
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Orthogonal SVD Covariance Conditioning and
Latent Disentanglement

Yue Song, Member, IEEE, Nicu Sebe, Senior Member, IEEE, Wei Wang, Member, IEEE

Abstract—Inserting an SVD meta-layer into neural networks is prone to make the covariance ill-conditioned, which could harm the model
in the training stability and generalization abilities. In this paper, we systematically study how to improve the covariance conditioning by
enforcing orthogonality to the Pre-SVD layer. Existing orthogonal treatments on the weights are first investigated. However, these
techniques can improve the conditioning but would hurt the performance. To avoid such a side effect, we propose the Nearest Orthogonal
Gradient (NOG) and Optimal Learning Rate (OLR). The effectiveness of our methods is validated in two applications: decorrelated Batch
Normalization (BN) and Global Covariance Pooling (GCP). Extensive experiments on visual recognition demonstrate that our methods
can simultaneously improve covariance conditioning and generalization. The combinations with orthogonal weight can further boost the
performance. Moreover, we show that our orthogonality techniques can benefit generative models for better latent disentanglement
through a series of experiments on various benchmarks. Code is available at: https://github.com/KingJamesSong/OrthoImproveCond.

Index Terms—Differentiable SVD, Covariance Conditioning, Orthogonality Constraint, Unsupervised Latent Disentanglement

F

1 INTRODUCTION

The Singular Value Decomposition (SVD) can factorize a
matrix into orthogonal eigenbases and non-negative singular
values, serving as an essential step for many matrix opera-
tions. Recently in computer vision and deep learning, many
approaches integrated the SVD as a meta-layer in the neural
networks to perform some differentiable spectral transforma-
tions, such as the matrix square root and inverse square root.
The applications arise in a wide range of methods, including
Global Covariance Pooling (GCP) [1], [2], [3], decorrelated
Batch Normalization (BN) [4], [5], [6], Whitening an Coloring
Transform (WCT) for universal style transfer [7], [8], [9], and
Perspective-n-Point (PnP) problems [10], [11], [12].

For the input feature map X passed to the SVD meta-
layer, one often first computes the covariance of the feature
as XXT . This can ensure that the covariance matrix is
both symmetric and positive semi-definite, which does
not involve any negative eigenvalues and leads to the
identical left and right eigenvector matrices. However, it
is observed that inserting the SVD layer into deep models
would typically make the covariance very ill-conditioned [2],
resulting in deleterious consequences on the stability and
optimization of the training process. For a given covariance
A, its conditioning is measured by the condition number:

κ(A) = σmax(A)σ−1
min(A) (1)

where σ(·) denotes the eigenvalue of the matrix. Mathemati-
cally speaking, the condition number measures how sensitive
the SVD is to the errors of the input. Matrices with low
condition numbers are considered well-conditioned, while

• Yue Song and Nicu Sebe are with Department of Information Engineering
and Computer Science, University of Trento, Trento 38123, Italy. Wei
Wang is with Beijing Jiaotong University, Beijing, China. Wei Wang is
the corresponding author.
E-mail: {yue.song, nicu.sebe}@unitn.it, wei.wang@bjtu.edu.cn

Manuscript received April 19, 2005; revised August 26, 2015.

matrices with high condition numbers are said to be ill-
conditioned. Specific to neural networks, the ill-conditioned
covariance matrices are harmful to the training process in
several aspects, which we will analyze in detail later.

This phenomenon was first observed in the GCP methods
by [2], and we found that it generally extrapolates to other
SVD-related tasks, such as decorrelated BN. Fig. 1 depicts
the covariance conditioning of these two tasks throughout
the training. As can be seen, the integration of the SVD layer
makes the generated covariance very ill-conditioned (≈1e12
for decorrelated BN and ≈1e16 for GCP). By contrast, the
conditioning of the approximate solver, i.e., Newton-Schulz
iteration (NS iteration) [13], is about 1e5 for decorrelated BN
and is around 1e15 for GCP, while the standard BN only has
a condition number of 1e3.

Fig. 1: The covariance conditioning of the SVD meta-layer
during the training process in the tasks of decorrelated BN
(left) and GCP (Right). The decorrelated BN is based on
ResNet-50 and CIFAR100, while ImageNet and ResNet-18
are used for the GCP.

Ill-conditioned covariance matrices can harm the training
of the network in both the forward pass (FP) and the
backward pass (BP). For the FP, mainly the SVD solver is
influenced in terms of stability and accuracy. Since the ill-
conditioned covariance has many trivially-small eigenvalues,
it is difficult for an SVD solver to accurately estimate them

ar
X

iv
:2

21
2.

05
59

9v
1

 [
cs

.C
V

]
 1

1
D

ec
 2

02
2

https://github.com/KingJamesSong/OrthoImproveCond

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

and large round-off errors are likely to be triggered, which
might hurt the network performances. Moreover, the very
imbalanced eigenvalue distribution can easily make the SVD
solver fail to converge and cause the training failure [2],
[14]. For the BP, as pointed out in [4], [15], [16], the feature
covariance is closely related to the Hessian matrix during
the backpropagation. As the error curvature is given by
the eigenvalues of the Hessian matrix [17], for the ill-
conditioned Hessian, the Gradient Descent (GD) step would
bounce back and forth in high curvature directions (large
eigenvalues) and make slow progress in low curvature
directions (small eigenvalues). As a consequence, the ill-
conditioned covariance could cause slow convergence and
oscillations in the optimization landscape. The generalization
abilities of a deep model are thus harmed.

Due to the data-driven learning nature and the highly
non-linear transform of deep neural networks, directly
giving the analytical form of the covariance conditioning
is intractable. Some simplifications have to be performed to
ease the investigation. Since the covariance is generated and
passed from the previous layer, the previous layer is likely
to be the most relevant to the conditioning. Therefore, we
naturally limit our focus to the Pre-SVD layer, i.e., the layer
before the SVD layer. To further simplify the analysis, we
study the Pre-SVD layer in two consecutive training steps,
which can be considered as a mimic of the whole training
process. Throughout the paper, we mainly investigate some
meaningful manipulations on the weight, the gradient, and
the learning rate of the Pre-SVD layer in two sequential train-
ing steps. Under our Pre-SVD layer simplifications, one promising
direction to improve the conditioning is enforcing orthogonality on
the weights. Orthogonal weights have the norm-preserving
property, which could improve the conditioning of the
feature matrix. This technique has been widely studied in the
literature of stable training and Lipschitz networks [18], [19],
[20]. We select some representative methods and validate
their effectiveness in the task of decorrelated BN. Our
experiment reveals that these orthogonal techniques can
greatly improve the covariance conditioning, but could only
bring marginal performance improvements and even slight
degradation. This indicates that when the representation power of
weight is limited, the improved conditioning does not necessarily
lead to better performance. Orthogonalizing only the weight is
thus insufficient to improve the generalization. Instead of seeking
orthogonality constraints on the weights, we propose our
Nearest Orthogonal Gradient (NOG) and Optimal Learning
Rate (OLR). These two techniques explore the orthogonality
possibilities about the learning rate and the gradient. More
specifically, our NOG modifies the gradient of the Pre-SVD
layer into its nearest-orthogonal form and keeps the GD
direction unchanged. On the other hand, the proposed OLR
dynamically changes the learning rate of the Pre-SVD layer
at each training step such that the updated weight is as
close to an orthogonal matrix as possible. The experimental
results demonstrate that the proposed two techniques not
only significantly improve the covariance conditioning but
also bring obvious improvements in the validation accuracy
of both GCP and decorrelated BN. Moreover, when combined
with the orthogonal weight treatments, the performance can
have further improvements.

Besides the application on differentiable SVD, we propose

that our orthogonality techniques can be also used for unsu-
pervised latent disentanglement of Generative Adversarial
Networks (GANs) [21]. Recent works [22], [23] revealed that
the latent disentanglement of GANs is closely related to
the gradient or weight of the first projector after the latent
code. In particular, the eigenvectors of the gradient or weight
can be viewed as closed-formed solutions of interpretable
directions [23]. This raises the need for enforcing orthogonal
constraints on the projector. As shown in Fig. 5, compared with
non-orthogonal matrices, orthogonal matrices can lead to more
disentangled representations and more precise attributes due to the
property of equally-important eigenvectors. Motivated by this
observation, we propose to enforce our NOG and OLR as
orthogonality constraints in generative models. Extensive ex-
periments on various architectures and datasets demonstrate
that our methods indeed improve the disentanglement ability
of identifying semantic attributes and achieve state-of-the-art
performance against other disentanglement approaches.

The main contributions are summarized below:

• We systematically study the problem of how to improve
the covariance conditioning of the SVD meta-layer. We
propose our Pre-SVD layer simplification to investigate this
problem from the perspective of orthogonal constraints.

• We explore different techniques of orthogonal weights to
improve the covariance conditioning. Our experiments re-
veal that these techniques could improve the conditioning
but would harm the generalization abilities due to the
limitation on the representation power of weight.

• We propose the nearest orthogonal gradient and optimal
learning rate. The experiments on GCP and decorrelated
BN demonstrate that these methods can attain better
covariance conditioning and improved generalization.
Their combinations with weight treatments can further
boost the performance.

• We show that our proposed orthogonality approaches can
be applied on the GANs projector for improved latent
disentanglement ability of discovering precise semantic
attributes, which opens the way for new applications of
orthogonality techniques.

This paper is an extension of the previous conference
paper [24]. In [24], we propose two orthogonality techniques
and demonstrate that these methods can simultaneously
improve the covaraince conditioning and generalization abil-
ities of the SVD meta-layer. This journal extension motivates
and proposes that these techniques can be also applied
in generative models for better latent disentanglement.
This point is validated through extensive experiments on
various generative architectures and datasets. Moreover, we
also investigate the probability of occurrence of our OLR
throughout the training and show that the evaluation results
agree well with our theoretical analysis.

The rest of the paper is organized as follows: Sec. 2
describes the related work in differentiable matrix decomposi-
tion, orthogonality applications, and unsupervised latent dis-
entanglement. Sec. 3 introduces our Pre-SVD layer simplifi-
cation and orthogonal weight treatments, and Sec. 4 presents
the proposed orthogonality techniques. Sec. 5 motivates why
orthogonality can improve latent disentanglement. Sec. 6
provides experimental results and some in-depth analysis.
Finally, Sec. 7 summarizes the conclusions.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

2 RELATED WORK

2.1 Differentiable Matrix Decomposition
The differentiable matrix decomposition is widely used in
neural networks as a spectral meta-layer. Ionescu et al. [25],
[26] first propose the theory of matrix back-propagation
and laid a foundation for the follow-up research. In deep
neural networks, the transformation of matrix square root
and its inverse are often desired due to the appealing spectral
property. Their applications cover a wide range of computer
vision tasks [6], [27]. To avoid the huge time consumption
of the SVD, some iterative methods are also developed to
approximate the solution [6], [13], [27]. Recently Song et
al. [28] propose a dedicated eigen-solver for improving
the computation speed of batched matrices. In [4], [5], [6],
[8], [29], [30], the inverse square root is used in the ZCA
whitening transform to whiten the feature map, which is
also known as the decorrelated BN. The Global Covariance
Pooling (GCP) models [1], [2], [3], [31], [32], [33], [34]
compute the matrix square root of the covariance as a spectral
normalization, which achieves impressive performances on
some recognition tasks, including large-scale visual classifi-
cation [1], [2], [6], [33], fine-grained visual categorization [1],
[31], [34], and video action recognition [3]. The Whitening
and Coloring Transform (WCT), which uses both the matrix
square root and inverse square root, is usually adopted in
some image generation tasks such as neural style transfer [7],
[9], image translation [35], [36], and domain adaptation [37],
[38]. In the geometric vision problems, the differentiable
SVD is usually applied to estimate the fundamental matrix
and the camera pose [11], [12], [39]. Besides the SVD-based
factorization, differentiating Cholesky decomposition [40]
and some low-rank decomposition is used to approximate
the attention mechanism [41], [42], [43] or to learn the
constrained representations [44], [45].

2.2 Orthogonality in Neural Network
Orthogonal weights have the benefit of the norm-preserving
property, i.e., the relation ||WA||F=||A||F holds for any
orthogonal W. When it comes to deep neural networks,
such a property can ensure that the signal stably propagates
through deep networks without either exploding or vanish-
ing gradients [46], [47], which could speed up convergence
and encourage robustness and generalization. In general,
there are three ways to enforce orthogonality to a layer:
orthogonal weight initialization [18], [48], [49], orthogonal
regularization [19], [50], [51], [51], [52], and explicit orthogo-
nal weight via Carley transform or matrix exponential [20],
[53], [54]. Among these techniques, orthogonal regularization
and orthogonal weight are most commonly used as they
often bring some practical improvements in generalization.
Since the covariance is closely related to the weight matrix
of the Pre-SVD layer, enforcing the orthogonality constraint
could help to improve the covariance conditioning of the
SVD meta-layer. We will choose some representative methods
and validate their impact in Sec. 3.2.

Notice that the focus of existing literature is different
from our work. The orthogonality constraints are often used
to improve the Lipschitz constants of the neural network
layers, which is expected to improve the visual quality in
image generation [55], [56], to allow for better adversarial

robustness [20], [57], and to improve generalization abili-
ties [19], [58]. Our work is concerned with improving the
covariance conditioning and generalization performance.
Moreover, the orthogonality literature mainly investigates
how to enforce orthogonality to weight matrices, whereas
less attention is put on the gradient and learning rate. In
Sec. 4, we will explore such possibilities and propose our
solutions: nearest orthogonal gradient and optimal learning
rate which is optimal in the sense that the updated weight is
as close to an orthogonal matrix as possible.

2.3 Unsupervised Latent Disentanglement of GANs
Interpreting latent spaces of GAN models in an unsupervised
manner has received wide attention recently [59], [60], [61],
[62]. This can help to identify semantic attributes of the
image and to have precise control of the generation process,
which could benefit both local and global image editing
tasks [22], [63]. Voynov et al. [61] proposed to jointly learn
a set of directions and an extra classifier such that the
interpretable directions can be recognized. In [64], the authors
proposed to perform PCA on the sampled data to capture the
interpretable directions. More recently, Shen et al. [23] and
Zhu et al. [22] pointed out that the semantic attributes are
characterized by the eigenvectors of the weight or gradient
of the first projector after the latent code. Motivated by
this observation, we propose to enforce our orthogonality
techniques to the gradient and weight matrices.

Besides our orthogonality techniques, a few works have
applied implicit orthogonality into the training process of
GANs to attain more disentangled representations [65], [66],
[67], [68]. In [65], [68], the authors proposed to add orthogo-
nal Hessian/Jacobian penalty to encourage disentanglement.
He et al. [67] designed a dedicated GAN architecture where
multi-level latent codes and orthogonal weight constraints
are applied. Different from previous approaches, our orthog-
onality treatments do not rely on any implicit regularization.
Instead, our NOG explicitly maps the original gradient
into the nearest-orthogonal form, while our OLR keeps the
updated weight in the closest form to orthogonal matrices.

3 PRE-SVD LAYER AND WEIGHT TREATMENTS

In this section, we first motivate our simplification of the
Pre-SVD layer, and then validate the efficacy of some
representative weight treatments.

3.1 Pre-SVD Layer Simplification
The neural network consists of a sequential of non-linear
layers where the learning of each layer is data-driven. Stack-
ing these layers leads to a highly non-linear and complex
transform, which makes directly analyzing the covariance
conditioning intractable. To solve this issue, we have to
perform some simplifications.

Our simplifications involve limiting the analysis only
to the layer previous to the SVD layer (which we dub as
the Pre-SVD layer) in two consecutive training steps. The
Pre-SVD layer directly determines the conditioning of the
generated covariance, while the two successive training steps
are a mimic of the whole training process. The idea is to
simplify the complex transform by analyzing the sub-model

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

(two layers) and the sub-training (two steps), which can be
considered as an ”abstract representation” of the deep model
and its complete training.

Let W denote the weight matrix of the Pre-SVD layer.
Then for the input Xl passed to the layer, we have:

Xl+1 = WXl + b (2)

where Xl+1 is the feature passed to the SVD layer, and b is
the bias vector. Since the bias b has a little influence here, we
can sufficiently omit it for simplicity. The covariance in this
step is computed as WXlX

T
l WT . After the BP, the weight

matrix is updated as W−η ∂l
∂W where η denotes the learning

rate of the layer. Let Yl denote the passed-in feature of the
next training step. Then the covariance is calculated as:

C =
(
(W − η ∂l

∂W
) ·Yl

)(
(W − η ∂l

∂W
) ·Yl

)T
=

WYlY
T
l WT−η ∂l

∂W
YlY

T
l WT

−ηWYlY
T
l (

∂l

∂W
)T+η2

∂l

∂W
YlY

T
l (

∂l

∂W
)T

(3)

where C denotes the generated covariance of the second step.
Now the problem becomes how to stop the new covariance
C from becoming worse-conditioned than WXlX

T
l WT . In

eq. (3), three variables could influence the conditioning: the
weight W, the gradient of the last step ∂l

∂W , and the learning
rate η of this layer. Among them, the weight W seems to be
the most important as it contributes to three terms of eq. (3).
Moreover, the first term WYlY

T
l WT computed by W is

not attenuated by η or η2 like the other terms. Therefore, it
is natural to first consider manipulating W such that the
conditioning of C could be improved.

3.2 General Treatments on Weights
In the literature of enforcing orthogonality to the neu-
ral network, there are several techniques to improve the
conditioning of the weight W. Now we introduce some
representatives methods and validate their impacts.

3.2.1 Spectral Normalization (SN)
In [56], the authors propose a normalization method to
stabilize the training of generative models [21] by dividing
the weight matrix with its largest eigenvalue. The process is
defined as:

W/σmax(W) (4)

Such a normalization can ensure that the spectral radius
of W is always 1, i.e., σmax(W)=1. This could help to
reduce the conditioning of the covariance since we have
σmax(WYl)=σmax(Yl) after the spectral normalization.

3.2.2 Orthogonal Loss (OL)
Besides limiting the spectral radius of W, enforcing or-
thogonality constraint could also improve the covariance
conditioning. As orthogonal matrices are norm-preserving
(i.e., ||WYl||F=||W||F), lots of methods have been proposed
to encourage orthogonality on weight matrices for more
stable training and better signal-preserving property [19],
[20], [51], [54], [69]. One common technique is to apply soft
orthogonality [19] by the following regularization:

l = ||WWT − I||F (5)

Fig. 2: Covariance condition-
ing during the training pro-
cess. All weight treatments
can improve conditioning.

Methods mean±std min
SVD 19.99±0.16 19.80

SVD + SN 19.94±0.33 19.60
SVD + OL 19.73±0.28 19.54

SVD + OW 20.06±0.17 19.94
NS iteration 19.45±0.33 19.01

TABLE 1: Performance of
different weight treatments
on ResNet-50 and CIFAR100
based on 10 runs.

This extra loss is added in the optimization objective to
encourage more orthogonal weight matrices. However, since
the constraint is achieved by regularization, the weight
matrix is not exactly orthogonal at each training step.

3.2.3 Orthogonal Weights (OW)
Instead of applying soft orthogonality by regularization, some
methods can explicitly enforce hard orthogonality to the
weight matrices [20], [54]. The technique of [20] is built on
the mathematical property: for any skew-symmetric matrix,
its matrix exponential is an orthogonal matrix.

exp(W −WT) exp(W −WT)T = I (6)

where the operation of W−WT is to make the matrix
skew-symmetric, i.e., the relation W−WT=− (W−WT)T

always holds. Then exp(W−WT) is used as the weight. This
technique explicitly constructs the weight as an orthogonal
matrix. The orthogonal constraint is thus always satisfied
during the training.

We apply the above three techniques in the experiment
of decorrelated BN. Fig. 2 displays the covariance condi-
tioning throughout the training, and Table 1 presents the
corresponding validation errors. As can be seen, all of
these techniques attain much better conditioning, but the
performance improvements are not encouraging. The SN
reduces the conditioning to around 105, while the validation
error marginally improves. The soft orthogonality by the OL
brings slight improvement on the performance despite some
variations in the conditioning. The conditioning variations
occur because the orthogonality constraint by regularization
is not strictly enforced. Among the weight treatments, the
hard orthogonality by the OW achieves the best covariance
conditioning, continuously maintaining the condition num-
ber around 103 throughout the training. However, the OW
slightly hurts the validation error. This implies that better
covariance conditioning does not necessarily correspond to
the improved performance, and orthogonalizing only the
weight cannot improve the generalization. We conjecture that
enforcing strict orthogonality only on the weight might limit its rep-
resentation power. Nonetheless, as will be discussed in Sec. 4.1,
the side effect can be canceled when we simultaneously
orthogonalize the gradient.

4 NEAREST ORTHOGONAL GRADIENT AND OPTI-
MAL LEARNING RATE

This section introduces our proposed techniques on modify-
ing the gradient and learning rate of the Pre-SVD layer. The

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

combinations with weight treatments are also discussed.

4.1 Nearest Orthogonal Gradient (NOG)
As discussed in Sec. 3.1, the covariance conditioning is also
influenced by the gradient ∂l

∂W . However, existing literature
mainly focuses on orthogonalizing the weights. To make the
gradient also orthogonal, we propose to find the nearest-
orthogonal gradient of the Pre-SVD layer. Different matrix
nearness problems have been studied in [70], and the nearest-
orthogonal problem is defined as:

min
R
|| ∂l
∂W

−R||F subject to RRT = I (7)

where R is the seeking solution. To obtain such an orthogonal
matrix, we can construct the error function as:

e(R) = Tr
(
(
∂l

∂W
−R)T (

∂l

∂W
−R)

)
+Tr

(
ΣRTR−I

)
(8)

where Tr(·) is the trace measure, and Σ denotes the sym-
metric matrix Lagrange multiplier. The closed-form solution
is given by:

R =
∂l

∂W

(
(
∂l

∂W
)T

∂l

∂W

)− 1
2

(9)

The detailed derivation is given in the supplementary
material. If we have the SVD of the gradient (USVT= ∂l

∂W),
the solution can be further simplified as:

R = USVT (VS−1VT) = UVT (10)

As indicated above, the nearest orthogonal gradient is
achieved by setting the singular value matrix to the identity
matrix, i.e., setting S to I. Notice that only the gradient of
Pre-SVD layer is changed, while that of the other layers is
not modified. Our proposed NOG can bring several practical
benefits.

4.1.1 Orthogonal Constraint and Optimal Conditioning
The orthogonal constraint is exactly enforced on the gradient
as we have (UVT)TUVT=I. Since we explicitly set all
the singular values to 1, the optimal conditioning is also
achieved, i.e., κ(∂l

∂W)=1. This could help to improve the
conditioning.

4.1.2 Keeping Gradient Descent Direction Unchanged
In the high-dimensional optimization landscape, the many
curvature directions (GD directions) are characterized by
the eigenvectors of gradient (U and V). Although our
modification changes the gradient, the eigenvectors and the
GD directions are untouched. In other words, our NOG only
adjusts the step size in each GD direction. This indicates that
the modified gradients will not harm performance.

4.1.3 Combination with Weight Treatments
Our orthogonal gradient and the previous weight treat-
ments are complementary. They can be jointly used to
simultaneously orthogonalize the gradient and weight. In
the following, we will validate their joint impact on the
conditioning and performance.

Fig. 3 and Table 2 present the covariance conditioning
of decorrelated BN and the corresponding validation errors,

Fig. 3: Covariance condition-
ing during the training pro-
cess using orthogonal gradi-
ent and weight treatments.

Methods mean±std min
SVD 19.99±0.16 19.80

SVD + NOG 19.43±0.24 19.15
SVD + NOG + SN 19.43±0.21 19.20
SVD + NOG + OL 20.14±0.39 19.54

SVD + NOG + OW 19.22±0.28 18.90
NS iteration 19.45±0.33 19.01

TABLE 2: Performance of gra-
dient treatments on ResNet-50
and CIFAR100. Each result is
based on 10 runs.

respectively. As we can observe, solely using the proposed
NOG can largely improve the covariance conditioning,
decreasing the condition number from 1012 to 106. Though
this improvement is not as significant as the orthogonal
constraints (e.g., OL and OW), our NOG can benefit more
the generalization abilities, leading to the improvement
of validation error by 0.6%. Combining the SN with our
NOG does not lead to obvious improvements in either
the conditioning or validation errors, whereas the joint use
of NOG and OL harms the network performances. This
is because the orthogonality constraint by loss might not
be enforced under the gradient manipulation. When our
NOG is combined with the OW, the side effect of using only
OW is eliminated and the performance is further boosted
by 0.3%. This phenomenon demonstrates that when the
gradient is orthogonal, applying the orthogonality constraint
to the weight could also be beneficial to the generalization.

4.2 Optimal Learning Rate (OLR)

So far, we only consider orthogonalizing W and ∂l
∂W sepa-

rately, but how to jointly optimize W−η ∂l
∂W has not been

studied yet. Actually, it is desired to choose an appropriate
learning rate η such that the updated weight is close to
an orthogonal matrix. To this end, we need to achieve the
following objective:

min
η
||(W − η ∂l

∂W
)(W − η ∂l

∂W
)T − I||F (11)

This optimization problem can be more easily solved in the
vector form. Let w, i, and l denote the vectorized W, I, and
∂l
∂W , respectively. Then we construct the error function as:

e(η) =
(
(w−ηl)T (w−ηl)−i

)T(
(w−ηl)T (w−ηl)−i

)
(12)

Expanding and differentiating the equation w.r.t. η lead to:

de(η)

dη
≈ −4wwT lTw + 4ηwwT lT l + 8ηlTwlTw = 0

η? ≈ wTwlTw

wTwlT l + 2lTwlTw
(13)

where some higher-order terms are neglected. The detailed
derivation is given in the supplementary material. Though
the proposed OLR yields the updated weight nearest to an
orthogonal matrix theoretically, the value of η? is unbounded
for arbitrary w and l. Directly using η? might cause unstable
training. To avoid this issue, we propose to use the OLR

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Fig. 4: Covariance condition-
ing during the training pro-
cess using optimal learning
rate and hybrid treatments.

Methods mean±std min
SVD 19.99±0.16 19.80

SVD + OLR 19.50±0.39 18.95
SVD + NOG + OLR 19.77±0.27 19.36

SVD + OW + OLR 20.61±0.22 20.43
SVD + NOG
+ OW +OLR 19.05±0.31 18.77

NS iteration 19.45±0.33 19.01

TABLE 3: Performance of
optimal learning rate on
ResNet-50 and CIFAR100
based on 10 runs.

only when its value is smaller than the learning rate of other
layers. Let lr denote the learning rate of the other layers. The
switch process can be defined as:

η =

{
η? if η? < lr

lr otherwise
(14)

4.2.1 Combination with Weight/Gradient Treatments

When either the weight or the gradient is orthogonal, our
OLR needs to be carefully used. When only W is orthogonal,
wTw is a small constant and it is very likely to have
wTw�lTw. Consequently, we have wTwlTw�lTwlTw
and η? will attenuate to zero. Similarly for orthogonal gradi-
ent, we have wTwlTw�lTwlT l and this will cause η? close
to zero. Therefore, the proposed OLR cannot work when
either the weight or gradient is orthogonal. Nonetheless,
we note that if both W and ∂l

∂W are orthogonal, our η? is
bounded. Specifically, we have:

Proposition 1. When both W and ∂l
∂W are orthogonal, η? is

both upper and lower bounded. The upper bound is N2

N2+2 and the
lower bound is 1

N2+2 where N denotes the row dimension of W.

We give the detailed proof in the supplementary material.
Obviously, the upper bound of η? is smaller than 1. For the
lower bound, since the row dimension of N is often large
(e.g., 64), the lower bound of η? can be according very small
(e.g., 2e−4). This indicates that our proposed OLR could
also give a small learning rate even in the later stage of the
training process.

In summary, the optimal learning rate is set such that
the updated weight is optimal in the sense that it become as
close to an orthogonal matrix as possible. In particular, it is
suitable when both the gradient and weight are orthogonal.

We give the covariance conditioning and the validation
errors in Fig. 4 and in Table 3, respectively. Our proposed
OLR significantly reduces the condition number to 104 and
improves the validation error by 0.5%. When combined with
either orthogonal weight or orthogonal gradient, there is
a slight degradation on the validation errors. This meets
our expectation as η? would attenuate to zero in both cases.
However, when both W and ∂l

∂W are orthogonal, jointly
using our OLR achieves the best performance, outperforming
only OLR by 0.5% and beating OW+NOG by 0.2%. This
observation confirms that the proposed OLR works well for
simultaneously orthogonal W and ∂l

∂W .

5 ORTHOGONALITY FOR UNSUPERVISED LATENT
DISENTANGLEMENT

In this section, we motivate why orthogonal treatments
(orthogonal weight or gradient) would help in unsupervised
latent disentanglement of GANs.

5.1 Image Manipulation in Latent Space of GANs
The latent space of GANs encodes rich semantics information,
which can be used for image editing via vector arithmetic
property [71]. Consider a generator G(·) and the latent code
z∈Rd. The image manipulation is achieved by finding a
semantically meaningful direction n such that

edit(G(z)) = G(z + αn) (15)

where edit(·) denotes the image editing process, and α
represents the perturbation strength. That being said, moving
the latent code z along with the interpretable direction
n should change the targeting semantic concept of the
image. Since the generator G(·) is highly non-linear and
complex, directly analyzing G(z + αn) is intractable. To
avoid this issue, existing approaches propose to simplify the
analysis by considering only the first projector matrix G1(·)
or performing local Taylor expansion [22], [23], [72], [73].
Eigenvector of the first projector. In SeFa [23], the authors
propose to seek for interpretable directions from the eigen-
vector of the first projector matrix. Specifically, they consider
the affine transformation of the layer as:

G1(z + αn) = Az + b + αAn = G1(z) + αAn (16)

where A is the weight matrix. Intuitively, a meaningful
direction should lead to large variations of the generated
image. So the problem can be cast into an optimization
problem as:

n? = argmax ||An||2 (17)

All the possible closed-form solution correspond to the
eigenvector of ATA. The top-k eigenvectors are thus selected
as the interpretable directions for image manipulation.
Eigenvector of the Jacobian. LowRankGAN [22] proposes
to linearly approximate G(z + αn) by the Taylor expansion
as:

G(z + αn) ≈ G(z) + αJzn (18)

where Jz is the Jacobian matrix w.r.t. the latent code z.
Similarly to the deduction of eq. (17), the closed-form
solution is given by the eigenvector of JTz Jz.

The above two formulations illustrate how the weight
and gradient matrices are related with the interpretable
direction discovery. Currently, most GAN models do not
enforce orthogonality to their architectures. Now we turn to
explaining the concrete benefit of introducing orthogonality
to the latent disentanglement.

5.2 Usefulness of Orthogonality
Though few previous works have applied implicit orthogo-
nality as regularization in GANs [61], [65], [67], [68], there are
no generally accepted explanations on how the orthogonality
is related to the disentangled representations. Here we give
an intuitive explanation. As discussed in the above image
manipulation modelling, the eigenvectors of weight and

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Fig. 5: Illustration of the benefit of orthogonality in latent
disentanglement. As revealed in [22], [23], the interpretable
directions of latent codes are the eigenvectors of weight
or gradient matrices. For non-orthogonal matrices, the
principle eigenvector is of the most importance, which
would make this direction correspond to many semantic
attributes. The other eigenvectors might fail to capture
any semantic information. By contrast, the eigenvectors of
orthogonal matrices are equally important. The network
with the orthogonal weight/gradient is likely to learn more
disentangled representations.

gradient matrices naturally imply the interpretable directions
for latent disentanglement. For common non-orthogonal
matrices, the importance of each eigenvector is characterized
by the corresponding eigenvalue. Each eigenvector is not
equally important and the first few ones would dominate
the spectrum. This imbalance would cause most semantic
attributes entangled in the first few directions. Fig. 5 top
illustrates this phenomenon: moving the latent code along with
the top-1 eigenvector direction triggers changes of many semantic
attributes. On the contrary, the small eigenvector direction does
not indicate any semantic changes. The learned representation are
thus deemed entangled.

The orthogonal matrices can greatly relieve this issue
thanks to the flat spectrum and equally-important eigenvec-
tors. As shown in Fig. 5 bottom, when our NOG and OLR are
applied, each direction of the orthogonal matrix is equally
important and corresponds to one semantic attribute. Shifting
the latent code in one direction only changes the targeting
semantic concept, while the identity and other attributes
are not touched. Enforcing orthogonality would lead to the
superior disentanglement of learned representations.

Our proposed NOG and OLR can serve as strict or-
thogonal gradient constraint and relaxed orthogonal weight
constraint, respectively. Enforcing them on the first layer
after the latent code during the training process is very likely
to lead to more disentangled representations. In Sec. 6.2, we
apply these two techniques in various GAN architectures
and benchmarks for unsupervised latent disentanglement.

6 EXPERIMENTS

6.1 Covariance Conditioning
We validate the proposed approaches in two applications:
GCP and decorrelated BN. These two tasks are very rep-
resentative because they have different usages of the SVD
meta-layer. The GCP uses the matrix square root, while the
decorrelated BN applies the inverse square root. In addition,
the models of decorrelated BN often insert the SVD meta-
layer at the beginning of the network, whereas the GCP
models integrate the layer before the FC layer.

6.1.1 Decorrelated Batch Normalization

Fig. 6: The scheme of the modified ResNet for decorrelated
BN. We reduce the kernel size of the first convolution layer
from 7×7 to 3×3. The BN after this layer is replaced with
our decorrelated BN layer.

We use ResNet-50 [74] as the backbone for the experiment
on CIFAR10 and CIFAR100 [75]. The kernel size of the first
convolution layer of ResNet is 7×7, which might not suit
the low resolution of these two datasets (the images are only
of size 32×32). To avoid this issue, we reduce the kernel
size of the first convolution layer to 3×3. The stride is also
decreased from 2 to 1. The BN layer after this layer is replace
with our decorrelated BN layer (see Fig. 6). Let X∈RC×BHW

denotes the reshaped feature. The whitening transform is
performed as:

Xwhitened = (XXT)−
1
2 X (19)

Compared with the vanilla BN that only standardizes the
data, the decorrelated BN can further eliminate the data
correlation between each dimension.

Methods CIFAR10 CIFAR100
mean±std min mean±std min

SVD 4.35±0.09 4.17 19.99±0.16 19.80
SVD + SN 4.31±0.10 4.15 19.94±0.33 19.60
SVD + OL 4.28±0.07 4.23 19.73±0.28 19.54

SVD + OW 4.42±0.09 4.28 20.06±0.17 19.94
SVD + NOG 4.15±0.06 4.04 19.43±0.24 19.15
SVD + OLR 4.23±0.17 3.98 19.50±0.39 18.95

SVD + NOG + OW 4.09±0.07 4.01 19.22±0.28 18.90
SVD + NOG + OW + OLR 3.93±0.09 3.85 19.05±0.31 18.77

NS iteration 4.20±0.11 4.11 19.45±0.33 19.01

TABLE 4: Performance comparison of decorrelated BN meth-
ods on CIFAR10/CIFAR100 [75] based on ResNet-50 [74]. We
report each result based on 10 runs. The best four results are
highlighted in red, blue, green, and cyan respectively.

Table 4 compares the performance of each method on
CIFAR10/CIFAR100 [75] based on ResNet-50 [74]. Both
of our NOG and OLR achieve better performance than
other weight treatments and the SVD. Moreover, when
hybrid treatments are adopted, we can observe step-wise

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

steady improvements on the validation errors. Among these
techniques, the joint usage of OLR with NOG and OW
achieves the best performances across metrics and datasets,
outperforming the SVD baseline by 0.4% on CIFAR10 and by
0.9% on CIFAR100. This demonstrates that these treatments
are complementary and can benefit each other.

Methods DenseNet-121 [76] MobileNet-v2 [77]
mean±std min mean±std min

SVD 27.37±0.54 26.88 34.35±0.32 34.00
SVD + SN 27.05±0.44 26.51 34.19±0.37 33.82
SVD + OL 27.41±0.35 26.99 34.58±0.43 34.15

SVD + OW 27.25±0.47 26.67 34.27±0.46 33.77
SVD + NOG 25.14±0.39 24.65 33.42±0.41 32.91
SVD + OLR 25.34±0.28 25.01 33.59±0.64 32.84

SVD + NOG + OW 24.49±0.43 23.97 33.13±0.55 32.61
SVD + NOG + OW + OLR 23.74±0.24 23.41 32.83±0.48 32.33

NS iteration 25.87±0.43 25.31 33.67±0.51 33.24

TABLE 5: Performance comparison of decorrelated BN
methods on CIFAR100 [75] with DenseNet-121 [76] and
MobileNet-v2 [77] based on 10 runs. The best four results are
highlighted in red, blue, green, and cyan respectively.

Table 5 presents the validation errors on CIFAR100 with
DenseNet-121 [76] and MobileNet-v2 [77]. The results are
coherent with those on ResNet-50 [74]: our methods bring
consistent performance improvements to the ordinary SVD
on different architectures. This demonstrates the model-
agnostic property of the proposed orthogonality approaches.
Fig. 7 displays the corresponding best validation accuracy
during the training process. Our method can also accelerate
the convergence of the training process. The acceleration is
particularly significant in the initial training stage.

Fig. 7: The best validation accuracy during the training
process. Our proposed techniques can consistently improve
the convergence speed and help the model to achieve better
accuracy within fewer training epochs.

Finally, we would like to note that the performance gain
of our methods depends on the specific architectures and the
ill-conditioned extent of the covariance. Generally speaking,
the larger the model is, the worse-conditioned the covariance
is and the larger the performance gain would be. Take
the above decorrelated BN experiments as an example, the
accuracy improvement on MobileNet is around 1.5%, while
the performance gain on larger DenseNet is about 4.0%.

6.1.2 Global Covariance Pooling
We use ResNet-18 [74] for the GCP experiment and train it
from scratch on ImageNet [78]. Fig. 8 displays the overview
of a GCP model. For the ResNet backbone, the last Global

Fig. 8: The architecture of a GCP model [1], [2]. After all the
convolution layers, the covariance square root of the feature
is computed and used as the final representation.

Average Pooling (GAP) layer is replaced with our GCP
layer. Consider the final batched convolutional feature
X∈RB×C×HW . We compute the matrix square root of its
covariance as:

Q = (XXT)
1
2 (20)

where Q∈RB×C×C is used as the final representation and
directly passed to the fully-connected (FC) layer.

Method
Failure
Times Top-1 Acc. (%) Top-5 Acc. (%)

SVD 5 73.13 91.02
SVD + SN 2 73.28 (↑ 0.2) 91.11 (↑ 0.1)
SVD + OL 1 71.75 (↓ 1.4) 90.20 (↓ 0.8)

SVD + OW 2 73.07 (↓ 0.1) 90.93 (↓ 0.1)
SVD + NOG 1 73.51 (↑ 0.4) 91.35 (↑ 0.3)
SVD + OLR 0 73.39 (↑ 0.3) 91.26 (↑ 0.2)

SVD + NOG + OW 0 73.71 (↑ 0.6) 91.43 (↑ 0.4)
SVD + NOG + OW + OLR 0 73.82 (↑ 0.7) 91.57 (↑ 0.6)

NS iteration 0 73.36 (↑ 0.2) 90.96 (↓ 0.1)

TABLE 6: Performance comparison of different GCP methods
on ImageNet [78] based on ResNet-18 [74]. The failure
times denote the total times of non-convergence of the SVD
solver during one training process. The best four results are
highlighted in red, blue, green, and cyan respectively.

Table 6 presents the total failure times of the SVD solver
in one training process and the validation accuracy on
ImageNet [78] based on ResNet-18 [74]. The results are very
coherent with our experiment of decorrelated BN. Among
the weight treatments, the OL and OW hurt the performance,
while the SN improves that of SVD by 0.2%. Our proposed
NOG and OLR outperform the weight treatments and
improve the SVD baseline by 0.4% and by 0.3%, respectively.
Moreover, the combinations with the orthogonal weight
further boost the performance. Specifically, combining NOG
and OW surpasses the SVD by 0.6%. The joint use of OW
with NOG and OLR achieves the best performance among
all the methods and beats the SVD by 0.7%.

Fig. 10 depicts the covariance conditioning in the later
training stage. Our OLR and the OW both reduce the
condition number by around 1e15, whereas the proposed
NOG improves the condition number by 2e15. When hybrid
treatments are used, combining NOG and OW attains
better conditioning than the separate usages. Furthermore,
simultaneously using all the techniques leads to the best
conditioning and improves the condition number by 5e15.

The covariance conditioning of GCP tasks is not improved
as much as that of decorrelated BN. This might stem from the
unique architecture of GCP models: the covariance is directly
used as the final representation and fed to the FC layer.
We conjecture that this setup might cause the covariance

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Fig. 9: Latent traversal on AnimeFace [79]. The EigenGAN has entangled attributes in the identified interpretable directions,
while our methods achieve better disentanglement and each direction corresponds to a unique attribute.

Fig. 10: The covariance conditioning of GCP methods in the
later stage of the training. The periodic spikes are caused by
the evaluation on the validation set after every epoch.

to have a high condition number. The approximate solver
(NS iteration) does not have well-conditioned matrices either
(≈1e15), which partly supports our conjecture.

6.1.3 Computational Cost

Methods FP (ms) BP (ms)

SVD 44 95
SVD + NOG 44 97 (+2)
SVD + OLR 44 96 (+1)
SVD + OW 48 (+4) 102 (+7)

SVD + OW + NOG + OLR 49 (+5) 106 (+11)
NS Iteration 43 93

Vanilla ResNet-50 42 90

TABLE 7: Time consumption of each forward pass (FP) and
backward pass (BP) measured on a RTX A6000 GPU. The
evaluation is based on ResNet-50 and CIFAR100.

Table 7 compares the time consumption of a single
training step for the experiment of decorrelated BN. Our
NOG and OLR bring negligible computational costs to the BP
(2% and 1%), while the FP is not influenced. Even when all
techniques are applied, the overall time costs are marginally
increased by 10%. Notice that NOG and OLR have no impact
on the inference speed.

6.2 Latent Disentanglement
In this subsection, we first introduce the experiment setup,
followed by the evaluation results on different GAN archi-

tectures and datasets. We defer the implementation details
to the Supplementary Material.

6.2.1 Experimental Setup
Models. We evaluate our methods on EigenGAN [67] and
vanilla GAN [21]. EigenGAN [67] is a particular GAN
architecture dedicated to latent disentanglement. It progres-
sively injects orthogonal subspaces into each layer of the
generator, which can mine controllable semantic attributes in
an unsupervised manner. For the vanilla GAN [21], we adopt
the basic GAN model that consists of stacked convolutional
layers and do not make any architectural modifications.
Datasets. For EigenGAN, we use AnimeFace [79] and
FFHQ [80] datasets. AnimeFace [79] is comprised of 63, 632
aligned anime faces with resolution varying from 90×90
to 120×120. FFHQ [80] consists of 70, 000 high-quality face
images that have considerable variations in identifies and
have good coverage in common accessories. Since the vanilla
GAN has a smaller architecture and fewer parameters, we
use relatively simpler CelebA [81] and LSUN Church [82]
datasets. CelebA [81] contains 202, 599 face images of 10, 177
celebrities, while LSUN Church [82] has 126, 227 scenes
images of church.
Metrics. We use Frechet Inception Distance (FID) [83] to
quantitatively evaluate the quality of generate images. For
the performance of latent disentanglement, we use Varia-
tional Predictability (VP) [66] as the quantitative metric. The
VP metric adopts the few-shot learning setting to measure
the generalization abilities of a simple neural network in
classifying the discovered latent directions.
Baselines. For the EigenGAN model that already has in-
herent orthogonality constraints and good disentanglement
abilities, we compare the ordinary EignGAN with the
modified version augmented by our proposed orthogonal
techniques (NOG and OLR). For the vanilla GAN that suffers
from limited disentanglement, we compare our NOG and
OLR against other disentanglement schemes used in GANs,
including (1) Hessian Penalty (HP) [65], (2) Orthogonal Jaco-
bian Regularization (OrthoJar) [68], and (3) Latent Variational
Predictability (LVP) [66].

6.2.2 EigenGAN Architecture and Modifications
Fig. 12 displays the overview of the EigenGAN. At each
layer, the latent code zi is multiplied with the orthogonal
basis Ui and the diagonal importance matrix Li to inject
weighted orthogonal subspace for disentangled representa-
tion learning. The original EigenGAN [67] adopts the OL
loss ||UiU

T
i −I||F to enforce relaxed orthogonality to each

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

Fig. 11: Visualization of some fine-grained attributes learned by out method on FFHQ [80] dataset. Our method can learn
very subtle and fine-grained attributes while keeping the identity unchanged.

subspace Ui. Instead, we apply our NOG and OLR to achieve
the weight and gradient orthogonality, respectively. Notice
that when our NOG and OLR are applied, we do not use the
OL loss of EigenGAN. This is because the soft orthogonality
introduced by the OL loss might not be enforced under the
gradient manipulation of our NOG, which is similar to our
experimental results of decorrelated BN (see Sec. 4.1.3).

Fig. 12: Overview of the EigenGAN architecture.

6.2.3 Results on EigenGAN

Fig. 13: Subtle semantic attributes mined by our method.

Qualitative Evaluation. Fig. 9 compares the latent traversal
results of the ordinary EigenGAN and our methods on
AnimeFace. The interpretable direction of EigenGAN has
many entangled attributes; the identity is poorly preserved
during the latent traversal. By contrast, moving along with
the discovered direction of our method would only introduce
changes of a single semantic attribute. This demonstrates that
our interpretable directions have more precisely-controlled
semantics and our orthogonality techniques indeed help the
model to learn more disentangled representations. Moreover,
thanks to the power of orthogonality, our methods can mine
many subtle and fine-grained attributes. Fig. 13 displays such
attributes that are precisely captured by out method but are
not learnt by EigenGAN. These attributes include very subtle
local details of the image, such as facial blush, facial shadow,
and mouth openness.

Fig. 14: Qualitative comparison on FFHQ. The attributes are
entangled in one latent direction of EigenGAN, while our
method can avoid this and discover orthogonal concepts.

Fig. 14 compares the exemplary latent traversal on FFHQ.
Similar with the result on AnimeFace, the interpretable
directions have more disentangled attributes when our
orthogonality techniques are used. Since FFHQ covers a wide
range of image attributes, our method is able to learn very
fine-grained attributes (e.g., angle and thickness of eyebrow)
of a given super attribute (e.g., eyebrow) accordingly. We give
a few examples in Fig. 11. As can be observed, our method
can precisely control the subtle detail of the image while
keeping other attributes unchanged.

Methods AnimeFace [79] FFHQ [80]

FID (↓) VP (↑) FID (↓) VP (↑)
EigenGAN 23.59 37.01 36.81 31.79

EigenGAN+NOG 19.48 43.53 33.34 37.27
EigenGAN+OLR 18.30 43.99 31.42 37.23

EigenGAN+OLR+NOG 16.31 45.48 30.06 39.32

TABLE 8: Quantitative evaluation on EigenGAN.

Quantitative Evaluation. Table 8 compares the performance
of EigenGAN on AnimeFace and FFHQ datasets. Our
proposed NOG and OLR can improve both the image quality
score (FID) and the disentanglement score (VP). Furthermore,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

when these two techniques are combined, the evaluation
results achieve the best performance across metrics and
datasets. This implies that enforcing simultaneous gradient
and weight orthogonality allows for the learning of more
disentangled representations and improved image fidelity.
Discussion. Both quantitative and qualitative evaluation on
two datasets demonstrates that our orthogonality approaches
lead to better latent disentanglement than the inherent
orthogonality loss of EigenGAN. This behavior is coherent to
our previous experiment of decorrelated BN: the proposed
NOG and OLR also outperform OL in that case. This further
confirms the general applicability of our orthogonal methods.

6.2.4 Vanilla GAN Architecture
For the vanilla GAN model, we use simple convolutional
layers as building blocks. The orthogonality techniques are
applied on the first convolution layer after the latent code.

6.2.5 Results on Vanilla GAN

Fig. 15: Qualitative comparison on CelebA. For HP [65],
The latent traversal in one direction would introduce many
attributes changes. By contrast, the image identity of our
method is well preserved and only the target attribute varies.

Qualitative Evaluation. Fig. 15 presents the qualitative eval-
uation results on CelebA [81] against HP [65]. The semantic
factors discovered by our methods controls traversal process
more precisely; only a single attribute is changed when one
latent code is modified. By contrast, a interpretable direction
mined by HP [65] would correspond to multiple attributes

sometimes. This implies that the learned representations
and attributes of our NOG and OLR are more disentangled.
Fig. 16 displays some learned attributes of our methods. The
complex scenes and structures of churches are preserved
well, and each semantic factor precisely controls the image
attribute. This also demonstrates the diverse application do-
mains of our disentanglement method beyond face analysis.

Fig. 16: Latent traversal of our NOG on LSUN Church.

Methods Time (ms) CelebA [81] LSUN Church [82]

FID (↓) VP (↑) FID (↓) VP (↑)
OrJar [68] 23 32.43 24.24 38.96 11.62
HP [65] 30 31.65 24.67 39.20 13.73
LVP [66] 16 34.36 23.49 41.24 12.58

NOG 8 29.69 25.33 37.22 13.43
OLR 8 33.29 27.22 37.83 14.50

NOG+OLR 9 30.65 28.74 35.20 16.98

TABLE 9: Quantitative evaluation on vanilla GAN. We
measure the time consumption of a single forward pass
and backward pass. The best three results are highlighted in
red, blue, and green respectively.

Quantitative Evaluation. Table. 9 reports the quantitative
evaluation results on vanilla GAN. Our proposed orthogo-
nality techniques outperform other disentanglement schemes
in terms of both FID and VP, achieving state-of-the-art
performance in the unsupervised latent disentanglement.
Moreover, our approaches are much more efficient than other
baselines due to the marginal computational cost.

Datasets OrJar [68] HP [65] LVP [66] NOG OLR NOG+OLR

CelebA [81] 2.75 2.67 2.78 2.28 2.14 2.01
Church [82] 2.48 2.57 2.66 2.13 2.09 1.93

TABLE 10: Condition number of the first convolution weight
in vanilla GANs on CelebA [81] and LSUN Church [82].

Condition Number in Vanilla GANs. Similar to our previ-
ous experiments, we measure the condition number of the fist
convolution weight in vanilla GANs (i.e., the projection ma-
trix that maps latent codes to features). Table 10 presents the
evaluation results on CelebA [81] and LSUN Church [82]. As
can be observed, our methods (NOG, OLR, and NOG+OLR)
outperform other baselines and have much better condition
numbers. This demonstrates that our methods can also
improve the conditioning of the weight matrix of vanilla
GANs. Notice that the convolution weight matrix is small in

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

dimensionality. The corresponding condition number is thus
much smaller compared with the covariance conditioning in
the previous experiments.

7 CONCLUSION

In this paper, we explore different approaches to improve
the covariance conditioning of the SVD meta-layer. Existing
treatments on orthogonal weight are first studied. Our
experiments reveal that these techniques could improve
the conditioning but might hurt the performance due to
the limitation on the representation power. To avoid the
side effect of orthogonal weight, we propose the nearest
orthogonal gradient and the optimal learning rate, both of
which could simultaneously attain better covariance con-
ditioning and improved generalization abilities. Moreover,
their combinations with orthogonal weight further boost
the performance. Besides the usage on the SVD meta-layer,
we show that our proposed orthogonality approaches can
benefit generative models for better latent disentanglement.

ACKNOWLEDGEMENTS

This research was supported by the EU H2020 projects
AI4Media (No. 951911) and SPRING (No. 871245) and by the
PRIN project CREATIVE Prot. 2020ZSL9F9.

REFERENCES

[1] P. Li, J. Xie, Q. Wang, and W. Zuo, “Is second-order information
helpful for large-scale visual recognition?” in ICCV, 2017.

[2] Y. Song, N. Sebe, and W. Wang, “Why approximate matrix square
root outperforms accurate svd in global covariance pooling?” in
ICCV, 2021.

[3] Z. Gao, Q. Wang, B. Zhang, Q. Hu, and P. Li, “Temporal-attentive
covariance pooling networks for video recognition,” in NeurIPS,
2021.

[4] L. Huang, D. Yang, B. Lang, and J. Deng, “Decorrelated batch
normalization,” in CVPR, 2018.

[5] L. Huang, Y. Zhou, L. Liu, F. Zhu, and L. Shao, “Group whitening:
Balancing learning efficiency and representational capacity,” in
CVPR, 2021.

[6] Y. Song, N. Sebe, and W. Wang, “Fast differentiable matrix square
root,” in ICLR, 2022.

[7] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang, “Universal
style transfer via feature transforms,” in NeurIPS, 2017.

[8] T.-Y. Chiu, “Understanding generalized whitening and coloring
transform for universal style transfer,” in ICCV, 2019.

[9] Z. Wang, L. Zhao, H. Chen, L. Qiu, Q. Mo, S. Lin, W. Xing,
and D. Lu, “Diversified arbitrary style transfer via deep feature
perturbation,” in CVPR, 2020.

[10] E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel,
S. Gumhold, and C. Rother, “Dsac-differentiable ransac for camera
localization,” in CVPR, 2017.

[11] D. Campbell, L. Liu, and S. Gould, “Solving the blind perspective-
n-point problem end-to-end with robust differentiable geometric
optimization,” in ECCV, 2020.

[12] Z. Dang, K. M. Yi, Y. Hu, F. Wang, P. Fua, and M. Salzmann,
“Eigendecomposition-free training of deep networks for linear least-
square problems,” TPAMI, 2020.

[13] N. J. Higham, Functions of matrices: theory and computation. SIAM,
2008.

[14] W. Wang, Z. Dang, Y. Hu, P. Fua, and M. Salzmann, “Robust
differentiable svd,” TPAMI, 2021.

[15] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient
backprop,” in Neural networks: Tricks of the trade. Springer, 2012,
pp. 9–48.

[16] S. Wiesler and H. Ney, “A convergence analysis of log-linear
training,” NeurIPS, 2011.

[17] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in ICML, 2013.

[18] D. Mishkin and J. Matas, “All you need is a good init,” ICLR, 2016.
[19] J. Wang, Y. Chen, R. Chakraborty, and S. X. Yu, “Orthogonal

convolutional neural networks,” in CVPR, 2020.
[20] S. Singla and S. Feizi, “Skew orthogonal convolutions,” in ICML,

2021.
[21] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
NeurIPS, 2014.

[22] J. Zhu, R. Feng, Y. Shen, D. Zhao, Z.-J. Zha, J. Zhou, and Q. Chen,
“Low-rank subspaces in gans,” NeurIPS, 2021.

[23] Y. Shen and B. Zhou, “Closed-form factorization of latent semantics
in gans,” in CVPR, 2021.

[24] Y. Song, N. Sebe, and W. Wang, “Improving covariance condition-
ing of the svd meta-layer by orthogonality,” in ECCV, 2022.

[25] C. Ionescu, O. Vantzos, and C. Sminchisescu, “Matrix backpropa-
gation for deep networks with structured layers,” in ICCV, 2015.

[26] ——, “Training deep networks with structured layers by matrix
backpropagation,” arXiv preprint arXiv:1509.07838, 2015.

[27] Y. Song, N. Sebe, and W. Wang, “Fast differentiable matrix square
root and inverse square root,” TPAMI, 2022.

[28] ——, “Batch-efficient eigendecomposition for small and medium
matrices,” in ECCV, 2022.

[29] L. Huang, Y. Zhou, F. Zhu, L. Liu, and L. Shao, “Iterative normal-
ization: Beyond standardization towards efficient whitening,” in
CVPR, 2019.

[30] L. Huang, L. Zhao, Y. Zhou, F. Zhu, L. Liu, and L. Shao, “An
investigation into the stochasticity of batch whitening,” in CVPR,
2020.

[31] P. Li, J. Xie, Q. Wang, and Z. Gao, “Towards faster training of
global covariance pooling networks by iterative matrix square root
normalization,” in CVPR, 2018.

[32] Q. Wang, J. Xie, W. Zuo, L. Zhang, and P. Li, “Deep cnns meet
global covariance pooling: Better representation and generalization,”
TPAMI, 2020.

[33] J. Xie, R. Zeng, Q. Wang, Z. Zhou, and P. Li, “So-vit: Mind visual
tokens for vision transformer,” arXiv preprint arXiv:2104.10935, 2021.

[34] Y. Song, N. Sebe, and W. Wang, “On the eigenvalues of global
covariance pooling for fine-grained visual recognition,” IEEE
TPAMI, 2022.

[35] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Improved texture
networks: Maximizing quality and diversity in feed-forward
stylization and texture synthesis,” in CVPR, 2017.

[36] W. Cho, S. Choi, D. K. Park, I. Shin, and J. Choo, “Image-to-
image translation via group-wise deep whitening-and-coloring
transformation,” in CVPR, 2019.

[37] A. Abramov, C. Bayer, and C. Heller, “Keep it simple: Im-
age statistics matching for domain adaptation,” arXiv preprint
arXiv:2005.12551, 2020.

[38] S. Choi, S. Jung, H. Yun, J. T. Kim, S. Kim, and J. Choo, “Robustnet:
Improving domain generalization in urban-scene segmentation via
instance selective whitening,” in CVPR, 2021.

[39] R. Ranftl and V. Koltun, “Deep fundamental matrix estimation,” in
ECCV, 2018.

[40] I. Murray, “Differentiation of the cholesky decomposition,” arXiv
preprint arXiv:1602.07527, 2016.

[41] Z. Geng, M.-H. Guo, H. Chen, X. Li, K. Wei, and Z. Lin, “Is attention
better than matrix decomposition?” in ICLR, 2021.

[42] Y. Xiong, Z. Zeng, R. Chakraborty, M. Tan, G. Fung, Y. Li,
and V. Singh, “Nyströmformer: A nyström-based algorithm for
approximating self-attention,” in AAAI, 2021.

[43] J. Lu, J. Yao, J. Zhang, X. Zhu, H. Xu, W. Gao, C. Xu, T. Xiang, and
L. Zhang, “Soft: softmax-free transformer with linear complexity,”
NeurIPS, 2021.

[44] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “Pcanet: A
simple deep learning baseline for image classification?” IEEE TIP,
2015.

[45] Y. Yang, J. Sun, H. Li, and Z. Xu, “Admm-net: A deep
learning approach for compressive sensing mri,” arXiv preprint
arXiv:1705.06869, 2017.

[46] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term depen-
dencies with gradient descent is difficult,” IEEE transactions on
neural networks, 1994.

[47] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in AISTATS, 2010.

[48] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to
the nonlinear dynamics of learning in deep linear neural networks,”
in ICLR, 2014.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

[49] L. Xiao, Y. Bahri, J. Sohl-Dickstein, S. Schoenholz, and J. Pennington,
“Dynamical isometry and a mean field theory of cnns: How to
train 10,000-layer vanilla convolutional neural networks,” in ICML.
PMLR, 2018.

[50] P. Rodrı́guez, J. Gonzalez, G. Cucurull, J. M. Gonfaus, and X. Roca,
“Regularizing cnns with locally constrained decorrelations,” in
ICLR, 2016.

[51] N. Bansal, X. Chen, and Z. Wang, “Can we gain more from
orthogonality regularizations in training deep networks?” in
NeurIPS, 2018.

[52] H. Qi, C. You, X. Wang, Y. Ma, and J. Malik, “Deep isometric
learning for visual recognition,” in ICML. PMLR, 2020.

[53] K. D. Maduranga, K. E. Helfrich, and Q. Ye, “Complex unitary
recurrent neural networks using scaled cayley transform,” in AAAI,
2019.

[54] A. Trockman and J. Z. Kolter, “Orthogonalizing convolutional
layers with the cayley transform,” in ICLR, 2020.

[55] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training
for high fidelity natural image synthesis,” in ICLR, 2019.

[56] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral
normalization for generative adversarial networks,” in ICLR, 2018.

[57] Y. Tsuzuku, I. Sato, and M. Sugiyama, “Lipschitz-margin training:
Scalable certification of perturbation invariance for deep neural
networks,” NeurIPS, 2018.

[58] H. Sedghi, V. Gupta, and P. M. Long, “The singular values of
convolutional layers,” in ICLR, 2018.

[59] D. Bau, J.-Y. Zhu, H. Strobelt, B. Zhou, J. B. Tenenbaum, W. T.
Freeman, and A. Torralba, “Gan dissection: Visualizing and under-
standing generative adversarial networks,” in ICLR, 2019.

[60] A. Jahanian, L. Chai, and P. Isola, “On the” steerability” of
generative adversarial networks,” in ICLR, 2020.

[61] A. Voynov and A. Babenko, “Unsupervised discovery of inter-
pretable directions in the gan latent space,” in ICML. PMLR,
2020.

[62] C. Tzelepis, G. Tzimiropoulos, and I. Patras, “Warpedganspace:
Finding non-linear rbf paths in gan latent space,” in ICCV, 2021.

[63] Y. Shen, J. Gu, X. Tang, and B. Zhou, “Interpreting the latent space
of gans for semantic face editing,” in CVPR, 2020.

[64] E. Härkönen, A. Hertzmann, J. Lehtinen, and S. Paris, “Ganspace:
Discovering interpretable gan controls,” NeurIPS, 2020.

[65] W. Peebles, J. Peebles, J.-Y. Zhu, A. Efros, and A. Torralba, “The
hessian penalty: A weak prior for unsupervised disentanglement,”
in ECCV. Springer, 2020.

[66] X. Zhu, C. Xu, and D. Tao, “Learning disentangled representations
with latent variation predictability,” in ECCV. Springer, 2020.

[67] Z. He, M. Kan, and S. Shan, “Eigengan: Layer-wise eigen-learning
for gans,” in CVPR, 2021.

[68] Y. Wei, Y. Shi, X. Liu, Z. Ji, Y. Gao, Z. Wu, and W. Zuo, “Orthogonal
jacobian regularization for unsupervised disentanglement in image
generation,” in ICCV, 2021.

[69] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in ICML, 2013.

[70] N. J. Higham, Matrix nearness problems and applications. Citeseer,
1988.

[71] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
ICLR, 2016.

[72] J. Zhu, Y. Shen, Y. Xu, D. Zhao, and Q. Chen, “Region-based
semantic factorization in gans,” ICML, 2022.

[73] G. Balakrishnan, R. Gadde, A. Martinez, and P. Perona, “Rayleigh
eigendirections (reds): Gan latent space traversals for multidimen-
sional features,” arXiv preprint arXiv:2201.10423, 2022.

[74] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016.

[75] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” Master’s thesis, University of Tront, 2009.

[76] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in CVPR, 2017.

[77] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv preprint arXiv:1704.04861, 2017.

[78] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in CVPR, 2009.

[79] B. Chao. (2019) Anime face dataset: a collection of high-quality
anime faces. [Online]. Available: https://github.com/bchao1/
Anime-Face-Dataset

[80] V. Kazemi and J. Sullivan, “One millisecond face alignment with
an ensemble of regression trees,” in CVPR, 2014.

[81] Z. Liu, P. Luo, X. Wang, and X. Tang. Large-scale celebfaces
attributes (CelebA) dataset. [Online]. Available: https://mmlab.ie.
cuhk.edu.hk/projects/CelebA.html

[82] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao, “Lsun:
Construction of a large-scale image dataset using deep learning
with humans in the loop,” arXiv preprint arXiv:1506.03365, 2015.

[83] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochre-
iter, “Gans trained by a two time-scale update rule converge to a
local nash equilibrium,” NeurIPS, 2017.

[84] A. Siarohin, E. Sangineto, and N. Sebe, “Whitening and coloring
batch transform for gans,” in ICLR, 2018.

[85] L. Mirsky, “A trace inequality of john von neumann,” Monatshefte
für mathematik, vol. 79, no. 4, pp. 303–306, 1975.

[86] R. D. Grigorieff, “A note on von neumann’s trace inequalitv,”
Mathematische Nachrichten, vol. 151, no. 1, pp. 327–328, 1991.

Yue Song received the B.Sc. cum laude from KU
Leuven, Belgium and the joint M.Sc. summa cum
laude from the University of Trento, Italy and KTH
Royal Institute of Technology, Sweden. Currently,
he is a Ph.D. student with the Multimedia and
Human Understanding Group (MHUG) at the Uni-
versity of Trento, Italy. His research interests are
computer vision, deep learning, and numerical
analysis and optimization.

Nicu Sebe is Professor with the University of
Trento, Italy, leading the research in the areas
of multimedia information retrieval and human
behavior understanding. He was the General
Co- Chair of ACM Multimedia 2013, and the
Program Chair of ACM Multimedia 2007 and
2011, ECCV 2016, ICCV 2017 and ICPR 2020.
He is a fellow of the International Association for
Pattern Recognition.

Wei Wang is an Assistant Professor of Computer
Science at University of Trento, Italy. Previously,
after obtaining his PhD from University of Trento
in 2018, he became a Postdoc at EPFL, Switzer-
land. His research interests include machine
learning and its application to computer vision
and multimedia analysis.

https://github.com/bchao1/Anime-Face-Dataset
https://github.com/bchao1/Anime-Face-Dataset
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

APPENDIX A
BACKGROUND: SVD META-LAYER

This subsection presents the background knowledge about
the propagation rules of the SVD meta-layer.

A.1 Forward Pass

Given the reshape feature X∈Rd×N where d denotes the
feature dimensionality (i.e., the number of channels) and N
represents the number of features (i.e., the product of spatial
dimensions of features), an SVD meta-layer first computes
the sample covariance as:

P = XJXT ,J =
1

N
(I− 1

N
11T) (21)

where J represents the centering matrix, I denotes the
identity matrix, and 1 is a column vector whose values are
all ones, respectively. The covariance is always positive semi-
definite (PSD) and does not have any negative eigenvalues.
Afterward, the eigendecomposition is performed using the
SVD:

P = UΛUT , Λ = diag(λ1, . . . , λd) (22)

where U is the orthogonal eigenvector matrix, diag(·) de-
notes transforming a vector to a diagonal matrix, and Λ is
the diagonal matrix in which the eigenvalues are sorted in a
non-increasing order i.e., λi≥λi+1. Then depending on the
application, the matrix square root or the inverse square root
is calculated as:

Q , P
1
2 = UΛ

1
2 UT ,Λ

1
2 = diag(λ

1
2
1 , . . . , λ

1
2

d)

S , P− 1
2 = UΛ− 1

2 UT ,Λ− 1
2 = diag(λ

− 1
2

1 , . . . , λ
− 1

2

d)
(23)

The matrix square root Q is often used in GCP-related
tasks [1], [2], [33], while the application of decorrelated
BN [4], [84] widely applies the inverse square root S. In
certain applications such as WCT, both Q and S are required.

A.2 Backward Pass

Let ∂l
∂Q and ∂l

∂S denote the partial derivative of the loss l w.r.t
to the matrix square root Q and the inverse square root S,
respectively. Then the gradient passed to the eigenvector is
computed as:

∂l

∂U

∣∣∣
Q

= (
∂l

∂Q
+(

∂l

∂Q
)T)UΛ

1
2 ,

∂l

∂U

∣∣∣
S
= (

∂l

∂S
+(

∂l

∂S
)T)UΛ− 1

2

(24)
Notice that the gradient equations for Q and S are different.
For the eigenvalue, the gradient is calculated as:

∂l

∂Λ

∣∣∣
Q

=
1

2
diag(λ

− 1
2

1 , . . . , λ
− 1

2

d)UT ∂l

∂Q
U,

∂l

∂Λ

∣∣∣
S
= −1

2
diag(λ

− 3
2

1 , . . . , λ
− 3

2

d)UT ∂l

∂S
U

(25)

Subsequently, the derivative of the SVD step can be calcu-
lated as:

∂l

∂P
= U((KT ◦ (UT ∂l

∂U
)) + (

∂l

∂Λ
)diag)U

T (26)

where ◦ denotes the matrix Hadamard product, and the
matrix K consists of entries Kij=1/(λi−λj) if i6=j and

Kij=0 otherwise. This step is the same for both Q and
S. Finally, we have the gradient passed to the feature X as:

∂l

∂X
= (

∂l

∂P
+ (

∂l

∂P
)T)XJ (27)

With the above rules, the SVD function can be easily inserted
into any neural networks and trained end-to-end as a meta-
layer.

APPENDIX B
MATHEMATICAL DERIVATION AND PROOF

B.1 Derivation of Nearest Orthogonal Gradient
The problem of finding the nearest orthogonal gradient can
be defined as:

min
R
|| ∂l
∂W

−R||F subject to RRT = I (28)

To solve this constrained optimization problem, We can
construct the following error function:

e(R) = Tr
(
(
∂l

∂W
−R)T (

∂l

∂W
−R)

)
+ Tr

(
ΣRTR− I

)
(29)

where Tr(·) is the trace measure, and Σ denotes the sym-
metric matrix Lagrange multiplier. Setting the derivative to
zero leads to:

de(R)

dR
= −2(∂l

∂W
−R) + 2RΣ = 0

∂l

∂W
= R(I + Σ), R =

∂l

∂W
(I + Σ)−1

(30)

The term (I + Σ) can be represented using ∂l
∂W . Consider

the covariance of ∂l
∂W :

(
∂l

∂W
)T

∂l

∂W
= (I + Σ)TRTR(I + Σ) = (I + Σ)T (I + Σ)

(I + Σ) =
(
(
∂l

∂W
)T

∂l

∂W

) 1
2

(31)
Substituting the term (I + Σ) in eq. (30) with the above
equation leads to the closed-form solution of the nearest
orthogonal gradient:

R =
∂l

∂W

(
(
∂l

∂W
)T

∂l

∂W

)− 1
2

(32)

B.2 Derivation of Optimal Learning Rate
To jointly optimize the updated weight W−η ∂l

∂W , we need
to achieve the following objective:

min
η
||(W−η ∂l

∂W
)(W−η ∂l

∂W
)T − I||F (33)

This optimization problem can be more easily solved in the
form of vector. Let w, i, and l denote the vectorized W, I,
and ∂l

∂W , respectively. Then we construct the error function
as:

e(η) =
(
(w−ηl)T (w−ηl)−i

)T(
(w−ηl)T (w−ηl)−i

)
(34)

Expanding the equation leads to:

e(η) = (wTw−2ηlTw+η2lT l−i)T (wTw−2ηlTw+η2lT l−i)
(35)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

Differentiating e(η) w.r.t. η yields:

de(η)

dη
= −4wwT lTw + 4ηwwT lT l

+8ηlTwlTw − 12η2lTwlT l + 4lwT i + 4η3llT − 4ηillT

(36)
Since η is typically very small, the higher-order terms (e.g., η2

and η3) are sufficiently small such that they can be neglected.
After omitting these terms, the derivative becomes:

de(η)

dη
≈−4wwT lTw+4ηwwT lT l+8ηlTwlTw+4lwT i−4ηillT

(37)
Setting the derivative to zero leads to the optimal learning
rate:

η? ≈ wTwlTw − lTwi

wTwlT l + 2lTwlTw − lT li
(38)

Notice that i is the vectorization of the identify matrix I,
which means that i is very sparse (i.e., lots of zeros) and the
impact can be neglected. The optimal learning rate can be
further simplified as:

η? ≈ wTwlTw

wTwlT l + 2lTwlTw
(39)

B.3 Proof of the learning rate bounds
Proposition 1. When both W and ∂l

∂W are orthogonal, η? is
both upper and lower bounded. The upper bound is N2

N2+2 and the
lower bound is 1

N2+2 where N denotes the row dimension of W.

Proof. Since the vector product is equivalent to the matrix
Frobenius inner product, we have the relation:

lTw = 〈 ∂l
∂W

,W〉F (40)

For a given matrix pair A and B, the Frobenius product 〈·〉F
is defined as:

〈A,B〉F =
∑

Ai,jBi,j ≤ σ1(A)σ1(B)+· · ·+σN (A)σN (B)
(41)

where σ(·)i represents the i-th largest eigenvalue, N denotes
the matrix size, and the inequality is given by Von Neu-
mann’s trace inequality [85], [86]. The equality takes only
when A and B have the same eigenvector. When both W
and ∂l

∂W are orthogonal, i.e., their eigenvalues are all 1, we
have the following relation:

〈 ∂l
∂W

,
∂l

∂W
〉F = N, 〈 ∂l

∂W
,W〉F ≤ N (42)

This directly leads to:

〈 ∂l
∂W

,W〉F ≤ 〈
∂l

∂W
,
∂l

∂W
〉F, lTw ≤ lT l (43)

Exploiting this inequality, the optimal learning rate has the
relation:

η? ≈ wTwlTw

wTwlT l + 2lTwlTw
≤ wTwlT l

wTwlT l + 2lTwlTw
(44)

For lTw, we have the inequality as:

lTw = 〈 ∂l
∂W

,W〉F =
∑
i,j

∂l

∂W i,j
Wi,j

≥ σmin(
∂l

∂W
)σmin(W) = 1

(45)

Then we have the upper bounded of η? as:

η? ≤ wTwlT l

wTwlT l + 2lTwlTw

=
N2

N2 + 2lTwlTw
<

N2

N2 + 2

(46)

For the lower bound, since we also have lTw≤wTw, η? can
be re-written as:

η? ≈ wTwlTw

wTwlT l + 2lTwlTw

≥ lTwlTw

wTwlT l + 2lTwlTw

=
1

wTwlT l
lTwlTw + 2

=
1

N2

lTwlTw + 2

(47)

Injecting eq. (45) into eq. (47) leads to the further simplifica-
tion:

η? ≈ 1
N2

lTwlTw + 2
≥ 1

N2 + 2
(48)

As indicated above, the optimal learning rate η? has a lower
bound of 1

N2+2 .

APPENDIX C
DETAILED EXPERIMENTAL SETTINGS

In this section, we introduce the implementation details and
experimental settings.

C.1 Covariance Conditioning

C.1.1 Decorrelated Batch Normalization

The training lasts 350 epochs and the learning rate is initial-
ized with 0.1. The SGD optimizer is used with momentum
0.9 and weight decay 5e−4. We decrease the learning rate
by 10 every 100 epochs. The batch size is set to 128. We use
the technique proposed in [2] to compute the stable SVD
gradient. The Pre-SVD layer in this experiment is the 3×3
convolution layer.

C.1.2 Global Covariance Pooling

The training process lasts 60 epochs and the learning rate
is initialize with 0.1. We decrease the learning rate by 10 at
epoch 30 and epoch 45. The SGD optimizer is used with
momentum 0.9 and weight decay 1e−4. The model weights
are randomly initialized and the batch size is set to 256.
The images are first resized to 256×256 and then randomly
cropped to 224×224 before being passed to the model. The
data augmentation of randomly horizontal flip is used. We
use the technique proposed in [2] to compute the stable
SVD gradient. The Pre-SVD layer denotes the convolution
transform of the previous layer.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

Fig. 17: Scheme of learning rate during the training process of decorrelated BN. For the orthogonal weight and gradient, our
OLR has a much higher probability of occurrence and can enforce a stronger orthogonality constraint.

C.2 Latent Disentanglement
C.2.1 EigenGAN
The input image is resize to 128×128 for AnimeFace [79]
and to 256×256 for FFHQ [80]. We set the batch size to 128,
and the training process lasts 500, 000 steps. The subspace
dimension of each layer is set to 6, i.e., each layer has 6
interpretable directions. All the orthogonality techniques are
enforced on the projection matrix Ui at each layer.

C.2.2 Vanilla GAN
For both CelebA [81] and LSUN Church [82], we resize
the input image to the resolution of 128×128. The training
lasts 200 epochs for CelebA and lasts 400 epochs for LSUN
Church. We set the batch size to 128 and set the latent
dimension to 30.

APPENDIX D
OCCURRENCE OF OLR
Since our proposed OLR needs manual tuning during the
training, it would be interesting to investigate the probability
of occurrence in different settings. Fig. 17 depicts the learning
rate schemes of decorrelated BN with ordinary learning rate
(left), OLR for non-orthogonal weight/gradient (middle), and
OLR for orthogonal weight/gradient (right). As can be seen,
in both settings (orthogonal and non-orthogonal weight/-
gradient), our OLR occurs with a reasonable probability
during the training, which enforces a related orthogonality
constraint on the weight. When the weight and gradient are
non-orthogonal, our OLR mainly occurs at the first training
stage where the ordinary learning rate is relative large. For
orthogonal gradient and weight, the OLR happens more
frequently and consistently occurs throughout all the training
stages. This meets our theoretical analysis in Prop. 1: our
OLR suits simultaneously orthogonal weight and gradient.

	1 Introduction
	2 Related Work
	2.1 Differentiable Matrix Decomposition
	2.2 Orthogonality in Neural Network
	2.3 Unsupervised Latent Disentanglement of GANs

	3 Pre-SVD Layer and Weight Treatments
	3.1 Pre-SVD Layer Simplification
	3.2 General Treatments on Weights
	3.2.1 Spectral Normalization (SN)
	3.2.2 Orthogonal Loss (OL)
	3.2.3 Orthogonal Weights (OW)

	4 Nearest Orthogonal Gradient and Optimal Learning Rate
	4.1 Nearest Orthogonal Gradient (NOG)
	4.1.1 Orthogonal Constraint and Optimal Conditioning
	4.1.2 Keeping Gradient Descent Direction Unchanged
	4.1.3 Combination with Weight Treatments

	4.2 Optimal Learning Rate (OLR)
	4.2.1 Combination with Weight/Gradient Treatments

	5 Orthogonality for Unsupervised Latent Disentanglement
	5.1 Image Manipulation in Latent Space of GANs
	5.2 Usefulness of Orthogonality

	6 Experiments
	6.1 Covariance Conditioning
	6.1.1 Decorrelated Batch Normalization
	6.1.2 Global Covariance Pooling
	6.1.3 Computational Cost

	6.2 Latent Disentanglement
	6.2.1 Experimental Setup
	6.2.2 EigenGAN Architecture and Modifications
	6.2.3 Results on EigenGAN
	6.2.4 Vanilla GAN Architecture
	6.2.5 Results on Vanilla GAN

	7 Conclusion
	References
	Biographies
	Yue Song
	Nicu Sebe
	Wei Wang

	Appendix A: Background: SVD Meta-Layer
	A.1 Forward Pass
	A.2 Backward Pass

	Appendix B: Mathematical Derivation and Proof
	B.1 Derivation of Nearest Orthogonal Gradient
	B.2 Derivation of Optimal Learning Rate
	B.3 Proof of the learning rate bounds

	Appendix C: Detailed Experimental Settings
	C.1 Covariance Conditioning
	C.1.1 Decorrelated Batch Normalization
	C.1.2 Global Covariance Pooling

	C.2 Latent Disentanglement
	C.2.1 EigenGAN
	C.2.2 Vanilla GAN

	Appendix D: Occurrence of OLR

