Zhang, W. Zhang, and J. Gu, “Edge-semantic learning strategy
for layout estimation in indoor environment,” Transactions On
Cybernetics, 2019. 5

[57] C. Zou, A. Colburn, Q. Shan, and D. Hoiem, “Layoutnet:
Reconstructing the 3d room layout from a single rgb image,” in
IEEE Conf. Comput. Vis. Pattern Recog., 2018. 5

[58] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE Trans. Image Process., 2004. 5, 7

[59] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochre-
iter, “Gans trained by a two time-scale update rule converge to
a local nash equilibrium,” in Adv. Neural Inform. Process. Syst.,
2017. 5

[60] E. Richardson, Y. Alaluf, O. Patashnik, Y. Nitzan, Y. Azar,
S. Shapiro, and D. Cohen-Or, “Encoding in style: a StyleGAN
encoder for image-to-image translation,” in IEEE Conf. Comput.
Vis. Pattern Recog., 2021. 6, 7, 8

[61] D. Roich, R. Mokady, A. H. Bermano, and D. Cohen-Or, “Pivotal
tuning for latent-based editing of real images,” ACM Trans.
Graph., 2021. 7, 8

[62] Y. Alaluf, O. Patashnik, and D. Cohen-Or, “ReStyle: A residual-
based StyleGAN encoder via iterative refinement,” in Int. Conf.
Comput. Vis., 2021. 7, 8

[63] K. Liu, “Pyotrch cifar10,” https://github.com/kuangliu/
pytorch-cifar.git, 2019. 10

[64] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimension-
ality of data with neural networks,” Science, 2006. 11

[65] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
in Int. Conf. Learn. Represent., 2014. 11

[66] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with

https://github.com/kuangliu/pytorch-cifar.git
https://github.com/kuangliu/pytorch-cifar.git

16

convolutions,” in IEEE Conf. Comput. Vis. Pattern Recog., 2015.
11

[67] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature
learning via non-parametric instance discrimination,” in IEEE
Conf. Comput. Vis. Pattern Recog., 2018. 11, 12

[68] T. Chen, X. Zhai, M. Ritter, M. Lucic, and N. Houlsby, “Self-
supervised gans via auxiliary rotation loss,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2019. 11, 12

[69] D. Pathak, R. Girshick, P. Dollár, T. Darrell, and B. Hariharan,
“Learning features by watching objects move,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2017. 12

[70] C. Doersch and A. Zisserman, “Multi-task self-supervised visual
learning,” in Int. Conf. Comput. Vis., 2017. 12

[71] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox,
“Discriminative unsupervised feature learning with convolutional
neural networks,” in Adv. Neural Inform. Process. Syst., 2014. 12

[72] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual
representation learning by context prediction,” in Int. Conf.
Comput. Vis., 2015. 12

[73] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,”
in Eur. Conf. Comput. Vis., 2016. 12

[74] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Int. Conf. Comput. Vis., 2015. 12

[75] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection
and alignment using multitask cascaded convolutional networks,”
IEEE Signal Processing Letters, 2016. 12

[76] T. Jakab, A. Gupta, H. Bilen, and A. Vedaldi, “Unsupervised learn-
ing of object landmarks through conditional image generation,” in
Adv. Neural Inform. Process. Syst., 2018. 12

[77] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning
transferable visual models from natural language supervision,”
in ICML, 2021. 12

[78] Y. Zhang, H. Ling, J. Gao, K. Yin, J.-F. Lafleche, A. Barriuso,
A. Torralba, and S. Fidler, “Datasetgan: Efficient labeled data
factory with minimal human effort,” in CVPR, 2021. 13

[79] T. Karras, S. Laine, and T. Aila, “Stylegan - official tensorflow
implementation,” https://github.com/NVlabs/stylegan, 2019. 16

A1. HIERARCHICAL PROPERTY

We also re-evaluate the layer-wise representation on dif-
ferent discriminative tasks. As shown in Fig. 22, the
training regularizer improves the hierarchical property of
the original GH-Feat. Since the training regularizer prevents
the model from overfitting pixel values, the layer-wise
representation is closer to the distribution center and
achieve better hierarchical properties on the discriminative
tasks.

A2. EXPERIMENTS ON IMAGENET

Training Details. During the training of the StyleGAN
model on the ImageNet dataset [2], we resize all images
in the training set such that the short side of each image is
256, and then centrally crop them to 256 × 256 resolution.
All training settings follow the StyleGAN official implemen-
tation [79], including the progressive strategy, optimizer,
learning rate, etc. The generator and the discriminator are
alternatively optimized until the discriminator have seen
250M real images. After that, the generator is fixed and
treated as a well-learned loss function to guide the training
of the encoder. During the training of the hierarchical
encoder, images in the training collection are pre-processed
in the same way as mentioned above. After the encoder
is ready, we treat it as a feature extractor. We use the
output feature map at the “res5” stage, apply adaptively
average pooling to obtain 2×2 spatial feature and vectorize
it. A linear classifier, i.e., with one fully-connected layer,
takes these extracted features as the inputs to learn the
image classification task. SGD optimizer, together with
batch size 2048, is used. The learning rate is initially set
as 1 and decayed to 0.1 and 0.01 at the 60-th and the 80-th
epoch respectively. During the training of the final classifier,
ResNet-style data augmentation [24] is applied.

The FID score on ImageNet is 40.92. Fig 23 shows the
uncurated samples of the pretrained ImageNet samples. Al-
though the synthesized samples are not very realistic, they
can still help downstream tasks like ImageNet classification.
Discussion. We have already shown in the main submission
that GH-Feat achieves comparable accuracy to existing
alternatives. Especially, among all methods based on gener-
ative modeling, GH-Feat obtains second performance only
to BigBiGAN [17], which requires incredible large-scale
training. However, as discussed in the main submission,
our GH-Feat facilitates a wide rage of tasks besides image
classification. Taking image reconstruction as an example,
our approach can well recover the input image, significantly
outperforming BigBiGAN [17].

https://github.com/NVlabs/stylegan

17

M
SE

 (
IO

D
)

C
or

ne
r

 D
is

ta
nc

e

A
cc

ur
ac

y

R
eg

re
ss

io
n

E
rr

or

Landmark Detection Layout Prediction Luminance Regression Face Verification

Level IndexLevel Index Level Index Level Index
Fig. 22. Comparison on the hierarchical property between using regularizer or not. y (in red color) and yreg (in blue color) denote the original
GH-Feat and GH-Feat with regularizer, respectively.

Fig. 23. Uncurated generated samples of StyleGAN model on ImageNet.

