
1

Revealing the Distributional Vulnerability of
Discriminators by Implicit Generators

Zhilin Zhao, Longbing Cao and Kun-Yu Lin

Abstract—In deep neural learning, a discriminator trained on in-distribution (ID) samples may make high-confidence predictions on
out-of-distribution (OOD) samples. This triggers a significant matter for robust, trustworthy and safe deep learning. The issue is
primarily caused by the limited ID samples observable in training the discriminator when OOD samples are unavailable. We propose a
general approach for fine-tuning discriminators by implicit generators (FIG). FIG is grounded on information theory and applicable to
standard discriminators without retraining. It improves the ability of a standard discriminator in distinguishing ID and OOD samples by
generating and penalizing its specific OOD samples. According to the Shannon entropy, an energy-based implicit generator is inferred
from a discriminator without extra training costs. Then, a Langevin dynamic sampler draws specific OOD samples for the implicit
generator. Lastly, we design a regularizer fitting the design principle of the implicit generator to induce high entropy on those generated
OOD samples. The experiments on different networks and datasets demonstrate that FIG achieves the state-of-the-art OOD detection
performance.

Index Terms—Deep Learning, Out-of-distribution Detection, Neural Network Vulnerability, Shannon Entropy, Generator-Discriminator

✦

1 INTRODUCTION

In deep learning, the discriminators built on deep neural
networks (DNNs) demonstrate a significant generalization
ability, conditioning on the independent and identically dis-
tributed (IID) assumption [1], [2], [3]. This assumes training
and test samples must be drawn from the same distribu-
tion, i.e., in-distribution (ID). However, this IID assumption
may not hold as always [4]. A discriminator may make
high-confidence predictions [5] on those test samples [6]
drawn from the distributions different from ID, i.e., out-of-
distribution (OOD) test samples [7]. This triggers the distribu-
tional vulnerability of DNNs. The distributional vulnerability
may result in various consequences for DNNs, including
untrustworthy, unreliable, and unsafe results from DNNs.
Specifically, a discriminator may fail to know whether an
input is OOD. It may limit its adaption and cause serious
technical and application issues, such as false identification,
incorrect recognition, misclassification in vision tasks, lan-
guage modeling, and false recommendation [8], [9]. There-
fore, addressing the distributional vulnerability of DNNs in
distinguishing ID and OOD samples becomes a significant
topic. This can ensure the robustness, trustworthiness, and
safety of the learning results from DNNs [10].

One main cause of the high-confidence predictions of
OOD samples in testing is the significant difference between
ID and OOD samples [11]. Specifically, in training with
limited ID samples but no OOD samples, a discriminator
learns to assign high-confidence predictions to the observed
ID samples. This learning practice causes the distributional
vulnerability of neural networks, i.e., the trained discrimina-

• Zhilin Zhao and Longbing Cao are with the Data Science Lab, University
of Technology Sydney, NSW 2007, Australia.
E-mail: zhi-lin.zhao@student.uts.edu.au, longbing.cao@uts.edu.au

• Kun-Yu Lin is with the School of Computer Science and Engineering, Sun
Yat-sen University, Guangzhou, 515000, China.
E-mail: linky5@mail2.sysu.edu.cn

tor may make high-confidence predictions for some OOD
samples. This issue arises since the discriminator never
learns to be sensitive to OOD samples during training. The
issue may also be related to distributional uncertainty [12],
which, however, focuses on the low-confidence issue for
ID samples. In contrast, distributional vulnerability causes
some OOD samples to receive unexpected high-confidence
predictions. Both distributional vulnerability and uncer-
tainty arise due to the mismatch between training and test
distributions.

One possible speculation is that the distributional vul-
nerability is discriminator-specific. This is because altering
training data results in different network parameters [13].
Different network architectures generate different distribu-
tions of data representations [14]. To reveal and patch the
distributional vulnerability of a standard discriminator, one
idea is to fine-tune the discriminator with OOD samples
drawn from a specific OOD generator. This strategy makes
the fine-tuned discriminator sensitive to distributional vul-
nerability. However, the relevant methods [15], [16] with-
out considering data and network characteristics cannot
generate specific OOD samples with semantic shift and
high-confidence predictions. They define OOD samples ac-
cording to prior knowledge without knowing distributional
vulnerability, thereby misaddressing the distributional vul-
nerability of the given discriminator. Such methods cannot
handle most high-confidence OOD samples specific to the
discriminator.

In light of the above speculation, the following three
research questions must be answered in exploring distribu-
tional vulnerability and improving the OOD sensitivity of a
standard discriminator:

(1) How to design an OOD generator for a discriminator?
Training an extra generator for OOD samples is
usually expensive [17], [18], [19]. Also, the generator

ar
X

iv
:2

10
8.

09
97

6v
4

 [
cs

.L
G

]
 2

7
A

ug
 2

02
3

2

must be related to the given discriminator to produce
specific OOD samples, making it harder to design the
generator.

(2) How to efficiently sample high-confidence OOD data
from generators? OOD samples with low confidence
and misaddressing distributional vulnerability could
mislead the fine-tuning process. Furthermore, the
inefficiency of generating samples would result in a
significant bottleneck in the fine-tuning.

(3) How to apply the generated OOD samples to patch the
vulnerability? The discriminator should be regulated
as OOD sensitive to prevent the corresponding gen-
erator from generating high-confidence OOD sam-
ples. This requires the contrastive regulation to the
design principle of the generator.

We propose an approach for fine-tuning discriminators
by implicit generators (FIG) to address the above questions.
For a standard discriminator learned from a training ID
dataset, we create its implicit generator without extra train-
ing1. The implicit generator has the same parameters as
the discriminator and is used to generate OOD samples.
The underlying insight is that FIG learns an OOD-sensitive
discriminator by making it difficult to draw OOD samples
from the corresponding implicit generator. Specifically, the
implicit generator is proportional to the negative entropy
of the output probabilities from the standard discriminator.
The principle behind this construction method is that an
OOD sample given by a high confidence prediction has a
low entropy of class probabilities according to the Shan-
non entropy [20]. Since the constructed implicit generator
is energy-based [21], the samplers based on the Langevin
dynamics [22] can draw samples from energy-based models
effectively to generate OOD samples. Then, according to the
construction principle of the implicit generator, we penalize
the OOD samples by flattening their class probabilities to
make the discriminator sensitive to OOD samples.

Consequently, building on information theory, FIG is a
general approach with theoretical ground and guarantees
but without retraining. It creates an implicit generator cor-
responding to a given standard discriminator and refines the
discriminator to improve its OOD sensitivity. Specifically, in
FIG,

• an implicit generator is proportional to the negative
entropy of the output probabilities from a standard
discriminator without extra training costs;

• a sampler based on the Langevin dynamics effi-
ciently draws high-confidence OOD samples from
the implicit generator; and

• a regularizer based on the design principle of the
implicit generator encourages the high entropy of the
generated OOD samples.

Our experiments demonstrate that FIG significantly im-
proves the OOD sensitivity against the state-of-the-art meth-
ods with various network settings and on real image data.
Section 2 reviews the related work. Section 3 introduces FIG.
The experiment results are shown in Section 4, and Section 5
offers some concluding remarks.

1. The same ID dataset is used in both learning the standard dis-
criminator and fine-tuning it with the OOD samples generated by its
corresponding implicit generator.

2 RELATED WORK

Here, we briefly review the work related to this paper.
We discuss both broadly related research and applications
and focus on those topics specific to this paper on OOD
detection.

2.1 Broadly Related Research and Applications

OOD detection [8] aims to detect whether a test sample for
a trained discriminator is drawn from an ID or OOD. The
OOD detection performance evaluates the OOD sensitivity
of discriminators. This OOD problem is broadly related
to (1) various research topics, including non-IID learning
[3], [4], [23], anomaly and outlier detection [24], and open
set recognition [25]; and (2) diverse learning tasks and
applications such as gesture recognition, emotion recogni-
tion, semantic space, misclassification, language modeling,
semantic segmentation, fault diagnosis, long-tailed recogni-
tion, and remote sensing [26].

First, the training ID and test OOD settings for OOD
detection can be regarded as a special setting of non-IID
learning [3], [4], [23], which assumes data are not IID
drawn from the same distribution. OOD detection can be
regarded as focusing on learning the non-IIDness between
training and test samplings. Second, anomaly and outlier
detection [24], [27] typically focuses on detecting those
samples (rather than test ones) deviating from the majority
in training, which could be on non-IID data [28]. OOD
detection instead identifies those test samples deviating
from the training ones in terms of distributional shift. Lastly,
OOD detection differs from open set recognition [25], [29]
although neither focus on known classes. Open set recogni-
tion trains a discriminator to assign test samples to an extra
unknown class that does not belong to any classes in the
training set, while OOD detection does not involve extra
unknown classes.

Specifically, the OOD detection problem in the deep
learning context has attracted increasing and substantial
attention in recent years [26], [30]. The related research
on OOD detection can be categorized into (1) designing
effective OOD detectors, (2) designing generative models
for OOD detection, and (3) enhancing the OOD sensitivity
of discriminators. As these topics are core to DNNs and this
paper, below, we extend our discussion on them.

2.2 Out-of-distribution Detectors

An OOD detector distinguishes ID and OOD test samples
according to their predictions by a trained network (discrim-
inator). The baseline method [8] designs a threshold-based
detector to distinguish ID and OOD samples, which in-
volves their maximum probabilities represented by softmax
outputs [31]. It basically assumes that a trained discrimina-
tor tends to provide high-confidence predictions for ID sam-
ples. However, this assumption does not hold in general due
to the distributional vulnerability, when OOD samples also
have high softmax scores. To improve this baseline, an out-
of-DIstribution detector for Neural networks (ODIN) [32]
adds negative adversarial perturbations to inputs to make
ID and OOD samples distinguishable. Furthermore, ODIN
applies temperature scaling to the softmax function and

3

makes the trained discriminators more sensitive to OOD
samples.

An OOD sample can be assigned with a high-confidence
prediction because it is mapped to the feature representa-
tions of ID samples. This may cause feature collapse [33].
Therefore, to improve the aforementioned softmax-based
detectors, another set of detectors model the output dis-
tributions of various network layers. For example, Maha-
LanoBis (MLB) [34] combines the Mahalanobis distance cal-
culation with input preprocessing to measure the OOD score
according to the feature representations from different net-
work layers. Based on ODIN and MLB, Deep Residual Flow
(DRF) [35] leverages an expressive density model by nor-
malizing flows to calculate the residual flows of each layer
and each class for a test sample. Gram Matrix (GM) [36]
calculates the OOD score by identifying the feature cor-
relations between activity patterns from all layers and the
predicted class. However, detecting OOD samples without
refining discriminators cannot resolve the vulnerability but
makes the detection performance heavily dependent on the
characteristics of the trained discriminators.

2.3 Generative OOD Detection
Another research line of detecting OOD samples in the test
phase aims to learn an extra generative model according
to the training ID samples. However, Nalisnick et al. [37]
show that the likelihood alone of deep generative models,
including flow-based models, VAEs, and PixelCNNs, fails
to distinguish ID and OOD samples. Accordingly, Ren et
al. [38] show that the likelihood of auto-regressive models
considering background statistics is sensitive to OOD sam-
ples. Serra et al. [39] provide an explanation of the failure
of generative approaches, i.e., the input complexity has
an excessive influence on the likelihoods. Therefore, they
define the likelihood ratio as an OOD score based on the
estimate of input complexity. The generative approaches are
independent of discriminators and distinguish ID and OOD
samples according to the likelihood-based scores. In con-
trast, our method improves the ability of discriminators to
detect OOD samples from ID samples according to network
outputs.

2.4 Confidence Enhancement Methods
To improve the OOD sensitivity of a discriminator by patch-
ing its distributional vulnerability, confidence enhancement
methods [6] retrain or finetune the discriminator with extra
knowledge about OOD samples. Some researchers apply
real-world samples as OOD samples since they are drawn
from the distributions different from the ID. For example,
Outlier exposure [40] randomly selects an OOD sample
for each ID sample and enlarges the gap between the log
probabilities of the pair of ID-OOD samples by a margin
ranking loss. The prior network [12] penalizes OOD samples
by mapping their predicted distribution to a dense Dirichlet
distribution in the Kullback-Leibler divergence. Bevandic
et al. [41] propose a two-head model to predict a uniform
distribution of OOD samples. Blum et al. [42] separate ID
and OOD samples by training a logistic regressor to aggre-
gate the negative log-likelihoods of embeddings from all
layers. Another line of research improves OOD sensitivity

by modifying the training process and objective function
without involving OOD samples in training. Built on ODIN,
DeConf-C* (DCC*) [43] retrains a discriminator with an
OOD scoring function according to the divisor structure of
class probability confidence and searches for the adversarial
perturbation magnitude with only ID samples.

Other methods aim to generate OOD samples and apply
them to retrain a discriminator, which are mostly related
to ours. They basically assume that OOD samples satisfy a
normal or uniform distribution. However, this general as-
sumption ignores data and network characteristics. Hence,
the generated OOD samples cannot address the vulnera-
bility of discriminators. Considering the data characteris-
tics of OOD samples, MIXUP [15] trains a discriminator
with samples obtained by linearly combining two randomly
selected ID samples, where the weights are drawn from
a beta distribution. When the weights are approximately
equal to a half, the generated samples can be considered
OOD because the target vector combining two one-hot
vectors with two almost equal weights has low confidence.
In addition, adversarial samples [44] are applied to retain
the discriminator, whose basic idea is to extend an input by
pushing it to the decision boundary. Specifically, considering
the network characteristics, adversarial samples [44] are
generated by back-propagating the gradient of the cross-
entropy w.r.t. the input to a trained discriminator. Instead of
manipulating data samples, joint confidence loss (JCL) [45]
extends the above idea to the distribution perspective. JCL
adopts a model-specific GAN-based generator to produce
samples on the low-density boundary of ID samples. It then
encourages the target vectors of the generated samples to
satisfy a uniform distribution. However, the JCL generated
samples are at the border of the ID manifold, therefore the
generated samples may not be OOD.

3 FIG: FINE-TUNING DISCRIMINATORS BY IM-
PLICIT GENERATORS

Our FIG method improves the OOD sensitivity of a stan-
dard discriminator by revealing and patching its distribu-
tional vulnerability. Specifically, for a standard discriminator
learned from an ID dataset, FIG creates its implicit generator
to generate specific OOD samples and applies a regularizer
to fine-tune it with the generated OOD samples. The output
class probabilities of the OOD sample assigned a high-
confidence prediction have a low entropy. Accordingly, the
implicit generator can be directly proportional to the nega-
tive entropy of the class probabilities from its corresponding
standard discriminator. An implicit generator can then be
induced from the discriminator. The specific OOD samples
can be drawn from the implicit generator. According to the
design principle of the implicit generator, FIG improves the
OOD sensitivity of the standard discriminator by encourag-
ing OOD samples to have large entropy.

We assume that ID samples (xI , yI) are IID drawn
from an unknown distribution p(x, y). x ∈ RD is a D-
dimensional input, and y ∈ R is a label. DI is the ID training
dataset containing N ID samples. As a typical machine
learning setting, a C-class classification problem uses a
parametric neural network fθ : RD → RC to map each input
x to a C-dimensional output vector (fθ(x, 1), . . . , fθ(x, C)).

4

A softmax output is applied to parameterize a categorical
distribution for each output vector. Specifically, for class y,
we estimate the probability p(y|x) by:

qθ(y|x) =
exp fθ(x, y)∑

y′∈[C] exp fθ(x, y
′)
, (1)

and qθ(y|x) is a standard discriminator with parameter
θ learned from the ID training dataset XI . In general,
classification tasks learn parameter θ by maximizing the
objective function Ep(x,y) log qθ(y|x). However, only limited
ID samples following p(x, y) are used to estimate the proba-
bility qθ(y|x), which causes the vulnerability of the standard
discriminator qθ(y|x). Therefore, a critical step is to reveal
where the vulnerability is before patching it.

3.1 Implicit Generator

A standard discriminator qθ(y|x) learned from an ID dataset
may provide high maximum softmax probabilities for some
OOD samples due to distributional vulnerability. According
to the definition of the Shannon entropy [20], we know that
the entropy values of high-confidence OOD samples are low.
Accordingly, we define the entropy of a sample x as

Hθ,x(C) = −
∑
y∈[C]

qθ(y|x) log qθ(y|x). (2)

The range of Hθ,x(C) is (0, logC]. The joint energy-based
model (JEM) [46] contains a standard discriminator and a
density model inferred by re-interpreting the logits of the
discriminator. Inspired by JEM, we construct an implicit
generator qθ(x) for the discriminator qθ(y|x) by assuming
that the generator is proportional to the negative entropy,
i.e.,

qθ(x) ∝ −Hθ,x(C) + c ≜ G(x) (3)

where a constant c ≥ logC (C ≥ 0) is added to ensure
that the probability qθ(x) is proportional to a non-negative
value. Based on the negative entropy, the samples drawn
from G should have high-confidence predictions but low
entropy without necessarily having the same discriminator
outputs as ID samples. Therefore, the low-entropy sam-
ples from G are with distributional shift from training ID
samples and have high-confidence predictions. This indi-
cates that the low-entropy samples tend to be OOD. In
JEM, the density model is inferred by re-interpreting the
logits and marginalizing the label without constraints on
the logit outputs. Therefore, the samples drawn from JEM
are unnecessary for high-confidence predictions. JEM tends
to generate samples similar to ID samples to ensure that
they have the same logit outputs. In summary, the negative
entropy enables an implicit generator to generate OOD
samples, compared to JEM which generates ID samples.

However, sampling from G is intractable because we
cannot construct an analytic expression of the probability
distribution qθ(x) based on G(x). Recall that the entropy
value of a high-confidence OOD sample is expected to be
low. Thus its G(x) should be large. Accordingly, we specify
a tractable probability distribution by exploring the upper
bound of G(x).

Assuming h(x) =
∑

y′∈[C] exp fθ(x, y
′) and substituting

Eq. (1) and Eq. (2) into Eq. (3), we have

G(x) =

∑
y∈[C] fθ(x, y) exp fθ(x, y)

h(x)
+ log

exp c

h(x)
. (4)

To form a tractable bound, we set an upper bound on the
second term of the last equality in Eq. (4) using inequality:
log(x) ≤ x

a + log(a) − 1 for all x, a ≥ 0. It is derived from
the basic logarithm inequality log(1+u) ≤ u, for u > −1 by
assuming u = x

a−1. We then obtain the following inequality,

log
exp c

h(x)
≤ exp c

h(x)a(x)
+ log a(x)− 1 =

exp(c− 1)

h(x)
. (5)

We obtain the above equality by setting a(x) as Euler’s
number e because the inequality holds for any choice of
a(x) ≥ 0. Substituting Eq. (5) into Eq. (4), we have

G(x) ≤
∑

y∈[C] fθ(x, y) exp fθ(x, y) + exp(c− 1)

h(x)

=

exp
log

∑
y∈[C] exp fθ(x, y)∑

y∈[C] fθ(x, y) exp fθ(x, y) + exp(c− 1)︸ ︷︷ ︸
≜A(x)

−1

.

(6)
To further obtain a tractable bound of G(x), we need a
lower bound on A(x). According to the Jensen’s inequality
and inequality [47] x

x+1 ≤ log(1 + x) ≤ x for all x ≥ −1,
respectively:

log
∑
y∈[C]

exp fθ(x, y) ≥
∑
y∈[C]

fθ(x, y), (7)

and

log

 ∑
y∈[C]

fθ(x, y) exp fθ(x, y) + exp(c− 1)

≤

∑
y∈[C]

fθ(x, y) exp fθ(x, y)− exp(c− 1) + 1.

(8)

Substituting Eq. (7) and Eq. (8) into A(x), we have

A(x) ≥ Eθ(x)− (1− exp(c− 1)) . (9)

where

Eθ(x) ≜
∑
y∈[C]

fθ(x, y) (1− exp fθ(x, y)) , (10)

is known as an energy function. It represents the state of x
by mapping it to a scalar. Therefore, we obtain the upper
bound of G by substituting Eq. (9) into Eq. (6):

G(x) ≤ exp (−Eθ(x) + (1− exp(c− 1)))

= exp (−Eθ(x)) · exp (exp (c− 1)− 1)

=
exp (−Eθ(x))∫

exp (−Eθ(x′)) dx′ · c
′,

(11)

where
∫
exp (−Eθ(x

′)) dx′ is a normalizing constant and

c′ =

∫
exp (−Eθ(x

′)) dx′ · exp (exp (c− 1)− 1) (12)

is a constant, which is greater than or equal to zero and
is independent of x. Recall that qθ(x) ∝ G(x), instead

5

of directly solving G(x) which is intractable, we take a
tractable qθ(x) by dropping the constant c′ according to the
upper bound Eq. (11). This results in:

qθ(x) ∝
exp (−Eθ(x))∫

exp (−Eθ(x′)) dx′ . (13)

Therefore, we obtain the generator qθ(x) from the given
discriminator qθ(y|x) without retraining. qθ(x) has the same
parameter θ as qθ(y|x). Thus, qθ(x) is the implicit generator
of the standard discriminator qθ(y|x).

3.2 Langevin Dynamic Sampler

We cannot easily draw samples from qθ(x) because we do
not have an analytical expression for qθ(x). The analytical
expression needs to integrate

∫
exp (−Eθ(x

′)) dx′ with re-
spect to x′. However, qθ(x) is an energy-based generative
model [21]. Eθ(x) is the energy function. Relying on Markov
chain Monte Carlo (MCMC) [48] methods, random walk
or Gibbs sampling [49] can be applied, but both have long
mixing time. The Langevin dynamics [22] uses the gradient
of the energy function. It can solve this challenge by draw-
ing high-dimensional samples efficiently for energy-based
models. Following the sampling method for energy-based
models [50], we apply the Langevin dynamic sampler (LDS)
for the implicit generator qθ(x) and have

x̃t = x̃t−1 −
ϵt
2
∇xEθ(x̃t−1) + zt,

zt ∼ N (0, ϵt · I),
x̃0 ∼ p0(x),

(14)

p0(x) is an uniform distribution U(−1, 1). ϵ is a decayed
step-size. I is an identity matrix. When the number of
iterations T becomes infinite and the step-size ϵt is close
to zero, the theoretical results provided by Welling and
Teh [22] guarantee that x̃T is a sample generated from the
distribution defined by the energy function, that is

x̃T ≈ x̃ ∼ qθ(x)(ϵt → 0 andT → ∞). (15)

According to Eq. (14), the optimization of Langevin dy-
namics can be treated as finding a local optimal solution
x̃T from a posterior distribution that minimizes the energy
function Eθ(x). In this aspect, the Langevin dynamics is
similar to stochastic gradient descent [51]. However, one
clear difference between them is that Langevin dynamics
injects noise into the parameter updates. The noise ensures
that the trajectory of the parameters will converge to the
whole posterior distribution rather than just the point with
the highest posterior probability. Beyond that, Langevin dy-
namics is significantly different from the projected gradient
descent method [52] applied in adversarial learning. The
former finds a local optimal point while the latter finds a
saddle point for a min-max problem.

Note that, Eθ(x) can be infinite because the large output
value fθ(x, y) in Eθ(x) can lead to the infinite exponential
value exp fθ(x, y). Hence, instead of using Eθ(x) to con-
struct the implicit generator qθ(x), we apply the modified
version

Êθ(x) =
∑
y∈[C]

fθ(x, y)

c

(
1− exp

fθ(x, y)

c

)
(16)

Algorithm 1 Langevin Dynamic Sampler (LDS)
1: Input: discriminator qθ(y|x)
2: Initialize x̃0 ∼ U(−1, 1), ϵ0, γ, L
3: while not converged do
4: zt ∼ N (0, ϵt · I)
5: x̃t = clip(x̃t−1 − ϵt

2 sign(∇xÊθ(x̃t−1)) + zt,−1, 1)
6: ϵt+L = ϵt · γ
7: end while
8: Output: x̃t

where c is a constant to narrow fθ(x, y). The step-size ϵt is
updated by

ϵt+L = ϵt · γ, (17)

where γ is the decay rate, and L is the decay period. Fol-
lowing the process of generating adversarial samples [44],
only the direction information is adopted to update the gen-
erated sample. This trick can improve sampling efficiency
and avoid exploding gradients. We also clip the updated
samples to the range [−1, 1] to ensure the consistency with
the normalized input samples, i.e.,

x̃t = clip
(
x̃t−1 −

ϵt
2

sign(∇xÊθ(x̃t−1)) + zt,−1, 1
)
. (18)

In practice, it is impossible and unnecessary to generate
low-entropy samples by following the theoretical results
proposed by Welling and Teh [22], i.e., by running Eq.
(18) for an unlimited number of times, as shown in Eq.
(15). The prediction confidence for low-entropy samples is
expected to be low. Only high-confidence samples should
be penalized to patch the distributional vulnerability. We
thus only need to explore the high-confidence samples to
reveal the distributional vulnerability and ignore the low-
confidence samples. Therefore, we repeat the iteration in Eq.
(18) until the confidence score of a generated low-entropy
sample converges. LDS for generating a low-entropy sample
is summarized in Algorithm 1.

Note that we find the confidence score of a gener-
ated sample can converge for a small maximum iteration
T ∈ [10, 100]. This means that the step size ϵt does not
need to change to pursue low-entropy samples. However,
more iterations are required to generate visually meaningful
images for visualization, where the step-size should be
adjusted to guarantee convergence. We further discuss the
number of iterations T on the visualization experiments.

Accordingly, we can reveal the distributional vulnera-
bility of a given discriminator by sampling discriminator-
specific OOD samples in terms of Eq. (18). We expect that
all OOD samples have low prediction confidence, while the
existence of vulnerability makes it impossible. Note that
ID samples also have high confidence predictions and low
entropy. Based on the assumption for implicit generators
which are proportional to negative entropy, the generated
samples per Eq. (18) can also be ID. We assume that most
drawn samples are OOD because ID samples have limited
classes while the generated samples are diverse. The implicit
generator inferred from a standard discriminator aims to
reveal its distributional vulnerability. It differs from the gen-
erative adversarial network [53], which learns from training
ID samples to generate real-world objects. Therefore, the

6

low-entropy samples drawn from the implicit generator
are required to have high confidence and differ from ID
samples. Such samples, however, unnecessarily correspond
to real-world objects. According to the negative entropy
principle of implicit generators, the generated samples have
high-confidence predictions. They are not necessary to sat-
isfy the same distribution as training ID samples. Therefore,
the generated samples are almost OOD. Furthermore, even
if some generated samples follow the ID, they will not affect
the patching of the distributional vulnerability, as discussed
in Section 3.3.

3.3 Confidence Penalty on Out-of-distribution Samples

Due to distributional vulnerability, the prediction confi-
dence on OOD samples by a standard discriminator could
be unexpectedly high. Therefore, the low-entropy samples
receiving high-confidence predictions by an implicit gener-
ator can reveal the distributional vulnerability of the cor-
responding standard discriminator. Accordingly, to patch
this vulnerability, we penalize the low-entropy samples
by flattening their class probabilities. Because the implicit
generator depends on the corresponding standard discrim-
inator, we improve the OOD sensitivity of the standard
discriminator by making it difficult for the corresponding
implicit generator to generate high-confidence OOD sam-
ples. Specifically, an implicit generator is proportional to
negative entropy to ensure that the generated samples have
high confidence predictions. We correspondingly penalize
these low-entropy samples by encouraging them to have
large entropy, i.e.,

max
θ

Ep(x,y) log qθ(y|x)− Eqθ(x)

∑
y′∈[C]

qθ(y
′|x) log qθ(y′|x).

(19)
After updating parameter θ, we obtain an updated dis-

criminator. Also, we can derive a new implicit generator and
obtain the newly generated samples for the next iteration.
We learn parameter θ iteratively until the implicit generator
barely generates the samples with high confidence predic-
tions. Note that the generated samples could be ID and
OOD. Although some of the generated ID samples are also
encouraged to have flat class probabilities, the rest of the
generated OOD samples can still patch the vulnerability,
and the dominated cross-entropy maintains the classifica-
tion ability of the discriminator. In an extreme case where
all generated samples are ID, the objective function Eq.
(19) degenerates into the neural network confidence penalty
method [54], which has empirically been demonstrated to
improve the generalization ability.

We apply the stochastic gradient descent (SGD) [51] opti-
mization algorithm to estimate the gradient of the objective
function Eq. (19). For the ID training dataset DI containing
N ID samples, we draw N · K samples from the implicit
generator qθ(x) to construct the generated dataset DO.
K ∈ [0, 1] is a hyper-parameter indicating the percentage
of the generated low-entropy samples. In line with the idea
of Monte Carlo [55], we estimate the objective function Eq.

Algorithm 2 FIG: Fine-tuning Discriminators by Implicit
Generators

1: Input: standard discriminator qθ(y|x),
low-entropy percentage K ,
learning rate µ

2: repeat
3: Draw b ID samples from DI

4: Draw b ·K low-entropy samples from LDS(qθ(y|x))
5: Estimate objective function: L(θ)
6: Obtain gradients: ∇θL(θ)
7: Update parameters: θ = θ + µ∇θL(θ)
8: until convergence
9: Output: fine-tuned discriminator qθ(y|x)

(19) by

L(θ) = 1

N

∑
(xI ,yI)∈DI

log qθ(yI |xI)

− 1

N ·K
∑

y′∈[C]

∑
xO∈DO

qθ(y
′|xO) log qθ(y

′|xO).
(20)

Algorithm 2 summarizes the process of FIG to patch the
distributional vulnerability of a standard discriminator with
the low-entropy samples generated by its corresponding
implicit generator.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of FIG2 in
comparison with the existing methods in detecting OOD
samples. Furthermore, we analyze the sensitivity of hyper-
parameters in the LDS and the objective function of FIG.
Also, we analyze the transferability of the generated low-
entropy samples, i.e., the low-entropy samples drawn from
an implicit generator of a discriminator cannot be applied to
patch the vulnerability of other discriminators with different
network architectures. Finally, we present the visualization
results to confirm that the generated low-entropy samples
can effectively train OOD-sensitive discriminators.

4.1 Setup
The ID datasets for pretraining and fine-tuning discrimina-
tors are SVHN [56], CIFAR10 [57], CIFAR100 [57], and Mini-
ImageNet [58]. The number of classes in these four datasets
are 10, 10, 100, and 100, respectively. We follow the standard
data augmentation practice for training samples. Specif-
ically, we apply Resize(256) and RandomCrop((224,224))
to the samples in MiniImageNet and RandomCrop(32,
padding=4) and RandomHorizontalFlip() to the samples in
the other three datasets. To test OOD detection performance,
the corresponding test samples of an ID training dataset are
treated as ID, and the samples from the other real image
datasets are treated as OOD. For SVHN, CIFAR10, and
CIFAR100, the OOD datasets used are LSUN [59], Tiny-
ImageNet [60], Caltech256 [61], and COCO [62]. For Mini-
ImageNet, the adopted OOD datasets include Oxfordflow-
ers102 [63], Caltech256 [61], and DTD47 [64]. Because OOD

2. The source codes are available at: https://github.com/
Lawliet-zzl/FIG.

https://github.com/Lawliet-zzl/FIG
https://github.com/Lawliet-zzl/FIG

7

samples come from distinct datasets with varying input
sizes, by following the methods in ODIN [32], we resize or
crop each OOD sample to maintain the same size as the ID
samples. (r) and (c) represent resized and randomly cropped
samples, respectively. For a fair comparison, following the
setup of the baseline and state-of-the-art methods [8], [32],
[35], [36], [43], [45], validation datasets are unavailable
to validate the hyper-parameters because OOD detection
should consider the detection performance on diverse OOD
samples that are unobservable in the validation phase.

Four advanced neural network architectures, namely
ResNet18 [1], VGG19 [65], ShuffleNetV2 [66], and
DenseNet100 [67], are used to create the discriminators. In
pretraining a standard discriminator, its learning rate starts
at 0.1 and is divided by 10 after 100 and 150 epochs. All
networks are trained for 200 epochs on the training sets with
128 samples per mini-batch.

If not specified, the FIG setup is as follows. The same
ID dataset is used to train and fine-tune standard dis-
criminators. The fine-tuning process uses the learning rate
µ = 0.001, which is equal to the final learning rate in the
pretraining phase. For the modified energy function Eq. (16),
we set the constant c = 5 because this value is sufficient to
ensure that the exponential value is within the computer
numerical range. For the LDS, following the suggestions
of Welling and Teh [22], we set the step-size initialization
ϵ0 = 0.1, the decay rate γ = 0.9, and the decay period
L = 100. We set the low-entropy percentage K = 0.1 to
balance the effectiveness and efficiency according to prior
knowledge. We further discuss the effect of K in Section 4.5.
Following the state-of-the-art methods [36], [45], the base-
line detector is applied to FIG to calculate the OOD scores
for the test samples.

The OOD detection methods can be divided into two
categories: OOD detectors and confidence enhancement
methods. OOD detectors aim to extract OOD-sensitive infor-
mation from trained discriminators. Accordingly, they can
be applied to trained discriminators. Diverse OOD detectors
are incorporated into the proposed FIG method to verify
that FIG can adapt different OOD detectors. FIG is a con-
fidence enhancement method, which aims to improve the
OOD sensitivity by retraining or finetuning discriminators.
Accordingly, the state-of-the-art confidence enhancement
methods are compared with FIG to verify its effectiveness.

4.2 Evaluation Metrics

An OOD detector provides an OOD score for a test sample.
ID and OOD samples are expected to have high and low
scores, respectively. To evaluate the detection performance
of OOD samples, we adopt the area under the receiver op-
erating characteristic curve (AUROC) [8], [32], [68]. A larger
AUROC value indicates better OOD detection performance.

Since retraining or fine-tuning discriminators may
change the classification accuracy, we also evaluate the
harmonic mean of AUROC and accuracy to verify the
comprehensive performance of classifying ID samples and
detecting OOD samples. Furthermore, we adopt through-
put [69], which represents the number of processed samples
in one second, to measure the efficiency of generating low-
entropy samples.

TABLE 1
OOD detection performance of standard and fine-tuned discriminators

with diverse detectors. Each value represents the average AUROC
across eight OOD datasets, including LSUN(r), LSUN(c),

TinyImageNet(r), TinyImageNet(c), Caltech256(r), Caltech256(c),
COCO(r), and COCO(c). All the values are in percentage, and the
boldface values represent relatively better detection performance.

in-dist network
Baseline ODIN MLB DRF GM

Standard / Fine-tuned (FIG)

SVHN

ResNet18 92.1 / 98.5 93.9 / 98.8 94.8 / 97.5 93.8 / 98.5 87.6 / 98.6

VGG19 92.0 / 98.1 92.8 / 98.4 92.6 / 97.2 92.8 / 98.2 91.3 / 98.5

ShuffleNetV2 96.7 / 98.8 98.1 / 99.3 93.1 / 96.4 97.0 / 98.8 98.2 / 99.4

DenseNet100 91.3 / 97.6 92.8 / 97.7 95.4 / 96.8 91.4 / 97.4 77.9 / 96.2

CIFAR10

ResNet18 91.2 / 95.0 92.3 / 95.8 91.5 / 94.3 91.7 / 95.0 91.0 / 95.6

VGG19 88.2 / 92.2 89.0 / 92.8 88.5 / 90.5 89.0 / 92.9 89.0 / 92.3

ShuffleNetV2 88.7 / 92.1 91.4 / 95.2 89.5 / 92.7 87.2 / 91.4 90.4 / 94.7

DenseNet100 90.8 / 94.9 90.0 / 94.2 91.4 / 93.9 91.5 / 93.2 90.9 / 94.8

CIFAR100

ResNet18 82.6 / 89.3 84.6 / 90.2 80.5 / 87.7 71.2 / 74.4 80.4 / 87.0

VGG19 76.1 / 82.7 78.9 / 84.6 77.4 / 84.3 78.4 / 82.8 72.3 / 81.3

ShuffleNetV2 74.4 / 81.4 83.2 / 86.2 79.7 / 82.8 80.8 / 86.4 81.4 / 90.2

DenseNet100 83.0 / 93.1 86.3 / 93.4 83.5 / 93.9 75.0 / 78.1 72.7 / 85.5

4.3 Incorporating OOD detectors into FIG

We incorporate diverse state-of-the-art OOD detectors into
a standard discriminator and its fine-tuned discriminator.
The standard discriminator is learned from a training ID
dataset, and its corresponding fine-tuned discriminator is
obtained by fine-tuning the discriminator with the OOD
samples generated by its implicit generator.

We incorporate five different OOD detectors, the
baseline [8], ODIN [32], MLB [34], DRF [35], and GM [36],
into FIG. The baseline [8] directly defines the maximum
softmax output value from a discriminator as the OOD score
without any hyper-parameters. For ODIN [32], we select the
temperature in {1, 2, 5, 10, 20, 50, 100, 200, 500, 100} and
the perturbation magnitude of 21 evenly spaced numbers
starting from 0 and ending at 0.004. The best results are
reported. For MLB [34], we tune the magnitude of noise in
{0, 0.0005, 0.001, 0.0014, 0.002, 0.0024, 0.005, 0.01, 0.05, 0.1,
0.2}. For a fair comparison, we add the scores from different
layers without training a logistic regression on a validation
OOD dataset in MLB. For DRF [35], the magnitude of noise
is 0.05 for CIFAR10 and SVHN and 0.0025 for CIFAR100.
For GM [36], the order of computing feature correlations
falls in the set {1, . . . , 10}.

We summarize the results in Table 1. It shows that
a fine-tuned discriminator achieves a significant improve-
ment (1.22% to 23.49%) over its corresponding standard
discriminator. Specifically, the discriminator fine-tuned by
FIG achieves significant detection performance for both the
detectors that apply the softmax outputs and the feature
embeddings from network layers. This shows that FIG can
improve the OOD sensitivity of a standard discriminator
and alleviate the feature collapse problem [33]. According to
the learning principle of FIG, the fundamental reason for its
OOD detection improvement is that the distributional vul-
nerability of a standard discriminator has been effectively
patched by the samples generated by its corresponding
implicit generator.

Although FIG can achieve measurable improvement
over all the considered settings, its performance under
different scenarios is distinct. For example, FIG approaches
near-optimal performance in SVHN-ResNet18 and still
causes a large gap from the optimal performance in

8

CIFAR100-VGG19. This is because the performance of FIG
depends on the OOD sensitivity of the standard discrim-
inator. Specifically, FIG infers the implicit generator of a
standard discriminator to improve its OOD sensitivity. The
OOD sensitivities of discriminators depend on the network
architectures and the data characteristics of the training ID
dataset. Therefore, one solution to further improve FIG per-
formance is to retrain the standard discriminator with extra
OOD knowledge and incorporate FIG into the retraining
procedure, which is our future work.

4.4 Comparison Results

To verify the quality of the OOD samples generated by the
implicit generators, we compare FIG with five state-of-the-
art confidence enhancement methods that retrain or fine-
tune standard discriminators, namely Gaussian (GS) [16],
MIXUP [15], adversarial (AD) [44], joint confidence loss
(JCL) [45], and DeConf-C* (DCC*) [43]. For a fair compari-
son, following the setup of the state-of-the-art methods [36],
[45], we apply the embedded detector based on ODIN [32]
for DCC* and the baseline detector [8] for the other com-
pared methods to calculate the OOD scores without loss of
generality.

The settings of all the compared methods are the same
as their original. To use samples drawn from the Gaussian
distribution as OOD samples in GS, we adopt Algorithm 2
to fine-tune the standard discriminators for a fair com-
parison. Specifically, we replace the low-entropy samples
drawn from the LDS with Gaussian noise samples in Algo-
rithm 2. As for MIXUP, the mixing coefficients that control
the interpolation strength between sample pairs are drawn
from Beta(1, 1) for all ID datasets. When using adversarial
samples as the generated OOD samples in AD to retrain the
standard discriminators, we set the perturbation magnitude
as 0.1 and the weights of both the cross-entropy loss and
the adversarial objective function as 0.5. Another advanced
method JCL retrains a standard discriminator with a gen-
erative adversarial network (GAN) [53] and encourages
the softmax probabilities of generated samples to satisfy
a uniform distribution. For JCL, we use mini-batch size
128 and regularization coefficient 1 of the Kullback-Leibler
(KL) divergence term for SVHN. The two hyper-parameters
are 64 and 0.1 respectively for the other three training ID
datasets. For DCC*, we adopt the cosine similarity in the
scoring function and search for the adversarial perturbation
magnitude with only ID samples.

The OOD detection results on SVHN, CIFAR10, and
CIFAR100 are displayed in Table 2. Comparing all the
methods, we observe that FIG does not achieve the best
OOD detection performance on some ID and OOD dataset
pairs. Lee et al. [45] offer a possible explanation, i.e., the
distribution of a specific OOD dataset does not effectively
cover all tested out-of-distributions. We thus verify the effect
of FIG on different test OOD datasets, and FIG inevitably
reduces the effect on some OOD samples in order to pursue
the overall OOD detection improvement. Compared with
GS, FIG obtains significant improvement (5.69%). We thus
verify that the generated samples from the implicit gener-
ators are not simple high-confidence noise but informative
images that can reveal the discriminator vulnerability. For

all neural architectures, compared with the other state-of-
the-art methods, FIG achieves the best OOD detection per-
formance. It makes an average of 3.29%, 5.34%, and 9.01%
AUROC improvement on the three training ID datasets,
SVHN, CIFAR10, and CIFAR100, respectively.

We also perform experiments on a larger resolution
dataset MiniImageNet, and the results are presented in
Table 3. FIG achieves the most significant average AUROC
value across all the test OOD datasets with an average
of 7.87% AUROC improvement over the other state-of-
the-art methods. As a result, FIG achieves the best OOD
detection performance. This is because the generated low-
entropy samples of FIG are specific to the ID training dataset
and network architecture. The data characteristics indicate
that the generated low-entropy samples can be applied to
patch the vulnerability of a standard network to improve
OOD sensitivity. Furthermore, the quantitative analysis in
Table 5 shows that FIG can efficiently generate low-entropy
samples and larger resolutions do not significantly improve
the running time of generating low-entropy samples. This is
due to the early stop strategy in Eq. (18). Therefore, FIG is
applicable for high-resolution samples.

The harmonic means of AUROC and accuracy of the
compared methods are shown in Table 4. JCL and DCC*
achieve the significant performance in detecting some OOD
samples, as shown in Table 2. However, the corresponding
harmonic means are close to the baseline method which only
applies a standard discriminator without modification. The
results indicate that the two methods significantly sacrifice
the classification ability to improve OOD sensitivity. How-
ever, FIG achieves the most significant harmonic means on
all ID training datasets, which indicates that FIG finds the
best balance between classifying ID samples and detecting
OOD samples. The reasons are two-fold: (1) low-entropy
samples are generated from the implicit generator for a
given standard discriminator; (2) fine-tuning the standard
discriminator with the specific generated samples will not
seriously disturb the learning process of classifying ID sam-
ples.

In general, our FIG can improve the OOD detection
performance and maintain high ID classification accuracy.
We recall the diverse vulnerability of discriminators with
different architectures to understand the reason behind this.
Hence, low-entropy samples generated by particular gen-
erators cannot correspondingly address the discriminator-
specific vulnerability. FIG patches the vulnerability of a stan-
dard discriminator to improve its OOD detection perfor-
mance with the samples generated by its implicit generator,
and the implicit generator knows what kind of samples are
OOD for the discriminator. These conclusions also explain
why FIG can balance OOD detection and ID classifica-
tion after being fine-tuned on the generated low-entropy
samples. The low-entropy samples are data- and network-
adaptive, which enables the standard discriminator to learn
the knowledge from the ID samples with less interference.

4.5 Hyper-parameter Analysis

This section empirically shows the impact of the low-
entropy percentage K on the proposed FIG method. We
test the effect of K by setting it to 0, 0.01, 0.1, 0.4, 0.7, 1

9

TABLE 2
OOD detection performance for networks learned on SVHN, CIFAR10, and CIFAR100. The value for an OOD dataset indicates its corresponding

AUROC presented as a percentage, and the values for Ave. indicate the average AUROC across all the test OOD datasets. Boldface values
represent the relatively better detection performance.

In-dist Out-of-dist
GS / MIXUP / AD / JCL / DCC* / FIG

ResNet18 VGG19 ShuffleNetV2 DenseNet100

SVHN

LSUN(r) 99.2 / 95.4 / 94.7 / 98.7 / 94.5 / 99.4 98.5 / 96.3 / 99.7 / 98.3 / 91.0 / 99.3 98.0 / 95.9 / 96.4 / 91.6 / 99.1 / 99.7 95.4 / 95.9 / 90.0 / 91.4 / 98.4 / 98.4

LSUN(c) 98.4 / 92.7 / 95.8 / 99.7 / 97.6 / 97.1 98.9 / 94.3 / 96.4 / 98.2 / 97.0 / 98.0 96.7 / 92.7 / 95.2 / 94.3 / 98.8 / 97.7 92.9 / 95.2 / 90.8 / 91.8 / 99.1 / 95.9

TinyImageNet(r) 99.0 / 95.2 / 95.1 / 98.9 / 94.9 / 99.4 98.6 / 96.8 / 99.7 / 98.3 / 93.4 / 99.1 98.0 / 96.2 / 96.8 / 92.9 / 99.9 / 99.6 95.5 / 95.7 / 91.2 / 90.3 / 98.0 / 98.8

TinyImageNet(c) 98.7 / 94.8 / 96.6 / 99.7 / 97.4 / 98.2 99.2 / 95.7 / 99.5 / 98.4 / 95.7 / 98.8 97.3 / 96.0 / 96.1 / 95.4 / 98.4 / 99.0 93.5 / 95.9 / 91.3 / 91.9 / 99.5 / 97.5

Caltech256(r) 95.9 / 90.9 / 93.3 / 90.4 / 92.5 / 97.2 95.4 / 92.9 / 93.8 / 95.2 / 91.5 / 95.5 95.2 / 92.7 / 94.2 / 91.2 / 97.8 / 97.3 91.9 / 93.5 / 88.8 / 89.6 / 95.5 / 95.3

Caltech256(c) 97.7 / 91.7 / 94.1 / 97.3 / 94.5 / 98.8 96.9 / 94.1 / 92.4 / 97.7 / 88.7 / 98.3 96.5 / 90.5 / 92.5 / 92.6 / 98.5 / 98.7 94.8 / 94.7 / 89.5 / 90.8 / 97.0 / 99.2

COCO(r) 97.5 / 92.9 / 94.6 / 94.6 / 95.1 / 98.4 96.6 / 94.9 / 99.5 / 96.3 / 91.6 / 97.2 96.7 / 94.6 / 96.3 / 91.5 / 97.4 / 98.8 94.2 / 95.3 / 88.4 / 90.0 / 96.1 / 96.7

COCO(c) 97.9 / 91.1 / 94.2 / 97.6 / 93.6 / 99.1 97.2 / 93.7 / 97.2 / 98.1 / 88.4 / 98.4 96.6 / 90.5 / 95.2 / 92.6 / 98.7 / 99.2 95.0 / 93.9 / 91.0 / 90.9 / 97.2 / 99.4

Ave. 98.0 / 93.1 / 94.8 / 97.1 / 95.0 / 98.5 97.7 / 94.8 / 97.3 / 97.6 / 92.2 / 98.1 96.9 / 93.7 / 95.3 / 92.8 / 98.6 / 98.8 94.2 / 95.0 / 90.1 / 90.8 / 97.6 / 97.6

CIFAR10

LSUN(r) 92.8 / 92.8 / 91.9 / 90.8 / 98.7 / 99.0 89.4 / 95.3 / 80.4 / 90.8 / 96.4 / 97.4 83.0 / 83.5 / 81.4 / 88.8 / 98.6 / 99.8 92.2 / 87.8 / 90.6 / 94.7 / 99.4 / 99.1

LSUN(c) 95.0 / 95.7 / 94.1 / 90.8 / 98.2 / 98.9 92.3 / 95.7 / 86.4 / 90.1 / 97.3 / 96.7 89.0 / 86.7 / 82.5 / 91.9 / 98.0 / 93.0 93.1 / 96.1 / 91.5 / 97.3 / 98.3 / 98.0

TinyImageNet(r) 91.9 / 89.8 / 89.1 / 92.7 / 95.4 / 99.0 86.8 / 93.9 / 78.7 / 84.3 / 92.4 / 96.4 82.0 / 82.6 / 77.2 / 84.7 / 97.3 / 96.2 91.5 / 87.6 / 85.9 / 93.6 / 99.1 / 97.3

TinyImageNet(c) 93.2 / 93.4 / 93.0 / 92.7 / 96.2 / 95.7 89.7 / 94.3 / 84.4 / 92.7 / 91.3 / 94.9 87.4 / 85.9 / 85.8 / 88.2 / 96.5 / 92.2 92.3 / 93.4 / 89.3 / 96.2 / 98.7 / 96.5

Caltech256(r) 86.9 / 80.0 / 85.9 / 92.9 / 85.0 / 88.0 82.5 / 86.1 / 76.1 / 84.3 / 80.4 / 83.4 79.3 / 78.9 / 76.3 / 81.2 / 84.6 / 83.0 86.7 / 79.5 / 85.1 / 90.1 / 87.6 / 87.8

Caltech256(c) 93.0 / 90.3 / 91.5 / 84.3 / 91.7 / 94.7 88.5 / 92.7 / 79.4 / 89.5 / 87.6 / 90.7 82.5 / 80.4 / 78.1 / 79.1 / 87.1 / 91.9 91.0 / 89.9 / 90.8 / 95.2 / 91.3 / 94.4

COCO(r) 87.9 / 83.9 / 87.2 / 91.7 / 85.9 / 90.5 85.0 / 88.2 / 79.4 / 85.2 / 81.0 / 86.5 80.5 / 79.9 / 80.8 / 82.3 / 85.1 / 88.3 87.6 / 83.8 / 85.8 / 88.5 / 88.8 / 89.6

COCO(c) 92.7 / 87.5 / 91.6 / 85.2 / 89.9 / 94.5 88.4 / 93.8 / 79.2 / 90.8 / 87.3 / 91.7 84.1 / 81.6 / 78.7 / 79.6 / 87.9 / 92.4 91.0 / 89.5 / 90.7 / 93.9 / 90.6 / 96.2

Ave. 91.7 / 89.2 / 90.5 / 90.1 / 92.6 / 95.0 87.8 / 92.5 / 80.5 / 88.5 / 89.2 / 92.2 83.5 / 82.4 / 80.1 / 84.5 / 91.9 / 92.1 90.7 / 88.4 / 88.7 / 93.7 / 94.2 / 94.9

CIFAR100

LSUN(r) 83.6 / 78.0 / 82.7 / 87.6 / 93.4 / 93.8 79.2 / 75.4 / 71.5 / 80.7 / 87.3 / 82.5 71.9 / 55.9 / 68.8 / 65.7 / 80.4 / 82.3 81.9 / 75.2 / 82.6 / 86.1 / 98.7 / 98.6

LSUN(c) 85.4 / 77.6 / 81.5 / 80.5 / 88.3 / 85.0 83.7 / 80.9 / 78.3 / 81.9 / 85.6 / 85.9 75.1 / 71.2 / 76.7 / 77.3 / 87.7 / 82.9 81.6 / 81.9 / 81.4 / 88.4 / 95.3 / 94.6

TinyImageNet(r) 82.9 / 74.4 / 81.5 / 87.2 / 92.8 / 97.1 76.6 / 75.6 / 70.9 / 80.5 / 81.6 / 80.0 72.5 / 61.1 / 64.4 / 63.5 / 78.4 / 84.7 82.5 / 74.1 / 82.3 / 83.5 / 98.6 / 98.7

TinyImageNet(c) 87.1 / 83.7 / 83.8 / 83.3 / 91.4 / 89.6 83.4 / 81.8 / 77.3 / 79.9 / 83.9 / 87.2 78.9 / 78.8 / 78.5 / 75.9 / 88.5 / 86.4 84.1 / 84.9 / 84.0 / 87.8 / 97.6 / 96.6

Caltech256(r) 75.3 / 75.2 / 76.2 / 79.7 / 83.3 / 82.4 71.5 / 71.2 / 69.1 / 87.8 / 77.3 / 76.9 67.2 / 68.9 / 68.5 / 67.8 / 74.6 / 72.5 74.4 / 72.3 / 75.8 / 81.3 / 82.9 / 83.4

Caltech256(c) 82.1 / 83.7 / 81.6 / 83.6 / 87.9 / 89.2 79.7 / 79.9 / 74.7 / 80.6 / 76.7 / 84.5 71.7 / 70.0 / 71.5 / 71.2 / 76.3 / 81.5 81.6 / 80.1 / 81.3 / 85.7 / 86.9 / 92.9

COCO(r) 77.4 / 78.8 / 78.8 / 80.2 / 83.2 / 84.1 75.6 / 77.7 / 72.9 / 76.8 / 79.7 / 79.2 70.8 / 69.7 / 71.5 / 69.2 / 77.8 / 75.6 77.0 / 79.8 / 78.5 / 80.6 / 84.5 / 85.4

COCO(c) 83.2 / 80.5 / 82.2 / 82.5 / 89.0 / 93.4 81.7 / 79.3 / 75.8 / 81.7 / 78.4 / 85.6 71.8 / 70.5 / 71.1 / 71.6 / 78.3 / 85.6 82.0 / 79.6 / 82.3 / 84.5 / 88.1 / 94.7

Ave. 82.1 / 79.0 / 81.0 / 83.1 / 88.7 / 89.3 78.9 / 77.7 / 73.8 / 81.2 / 81.3 / 82.7 72.5 / 68.3 / 71.4 / 70.3 / 80.2 / 81.4 80.6 / 78.5 / 81.0 / 84.7 / 91.6 / 93.1

TABLE 3
OOD detection performance for ResNet18 learned from MiniImageNet.

The value for an OOD dataset indicates its corresponding AUROC
presented as a percentage, and the values for “Ave.” indicate the

average AUROC across all the test OOD datasets. Boldface values
represent the relatively better detection performance.

Out-of-dist GS MIXUP AD JCL DCC* FIG

Oxfordflowers102(r) 80.0 79.1 77.2 77.3 80.7 81.1

Oxfordflowers102(c) 82.6 81.7 78.8 83.6 84.2 85.5

Caltech256(r) 77.9 78.7 63.5 75.1 83.2 84.6

Caltech256(c) 80.9 79.2 82.1 84.2 85.0 89.8

DTD47(r) 73.5 75.2 69.0 69.6 74.4 81.2

DTD47(c) 78.7 78.9 73.5 81.2 80.7 84.0

Ave. 78.9 78.8 74.0 78.5 81.4 84.4

TABLE 4
Harmonic means of AUROC and accuracy. Boldface values represent

the relatively better balance between classifying ID samples and
detecting OOD samples.

In-dist Standard GS MIXUP AD JCL DCC* FIG

SVHN 47.1 48.5 47.4 47.7 48.0 47.7 48.7

CIFAR10 46.6 46.7 46.2 44.9 45.8 46.8 47.5

CIFAR100 39.9 39.7 39.4 35.9 38.9 40.5 41.2

MiniImageNet 38.8 38.6 39.0 36.5 37.3 39.3 40.0

respectively. We show the widespread applicability and
stability of the hyper-parameter K on CIFAR10, SVHN, and
CIFAR100 with the network architectures Resnet18, VGG19,
ShuffleNetV2, and DenseNet100 in terms of AUROC. Note
that when K = 0, FIG only applies training ID samples
to fine-tune discriminators without generating low-entropy

TABLE 5
Efficiency of generating low-entropy samples on ResNet18 in terms of

throughput.

In-dist
image

size
throughput
(image/s)

CIFAR10 32× 32 556
MiniImageNet 224× 224 222

samples.
The results of verifying K are shown in Fig. 1. We

observe that increasing the low-entropy percentage K can
improve the detection performance. The detection perfor-
mance diminishes when K is sufficiently large (K > 0.1).
However, having a large K with performance reduction is
acceptable. Recall that an implicit generator depends on a
standard discriminator, and the discriminator is updated
by the low-entropy samples generated by the implicit gen-
erator. According to this design principle, implicit genera-
tors generate low-entropy samples, which could be ID or
OOD samples. We assume that most drawn samples are
OOD because ID samples have limited classes while the
generated samples are diverse. When K is sufficiently large
(K > 0.1), more generated ID samples are encouraged to
yield low-confidence predictions in the fine-tuning phase.
This result is contradictory to the expectation that a standard
distribution should assign high-confidence predictions for
training ID samples. Specifically, a large set of the generated
samples contain more generated ID samples. This causes
the bias in the estimated gradients of the entropy in the
objective function. The dynamic implicit generator makes

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

K

82

84

86

88

90

92

94

96

98

100

A
U

R
O

C

CIFAR10, ResNet18
SVHN, ResNet18
CIFAR100, ResNet18
CIFAR10, VGG19
CIFAR10, ShuffleNetV2
CIFAR10, DenseNet100

Fig. 1. Effect of the OOD percentage K. Each point refers to
an average AUROC score on the eight OOD datasets, namely
LSUN(r), LSUN(c), TinyImageNet(r), TinyImageNet(c), Caltech256(r),
Caltech256(c), COCO(r) and COCO(c).

Training ResNet18 VGG19 ShuffleNetV2 DenseNet100 Trained

Teacher

ResNet18

VGG19

ShuffleNetV2

DenseNet100

S
tu

de
nt

CIFAR10

2.76

3.33

2.86

2.8

2.56

1.38

2.67 3.82

4.04

2.92

2.69

-0.62

-2.59

-0.75

-1.92

0.31

0.14

0.6

0.02

0.61

-0.59

0.61

0.19

0.63 -2

-1

0

1

2

3

4

Fig. 2. Transferability of the generated OOD samples between two dis-
criminators. Each student is the discriminator in the objective function,
and each teacher is the discriminator used to infer the implicit generator
in the Langevin dynamic sampler. The training and trained teachers
are initialized randomly by standard discriminators. Both training and
trained teachers are continuously updated as the standard discrimina-
tors change. The teachers named by network architectures are ran-
domly initialized. Their parameters are fixed during the learning process
of students. A value in the colored boxes represents the percentage
of AUROC improvement over the standard discriminator with the same
student network architecture. Lighter colors reflect better results. For all
columns except the first and last, diagonal entries correspond to answer
A1, and off-diagonal entries correspond to A2. The entries in the first
column correspond to A3.

the biased estimation more serious. Therefore, a small low-
entropy percentage, such as K ∈ [0.01, 0.1], is a better choice
for FIG. Hence, we apply K = 0.1 to balance effectiveness
and efficiency by default.

4.6 Transferability Analyses
In FIG, low-entropy samples are drawn from the implicit
generator of a standard discriminator. The generated low-
entropy samples are then used to patch the vulnerability
of the discriminator. We analyze the transferability of the
generated low-entropy samples to verify that (1) the im-
plicit generator should be updated as the corresponding
discriminator is updated; (2) low-entropy samples drawn
from the implicit generator of a discriminator cannot be
applied to patch the vulnerabilities of other discriminators
with different network architectures; and (3) FIG is not
suitable for randomly initialized discriminators.

The discriminator following LDS and the discrimina-
tor in the objective function Eq. (19) can be treated as a
teacher and a student, respectively. Therefore, a discrimi-
nator trained on ID samples is a student learning without
teachers, and a discriminator trained by FIG is a student
learning with a teacher. The teacher teaches the student
how to find the vulnerability. The student who receives

the knowledge from the teacher then knows the previously
unknown (i.e., the vulnerability). The teacher already has
some knowledge of the network structure if the teacher is
pretrained. The teacher and the student learn from each
other as the discriminator used in LDS is updated. Accord-
ingly, we analyze the teacher from different perspectives
and ask the following three questions:

• Q1: What if the teacher stops learning from the stu-
dent? This corresponds to applying a fixed discrimi-
nator to infer an implicit generator in each iteration.

• Q2: What if the expertise of the teacher mismatches
that of the student? This corresponds to generating
low-entropy samples according to a discriminator to
patch the vulnerability of other discriminators with
different architectures.

• Q3: What if the teacher does not yet have enough
knowledge or experience but still learns from the
student? In this situation, the discriminator is trained
from scratch, and the implicit generator is updated
according to the training discriminator before each
epoch.

To answer these questions, we design the following
experiments, whose results are shown in Fig. 2. We run FIG
in terms of different teacher-student pairs on CIFAR10. We
evaluate the improved performance over the baseline with
the same network architecture as the student on detecting
different OOD samples, namely LSUN(r), LSUN(c), Tiny-
ImageNet(r), TinyImageNet(c), Caltech256(r), Caltech256(c),
COCO(r), and COCO(c). In summary, the following findings
address the above questions.

• A1: Similarly, we fix the discriminator in LDS and
ensure this discriminator and the discriminator in
the objective function have the same network struc-
ture. If standard discriminators are fixed in LDS for
each iteration in the generation process, the detection
performance will be worse than when the on-the-
fly discriminators are used to infer implicit genera-
tors. The main reason for this is that vulnerability
is dynamic as refining discriminators leads to new
vulnerabilities. This dynamic property requires the
implicit generators to be updated continuously.

• A2: We replace the regularly updated discriminator
in the LDS input with a fixed discriminator, which is
diversified with different architectures. These teach-
ers have to be fixed because only the gradients of
students are calculated in FIG and the gradients
for teachers are not available. When students and
teachers have different architectures, the OOD detec-
tion performance generally declines. This is because
the generated low-entropy samples from a network
do not match the vulnerabilities of networks with
different architectures. Therefore, the generated low-
entropy samples are model specific.

• A3: We replace the discriminator in the input list of
Algorithm 2 with a randomly initialized discrimina-
tor and use the same training setup as the baseline.
The discriminator is trained for 200 epochs. The
learning rates start at 0.1 and are divided by 10 after
100 and 150 epochs. It is important to give knowl-
edge to teachers as we find fine-tuning a standard

11

0 50 100 150 200

Iteration

0

0.2

0.4

0.6

0.8

1

C
on

fid
en

ce
ResNet18, CIFAR10

In-distribution Samples

Out-of-distribution Samples

0 50 100 150 200

Iteration

-1.5

-1

-0.5

0

E
ne

rg
y

ResNet18, CIFAR10

In-distribution Samples

Out-of-distribution Samples

Fig. 3. Confidence and energy of training ID samples and generated
samples. Each point indicates an average value of confidence or energy
on the training ID dataset or a generated dataset.

discriminator can achieve better performance than
retraining a new one. This is because the capable
discriminators deduce reliable implicit generators,
which guarantees the right direction to patch the
vulnerability.

According to the transferability analyses, we apply FIG on a
standard discriminator and continually update the standard
discriminator and the corresponding implicit generator.

4.7 Visualization of the Results

The samples generated by implicit generators can be applied
to train OOD-sensitive discriminators because these sam-
ples generated by standard discriminator have high confi-
dence and are almost OOD. This is verified by visualizing
the change in the confidence and energy along the fine-
tuning process, the embedding results, and the content of
generated low-entropy samples. The network architecture
is Resnet18, and the training ID datasets are CIFAR10 and
SVHN.

4.7.1 Confidence and Energy
We analyze FIG from confidence and energy perspectives,
respectively. We visualize the changes in confidence and
energy on both training ID samples and the generated sam-
ples along with the fine-tuning of the discriminators. For the
confidence of the generated samples, FIG should encourage
low scores since the OOD sensitivity of discriminators can
be improved by making it difficult for the corresponding
implicit generators to produce high-confidence OOD sam-
ples. For the energy of the generated samples, the implicit
generators should have high values according to the design
principle.

The results are reported in Fig. 3. We find that ID samples
maintain high-confidence scores and stable energy values.
For the generated samples, the confidence scores are close to
one in the preliminary stage, which then drop continuously.
It is increasingly difficult for implicit generators to generate
high-confidence OOD samples since samples with a higher
energy are explored as iterations increase. Although the
energy of the generated samples is higher than that of the
ID samples, the distribution of the prediction probability
vectors approximates to a uniform distribution since the
confidence scores are close to 0.1 = 1/class-number on
the training dataset CIFAR10. Therefore, we conclude that

0
0

CIFAR10, ResNet18, Standard Discriminator

Plane

Car

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Generated

-80 -60 -40 -20 0 20 40 60 80
-80

-60

-40

-20

0

20

40

60

80
CIFAR10, ResNet18, Standard Discriminator

-80 -60 -40 -20 0 20 40 60 80
-80

-60

-40

-20

0

20

40

60

80
CIFAR10, ResNet18, Fine-tuned Discriminator

Fig. 4. Embedding results of test ID samples and the generated sam-
ples from a standard discriminator and a fine-tuned discriminator. The
black diamonds indicate the generated samples, and the colored circles
represent the test ID samples.

Standard Fine-tuned

(a) CIFAR10 (Dog)

Standard Fine-tuned

(b) SVHN (Digit 6)

Fig. 5. Generated low-entropy samples of standard and fine-tuned
discriminators. For CIFAR10 and SVHN, the predicted labels of the
selected low-entropy samples are “Dog” and “Digit 6”, respectively.

implicit generators can produce high-confidence OOD sam-
ples in the preliminary stage, which then fails after the
vulnerability is patched.

4.7.2 Embedding Visualization
Fig. 4 presents the embedding results of test ID samples

and the generated samples of a standard discriminator and
a fine-tuned discriminator by t-SNE [70]. We randomly
sample 10% of the test ID samples and draw 1, 000 samples
by the implicit generators. Only the samples with confi-
dence scores over 0.9 are plotted. The results show that the
generated low-entropy samples by a standard discriminator
and a fine-tuned discriminator are distinguished from and
included in the ID classes, respectively. Therefore, their low-
entropy samples tend to be OOD and ID, respectively. This
is reasonable because the distributional vulnerability of the
fine-tuned discriminator is patched by the generated low-
entropy samples, which makes it harder to generate OOD
samples. The embedding results for the fine-tuned discrim-
inators verify that FIG effectively applies the generated
samples to patch the vulnerability.

4.7.3 Generated Low-entropy Samples
Fig. 5 visualizes the generated low-entropy samples corre-
sponding to standard discriminators and their fine-tuned
discriminators. To generate low-entropy samples with more
details from implicit generators, we set an extensive maxi-
mum iteration number T = 10, 000 in LDS without an early

12

stop. We adopt network architecture ResNet18. The pre-
sented low-entropy samples are labelled “Dog” and “Digit
6” on CIFAR10 and SVHN, respectively. We observe that the
generated low-entropy samples by standard and fine-tuned
discriminators are significantly different. For example, the
samples generated by the fine-tuned discriminator contain
more dark regions than that of its corresponding standard
discriminator on CIFAR10. Furthermore, on SVHN, the gen-
erated samples of the standard discriminator are irregular,
while the samples generated by its corresponding fine-
tuned discriminator contain dark lines to form blurry digit
6. Recall that GAN generates visually meaningful samples
by constraining the generated samples and training samples
to satisfy the same distribution. Without this constraint, as
shown in Fig. 5, the samples generated by implicit gener-
ators are unnecessarily consistent with real-world objects.
Based on the discussion in Section 4.7.2, the generated
samples by standard and fine-tuned discriminators can be
treated as the OOD samples with semantic shift and the ID
samples with covariate shift, respectively.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a method of fine-tuning discrim-
inators by implicit generators (FIG) to improve the OOD
sensitivity of a given standard discriminator. FIG tackles the
main challenge of generating discriminator-specific OOD
samples. Specifically, we reveal the distributional vulnera-
bility by the corresponding implicit generator inferred from
a standard discriminator without extra training costs. A
Langevin dynamic sampler draws OOD samples for the
generator, which patches the distributional vulnerability
by penalizing the prediction confidence of these generated
samples. We empirically demonstrate that FIG outperforms
the existing methods in detecting OOD samples.

The generated OOD samples address the distributional
vulnerability. The training strategy of having OOD samples
to patch the vulnerability and the results presented in this
paper motivate a more ambitious direction: improving the
classification generalization with OOD samples in training,
i.e., classifying non-IID samples. This motivates the future
task of making the involved OOD samples adaptive to both
networks and training ID samples.

ACKNOWLEDGMENTS

The work is partially sponsored by Australian Re-
search Council Discovery and Future Fellowship grants
(DP190101079 and FT190100734).

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016, pp. 770–778.

[2] Z. Allen-Zhu, Y. Li, and Y. Liang, “Learning and generalization in
overparameterized neural networks, going beyond two layers,” in
NeurIPS, 2019, pp. 6155–6166.

[3] L. Cao, P. S. Yu, and Z. Zhao, “Shallow and deep non-iid learning
on complex data,” in KDD. ACM, 2022, pp. 4774–4775.

[4] L. Cao, “Non-iidness learning in behavioral and social data,”
Comput. J., vol. 57, no. 9, pp. 1358–1370, 2014.

[5] A. M. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks
are easily fooled: High confidence predictions for unrecognizable
images,” in CVPR, 2015, pp. 427–436.

[6] J. Yang, K. Zhou, Y. Li, and Z. Liu, “Generalized out-of-distribution
detection: A survey,” CoRR, pp. 1–20, 2021.

[7] J. Ren, P. J. Liu, E. Fertig, J. Snoek, R. Poplin, M. A. DePristo, J. V.
Dillon, and B. Lakshminarayanan, “Likelihood ratios for out-of-
distribution detection,” in NeurIPS, 2019, pp. 14 680–14 691.

[8] D. Hendrycks and K. Gimpel, “A baseline for detecting misclas-
sified and out-of-distribution examples in neural networks,” in
ICLR, 2017, pp. 1–12.

[9] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and
R. Webb, “Learning from simulated and unsupervised images
through adversarial training,” in Conference on Computer Vision and
Pattern Recognition, 2017, pp. 2242–2251.

[10] D. Amodei, C. Olah, J. Steinhardt, P. F. Christiano, J. Schulman,
and D. Mané, “Concrete problems in AI safety,” CoRR, pp. 1–29,
2016.

[11] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian
deep learning for computer vision?” in NeurIPS, 2017, pp. 5574–
5584.

[12] A. Malinin and M. J. F. Gales, “Predictive uncertainty estimation
via prior networks,” in NeurIPS, 2018, pp. 7047–7058.

[13] H. Touvron, A. Vedaldi, M. Douze, and H. Jégou, “Fixing the
train-test resolution discrepancy: Fixefficientnet,” in CoRR, vol.
abs/2003.08237, 2020, pp. 1–5.

[14] Y. Bengio, A. C. Courville, and P. Vincent, “Representation learn-
ing: A review and new perspectives,” TPAMI, vol. 35, no. 8, 2013.

[15] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz, “mixup:
Beyond empirical risk minimization,” in ICLR, 2018, pp. 1–13.

[16] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le,
“Autoaugment: Learning augmentation strategies from data,” in
CVPR, 2019, pp. 113–123.

[17] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “Pixelcnn++:
Improving the pixelcnn with discretized logistic mixture likeli-
hood and other modifications,” in ICLR, 2017, pp. 1–10.

[18] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with
invertible 1x1 convolutions,” in NeurIPS, 2018, pp. 10 236–10 245.

[19] Y. Bengio, E. Laufer, G. Alain, and J. Yosinski, “Deep generative
stochastic networks trainable by backprop,” in ICML, 2014, pp.
226–234.

[20] M. I. Belghazi, A. Baratin, S. Rajeswar, S. Ozair, Y. Bengio, R. D.
Hjelm, and A. C. Courville, “Mutual information neural estima-
tion,” in ICML, 2018, pp. 530–539.

[21] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. J. Huang,
“A tutorial on energy-based learning,” Predicting structured data,
vol. 1, no. 0, pp. 1–59, 2006.

[22] M. Welling and Y. W. Teh, “Bayesian learning via stochastic
gradient langevin dynamics,” in ICML, 2011, pp. 681–688.

[23] L. Cao, “Non-iid recommender systems: A review and framework
of recommendation paradigm shifting,” Engineering, vol. 2, no. 2,
pp. 212–224, 2016.

[24] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, “Deep learning for
anomaly detection: A review,” ACM Computing Surveys, vol. 54,
no. 2, pp. 1–38, 2021.

[25] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult,
“Toward open set recognition,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 35, no. 7, pp. 1757–1772, 2013.

[26] D. Macêdo, T. I. Ren, C. Zanchettin, A. L. I. Oliveira, and T. B. Lud-
ermir, “Entropic out-of-distribution detection: Seamless detection
of unknown examples,” IEEE Trans. Neural Networks Learn. Syst.,
vol. 33, no. 6, pp. 2350–2364, 2022.

[27] M. Bahri, F. Salutari, A. Putina, and M. Sozio, “Automl: state of the
art with a focus on anomaly detection, challenges, and research
directions,” Int. J. Data Sci. Anal., vol. 14, no. 2, pp. 113–126, 2022.

[28] H. Xiang, J. Wang, K. Ramamohanarao, Z. Salcic, W. Dou, and
X. Zhang, “Isolation forest based anomaly detection framework
on non-iid data,” IEEE Intell. Syst., vol. 36, no. 3, pp. 31–40, 2021.

[29] G. Chen, P. Peng, X. Wang, and Y. Tian, “Adversarial recip-
rocal points learning for open set recognition,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. DOI
10.1109/TPAMI.2021.3106743, 2021.

[30] H. Li, X. Wang, Z. Zhang, and W. Zhu, “OOD-GNN:
out-of-distribution generalized graph neural network,” IEEE
Transactions on Knowledge and Data Engineering, vol. DOI
10.1109/TKDE.2022.3193725, 2021.

[31] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” in CoRR, vol. abs/1503.02531, 2015.

13

[32] S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-
distribution image detection in neural networks,” in ICLR, 2018,
pp. 1–27.

[33] J. van Amersfoort, L. Smith, A. Jesson, O. Key, and Y. Gal, “Im-
proving deterministic uncertainty estimation in deep learning for
classification and regression,” in CoRR, 2021, pp. 1–16.

[34] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework
for detecting out-of-distribution samples and adversarial attacks,”
in NeurIPS, 2018, pp. 7167–7177.

[35] E. Zisselman and A. Tamar, “Deep residual flow for out of distri-
bution detection,” in CVPR, 2020, pp. 13 991–14 000.

[36] C. S. Sastry and S. Oore, “Detecting out-of-distribution examples
with gram matrices,” in ICML, 2020, pp. 8491–8501.

[37] E. T. Nalisnick, A. Matsukawa, Y. W. Teh, D. Görür, and B. Laksh-
minarayanan, “Do deep generative models know what they don’t
know?” in ICLR, 2019, pp. 1–19.

[38] J. Ren, P. J. Liu, E. Fertig, J. Snoek, R. Poplin, M. A. DePristo, J. V.
Dillon, and B. Lakshminarayanan, “Likelihood ratios for out-of-
distribution detection,” in NeurIPS, 2019, pp. 14 680–14 691.

[39] J. Serrà, D. Álvarez, V. Gómez, O. Slizovskaia, J. F. Núñez, and
J. Luque, “Input complexity and out-of-distribution detection with
likelihood-based generative models,” in ICLR, 2020, pp. 1–15.

[40] D. Hendrycks, M. Mazeika, and T. G. Dietterich, “Deep anomaly
detection with outlier exposure,” in ICLR, 2019, pp. 1–18.

[41] P. Bevandic, I. Kreso, M. Orsic, and S. Segvic, “Simultaneous se-
mantic segmentation and outlier detection in presence of domain
shift,” in PRGC, 2019, pp. 33–47.

[42] H. Blum, P. Sarlin, J. I. Nieto, R. Siegwart, and C. Cadena,
“Fishyscapes: A benchmark for safe semantic segmentation in
autonomous driving,” in ICCVW, 2019, pp. 2403–2412.

[43] Y. Hsu, Y. Shen, H. Jin, and Z. Kira, “Generalized ODIN de-
tecting out-of-distribution image without learning from out-of-
distribution data,” in CVPR, 2020, pp. 10 948–10 957.

[44] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-
nessing adversarial examples,” in ICLR, 2015, pp. 1–11.

[45] K. Lee, H. Lee, K. Lee, and J. Shin, “Training confidence-calibrated
classifiers for detecting out-of-distribution samples,” in ICLR,
2018, pp. 1–16.

[46] W. Grathwohl, K. Wang, J. Jacobsen, D. Duvenaud, M. Norouzi,
and K. Swersky, “Your classifier is secretly an energy based model
and you should treat it like one,” in ICLR, 2020, pp. 1–23.

[47] B. Poole, S. Ozair, A. van den Oord, A. Alemi, and G. Tucker,
“On variational bounds of mutual information,” in ICML, 2019,
pp. 5171–5180.

[48] R. Bardenet, A. Doucet, and C. C. Holmes, “On Markov Chain
Monte Carlo methods for tall data,” J. Mach. Learn. Res., vol. 18,
pp. 1–47, 2017.

[49] G. E. Hinton, “Training products of experts by minimizing con-
trastive divergence,” Neural Comput., vol. 14, no. 8, pp. 1771–1800,
2002.

[50] Y. Du and I. Mordatch, “Implicit generation and modeling with
energy based models,” in NeurIPS, 2019, pp. 3603–3613.

[51] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learn-
ing From Theory to Algorithms. Cambridge University Press, 2014.

[52] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,”
in ICLR, 2018, pp. 1–23.

[53] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. C. Courville, and Y. Bengio, “Generative
adversarial nets,” in NeurIPS, 2014, pp. 2672–2680.

[54] G. Pereyra, G. Tucker, J. Chorowski, L. Kaiser, and G. E. Hinton,
“Regularizing neural networks by penalizing confident output
distributions,” in ICLR, 2017, pp. 1–11.

[55] T. Wu and D. F. Gleich, “Multiway Monte Carlo method for linear
systems,” SIAM J. Sci. Comput., vol. 41, no. 6, pp. 3449–3475, 2019.

[56] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.
Ng, “Reading digits in natural images with unsupervised feature
learning,” in NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

[57] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” Tech. Rep., 2009.

[58] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wier-
stra, “Matching networks for one shot learning,” in NeurIPS, 2016,
pp. 3630–3638.

[59] F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao, “LSUN: construction
of a large-scale image dataset using deep learning with humans in
the loop,” CoRR, vol. abs/1506.03365, 2015.

[60] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li, “Imagenet:
A large−scale hierarchical image database,” in CVPR, 2009, pp.
248–255.

[61] G. Griffin, A. Holub, and P. Perona, “The Caltech 256,” Caltech
Technical Report, Tech. Rep., 2006.

[62] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in ECCV, vol. 8693, 2014, pp. 740–755.

[63] M. Nilsback and A. Zisserman, “A visual vocabulary for flower
classification,” in IEEE Computer Society Conference on Computer
Vision and Pattern, no. 1447–1454, 2006.

[64] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi,
“Describing textures in the wild,” in IEEE Conference on Computer
Vision and Pattern Recognition, no. 3606–3613, 2014.

[65] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in CVPR, 2015, pp. 1–9.

[66] N. Ma, X. Zhang, H. Zheng, and J. Sun, “Shufflenet V2: practical
guidelines for efficient CNN architecture design,” in ECCV, 2018,
pp. 122–138.

[67] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in CVPR, 2017, pp.
2261–2269.

[68] G. Shalev, Y. Adi, and J. Keshet, “Out-of-distribution detection
using multiple semantic label representations,” in NeurIPS, 2018,
pp. 7386–7396.

[69] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distilla-
tion through attention,” in ICML, 2021, pp. 10 347–10 357.

[70] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,”
JMLR, vol. 9, no. 86, pp. 2579–2605, 2008.

Zhilin Zhao received a B.S. and M.S. degree
from the School of Data and Computer Science,
Sun Yat-Sen University, China. He is currently a
PhD student in the School of Computer Science,
University of Technology Sydney, Australia. His
research interests include generalization analy-
sis, online learning, and out-of-distribution detec-
tion.

Longbing Cao is a Professor at the University
of Technology Sydney and an ARC Future Fel-
low (Level 3). He received one PhD in Pattern
Recognition and Intelligent Systems from the
Chinese Academy of Sciences and another in
Computing Science at UTS. His research inter-
ests include artificial intelligence, data science,
knowledge discovery, machine learning, behav-
ior informatics, complex intelligent systems, and
enterprise innovation.

Kun-Yu Lin received a B.S. and M.S. degree
from the School of Data and Computer Science,
Sun Yat-sen University, China. He is currently
a PhD student in the School of Computer Sci-
ence and Engineering, Sun Yat-sen University.
His research interests include computer vision
and machine learning.

	Introduction
	Related Work
	Broadly Related Research and Applications
	Out-of-distribution Detectors
	Generative OOD Detection
	Confidence Enhancement Methods

	FIG: Fine-tuning Discriminators by Implicit Generators
	Implicit Generator
	Langevin Dynamic Sampler
	Confidence Penalty on Out-of-distribution Samples

	Experiments
	Setup
	Evaluation Metrics
	Incorporating OOD detectors into FIG
	Comparison Results
	Hyper-parameter Analysis
	Transferability Analyses
	Visualization of the Results
	Confidence and Energy
	Embedding Visualization
	Generated Low-entropy Samples

	Conclusion and Future Work
	References
	Biographies
	Zhilin Zhao
	Longbing Cao
	Kun-Yu Lin

