
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Multi-label Classification via Adaptive
Resonance Theory-based Clustering

Naoki Masuyama, Member, IEEE, Yusuke Nojima, Member, IEEE, Chu Kiong Loo, Senior Member, IEEE,
and Hisao Ishibuchi, Fellow, IEEE

Abstract—This paper proposes a multi-label classification algorithm capable of continual learning by applying an Adaptive Resonance
Theory (ART)-based clustering algorithm and the Bayesian approach for label probability computation. The ART-based clustering
algorithm adaptively and continually generates prototype nodes corresponding to given data, and the generated nodes are used as
classifiers. The label probability computation independently counts the number of label appearances for each class and calculates the
Bayesian probabilities. Thus, the label probability computation can cope with an increase in the number of labels. Experimental results
with synthetic and real-world multi-label datasets show that the proposed algorithm has competitive classification performance to other
well-known algorithms while realizing continual learning.

Index Terms—Multi-label Classification, Continual Learning, Clustering, Adaptive Resonance Theory, Correntropy.

F

1 INTRODUCTION

THANKS to the recent advances of IoT technology, we can
easily obtain a wide variety of data and utilize them to

machine learning algorithms. Thus, the importance of con-
tinual learning is increasing for machine learning algorithms
in order to efficiently utilize the data [1]. The requirement for
continual learning is to handle both sequential learning and
class-incremental learning without destroying the learned
knowledge. In general, sequential learning is defined as a
method that learns the data instance by instance, not in
batches. Class-incremental learning is defined as a method
that can deal with the situation where the number of classes
(labels) increases during the learning process.

Since real-world phenomena and objects are complex
and may have multiple semantics in nature, multi-label
classification attracts a great deal of attention from machine
learning and related fields such as web mining [2], rule
mining [3], and information retrieval [4], [5]. In regard to
multi-label classification algorithms, the sequential learning
has realized by stream multi-label classification algorithms
[6]. For those algorithms, however, data pre-processing such
as normalization and standardization is often required.
In addition, it is necessary for learning process to define
the number of classes in advance. The class-incremental
learning is theoretically feasible with the Bayesian approach
for label probability computation in Multi-Label k-Nearest

• N. Masuyama, and Y. Nojima are with the Graduate School of Engineer-
ing, Osaka Prefecture University, 1-1 Gakuen-cho Naka-ku, Sakai-Shi,
Osaka 599-8531, Japan.
E-mails: {masuyama, nojima}@cs.osakafu-u.ac.jp

• C. K. Loo is with the Faculty of Computer Science and Information
Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia.
E-mail: ckloo.um@um.edu.my

• H. Ishibuchi is with the Guangdong Provincial Key Laboratory of Brain-
inspired Intelligent Computation, Department of Computer Science and
Engineering, Southern University of Science and Technology, Shenzhen
518055, China.
E-mail: hisao@sustech.edu.cn

Corresponding author: Hisao Ishibuchi (e-mail: hisao@sustech.edu.cn).
Manuscript received April 19, 2005; revised August 26, 2015.

Neighbor (ML-kNN) [7]. The label learning process inde-
pendently counts the number of label appearances for each
class and calculates the Bayesian probabilities. Thus, the
label probability computation can cope with an increase in
the number of labels. However, ML-kNN cannot cope with
the sequential learning because k-NN requires the entire
data before the learning process. Multi-label Learning with
Emerging New Labels (MuENL) [8] has realized contin-
ual learning by constructing two classifiers for classifying
instances and for detecting new labels. However, MuENL
cannot perform continual learning in the non-stationary
environment, i.e., the situation where new data distributions
are sequentially provided.

In the case of single-label classification algorithms, sev-
eral types of clustering-based classifiers capable of continual
learning have been proposed [9], [10], [11], [12], [13], [14]. In
particular, classifiers designed by an Adaptive Resonance
Theory (ART)-based clustering algorithm have shown com-
parable classification performance to typical classification
algorithms such as SVM and k-NN. The main feature of
the above ART-based clustering algorithms is the use of
the Correntropy-Induced Metric (CIM) [15] to a similarity
threshold, which makes the self-organizing process fast and
stable [11], [12], [13], [14].

In this paper, in order to realize a multi-label classifica-
tion algorithm capable of continual learning, we propose
Multi-Label CIM-based ART (MLCA) by integrating the
Bayesian approach for label probability computation into
the ART-based clustering with the CIM. Furthermore, we
also propose two variants of MLCA by modifying the cal-
culation method of the CIM to improve the classification
performance of MLCA.

The contributions of this paper are summarized as fol-
lows:

(i) A multi-label classification algorithm, called MLCA,
is proposed by integrating a CIM-based ART and the
Bayesian approach for label probability computation.
MLCA computes the prior probability and likelihood

ar
X

iv
:2

10
3.

01
51

1v
3 

 [
cs

.L
G

] 
 3

 S
ep

 2
02

1



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

by using nodes (representative points of training
data) which have accumulated label counts while
ML-kNN computes them by directly referencing to
training instances.

(ii) A new CIM-based ART is proposed by introducing
an efficient node generation process and a band-
width adaptation method for a kernel function in
CIM. As a result, MLCA does not require any data
pre-processing method such as normalization or scal-
ing.

(iii) Empirical studies show that MLCA and its variants
have competitive classification performance to recent
multi-label classification algorithms.

(iv) The continual learning ability of MLCA is analyzed
from multiple perspectives, and its usefulness and
superiority are clarified.

The paper is organized as follows. Section 2 presents
literature review for clustering algorithms and multi-label
classification algorithms. Section 3 describes details of the
proposed algorithm and modifications of the calculation
method of the CIM. Section 4 presents extensive simulation
experiments to evaluate the continual learning ability and
classification performance of MLCA. Section 5 concludes
this paper.

2 LITERATURE REVIEW

2.1 Clustering Algorithm

Cluster analysis is one of the widely applied approaches to
extract hidden relation from data. Typical types of clustering
algorithms are the Gaussian mixture model [16], k-means
[17], and Self-Organizing Map (SOM) [18]. Although the
above algorithms are quite simple and highly adaptable, the
number of classes and network architectures are specified
in advance. Growing Neural Gas (GNG) [19] and Self-
Organizing Incremental Neural Network (SOINN) [9] are
well-known growing self-organizing clustering algorithms
that can overcome the drawbacks of the typical types of
clustering algorithms. GNG and SOINN can adaptively
generate topological networks corresponding to given data.
However, since these algorithms permanently insert new
nodes into their networks for memorizing new knowl-
edge, they have a potential to forget learned knowledge
(i.e., catastrophic forgetting). This trade-off is called the
plasticity-stability dilemma [20]. A variant of GNG, called
Grow When Required (GWR) [21] can avoid the plasticity-
stability dilemma by adding nodes whenever the state of the
current network does not sufficiently match the instance.
One problem of GWR is that as the number of nodes in
the network increases, the cost of calculating a threshold
for each node increases, and thus the learning efficiency
decreases.

A successful approach to avoid the plasticity-stability
dilemma is the ART-based algorithms [22]. Because the ART-
based algorithms realize sequential and class-incremental
learning without the catastrophic forgetting, a number of
the ART-based algorithms and their improvements are pro-
posed in both supervised learning [23], [24], [25] and un-
supervised learning [26], [27], [28], [29]. In the ART-based
algorithms, a criterion of a new category (node) generation,

i.e., a similarity measurement between a node and an in-
stance, has a great impact on the classification/clustering
performance. Previous studies have shown that algorithms
with the CIM [15] as a similarity measurement are capable
of faster and more stable learning than other self-organizing
clustering algorithms [11], [12], [13], [14].

2.2 Multi-label Classification
The multi-label classification algorithms are categorized
into two approaches, namely, a problem transformation
approach and an algorithm adaptation approach [30]. The
problem transformation approach transforms a multi-label
classification problem into multiple single-label classifica-
tion problems. The problem transformation approach is
further divided into two methods, namely, the Binary Rel-
evance (BR) [31] and the Label Powerset (LP) [32]. The BR
transforms a multi-label classification problem into multiple
binary classification problems by decomposing multi-labels
into multiple single labels. The LP transforms a multi-
label classification problem into a multi-class classification
problem by merging multi-labels into a single label. Various
single-label classification algorithms have been used in the
problem transformation approach thanks to its simplicity
and applicability.

The algorithm adaptation approach extends existing
single-label classification algorithms for handling multi-
label classification problems. Various types of algorithm
adaptation approach have been introduced based on k-NN
[7], [33], decision tree [34], regression [35], Support Vector
Machine (SVM) [36], and feed-forward neural networks [37],
[38]. In order to achieve high classification performance,
recent studies consider label distributions and their correla-
tions in a label learning process [39], [40]. These algorithms,
however, cannot cope with the situation where new label
information is sequentially provided. ML-kNN [7] is a well-
known algorithm adaptation method that integrates k-NN
and the Bayesian approach for label probability compu-
tation. ML-kNN counts the number of relevant labels of
neighbors for each instance in training data. Based on the
counts of relevant labels, the likelihood and posterior proba-
bility of each label are computed by the Bayesian approach.
Here, the computation of the Bayesian probability is indi-
vidually performed in each label. Therefore, in theory, the
number of labels to be learned can be increased/decreased
during the label probability computation. One disadvan-
tage of ML-kNN is that it cannot efficiently cope with
the situation where new training instances are sequentially
provided. Multi-Label Self-Adjusting k Nearest Neighbors
(MLSA-kNN) [41] is capable of handling a stream multi-
label classification by employing a self-adjusting window
to detect a concept drift and to adaptively control a pa-
rameter k in kNN. MuENL [8] generates two classifiers for
classifying instances and for detecting new labels. By us-
ing the two classifiers, MuENL realizes sequential learning
and class-incremental learning, simultaneously. Although
MuENL is capable of continual learning, MuENL requires
a batch learning process in the initial stage of learning
for constructing two classifiers for instances and labels.
Moreover, MuENL cannot deal with the situation where
new data distributions are provided in the non-stationary
environment.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Several studies have realized multi-label classification by
using a clustering algorithm. A typical type of clustering-
based multi-label classification algorithm utilizes SOM [42],
[43]. Although the learning process of SOM is performed
in an unsupervised learning manner, the convergence of
the SOM network is significantly slow and unstable. The
online semi-supervised GNG for multi-label classification
utilizes GNG as a base classifier [44]. Unlike SOM-based
algorithms, this method adaptively generates a topological
network corresponding to the given instances. However,
as mentioned in the literature review for clustering in the
previous subsection, GNG-based algorithms do not satisfy
the requirements of continual learning. Multi-label Classifi-
cation via Incremental Clustering (MCIC) [45] has realized
continual learning by applying a continual clustering to a
learning process. MCIC extracts and accumulates informa-
tion from data by nodes through the continual clustering
process that takes into account the arrival time of data. In
addition, the continual clustering process also constructs
and updates a distribution of labels in each node for a label
estimation process. Some studies have employed Fuzzy
ARTMAP [46] to a base classifier of the multi-label classi-
fication [47], [48], [49], [50]. ARTMAP is composed of two
ART architecture to realize an explicit supervised learning
process. Although Fuzzy ARTMAP has various advantages,
there is a well-known problem, i.e., high sensitivity to statis-
tical overlapping between the generated categories [51]. This
sensitivity problem results in category proliferation (i.e.,
disordered generation of categories), which leads to a high

computational cost and deterioration in the classification
performance. The recent ART-based algorithms in [47], [48],
[49], [50] potentially have this problem.

3 PROPOSED ALGORITHM

In this section, first the theoretical background of the CIM
is briefly described. Next, the proposed algorithm, namely,
MLCA, is explained in detail. Then, two variants of MLCA
are introduced by modifying the calculation method of the
CIM. Table 1 summarizes the main notations used in this
paper.

3.1 Correntropy and Correntropy-Induced Metric
Correntropy [15] provides a generalized similarity measure
between two arbitrary instances x = (x1, x2, . . . , xd) and
y = (y1, y2, . . . , yd) as follows:

C(x,y) = E [κσ (x− y)] , (1)

where E [·] is the expectation operation, and κσ (·) denotes
a positive definite kernel with a kernel bandwidth σ. The
correntropy can be defined as follows:

Ĉ(x,y) =
1

d

d∑
i=1

κσ (xi − yi) . (2)

In this paper, we use the following Gaussian kernel in
the correntropy:

κσ (xi − yi) = exp

[
− (xi − yi)2

2σ2

]
. (3)

TABLE 1: Summary of notations

Notation Description
X = (x1,x2, . . . ,xn, . . . ,x∞) A set of training instances
xn =

(
xn,1, xn,2, . . . , xn,d

)
d-dimensional training instance (the nth instance)

L = (l1, l2, . . . , ln, . . . , l∞) A set of relevant label sets for X
ln = (ln,1, ln,2, . . . , ln,Nl ) A set of relevant label for xn
Nl Dimension of the relevant label set for X
Y = (y1,y2, . . . ,yK) A set of prototype nodes (the kth node)
yk = (y1, y2, . . . , yd) d-dimensional prototype node
S = (σ1, σ2, . . . , σK) A set of bandwidths for a kernel function
κσ Kernel function with a bandwidth σ
CIM Correntropy-Induced Metric
k1, k2 Indexes of the 1st and 2nd winner nodes
yk1 , yk2 The 1st and 2nd winner nodes
Vk1 , Vk2 Similarities between an instance xn and winner nodes (yk1 and yk2 )
V Predefined similarity threshold
αk1 The number of instances that have accumulated by the node yk1
βk1 The number of labels that have accumulated by the node yk1
y+
k1

Neighbor node of yk1
Ny The predefined number of neighbor nodes for yk1
λ Interval for adapting σ
H+
i Event that an instance has the ith label

H−i Event that an instance does not have the ith label
Ei Event that the label li has the highest frequency among the Ny neighbor nodes of yk1
P (E|H) Likelihood for a label probability computation
P (H) Prior probability for a label probability computation
P (H|E) Posterior probability for a label probability computation
c Label counter
x∗ =

(
x∗1, x

∗
2, . . . , x

∗
d

)
d-dimensional testing instance

l∗ Predicted label vector of the test instance x∗



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

A nonlinear metric called CIM is derived from the cor-
rentropy [15]. The CIM quantifies the similarity between
two instances as follows:

CIM (x,y, σ) =
[
κσ(0)− Ĉ(x,y)

] 1
2
, (4)

where κσ(0) = 1 from (3). Here, thanks to the Gaussian
kernel without a coefficient 1√

2πσ
as defined in (3), a range

of the CIM is limited to [0, 1].

3.2 Learning Procedure
We use the following notations: Training instances are X =
(x1,x2, . . . ,xn, . . . ,x∞) where xn = (xn,1, xn,2, . . . , xn,d)
is a d-dimensional feature vector. Relevant label sets for X
are L = (l1, l2, . . . , ln, . . . , l∞) where ln = (ln,1, ln,2, . . . ,
ln,∞) is a binary vector used to show a set of relevant labels
for xn. The dimension of ln increases with the number of
label types (classes) in the learned training instances. Note
that MLCA is capable of continual learning, the algorithm
can accept any number of training instances and labels. A set
of prototype nodes in MLCA at the point of the presentation
of instance xn is Y = (y1,y2, . . . ,yK) (K ∈ Z+) where a
node yk = (y1, y2, . . . , yd) has the same dimension as xn.
Furthermore, each node yk has an individual bandwidth σ
for the CIM, i.e., S = (σ1, σ2, . . . , σK).

The learning procedure of MLCA is divided into five
parts: 1) initialization process for a bandwidth of a kernel
function in the CIM, 2) winner node selection, 3) vigilance
test, 4) node learning, and 5) label probability computation.
Each of them is explained in the following subsections.

3.2.1 Initialization Process for a Bandwidth of a Kernel
Function in the CIM
Similarity measurement between an instance and a node has
a large impact on the performance of clustering algorithms.
MLCA uses the CIM as a similarity measure. As defined in
(4), the state of the CIM is controlled by a bandwidth σ of a
kernel function which is a data-dependent parameter.

In general, the bandwidth of a kernel function can be es-
timated from λ instances belonging to a certain distribution
[52], which is defined as follows:

Σ = U(Fν)Γλ−
1

2ν+d , (5)

U(Fν) =

(
πd/22d+ν−1(ν!)2R(F )d

νκ2ν(F ) [(2ν)!! + (d− 1)(ν!!)2]

) 1
2ν+d

, (6)

where Γ denotes a rescale operator (d-dimensional vector)
which is defined by a standard deviation of the d attributes
among λ instances. ν is the order of a kernel. R(F ) is a
roughness function. κν(F ) is the moment of a kernel. In this
paper, we utilize the Gaussian kernel for the CIM. Therefore,
ν = 2, R(F ) = (2

√
π)−1, and κ2ν(F ) = 1 are derived. The

details of the derivation of (5) and (6) can be found in [52].
In MLCA, the initial state of σ in the CIM is defined

by training instances. When a new node yK+1 is generated
from xn, a bandwidth σK+1 is estimated from the past λ
instances, i.e., (xn−λ, . . . ,xn−2,xn−1), by using (5) and (6)
with ν = 2, R(F ) = (2

√
π)−1, and κ2ν(F ) = 1, as follows:

Σ =

(
4

2 + d

) 1
4+d

Γλ−
1

4+d , (7)

where Γ denotes a rescale operator (d-dimensional vector)
which is defined by a standard deviation of the d attributes
among the past λ training instances of MLCA. Here, Σ
contains the bandwidth of each attribute.

In this paper, the median of Σ is selected as a represen-
tative bandwidth for the new node yK+1, i.e.,

σK+1 = median (Σ) . (8)

3.2.2 Winner Node Selection
Once an instance xn is presented to MLCA, two nodes
which have a similar state to the instance xn are selected,
namely, winner nodes yk1 and yk2 . The winner nodes are
determined based on the state of the CIM as follows:

k1 = arg min
k∈K

[CIM (xn,yk,mean(S))] , (9)

k2 = arg min
k∈K\{k1}

[CIM (xn,yk,mean(S))] , (10)

where k1 and k2 denote indexes of the 1st and 2nd winner
nodes i.e., yk1 and yk2 , respectively. S is a bandwidth for a
kernel function of the CIM in each node.

Note that when there is no node in MLCA, the (λ+1)th
instance becomes the initial node (i.e., y1 = xλ+1). In the
case, the bandwidth of y1 is estimated from the 1st to λth
instances in a set of training instances X by (5)-(8), and the
next instance is given without vigilance test until the 1st and
2nd winner nodes can be defined.

3.2.3 Vigilance Test
Similarities between an instance xn and the 1st and 2nd
winner nodes are defined as follows:

Vk1 = CIM (xn,yk1 ,mean(S)) , (11)

Vk2 = CIM (xn,yk2 ,mean(S)) . (12)

The vigilance test classifies the relationship between an
instance and a node into three cases by using a predefined
similarity threshold V .

• Case I
The similarity between an instance xn and the 1st winner

node yk1 is larger (i.e., less similar) than the similarity
threshold V , namely:

Vk1 > V. (13)

If (13) is satisfied, Vk2 > V is also satisfied since Vk2 >
Vk1 > V . Thus, a new node is defined as yK+1 = xn, and
the bandwidth σK+1 is defined by (8).

Moreover, the following two counters α and β are up-
dated. One counter α is the number of instances that have
been accumulated by the node yk1 , which is updated as
follows:

αk1 ← αk1 + 1. (14)

The other counter β is the number of labels that have
been accumulated by the node yk1 , which is updated as
follows:

βk1 ← βk1 + lk1 . (15)

• Case II
A similarity between an instance xn and the 1st winner



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

node yk1 is smaller (i.e., more similar) than the similarity
threshold V , and a similarity between the instance xn and
the 2nd winner node yk2 is larger (i.e., less similar) than the
similarity threshold V , namely:

Vk1 ≤ V , and Vk2 > V. (16)

If (16) is satisfied, node learning is performed. In addi-
tion, counters αk1 and βk1 are updated by (14) and (15),
respectively.
• Case III

Similarities between an instance xl and the 1st and 2nd
winner nodes are both smaller (i.e., more similar) than the
similarity threshold V , namely:

Vk1 ≤ V , and Vk2 ≤ V. (17)

If (17) is satisfied, node learning is performed.

3.2.4 Node Learning
Different node learning is performed based on the results of
the vigilance test.

If Case II, the state of the 1st winner node yk1 is updated
as follows:

yk1 ← yk1 +
1

αk1
(xn − yk1) . (18)

When updating the node, the amount of change is di-
vided by αk1 , so the larger αk1 becomes, the smaller the
node position changes. This is based on the idea that the
information around a node, where instances are frequently
given, is important and should be held by the node.

If Case III, the state of the 1st winner node yk1 is updated
by (18). In addition, all neighbor nodes of yk1 (i.e., y+

k1
) are

also updated as follows:

y+
k1
← y+

k1
+

1

Nyα
+
k1

(
yk1 − y+

k1

)
, (19)

where Ny is the predefined number of neighbor nodes for
yk1 . α+

k1
denotes the number of instances that have been

accumulated by the node y+
k1

.
Equation (19) has the same concept as (18), but it should

be less affected by the instance than yk1 because it is the
neighbor node of yk1 . Thus, Ny is added as a coefficient.

3.2.5 Label Probability Computation
Similar to ML-kNN, MLCA employs the Bayesian approach
for label probability computation. The prior probability
and likelihood are updated if the condition for Case I or
Case II of the vigilance test is satisfied. Note that ML-
kNN computes the prior probability and likelihood by
using training instances repeatedly, while MLCA computes
the prior probability and likelihood by using nodes which
have accumulated label counts. As a result, MLCA realizes
continual learning by computing the prior probability and
likelihood whenever an instance is given.

To update the prior probability and likelihood, an in-
stance xn with a set of labels ln, the 1st winner node yk1
and its Ny neighbor nodes are considered. Note that Ny
denotes the number of neighbor nodes and is a predefined
parameter in MLCA. Here, we consider the situation where

(n− 1) instances have been given to MLCA. The likelihood
P (E|H) is computed as follows:

P (En,i|Hφ
n,i) =

(
s+ cφi

)
[
s× (Ny + 1) +

Ny∑
j=0

cφi,j

] ,
(i ∈ Nl, φ ∈ {+,−}), (20)

where H+
i is the event that an instance has the ith label (i.e.,

li = 1), and H−i is the event that an instance does not have
the ith label (i.e., li = 0). Ei is the event that the frequency
of the label li among the Ny neighbor nodes of yk1 . Nl is a
size of a label set. s is a smoothing parameter. In this paper,
s is set to be 1 which yields the Laplace smoothing. A label
counter c is defined as follows:{

c+i,j=gi ← c+i,j=gi + 1, if ln,i = 1

c−i,j=gi ← c−i,j=gi + 1, otherwise
. (21)

Here, gi is a ith attribute of an Nl-dimensional counting
vector g = (g1, . . . , gNl), which is defined as follows:

gi =
∑
j∈Ny

βi,j , (i ∈ Nl). (22)

In order to make the maximum value of gi the same as
the number of neighbor nodes Ny , the following operation
is performed.

gi ← round

[
Ny ·

gi
max (g)

]
. (23)

The prior probability P (H) is computed as follows:

P (H+
i ) =

(
s+

K∑
k=1

βk,i

)
(s× 2 + n)

, (i ∈ Nl), (24)

P (H−i ) = 1− P (H+
i ), (i ∈ Nl), (25)

where n denotes the number of instances that have been
given.

The learning procedure of MLCA is summarized in
Algorithm 1.

3.3 Label Prediction Procedure

We use the following notations: A testing instance is x∗ =
(x∗1, x

∗
2, . . . , x

∗
d). A set of prototype nodes in MLCA after the

learning procedure is Y = {y1,y2, . . . ,yK}. In addition,
each node yk has an individual bandwidth σk for the CIM,
i.e., S = (σ1, σ2, . . . , σK). Moreover, the likelihood P (E|H),
the prior probability P (H), and the label counter β are
utilized for the Bayesian approach.

First of all, the winner node yk1 for a test instance x∗ and
its Ny neighbor nodes are determined. In the same manner
as the learning procedure, a membership counting vector g
for the test instance x∗ is computed by (23). The posterior
probability P (H|E) for the test instance x∗ is defined by the
Bayes rule as follows:

P (H+
i |Egi) =

P (Egi |H+
i )P (H+

i )∑
φ∈{+,−}

P (Egi |H
φ
i )P (Hφ

i )
, (i ∈ Nl). (26)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Algorithm 1: Learning procedure of MLCA
Input:

- a training instance: xn = (xn,1, xn,2, . . . , xn,d),
- a label set: ln = (ln,1, ln,2, . . .),
- prototype nodes: Y = (y1,y2, . . . ,yK) (K ∈ Z+),
- bandwidths of Y : S = (σ1, σ2, . . . , σK),
- the number of instances that have been accumulated by nodes Y : α = (α1, α2, . . . , αK),
- the number of labels that have been accumulated by nodes Y : β = (β1,β2, . . . ,βK),
- a label counter: c,
- the number of neighbor nodes: Ny ,
- an interval for adapting σ: λ,
- and a similarity threshold: V .

Output:

- updated prototype nodes: Y ,
- updated bandwidths of Y : S,
- the updated number of instances that have been accumulated by the nodes Y : α,
- the updated number of labels that have been accumulated by the nodes Y : β,
- the updated label counter: c,
- a prior probability: P (H),
- and a likelihood: P (E|H).

1 function LearningMLCA(xn, ln, Y , S, α, β, c, Ny , λ, V )
2 Input an instance xn.
3 Input a label set ln.
4 if The index n is multiple of λ then
5 Compute a bandwidth for the CIM by (8).

6 if K < 1 then
7 Generate a new node as yK+1 = xn.
8 Assign a bandwidth σK+1.
9 Update αk+1 and βk+1 by (14) and (15), respectively.

10 else
11 Compute the CIM by (4).
12 Search indexes of winner nodes k1 and k2 by (9) and (10), respectively.
13 if CIM (xn,yk1 ,mean(S)) > V then
14 Generate a new node as yK+1 = xl.
15 Compute a bandwidth σK+1 which is defined by (8).
16 Update αk+1 and βk+1 by (14) and (15), respectively.
17 Update similarities between an instance xn and nodes Y by the CIM.
18 Update a likelihood P (E|H) by (20).
19 else
20 Update a state of yk1 by (18).
21 Update αk1 and βk1 by (14) and (15), respectively.
22 if CIM (xn,yk2 ,mean(S)) ≤ V then
23 Update the state of Ny neighbor nodes of yk1 by (19).

24 Update a likelihood P (E|H) by (20).

25 Compute a prior probability by (24) and (25).

26 return Y , S, α, β, c, P (E|H), and P (H).



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

A predicted label vector l∗ of the test instance x∗ is
determined by a simple thresholding method as follows:

l∗i =

{
1, if P (H+

i |Egi) > 0.5

0, otherwise
, (i ∈ Nl). (27)

Since the label prediction process is a binary classifica-
tion, it is reasonable to specify the threshold to 0.5. ML-kNN
also uses the same value.

The prediction procedure of MLCA is summarized in
Algorithm 2.

3.4 Attribute Processing for the CIM
As shown in (2) and (3), the CIM in MLCA uses a com-
mon bandwidth σ even if the range of attribute values is
different, and the average value as the similarity between
an instance xn and a node yk. Therefore, if the range of
attribute values is significantly different, a specific attribute
may have a large impact on the value of the CIM when the
common bandwidth σ is not appropriate for that attribute.

In this section, we propose two approaches in order
to mitigate the above-mentioned effects: 1) one approach
calculates the CIM by using an each individual attribute
separately, and the average CIM value is used for similarity
measurement, and 2) the other approach applies a clustering
algorithm to attribute values, then attributes with similar
value ranges are grouped. The CIM is calculated by using
an each attribute group, and the average CIM value is used
for similarity measurement.

3.4.1 Individual-based Approach
In this approach, the CIM is calculated by using an each
individual attribute separately, and the average CIM value
is used for similarity measurement. The similarity between
an instance xn and a node yk is defined by the CIMI as
follows:

CIMI (xn,yk,σk)=
1

d

d∑
i=1

[
κσk,i(0)−CI(xn,i, yk,i)

] 1
2 , (28)

CI(xn,i, yk,i) = κσk,i (xn,i − yk,i) , (29)

where σk = (σ1, σ2, . . . , σd) is a bandwidth of a node yk. A
bandwidth for the ith attribute is defined as follows:

σi =

(
4

2 + d

) 1
4+d

Γiλ
− 1

4+d , (30)

where Γi denotes a rescale operator which is defined by
a standard deviation of ith attribute values among the λ
instances.

In this paper, MLCA with the individual-based approach
is called MLCA-Individual (MLCA-I).

3.4.2 Clustering-based Approach
In this approach, for every λ instances, the clustering algo-
rithm presented in Section 3.2 is applied to the attribute val-
ues. Each attribute value of λ instances is regarded as a one-
dimensional vector and used as the input to the clustering
algorithm. As a result, attributes with similar value ranges
are grouped together, i.e., an instance xn = (x1, x2, . . . , xd)
is transformed into xC

n = (un,1,un,2, . . .un,J) (J ≤ d) by

Algorithm 2: Prediction procedure of MLCA
Input:

- a testing instance: x∗ = (x∗1, x
∗
2, . . . , x

∗
d),

- prototype nodes: Y=(y1,y2, . . . ,yK) (K∈Z+),
- the bandwidths of Y :S=(σ1,σ2, . . . ,σK),
- the number of labels that have been accumulated

by nodes Y : β = (β1, β2, . . . , βK),
- the number of neighbor nodes: Ny ,
- and a similarity threshold: V .

Output:

- a predicted label vector: l∗.

1 function PredictMLCA(x∗, Y , S, β, Ny , V )
2 Input an instance x∗.
3 Compute similarities between an instance x∗ and

nodes Y by the CIM.
4 Compute a membership counting vector g∗ by

(23).
5 Compute a posterior probability P (H|E) by (26).
6 Determine a predicted label vector l∗ by (27).
7 return l∗.

the clustering algorithm, where uj represents the jth at-
tribute group. The dimensionality of each attribute group
is represented by d = (d1, d2, . . . , dJ) where dj is the
dimensionality of the jth attribute group.

In this approach, the similarity between an instance xC
n

and a node yk is defined by the CIMC as follows:

CIMC
(
xC
n,y

C
k ,σ

C
k

)
=

1

J

J∑
j=1

[
κσj (0)− ĈC(uj ,vj)

] 1
2
, (31)

ĈC(uj ,vj) =
1

dj

dj∑
i=1

κσj (ui − vi) , (32)

where yC
k = (v1,v2, . . .vJ) is a node yk, but its attributes

are grouped by referencing to the attribute indexes of xC
n. A

bandwidth σj is defined as follows:

σj =
1

dj

dj∑
i=1

[(
4

2 + dj

) 1
4+dj

Γiλ
− 1

4+dj

]
, (33)

where Γi denotes a rescale operator which is defined by
the standard deviation of the ith attribute value in the jth
attribute group among the λ instances.

In this paper, MLCA with the clustering-based approach
is called MLCA-Clustering (MLCA-C).

The differences in attribute processing among the gen-
eral approach, the individual-based approach (MLCA-I),
and the clustering-based approach (MLCA-C) are depicted
in Fig. 1.

The codes of MLCA, MLCA-I, and MLCA-C are avail-
able on GitHub1.

1. https://github.com/Masuyama-lab/MLCA



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

・・・

・・・

(a) General Approach

・・・

・・・

(b) Individual-based Approach (MLCA-I)

・・・

・・・

・・・

・・・
・・・

・・・
・
・
・

・
・
・

・・・

Clustering

Grouped Attribute 
Indexes

(c) Clustering-based Approach (MLCA-C)

: CIM calculation

Fig. 1: Differences in the CIM calculation.

4 SIMULATION EXPERIMENTS

In this section, the ability of MLCA is evaluated from
various perspectives. First, the continual learning ability of
MLCA is analyzed with a two-dimensional synthetic multi-
label dataset under the stationary and non-stationary envi-
ronments. Next, the classification performance of MLCA is
compared with other algorithms by using real-world multi-
label datasets. Third, we evaluate the effect of a multi-
epoch learning process to MLCA. Finally, we analyze the
computational complexity of each algorithm.

4.1 Evaluation Metrics
We use the six metrics to evaluate the classification perfor-
mance of multi-label classification algorithms [30].
• Exact Match

This is possibly the most strict performance metric.
This metric measures whether a predicted set of labels
for an instance is exactly equal to the true labels. The
higher, the better.

• F1-score
This is a harmonic mean between the Precision and the
Recall, namely, a weighted measure of how many true
labels are predicted and how many predicted labels are
truly relevant. The higher, the better.

• Macro-averaged AUC
This is the area under the receiver operating character-
istic curve. The Macro-averaged AUC is the arithmetic
mean of the AUC for each label. This metric gives a
better sense of the performance across all labels. The
higher, the better.

• Hamming Loss
This metric computes the symmetric difference be-
tween the predicted and true labels, and divided by
the total number of labels in a dataset. The lower, the
better.

• Ranking Loss
This metric computes how many times a relevant label
(a member of the true labels) appears ranked lower
than a non-relevant label, namely, the average propor-
tion of label pairs that are incorrectly ordered for an
instance. The lower, the better.

• Coverage
This metric is defined as the distance to cover all
possible labels assigned to an instance, namely, how
many top-scored predicted labels are included without
missing any true labels. The lower, the better. In this
paper, we scaled the Coverage by the number of labels
Nl − 1 thus the range of the Coverage is [0, 1].

4.2 Continual Learning Ability

In theory, ART-based clustering is capable of learning new
knowledge and preserving the learned knowledge without
catastrophic forgetting by setting a fixed similarity threshold
(i.e., a vigilance parameter in ART). Thus, MLCA can con-
tinually learn and preserve knowledge by adaptively gen-
erating nodes in response to changes of data distributions.
Moreover, since MLCA has a fixed similarity threshold V
and there is no node deletion process, MLCA does not
inherently cause catastrophic forgetting.

In this section, we verify the continual learning ability
of MLCA by using a two-dimensional synthetic multi-label
dataset in the stationary and non-stationary environments.
As a comparison algorithm, we apply MCIC [45] which
is capable continual learning through a clustering process.
Similar to MLCA, MCIC extracts and accumulates infor-
mation from data by nodes. Therefore, MCIC is a com-
petitive algorithm for MLCA. Note that, as mentioned in
Section 2.2, MuENL [8] can perform sequential learning and
class-incremental learning, i.e., continual learning. How-
ever, MuENL cannot deal with the situation where new data
distributions are provided in the non-stationary environ-
ment, and thus MuENL cannot cope with the experimental
conditions in this section.

Fig. 2 shows the two-dimensional synthetic multi-label
dataset. The dataset consists of three distributions where
each has 10,000 instances that follow a uniform distribution.
In addition, as shown in Fig. 2b, seven types of label sets are
defined. In this experiment, the instances are given to each
algorithm in three different conditions: (1) all the instances
are given at the same time (Fig. 2), (2) the three distributions
are given in sequential order (Fig. 3), and (3) the seven distri-
butions are given in sequential order (Fig. 4). The condition
(1) is the stationary environment while the conditions (2)
and (3) are the non-stationary environment. Here, the label
information of each distribution is not changed. It should be
noted that the given instances are presented as a sequence
of three distributions in Fig. 3 whereas they are divided into
seven distributions in Fig. 4. As a result, Fig. 4 is an easier
problem than Fig. 3 because there are no overlap regions.

In the case that the three distributions are given in
sequential order (Fig. 3), the instances in the overlapping
regions are designed to contain label information of the
already given distribution (e.g., lC = (1, 1)) for generating a
situation where the number of labels increases in a pseudo
manner. Thus, as shown in Table 2, seven types of label sets



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

(a) Entire Dataset

A

B

C D
E

F G

(b) Label Set

Fig. 2: Two-dimensional synthetic multi-label dataset and
its label sets.

A

(a) Distribution #1

B

C

(b) Distribution #2

D
E

F G

(c) Distribution #3

Fig. 3: Visualization of giving the three distributions in se-
quential order.

A

(a) Distribution #1

B

(b) Distribution #2

G

(c) Distribution #3

E

(d) Distribution #4

C

(e) Distribution #5

D

(f) Distribution #6

F

(g) Distribution #7

Fig. 4: Visualization of giving the seven distributions in sequential order.

TABLE 2: Transition of label sets during sequentially giving
the three distributions in Fig. 3

Data Subset
Transitions of Label Sets

Dist. #1 Dist. #2 Dist. #3
Distribution #1 A lA =(1) lA =(1, 0) lA =(1, 0, 0)

Distribution #2 B
—

lB =(0, 1) lB =(0, 1, 0)

C lC =(1, 1) lC =(1, 1, 0)

Distribution #3 D

— —

lD =(1, 0, 1)

E lE =(1, 1, 1)

F lF =(0, 1, 1)

G lG =(0, 0, 1)

are defined after the three distributions are given. As the
number of labels increases, the length of the label set also
changes incrementally, e.g., lA = (1) → lA = (1, 0) → lA =
(1, 0, 0). The similar label transition is occurred in the case
of Fig. 4.

In order to analyze the continual learning capability,
we evaluate the classification performance after each dis-
tribution is given. After learning the training instances of
each distribution, the instances belonging to the learned
distribution is used as test data. Namely, I) after learning the
distribution #1, the classification performance is evaluated
by using the test data of distribution #1. Next, II) after
learning the distribution #2, the classification performance
is evaluated by using the test data of the distributions #1
and #2. Then, III) after learning the distribution #3, the
classification performance is evaluated by using the test
data of the distributions #1, #2, and #3. We continue this
procedure until all the distributions are given. We repeat the
experiment 20 times with a different random seed to obtain
consistent results. The parameters of MLCA are specified as
follows: Ny = 10, λ = 50, and V = 0.10. The parameters of
MCIC are specified as follows: δ = 0.1, K = 3, λ = 0.25,
βµ = 2, ε = {0.011, 0.007, 0.005}, and a processing speed

is 10,000. Under the above parameter settings, MLCA and
MCIC generate the similar number of nodes.

Table 3 shows classification performance after training
the distributions in Figs. 2, 3, and 4. Focusing on MLCA,
since high classification performance is maintained in the
stationary and non-stationary environments, it is quantita-
tively shown that MLCA is capable of continual learning
with a multi-label dataset. It is noteworthy that MLCA
effectively accumulates the knowledge for the classification
by using only about 900 to 2,700 nodes depending on
the environment even if the distributions contains 30,000
instances in total. In contrast, the classification performance
of MCIC is clearly inferior to MLCA even if the number of
nodes is similar.

To analyze the above results in detail, Figs. 5-9 show the
visualization of generated nodes and their label information
in each algorithm. The results in Figs. 5-9 are a trial which
showed the highest Exact Match in each algorithm among 20
trials. The color of a node indicates a label set that the node
predicts. Once a testing instance is given, the nearest node
predicts a label set for the testing instance corresponding to
the color shown in the legend of Figs. 5-9.

Comparing Figs. 5a and 5b, MLCA can represent the
seven distributions very well while MCIC fails to represent
overlapped regions. Focusing on Figs. 6 and 7, MLCA and
MCIC can properly preserve the information of the distribu-
tion #1. On the other hand, after learning the distributions
#2 and #3, MLCA properly represents overlapped regions,
but MCIC fails to do so. A similar tendency can be seen
in Figs. 8 and 9. These results suggest that MLCA is capa-
ble of continuous learning in various environments while
MCIC cannot accumulate and preserve information when
distributions are adjacent or overlapping.

From the results in this section, it can be seen that MLCA
adaptively generates nodes and incrementally learns label
information from the given instances while maintaining the
extracted knowledge.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 3: Results of classification performance for continual learning under environments in Figs. 2, 3, and 4

Algorithm Parameter Metric Dist. #1 Dist. #2 Dist. #3 Dist. #4 Dist. #5 Dist. #6 Dist. #7
MLCA V = 0.1 Exact Match 0.972 (0.001)

Hamming Loss 0.010 (0.000) — — — — — —
Number of Nodes 868.7 (16.6)

V = 0.1 Exact Match 1.000 (0.000) 0.958 (0.001) 0.909 (0.001)
Hamming Loss 0.000 (0.000) 0.014 (0.000) 0.031 (0.001) — — — —
Number of Nodes 703.3 (10.6) 1183.5 (14.0) 1552.4 (17.0)

V = 0.1 Exact Match 1.000 (0.000) 0.999 (0.000) 0.997 (0.000) 0.994 (0.001) 0.957 (0.002) 0.965 (0.004) 0.930 (0.008)
Hamming Loss 0.000 (0.000) 0.000 (0.000) 0.001 (0.000) 0.003 (0.000) 0.015 (0.001) 0.012 (0.002) 0.024 (0.003)
Number of Nodes 595.4 (13.2) 1165.5 (17.1) 1741.0 (19.7) 1954.1 (21.8) 2169.6 (20.4) 2407.7 (21.8) 2658.5 (24.4)

MCIC ε = 0.011 Exact Match 0.342 (0.039)
Hamming Loss 0.222 (0.002) — — — — — —
Number of Nodes 804.6 (9.3)

ε = 0.007 Exact Match 1.000 (0.000) 0.799 (0.001) 0.392 (0.230)
Hamming Loss 0.000 (0.000) 0.068 (0.000) 0.212 (0.065) — — — —
Number of Nodes 770.7 (8.7) 1320.9 (7.8) 1749.3 (16.8)

ε = 0.005 Exact Match 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.234 (0.000) 0.143 (0.000) 0.249 (0.000) 0.334 (0.000)
Hamming Loss 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.511 (0.000) 0.286 (0.000) 0.250 (0.000) 0.222 (0.000)
Number of Nodes 620.0 (8.1) 1236.1 (11.2) 1865.4 (13.2) 2133.4 (15.1) 2377.3 (17.5) 2625.7 (17.0) 2869.2 (16.6)

The standard deviation is indicated in parentheses.

(a) MLCA (b) MCIC

Fig. 5: Visualization of self-organizing results in the case the
three distributions are given at the same time.

(a) Distribution #1 (b) Distribution #2 (c) Distribution #3

Fig. 6: Visualization of nodes in MLCA in the case the three
distributions are given in sequential order.

(a) Distribution #1 (b) Distribution #2 (c) Distribution #3

Fig. 7: Visualization of nodes in MCIC in the case the three
distributions are given in sequential order.

In this section, since the label information of each distri-
bution is not changed, the learning ability has been verified
only for the knowledge that is represented by node po-

sitions/distributions. Regarding the label information (the
prior probabilities and likelihood) of nodes in MLCA, it
is sequentially updated based on the frequency of a label
appearance. Therefore, although the location or distribution
of nodes do not change, the meaning of the knowledge may
change in the case where the label distribution is changed.
This is known as concept drift.

From another point of view, the label forgetting nature of
MLCA may lead to superior classification performance for
stream data with concept drift than other algorithms. This
is an interesting future research topic.

4.3 Quantitative Analysis
This section presents a comparison on the classification
performance of MLCA, MLCA-I, and MLCA-C with that of
MCIC [45], MuENL [8], mlODM [40], GLOCAL [39], MLSA-
kNN [41], and ML-kNN [7] by utilizing real-world multi-
label datasets.

The source code of MCIC 2, MuENL 3, mlODM 4, GLO-
CAL 5, MLSA-kNN 6, and ML-kNN 7 are provided by
authors.

4.3.1 Datasets
We use 16 real-world multi-label datasets that six numerical
and six categorical datasets from the Mulan repository [53]
and two numerical and two categorical datasets from the
Extreme Classification repository [54]. Table 4 shows the
statistics of the datasets. During our experiments, the train-
ing instances in each dataset are presented to each algorithm
only once. In regard to pre-processing for datasets, mlODM
and GLOCAL need [0, 1] scaling to maintain high classi-
fication performance, while other algorithms do not need
the scaling. Therefore, we prepare the [0, 1] scaled data for
mlODM and GLOCA. For other algorithms, we use the raw
data with no pre-processing.

2. https://github.com/vu-luong/MCIC
3. https://www.lamda.nju.edu.cn/code MuENL.ashx
4. https://www.lamda.nju.edu.cn/code mlODM.ashx
5. https://www.lamda.nju.edu.cn/code Glocal.ashx
6. https://github.com/canoalberto/MLSAkNN
7. http://www.lamda.nju.edu.cn/code MLkNN.ashx



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

(a) Distribution #1 (b) Distribution #2 (c) Distribution #3 (d) Distribution #4 (e) Distribution #5 (f) Distribution #6 (g) Distribution #7

Fig. 8: Visualization of nodes in MLCA in the case the seven distributions are given in sequential order.

(a) Distribution #1 (b) Distribution #2 (c) Distribution #3 (d) Distribution #4 (e) Distribution #5 (f) Distribution #6 (g) Distribution #7

Fig. 9: Visualization of nodes in MCIC in the case the seven distributions are given in sequential order.

TABLE 4: Statistics of multi-label datasets

Dataset
Number of Number of Attributes Number of

Instances Numerical Categorical Labels
Small-scale

Flags 194 10 9 7
Emotions 593 72 0 6
Birds 645 258 2 19
Image 2,000 294 0 5
Scene 2,407 294 0 6
Yeast 2,417 103 0 14
VirusGO 207 0 749 6
GpositiveGO 519 0 912 4
Genbase 662 0 1,186 27
Medical 978 0 1,449 45
PlantGo 978 0 3,091 12
Langlog 1,460 0 1,004 75

Large-scale
EURLex-4K 19,348 5,000 0 3,993
Mediamill 43,907 120 0 101
Bibtex 7,395 0 1,836 159
Delicious 16,105 0 500 983

4.3.2 Parameter Specifications

MLCA, MLCA-I, MLCA-C, and all the comparison algo-
rithms have parameters which have an impact on the
classification performance. This section presents parameter
specifications of each algorithm in detail.

We use grid search to specify parameter values of each
algorithm. Before grid search, we separate a dataset into
training instances and test instances. The training instances
are 90% of the dataset, and the testing instances are the
remaining 10%. The testing instances are used only for
the performance evaluation of the designed classifier (i.e.,
they are not used for parameter specifications). During grid
search, we train an algorithm with the training instances,
and test the algorithm by using the training instances again.
Thus, we obtain a parameter setting which shows the high-

est classification performance to the training instances. Once
the best parameter setting, which is an optimal to the train-
ing instances, is specified, the classification performance of
the algorithm with the best parameter setting is evaluated
by using the testing instances. Since grid search for spec-
ifying the parameters does not use the testing instances,
the generalization ability of each algorithm can be properly
evaluated in Section 4.3.4.

For specifying the best parameter setting, we calculate
the Exact Match in each parameter specification for the
training instances in each datasets listed in Table 4 except for
large-scale datasets due to a time-consuming training pro-
cess. Regarding the parameters for the large-scale datasets,
we apply the same specification with Langlog dataset be-
cause it has the largest number of labels among small-scale
datasets.

We repeat the evaluation 20 times (i.e., 2×10-fold Cross
Validation (CV)) with training instances selected by different
random seeds. Although six evaluation metrics were intro-
duced in Section 4.1, the Exact Match is used for specifying
the parameters since it is the most strict evaluation metric.
Table 5 summarizes the parameters of all the algorithms.
In the following, the settings and results of grid search are
explained in detail by separating MLCA and its variants and
comparison algorithms.

• MCLA and its Variants
MLCA, MLCA-I, and MLCA-C have three parameters,

i.e., the number of neighbor nodes Ny , an interval λ for
adapting σ in the CIM, and a similarity threshold V . Among
those parameters, the similarity threshold V has a large
impact on the classification performance. Therefore, we per-
form grid search for V in increments of 0.05 over the range
of V = [0.05, 0.95] while fixing Ny = 10 and λ = 50. The
parameters Ny and λ are the same specification as in [55].
In additition, the case of V = 0.01 is also considered. This is
because that MLCA with a smaller V will tend to generate



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 5: Parameter specifications of each algorithm

Algorithm Paramter Value Grid Range Description
MLCA V Grid Search {0.01, 0.05, 0.10, . . ., 0.95} Similarlity threshold

λ 50 — Interval for adapting σ in the CIM
Ny 10 — The number of neighbor nodes

MLCA-I V Grid Search {0.01, 0.05, 0.10, . . ., 0.95} Similarlity threshold
λ 50 — Interval for adapting σ in the CIM
Ny 10 — The number of neighbor nodes

MLCA-C V Grid Search {0.01, 0.05, 0.10, . . ., 0.95} Similarlity threshold
λ 50 — Interval for adapting σ in the CIM
Ny 10 — The number of neighbor nodes

MCIC θ Grid Search {0.100, 0.200, 0.300, 0.400, 0.495} Boundary of a cluster
λ Grid Search {0.00, 0.05, 0.10, . . ., 0.50} Decay control parameter
δ 0.1 — Parameter for label set learning
K 3 — The number of nearest neighbors
βmu 3 — Threshold of a mature weight

MuENL λ1 Grid Search {1.0E-6, 1.0E-5, . . ., 1.0E-0} Trade-off parameter of ranking loss for a multi-label classifier
λ2 Grid Search {1.0E-6, 1.0E-5, . . ., 1.0E-0} Trade-off parameter of l2 regularization for a multi-label classifier
I 20 — The maximum iteration for updating a weight

mlODM θ Grid Search {0.10, 0.20, . . ., 0.90} Approximation parameter for block coordinate descent
µ Grid Search {0.10, 0.20, . . ., 0.90} Trade-off parameter for block coordinate descent
γ 0.5 — Bandwidth of a kernel function in rank-SVM
C 1 — Cost for rank-SVM
I 4 — The maximum number of iterations

GLOCAL λ3 Grid Search {0.0, 1.0E-6, 1.0E-5, . . ., 1.0E-0} Regularization parameter for a global and local manifold
λ4 Grid Search {0.0, 1.0E-6, 1.0E-5, . . ., 1.0E-0} Regularization parameter for a global and local manifold
λ1 1 — Regularization parameter for a global and local manifold
λ2 0.125 — Regularization parameter for a global and local manifold
k 20 — Dimension of a latent space
g 3 — The number of clusters of k-means

MLSA-kNN mmax Grid Search {200, 400, . . ., 2,000} The maximum size of the window
kAdjmax Grid Search {20, 40, . . ., 200} History length to specify k value of kNN
mmin 50 — The minimum size of the window
p 1 — Penalty ratio
r 0.5 — Reduction ratio

ML-kNN k 3 {3, 6, . . ., 30} The number of nearest neighbors

more nodes which yields higher classification performance
than that with a larger V .

The detailed results of grid search for the similarity
threshold V in MLCA and its variants are shown in Fig.1
of the supplementary file.

In this paper, the parameters of MLCA and its variants
are not specified for each dataset, but the same settings
are applied to all datasets. Note that the parameters of
the comparison algorithms are specified for each dataset in
order to achieve the maximum classification performance.
To specify the appropriate parameters for all datasets, we
adopt the Friedman test and Nemenyi post-hoc analysis
[56] to conduct statistical comparisons among the different
parameter specifications (V = [0.01, 0.45] in Fig. 1 of the
supplementary file) by using results on the Exact Match
of all datasets. The Friedman test is used to test the null
hypothesis that all algorithms perform equally. If the null
hypothesis is rejected, the Nemenyi post-hoc analysis is
then conducted. The Nemenyi post-hoc analysis is utilized
for all pairwise comparisons based on the ranks of results
on the Exact Match of all datasets. The difference in the
performance of two algorithms is treated as statistically
significant if the p-value defined by the Nemenyi post-hoc
analysis is smaller than the significance level. Here, the null
hypothesis is rejected at the significance level of 0.05 both
in the Friedman test and the Nemenyi post-hoc analysis.

Fig. 10 shows critical difference diagrams for different
parameter specifications of each algorithm. A better speci-
fication has lower average ranks, i.e., on the right side of a
critical distance diagram. In theory, the parameter specifica-
tions within a critical distance (i.e., a red line) do not have
a statistically significance difference [56]. From the results
in Fig. 10, parameter values to be used in comparisons of
classification performance by testing instances are specified
as follows: V = 0.01 and 0.30 for MLCA, V = 0.01 and
0.15 for MLCA-I, and V = 0.01 and 0.25 for MLCA-C.
As mentioned earlier, MLCA and its variants utilize the
above V values for all the datasets in the classification
experiments.

• Comparison Algorithms

When grid search was used in the original paper where
each algorithm was proposed, we use the same grid search
with the same range of parameter values for each algorithm.
Otherwise, we choose one or two parameters which have
the largest effects on the classification performance. The
details are as follows:

MCIC: The range of the decay controlled parameter
λ is the same range in the original paper. Although the
boundary of a cluster θ is fixed in the original paper, it has
a large effect to the clustering performance. The range of θ
is theoretically defined as 0 < θ < 0.5.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

(a) MLCA (b) MLCA-I (c) MLCA-C

Fig. 10: Critical difference diagram for the Exact Match by different parameter specifications.

TABLE 6: Parameter specifications for each dataset by grid search

Dataset
MCIC MuENL

mlODM mlODM GLOCAL GLOCAL
MLSA-kNN ML-kNN

(Scaling) (Raw) (Scaling) (Raw)
θ λ λ3 λ4 θ µ θ µ λ3 λ4 λ3 λ4 mmax kAdjmax k

Flags 0.100 0.00 1.0 1.0 0.90 0.30 0.10 0.30 0.0 1.0 0.0 0.0 200 20 3
Emotions 0.100 0.00 1.0E-6 1.0E-6 0.70 0.10 0.70 0.30 1.0E-4 1.0 1.0E-6 1.0E-6 200 20 3
Birds 0.100 0.00 1.0 1.0 0.70 0.40 0.10 0.10 1.0E-1 1.0 0.0 0.0 200 20 3
Image 0.100 0.00 1.0E-6 1.0E-6 0.70 0.40 0.70 0.40 1.0E-5 1.0E-4 1.0E-5 1.0E-4 200 20 6
Scene 0.100 0.00 1.0 1.0 0.90 0.10 0.90 0.10 0.0 0.0 1.0E-2 1.0 200 20 3
Yeast 0.100 0.00 1.0 1.0 0.90 0.30 0.50 0.10 1.0 1.0E-1 0.0 0.0 600 20 3
VirusGO 0.100 0.00 1.0E-1 1.0E-6 0.70 0.10 0.70 0.10 0.0 0.0 0.0 0.0 200 20 3
GpositiveGO 0.495 0.45 1.0 1.0 0.90 0.10 0.90 0.10 0.0 0.0 0.0 0.0 200 20 3
Genbase 0.200 0.00 1.0 1.0E-6 0.10 0.10 0.10 0.10 0.0 0.0 0.0 1.0E-6 600 20 3
Medical 0.100 0.20 1.0 1.0 0.10 0.10 0.10 0.10 0.0 1.0E-4 1.0E-6 1.0E-4 200 20 3
PlantGO 0.100 0.00 1.0 1.0E-6 0.20 0.10 0.20 0.10 1.0E-3 1.0E-4 1.0E-3 1.0E-4 400 20 6
Langlog 0.100 0.10 1.0 1.0 N/A N/A 1.0E-1 1.0E-5 1.0E-2 1.0E-3 800 20 3
EURLex-4K 0.100 0.10 1.0 1.0 N/A N/A 1.0E-1 1.0E-5 1.0E-2 1.0E-3 800 20 3
Mediamill 0.100 0.10 1.0 1.0 N/A N/A 1.0E-1 1.0E-5 1.0E-2 1.0E-3 800 20 3
Bitbtex 0.100 0.10 1.0 1.0 N/A N/A 1.0E-1 1.0E-5 1.0E-2 1.0E-3 800 20 3
Delicious 0.100 0.10 1.0 1.0 N/A N/A 1.0E-1 1.0E-5 1.0E-2 1.0E-3 800 20 3

N/A indicates that an algorithm could not build a predictive model within 5 days under the available computational resources.

MuENL: In the original paper, grid search is performed
to λ1, λ2 ∈ {0.001, 0.01, 0.1, 1}. In this paper, we set a wider
range that includes the above one.

mlODM: The parameters and their grid ranges are the
same as in the original paper.

GLOCAL: The parameters and their grid ranges are the
same as in the original paper.

MLSA-kNN: In the original paper, the authors men-
tioned that a window size kAdjmax and the maximum
window size mmax need to be set appropriately values in
advance depending on datasets. In the original paper, these
parameters are fixed as kAdjmax = 100 and mmax = 1, 000.
In this paper, grid search was performed in the ranges
around these values.

ML-kNN: In the original paper, grid search was per-
formed in the range of k = {8, 9, 10, 11, 12}. However,
there was no significant difference in the classification per-
formance. In this paper, we set wider range for finding an
appropriate value.

Table 5 summarizes the parameters for grid search and
their ranges. Table 6 shows the parameters that indicate
the highest Exact Match for the training instances in each
dataset as determined by grid search. N/A indicates that an
algorithm can not build a predictive model within 5 days
under the available computational resources. In this paper,
we assign the worst evaluation value to each metric if an
algorithm can not build a predictive model.

Since MuENL has 10 parameters, we only consider three
parameters because the rest of the parameters are related

to class-incremental learning that is not performed in this
section. Regarding mlODM and GLOCAL, there is a large
difference in the classification performance depending on
whether a dataset is pre-processed or not. In this paper,
therefore, we use the [0, 1] scaled data and raw data without
pre-processing in the learning process of mlODM and GLO-
CAL, and denote them as mlODM (Scaling), mlODM (Raw),
GLOCAL (Scaling), and GLOCAL (Raw), respectively. Note
that MCIC and MuENL are capable of continual learning
while mlODM, GLOCAL, MLSA-kNN and ML-kNN cannot
deal with it.

4.3.3 Experimental Conditions
We evaluate the classification performance of each algo-
rithm by using datasets in Table 4 and parameter specifi-
cations in Table 5. For small-scale datasets, we repeat the
evaluation 20 times (i.e., 2×10 CV) with a different random
seed for obtaining consistent averaging results. In this sec-
tion, each algorithm is trained by using the same training
instances with the one in Section 4.3.2, and 10% of instances,
which are not used in Section 4.3.2, are used as testing
instances. For the large-scale datasets, indexes for training
and testing data are provided in [54]. Thus, we use those
indexes for training and testing in each algorithm. Similar
to Section 4.3.2, the Friedman test and Nemenyi post-hoc
analysis [56] are utilized. The Friedman test is used to test
the null hypothesis that all algorithms perform equally.
If the null hypothesis is rejected, the Nemenyi post-hoc
analysis is then conducted. The Nemenyi post-hoc analysis



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

is used for all pairwise comparisons based on the ranks of
results over all the evaluation metrics of all datasets. Here,
the null hypothesis is rejected at the significance level of
0.05 both in the Friedman test and the Nemenyi post-hoc
analysis. All computations are carried out on Matlab 2020a
with 2.2GHz Xeon Gold 6238R processor and 768GB RAM.

4.3.4 Experimental Results
We compare the classification performance of each algo-
rithm by using a critical difference diagram defined by the
Nemenyi post-hoc analysis. The detailed results of six eval-
uation metrics for each dataset are summarized in Tables 1-4
on the supplementary file.

Fig. 11 shows a critical difference diagram based on
the classification performance for all the datasets. A better
specification has lower average ranks, i.e., on the right
side of a critical distance diagram. In theory, the parameter
specifications within a critical distance (i.e., a red line) do
not have a statistically significance difference [56].

The results are derived from all the evaluation metrics
for all the datasets. Therefore, we regard that MLCA (V =
0.01) shows excellent classification performance on various
datasets. MLCA-I (V = 0.01) and MLCA-C (V = 0.01) are
also superior algorithms than other comparison algorithms.
Focusing on MLCA and its variants with a larger V specifi-
cation, MLCA-C (V = 0.25) shows a lower rank than MLCA-
I (V = 0.15) and MLCA (V = 0.30). It means that MLCA-C
is capable of maintaining high classification performance
while compressing information.

Regarding comparison algorithms, ML-kNN shows a
superior classification performance than other algorithms
except for MLCA and its variants. In Fig. 11, mlODM (Scal-
ing) and GLOCAL (Scaling) are better than mlODM (Raw)
and GLOCAL (Raw), respectively. Since MCIC, MuENL,
and MLSA-kNN are capable of handling streaming data,
their classification performance is inferior to algorithms that
perform batch learning such as ML-kNN, mlODM, and
GLOCAL.

In order to discuss the features of each algorithm in
detail, Figs. 12 and 13 show critical difference diagrams
defined by numerical datasets and categorical datasets, re-
spectively. In the case of numerical datasets (Fig. 12), the
classification performance of MLCA and its variants are
still superior to comparison algorithms. MLCA-I (V = 0.01)
shows the lowest rank. In addition, MLCA-I (V = 0.15) also
shows a good performance. Thus, we regard that MLCA-I is
suitable for numerical data sets. On categorical datasets (Fig.
13), ML-kNN and GLOCAL perform very well in contrast
to the case of numerical datasets. However, these algorithms
have an obvious drawback compared to MLCA and its
variants because they require all the training instances in
advance. In terms of MLCA and its variants, MLCA (V =
0.01) shows the lowest rank. The performance of MLCA and
MLCA-I is greatly affected by a specification of a similarity
threshold V . In contrast, the difference in performance be-
tween MLCA-C (V = 0.01) and MLCA-C (V = 0.25) is small.
Therefore, we regard that MLCA-C has stable classification
performance on nominal datasets.

Table 7 shows the average number of generated nodes
after learning the training instances. Focusing on MLCA
and MLCA-I, these algorithms generate only a very small

Fig. 11: Critical difference diagram based on the classifica-
tion performance for all the datasets.

Fig. 12: Critical difference diagram based on the classifica-
tion performance for numerical datasets.

Fig. 13: Critical difference diagram based on the classifica-
tion performance for numerical datasets.

number of nodes in the case of nominal datasets, especially
when a similarity threshold V is large. On the other hand,
MLCA-C can maintain the sufficient number of nodes for
classification even in the case of nominal datasets. Thus,
MLCA-C is considered to be a strong algorithm for nominal
datasets, and this property can be seen in Figs. ??-??.

From the results in Figs. 11-13, and Table 7, the character-
istics of MLCA and its variants can be analyzed as follows:

• MLCA
This algorithm can be the first-choice algorithm be-
cause it shows stable and high classification perfor-
mance for both numerical and nominal datasets. In
other words, it has an advantage if the attribute type
of the dataset is unknown. Furthermore, in the case of
a numerical dataset, MLCA shows high classification
performance regardless of a specification of the similar-
ity threshold V . This means that MLCA can maintain
high classification performance and high information
compression performance, simultaneously.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

TABLE 7: Average number of nodes generated by MLCA, MLCA-I, and MLCA-C

Dataset
MLCA MLCA-I MLCA-C

V = 0.01 V = 0.30 V = 0.01 V = 0.15 V = 0.01 V = 0.25

Flags 174.6 (1.00) 163.9 (0.94) 170.5 (0.98) 88.2 (0.51) 167.7 (0.96) 19.1 (0.11)
Emotions 533.7 (1.00) 532.9 (1.00) 533.7 (1.00) 532.1 (1.00) 533.7 (1.00) 244.6 (0.46)
Birds 580.5 (1.00) 580.5 (1.00) 580.5 (1.00) 146.0 (0.25) 580.0 (1.00) 170.6 (0.29)
Image 1800.0 (1.00) 1597.1 (0.89) 1800.0 (1.00) 1736.8 (0.96) 1800.0 (1.00) 1729.0 (0.96)
Scene 2159.0 (1.00) 2076.3 (0.96) 2159.0 (1.00) 2151.0 (0.99) 2159.0 (1.00) 2148.0 (0.99)
Yeast 2175.3 (1.00) 2123.1 (0.98) 2175.3 (1.00) 2168.8 (1.00) 2175.3 (1.00) 2015.6 (0.93)
VirusGO 159.3 (0.86) 11.2 (0.06) 86.3 (0.46) 5.2 (0.03) 159.3 (0.86) 122.1 (0.66)
GpositiveGO 412.3 (0.88) 28.3 (0.06) 183.0 (0.39) 8.8 (0.02) 412.3 (0.88) 308.8 (0.66)
Genbase 192.0 (0.32) 1.7 (0.00) 31.9 (0.05) 1.0 (0.00) 192.0 (0.32) 130.5 (0.22)
Medical 871.0 (0.99) 55.0 (0.06) 450.9 (0.51) 14.0 (0.02) 871.0 (0.99) 736.5 (0.84)
PlantGO 775.6 (0.88) 39.5 (0.04) 301.5 (0.34) 12.5 (0.01) 766.4 (0.87) 644.0 (0.73)
Langlog 1130.6 (0.86) 761.4 (0.58) 1116.7 (0.85) 513.1 (0.39) 1130.6 (0.86) 1118.4 (0.85)

The value in the parentheses indicates the ratio to the number of generated nodes against the number of training instances.

• MLCA-I
This algorithm shows the outstanding classification
performance on the numerical datasets. On the other
hand, the classification performance on the nominal
datasets is low in comparison with the results on to
numerical datasets. Therefore, MLCA-I has an advan-
tage if the dataset contains only numerical attributes.

• MLCA-C
This algorithm shows stable and high classification
performance for both numerical and nominal datasets
although it is not as good as MLCA. It is notable that
MLCA-C stably has small rank values for both nominal
and numerical datasets even when a specification of a
similarity threshold V is large. Therefore, MLCA-C can
achieve high classification performance and high infor-
mation compression for both numerical and nominal
datasets.

Table 8 summarizes the characteristics of MLCA and its
variants based on the above analysis.

4.4 Effects of a Multi-Epoch Learning Process

MLCA, MLCA-I, and MLCA-C utilize generated nodes as
classifiers. This means that the clustering performance on
the training instances has a huge impact on the classification
performance. The nodes of MLCA, MLCA-I, and MLCA-C
are adaptively and continually generated/updated by the
given instances. Therefore, it is possible to improve the
clustering performance by learning the training instances in
multiple epochs, and consequently to improve the classifi-
cation performance of MLCA, MLCA-I, and MLCA-C. This
feature is one of the advantages of MLCA, MLCA-I, and
MLCA-C against the other compared algorithms.

We only apply the datasets listed in Table 4 except for
the large-scale datasets due to a time-consuming training
process. Fig. 14 shows results of the Exact Match of MLCA,
MLCA-I, and MLCA-C with the learning of the training in-
stances for 1 to 10 epochs. The conditions of this experiment
are the same as in Section 4.3.

The following observation is obtained: As the number
of epochs increases, the value of the Exact Match increases
or remains roughly the same in most cases except for the

TABLE 8: Summary of characteristics of MLCA and its
variants

Algorithm
Similarity Classification Performance

Threshold V Numerical Nominal
MLCA Small Very High Very High

Large Medium Low
MLCA-I Small Very High Low

Large Medium Low
MLCA-C Small High High

Large Medium Medium

Birds dataset. In particular, it is effective for categorical data.
Therefore, we regard that the multi-epoch learning process
is generally beneficial for MLCA, MLCA-I, and MLCA-C.

4.5 Computational Complexity

This section presents the computational complexity of
MLCA, MLCA-I, MLCA-C, and comparison algorithms.
Specifically, MLCA and its variants are analyzed in detail.

Regarding MLCA, the computational complexity of each
process is as follows: For computing a bandwidth of a
kernel function in the CIM is O(nλd) (line 5 in Alg. 1), for
computing the CIM isO(ndK) (line 11 in Alg. 1), for sorting
the result of the CIM is O(K logK) (line 12 in Alg. 1), and
for computing the label probability is O(NlNy) (line 24 in
Alg. 1). Here, n is the number of training instances, λ is
an interval for adapting σ, K is the number of nodes, Nl
is a size of a label set, and Ny is the predefined number
of neighbor nodes for yk1 . Thus, the total computational
complexity of MLCA is O(nλd+ ndK +K logK +NlNy).

In terms of MLCA-I and MLCA-C, the difference of
a training process is only in CIMI and CIMC which is
defined in (28) and (31), respectively. Since CIMI considers
an individual attribute of a training instance separately,
it takes O(nd2K). CIMC applies a clustering approach to
attributes of a training instance every λ instances. Thus,
O(nλ (nλd+ndK+K logK)) is additionally required. As a re-
sult, the computational complexity of MLCA-I and MLCA-C
are O(nλd+ nd2K +K logK +NlNy) and O((nλ + 1)(nλd+
ndK +K logK) + n

λNlNy), respectively.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

(a) Flags (b) Emotions (c) Birds (d) Image (e) Scene (f) Yeast

(g) VirusGO (h) GpositiveGO (i) Genbase (j) Medical (k) PlantGO (l) Langlog

Fig. 14: Results of the Exact Match of MLCA, MLCA-I, and MLCA-C with multiple epochs.

Table 9 summarizes the computational complexity of
MLCA, MLCA-I, MLCA-C, and comparison algorithms.
Here, variables in the computational complexity of compar-
ison algorithms are as follows:

MCIC: T is a time period defined as T = 1
λ log(

βµ
(βµ−1) +

1). Here, n is the number of instances, λ and βµ are the
parameters of MCIC. Kp and Ko are the number of mature
and immature clusters of MCIC, respectively.

MuENL: Nl is the size of a label set, n is the number
of instances, and d is the dimension of instances. Note that
the complexity of MuENL in Table 9 shows a pairwise label
ranking classifier, not including a label incremental learning
process.

mlODM: n is the number of instances, Nl is the di-
mension of a current relevant label, and I is the number
of iterations of an optimization process.

GLOCAL: n is the number of instances, nm is the num-
ber of instances of a partitioned training instances, k is a
rank of a label matrix which satisfies k < Nl.

MLSA-kNN: d is the dimension of a training instance,
Nl is a size of a label set, mmax is the maximum size of the
window, and mmin is the minimum size of the window.

ML-kNN: n is the number of training instances, d is the
dimension of a training instance, k is the number of nearest
neighbors of k-NN, and Nl is a size of a label set. Here,
O(n2d) is for k-NN computation, and O(nkNl) is for the
label probability computation.

With respect to the computational complexity of each
algorithm, MLSA-kNN and MCIC shows their superior
computational efficiency than the other algorithms. MLCA,
MLCA-I, MLCA-C, and ML-kNN have moderate compu-
tational efficiency. These algorithms do not dramatically in-
crease the computational complexity even when the number
of instances and labels in a dataset is large. In contrast,
MuENL, mlODM, and GLOCAL have a polynomial com-
plexity in terms of the number of instances or the size of a
label set. Therefore, we consider that these algorithms are
time-consumimg and could not generate a predictive model
in a valid time, especially for the large-scale datasets with a

large number of training instances and labels.

TABLE 9: Summary of computational complexity

Algorithm Computational Complexity Ref.
MLCA O(n

λ
d+ ndK +K logK +NlNy) —

MLCA-I O(n
λ
d+ nd2K +K logK +NlNy) —

MLCA-C O((n
λ
+ 1)(n

λ
d+ ndK +K logK) + n

λ
NlNy) —

MCIC O(n+ n
T
(Kp +Ko)) —

MuENL O(ndN2
l ) [8]

mlODM O(nN2
l I) [40]

GLOCAL O(n2 + n2
m + kn) [57]

MLSA-kNN O(mmaxd+mmaxNl +mmax log2
mmax
mmin

) [41]
ML-kNN O(n2d+ nkNl) [58]

The training and testing time on a CPU are summarized
in Tables 5 and 6 of the supplementary file.

5 CONCLUDING REMARKS

This paper proposed a multi-label classification algorithm
capable of continual learning by extending our preliminary
research [55], namely MLCA. In addition, two variants of
MLCA were proposed by modifying the calculation method
of the CIM, namely MLCA-I and MLCA-C. The proposed
algorithms consist of two components: The CIM-based ART
and the Bayesian approach for label probability computa-
tion. Because both components can deal with a situation
where new training instances and corresponding labels are
sequentially provided, the proposed algorithms can realize
continual learning. The results of extensive experiments
from qualitative and quantitative perspectives showed that
MLCA has competitive classification performance to other
well-known algorithms while maintaining the continual
learning ability. Furthermore, the results also showed that
the performance of MLCA can be enhanced by modifying
the calculation method of the CIM.

The ability to adapt to concept drift [59] and to handle
mixed numerical and categorical data [60] are significant
factors for clustering-based algorithms capable of continual



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

learning. A future research topic is to examine the perfor-
mance of the proposed algorithms under concept drift and
to improve them. It is also an important future research topic
to modify the proposed algorithms for mixed datasets with
both numerical and categorical attributes.

ACKNOWLEDGMENT

This research was supported by Ministry of Education, Cul-
ture, Sports, Science and Technology - JAPAN (MEXT) Lead-
ing Initiative for Excellent Young Researchers (LEADER).
The Universiti Malaya Impact-oriented Interdisciplinary Re-
search Grant Programme (IIRG) - IIRG002C-19HWB, Uni-
versiti Malaya Covid-19 Related Special Research Grant
(UMCSRG) CSRG008-2020ST from University of Malaya.
National Natural Science Foundation of China (Grant No.
61876075), Guangdong Provincial Key Laboratory (Grant
No. 2020B121201001), the Program for Guangdong Intro-
ducing Innovative and Enterpreneurial Teams (Grant No.
2017ZT07X386), The Stable Support Plan Program of Shen-
zhen Natural Science Fund (Grant No. 20200925174447003),
Shenzhen Science and Technology Program (Grant No.
KQTD2016112514355531).

REFERENCES

[1] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter,
“Continual lifelong learning with neural networks: A review,”
Neural Networks, vol. 113, pp. 57–71, 2019.

[2] J. Zhang, C. Li, D. Cao, Y. Lin, S. Su, L. Dai, and S. Li, “Multi-
label learning with label-specific features by resolving label corre-
lations,” Knowledge-Based Systems, vol. 159, pp. 148–157, 2018.

[3] H. Han, M. Huang, Y. Zhang, X. Yang, and W. Feng, “Multi-label
learning with label specific features using correlation informa-
tion,” IEEE Access, vol. 7, pp. 11 474–11 484, 2019.

[4] L. He, L. Xie, H. Shu, and S. Hu, “Discrete semi-supervised
learning for multi-label image classification and large-scale image
retrieval,” Multimedia Tools and Applications, vol. 78, no. 17, pp.
24 519–24 537, 2019.

[5] C. Zhang and Z. Li, “Multi-label learning with label-specific
features via weighting and label entropy guided clustering en-
semble,” Neurocomputing, vol. 419, pp. 59–69, 2021.

[6] X. Zheng, P. Li, Z. Chu, and X. Hu, “A survey on multi-label data
stream classification,” IEEE Access, vol. 8, pp. 1249–1275, 2019.

[7] M.-L. Zhang and Z.-H. Zhou, “ML-KNN: A lazy learning ap-
proach to multi-label learning,” Pattern Recognition, vol. 40, no. 7,
pp. 2038–2048, 2007.

[8] Y. Zhu, K. M. Ting, and Z.-H. Zhou, “Multi-label learning with
emerging new labels,” IEEE Transactions on Knowledge and Data
Engineering, vol. 30, no. 10, pp. 1901–1914, 2018.

[9] S. Furao and O. Hasegawa, “An incremental network for on-
line unsupervised classification and topology learning,” Neural
Networks, vol. 19, no. 1, pp. 90–106, 2006.

[10] F. Shen and O. Hasegawa, “A fast nearest neighbor classifier based
on self-organizing incremental neural network,” Neural Networks,
vol. 21, no. 10, pp. 1537–1547, 2008.

[11] N. Masuyama, C. K. Loo, and F. Dawood, “Kernel Bayesian ART
and ARTMAP,” Neural Networks, vol. 98, pp. 76–86, 2018.

[12] N. Masuyama, C. K. Loo, and S. Wermter, “A kernel Bayesian
adaptive resonance theory with a topological structure,” Interna-
tional Journal of Neural Systems, vol. 29, no. 5, p. 1850052 (20 pages),
2019.

[13] N. Masuyama, C. K. Loo, H. Ishibuchi, N. Kubota, Y. Nojima, and
Y. Liu, “Topological clustering via adaptive resonance theory with
information theoretic learning,” IEEE Access, vol. 7, pp. 76 920–
76 936, 2019.

[14] N. Masuyama, N. Amako, Y. Nojima, Y. Liu, C. K. Loo, and
H. Ishibuchi, “Fast topological adaptive resonance theory based
on correntropy induced metric,” in 2019 IEEE Symposium Series on
Computational Intelligence (SSCI), 2019, pp. 2215–2221.

[15] W. Liu, P. P. Pokharel, and J. C. Prı́ncipe, “Correntropy: Properties
and applications in non-Gaussian signal processing,” IEEE Trans-
actions on Signal Processing, vol. 55, no. 11, pp. 5286–5298, 2007.

[16] G. J. McLachlan, S. X. Lee, and S. I. Rathnayake, “Finite mixture
models,” Annual Review of Statistics and its Application, vol. 6, pp.
355–378, 2019.

[17] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions
on Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[18] T. Kohonen, “Self-organized formation of topologically correct
feature maps,” Biological Cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[19] B. Fritzke, “A growing neural gas network learns topologies,”
Advances in Neural Information Processing Systems, vol. 7, pp. 625–
632, 1995.

[20] G. A. Carpenter and S. Grossberg, “The ART of adaptive pat-
tern recognition by a self-organizing neural network,” Computer,
vol. 21, no. 3, pp. 77–88, 1988.

[21] S. Marsland, J. Shapiro, and U. Nehmzow, “A self-organising
network that grows when required,” Neural Networks, vol. 15,
no. 8, pp. 1041–1058, 2002.

[22] S. Grossberg, “Competitive learning: From interactive activation
to adaptive resonance,” Cognitive Science, vol. 11, no. 1, pp. 23–63,
1987.

[23] S. C. Tan, J. Watada, Z. Ibrahim, and M. Khalid, “Evolutionary
fuzzy ARTMAP neural networks for classification of semiconduc-
tor defects,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 26, no. 5, pp. 933–950, 2014.

[24] A. L. Matias and A. R. R. Neto, “OnARTMAP: A fuzzy ARTMAP-
based architecture,” Neural Networks, vol. 98, pp. 236–250, 2018.

[25] A. L. Matias, A. R. R. Neto, C. L. C. Mattos, and J. P. P. Gomes, “A
novel fuzzy ARTMAP with area of influence,” Neurocomputing,
vol. 432, pp. 80–90, 2021.

[26] G. A. Carpenter, S. Grossberg, and D. B. Rosen, “Fuzzy ART:
Fast stable learning and categorization of analog patterns by an
adaptive resonance system,” Neural Networks, vol. 4, no. 6, pp.
759–771, 1991.

[27] B. Vigdor and B. Lerner, “The Bayesian ARTMAP,” IEEE Transac-
tions on Neural Networks, vol. 18, no. 6, pp. 1628–1644, 2007.

[28] L. Wang, H. Zhu, J. Meng, and W. He, “Incremental local
distribution-based clustering using Bayesian adaptive resonance
theory,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 30, no. 11, pp. 3496–3504, 2019.

[29] L. E. B. da Silva, I. Elnabarawy, and D. C. Wunsch II, “Dis-
tributed dual vigilance fuzzy adaptive resonance theory learns
online, retrieves arbitrarily-shaped clusters, and mitigates order
dependence,” Neural Networks, vol. 121, pp. 208–228, 2020.

[30] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning
algorithms,” IEEE Transactions on Knowledge and Data Engineering,
vol. 26, no. 8, pp. 1819–1837, 2013.

[31] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-
label scene classification,” Pattern Recognition, vol. 37, no. 9, pp.
1757–1771, 2004.

[32] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Random k-labelsets for
multilabel classification,” IEEE Transactions on Knowledge and Data
Engineering, vol. 23, no. 7, pp. 1079–1089, 2010.

[33] H. Liu, X. Wu, and S. Zhang, “Neighbor selection for multilabel
classification,” Neurocomputing, vol. 182, pp. 187–196, 2016.

[34] A. Clare and R. D. King, “Knowledge discovery in multi-label phe-
notype data,” in Principles of Data Mining and Knowledge Discovery,
2001, pp. 42–53.

[35] A. Osojnik, P. Panov, and S. Džeroski, “Multi-label classification
via multi-target regression on data streams,” Machine Learning, vol.
106, no. 6, pp. 745–770, 2017.

[36] A. Elisseeff and J. Weston, “A kernel method for multi-labelled
classification,” in 14th International Conference on Neural Information
Processing Systems: Natural and Synthetic, vol. 14, no. 7, 2001, pp.
681–687.

[37] N. Zhang, S. Ding, and J. Zhang, “Multi layer ELM-RBF for multi-
label learning,” Applied Soft Computing, vol. 43, pp. 535–545, 2016.

[38] H. Zhang, J. Yang, G. Jia, S. Han, and X. Zhou, “ELM-MC:
multi-label classification framework based on extreme learning
machine,” International Journal of Machine Learning and Cybernetics,
pp. 1–14, 2020.

[39] Y. Zhu, J. T. Kwok, and Z.-H. Zhou, “Multi-label learning with
global and local label correlation,” IEEE Transactions on Knowledge
and Data Engineering, vol. 30, no. 6, pp. 1081–1094, 2018.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

[40] Z.-H. Tan, P. Tan, Y. Jiang, and Z.-H. Zhou, “Multi-label optimal
margin distribution machine,” Machine Learning, vol. 109, no. 3,
pp. 623–642, 2020.

[41] M. Roseberry, B. Krawczyk, Y. Djenouri, and A. Cano, “Self-
adjusting k nearest neighbors for continual learning from multi-
label drifting data streams,” Neurocomputing, vol. 442, pp. 10–25,
2021.

[42] G. G. Colombini, I. B. M. de Abreu, and R. Cerri, “A self-
organizing map-based method for multi-label classification,” in
2017 International Joint Conference on Neural Networks (IJCNN), 2017,
pp. 4291–4298.

[43] A. Benyettou, Y. Bennani, A. Bendahmane, and G. Cabanes,
“Semisupervised multi-label classification through topological ac-
tive learning,” International Journal on Communications Antenna and
Propagation (I. Re. CAP), vol. 7, no. 3, pp. 222–232, 2017.

[44] S. Boulbazine, G. Cabanes, B. Matei, and Y. Bennani, “Online semi-
supervised growing neural gas for multi-label data classification,”
in 2018 International Joint Conference on Neural Networks (IJCNN),
2018, pp. 1–8, doi: 10.1109/IJCNN.2018.8 489 776.

[45] T. T. Nguyen, M. T. Dang, A. V. Luong, A. W.-C. Liew, T. Liang, and
J. McCall, “Multi-label classification via incremental clustering on
an evolving data stream,” Pattern Recognition, vol. 95, pp. 96–113,
2019.

[46] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and
D. B. Rosen, “Fuzzy ARTMAP: A neural network architecture
for incremental supervised learning of analog multidimensional
maps,” IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 698–
713, 1992.

[47] F. Benites, F. Brucker, and E. Sapozhnikova, “Multi-label classifica-
tion by ART-based neural networks and hierarchy extraction,” in
The 2010 International Joint Conference on Neural Networks (IJCNN),
2010, pp. 1–9.

[48] F. Benites and E. Sapozhnikova, “Improving scalability of ART
neural networks,” Neurocomputing, vol. 230, pp. 219–229, 2017.

[49] L. X. Yuan, S. C. Tan, P. Y. Goh, C. P. Lim, and J. Watada, “Fuzzy
ARTMAP with binary relevance for multi-label classification,” in
International Conference on Intelligent Decision Technologies, 2017, pp.
127–135.

[50] J.-Y. Park and J.-H. Kim, “Incremental class learning for hierarchi-
cal classification,” IEEE Transactions on Cybernetics, vol. 50, no. 1,
pp. 178–189, 2018.

[51] S. Marriott and R. F. Harrison, “A modified fuzzy ARTMAP
architecture for the approximation of noisy mappings,” Neural
Networks, vol. 8, no. 4, pp. 619–641, 1995.

[52] D. J. Henderson and C. F. Parmeter, “Normal reference band-
widths for the general order, multivariate kernel density deriva-
tive estimator,” Statistics & Probability Letters, vol. 82, no. 12, pp.
2198–2205, 2012.

[53] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas,
“Mulan: A java library for multi-label learning,” The Journal of
Machine Learning Research, vol. 12, pp. 2411–2414, 2011.

[54] K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu,
and M. Varma, “The extreme classification repository: Multi-
label datasets and code,” http://manikvarma.org/downloads/
XC/XMLRepository.html, [Online; accessed 20-August-2021].

[55] N. Masuyama, Y. Nojima, C. K. Loo, and H. Ishibuchi, “Multi-
label classification based on adaptive resonance theory,” in 2020
IEEE Symposium Series on Computational Intelligence (SSCI), 2020,
pp. 1913–1920.

[56] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” Journal of Machine Learning Research, vol. 7, no. 1, pp. 1–30,
2006.

[57] C. Zhu, D. Miao, Z. Wang, R. Zhou, L. Wei, and X. Zhang, “Global
and local multi-view multi-label learning,” Neurocomputing, vol.
371, pp. 67–77, 2020.

[58] P. Skryjomski, B. Krawczyk, and A. Cano, “Speeding up k-nearest
neighbors classifier for large-scale multi-label learning on GPUs,”
Neurocomputing, vol. 354, pp. 10–19, 2019.

[59] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning
under concept drift: A review,” IEEE Transactions on Knowledge and
Data Engineering, vol. 31, no. 12, pp. 2346–2363, 2018.

[60] A. Ahmad and S. S. Khan, “Survey of state-of-the-art mixed data
clustering algorithms,” IEEE Access, vol. 7, pp. 31 883–31 902, 2019.

Naoki Masuyama (S’12–M’16) received the
B.Eng. degree from Nihon University, Fun-
abashi, Japan, in 2010, the M.E. degree from
Tokyo Metropolitan University, Hino, Japan in
2012, and the Ph.D. degree from the Faculty of
Computer Science and Information Technology,
University of Malaya, Kuala Lumpur, Malaysia, in
2016.

He is currently an Assistant Professor with the
Department of Computer Science and Intelligent
Systems, Osaka Prefecture University, Sakai,

Japan.
His current research interests include clustering, data mining, and

continual learning.

Yusuke Nojima received the B.S. and M.S. De-
grees in mechanical engineering from Osaka
Institute of Technology, Osaka, Japan, in 1999
and 2001, respectively, and the Ph.D. degree in
system function science from Kobe University,
Hyogo, Japan, in 2004.

Since 2004, he has been with Osaka Pre-
fecture University, Osaka, Japan, where he is
currently a Professor in Department of Computer
Science and Intelligent Systems.

His research interests include evolutionary
fuzzy systems, evolutionary multiobjective optimization, and parallel dis-
tributed data mining. He was a guest editor for several special issues in
international journals. He was a task force chair on Evolutionary Fuzzy
Systems in Fuzzy Systems Technical Committee of IEEE Computational
Intelligence Society. He was an associate editor of IEEE Computational
Intelligence Magazine (2014-2019).

Chu Kiong Loo (SM’14) holds a Ph.D. (Uni-
versity Sains Malaysia) and B.Eng. (First Class
Hons in Mechanical Engineering from the Uni-
versity of Malaya).

He was a Design Engineer in various indus-
trial firms and is the founder of the Advanced
Robotics Lab. at the University of Malaya. He
has been involved in the application of research
into Perus’s Quantum Associative Model and
Pribram’s Holonomic Brain Model in humanoid
vision projects. Currently he is Professor of Com-

puter Science and Information Technology at the University of Malaya,
Malaysia. He has led many projects funded by the Ministry of Science
in Malaysia and the High Impact Research Grant from the Ministry of
Higher Education, Malaysia. Loo’s research experience includes brain-
inspired quantum neural networks, constructivism-inspired neural net-
works, synergetic neural networks and humanoid research.

Hisao Ishibuchi (M’93–SM’10–F’14) received
the B.S. and M.S. degrees in precision mechan-
ics from Kyoto University, Kyoto, Japan, in 1985
and 1987, respectively, and the Ph.D. degree in
computer science from Osaka Prefecture Uni-
versity, Sakai, Osaka, Japan, in 1992.

Since 1987, he has been with Osaka Prefec-
ture University for 30 years. He is currently a
Chair Professor with the Department of Com-
puter Science and Engineering, Southern Uni-
versity of Science Technology, Shenzhen, China.

His current research interests include fuzzy rule-based classifiers, evo-
lutionary multiobjective optimization, many-objective optimization, and
memetic algorithms.

Dr. Ishibuchi was the IEEE Computational Intelligence Society (CIS)
VicePresident for Technical Activities from 2010 to 2013. He was an
IEEE CIS AdCom Member from 2014 to 2019, an IEEE CIS Distin-
guished Lecturer from 2015 to 2017, and an Editor-in-Chief of the IEEE
Computational Intelligence Magazine from 2014 to 2019. He is also an
Associate Editor of the IEEE TRANSACTIONS ON EVOLUTIONARY
COMPUTATION, the IEEE TRANSACTIONS ON CYBERNETICS, and
the IEEE ACCESS.

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html

	1 Introduction
	2 Literature Review
	2.1 Clustering Algorithm
	2.2 Multi-label Classification

	3 Proposed Algorithm
	3.1 Correntropy and Correntropy-Induced Metric
	3.2 Learning Procedure
	3.2.1 Initialization Process for a Bandwidth of a Kernel Function in the CIM
	3.2.2 Winner Node Selection
	3.2.3 Vigilance Test
	3.2.4 Node Learning
	3.2.5 Label Probability Computation

	3.3 Label Prediction Procedure
	3.4 Attribute Processing for the CIM
	3.4.1 Individual-based Approach
	3.4.2 Clustering-based Approach


	4 Simulation Experiments
	4.1 Evaluation Metrics
	4.2 Continual Learning Ability
	4.3 Quantitative Analysis
	4.3.1 Datasets
	4.3.2 Parameter Specifications
	4.3.3 Experimental Conditions
	4.3.4 Experimental Results

	4.4 Effects of a Multi-Epoch Learning Process
	4.5 Computational Complexity

	5 Concluding Remarks
	References
	Biographies
	Naoki Masuyama
	Yusuke Nojima
	Chu Kiong Loo
	Hisao Ishibuchi


