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Knowledge-enriched Attention Network with
Group-wise Semantic for Visual Storytelling

Tengpeng Li, Hanli Wang, Senior Member, IEEE, Bin He, Chang Wen Chen, Fellow, IEEE

Abstract—As a technically challenging topic, visual storytelling aims at generating an imaginary and coherent story with narrative
multi-sentences from a group of relevant images. Existing methods often generate direct and rigid descriptions of apparent image-
based contents, because they are not capable of exploring implicit information beyond images. Hence, these schemes could not
capture consistent dependencies from holistic representation, impairing the generation of reasonable and fluent story. To address these
problems, a novel knowledge-enriched attention network with group-wise semantic model is proposed. Three main novel components
are designed and supported by substantial experiments to reveal practical advantages. First, a knowledge-enriched attention network
is designed to extract implicit concepts from external knowledge system, and these concepts are followed by a cascade cross-modal
attention mechanism to characterize imaginative and concrete representations. Second, a group-wise semantic module with second-
order pooling is developed to explore the globally consistent guidance. Third, a unified one-stage story generation model with encoder-
decoder structure is proposed to simultaneously train and infer the knowledge-enriched attention network, group-wise semantic module
and multi-modal story generation decoder in an end-to-end fashion. Substantial experiments on the popular Visual Storytelling dataset
with both objective and subjective evaluation metrics demonstrate the superior performance of the proposed scheme as compared with
other state-of-the-art methods.

Index Terms—Visual Storytelling, Knowledge-enriched Attention, Group-wise Semantic, Multi-modal Decoder, Encoder-decoder.
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1 INTRODUCTION

Visual storytelling, which aims at producing a set of
expressive and coherent sentences to depict the contents of
a group of sequential images, has been an interesting and
rapidly growing research topic in the fields of computer vi-
sion and multimedia computing. Different from visual cap-
tioning which devotes to describe the superficial contents in
an image or a video, visual storytelling is expected not only
to recognize the diverse semantical contexts and relations
within one image and across images, but also to generate
the storyline of image stream and express more implicit
imaginations out of the images. Visual storytelling can be
used in many real-world applications, such as helping the
disabled to comprehend image contexts from social media,
verifying advanced properties of intelligent devices, etc.

In visual storytelling, it is essential to learn the storyline
and express with informative sentences. Therefore, valuable
contextual information should be deduced for the target
image stream. In general, a visual storytelling model in-
tends to solve two main issues: (1) generating the abundant
information of extracted features in single image, and (2)
providing the precise storyline about the event occurred
in the image sequence. On one hand, most visual cap-
tioning schemes focus on detecting visual features, where
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convolutional features [1]–[3] and object features [4]–[6]
have been widely used in these schemes. Nevertheless,
regional-visual features can merely detect the intrinsic and
superficial information, lacking the the capability to ex-
plore diverse and creative textures that were not apparent
from images. Several recent approaches [7]–[10] introduced
external knowledge by leveraging graph-based structures
like the scene graph [11] and the commonsense graph [12]
to strengthen symbolic creativity and achieve desired per-
formances. Nonetheless, these approaches either did not
establish the associations of cross-modal information or
only learned the implicit external contents in two separated
stages, leading to sub-optimal performance. We strongly be-
lieve that the attentive visual and textual representations are
essential to produce concrete and imaginative descriptions.

On the other hand, a number of unified frameworks [1],
[3], [13] have been developed recently to solve the problem
of lacking global consistency in image sequence, where
the recurrent neural network (RNN) [1], [3] or temporal
convolutional network (TCN) [13] has been adopted to
explore the temporal feature relations. However, both RNN
and TCN encounter problems in their optimization [14]
because of memory dilution along the longer feature se-
quence, failing to generate the topic-aware information of an
image stream. Nevertheless, the storyline containing long-
range dependencies is crucial to output the coherent multi-
sentences. Furthermore, the most serious problem among
existing approaches is that they are incapable of establishing
a unified framework to simultaneously capture sufficient
regional features and topic-aware global features for visual
storytelling.

To address the aforementioned challenges, a knowledge-
enriched attention network with group-wise seman-
tic (KAGS) model is proposed in this research for visual
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storytelling. The proposed KAGS model will first leverage
a CNN [15] and a Faster-RCNN [16] as encoder to extract
convolutional features, semantic labels and regional object
features from the input image stream. Then the semantic
labels and regional features will be sent into the proposed
knowledge-enriched attention network (KAN), where the
semantic labels are processed with ConceptNet [12] and
the regional features are dealt with the cascade cross-modal
attention module. The proposed KAN can achieve sufficient
feature representation to enable the establishment of cross-
modal correlations of both textual and visual information.
Meanwhile, the group-wise semantic module (GSM) with
second order pooling (SOP) is introduced to transform
the convolutional group features into global guided vector.
Different from the sequential memory enhanced behaviour
in RNN or TCN, GSM directly computes the higher-order
interaction of any local or non-local pairwise convolutional
vectors, in spite of their intra- or inter-spatial positions.
The designed GSM can obtain the global feature guidance
because it can capture the long-range dependencies of the
sequential convolutional features. Finally, the optimized vi-
sual and textual features, combined with the global semantic
vector, are sent into a multi-modal story decoder to gener-
ate the story. As a result, a unified one-stage framework
with superior performance is established to optimize all
proposed modules for attentive cross-modal features and
global semantic guidance in an end-to-end manner. Major
contributions of this work are summarized below.

• A knowledge-enriched attention network is designed
to capture attentive enriched contexts and visual rep-
resentations to address the problem in external infor-
mation shortage and feature distraction. The contexts
are generated from commonsense graphs and the cas-
cade cross-modal attention is employed to highlight the
valuable embedding of heterogeneous information.

• A group-wise semantic module is developed to capture
the global consistency of an image stream to overcome
the challenge about the incoherent descriptions in a
story. This module is able to compute the higher-order
interaction of any pairwise semantic vectors regardless
of spatial distance restriction, thus contributing to the
accurate guidance of the storyline.

• A unified one-stage visual storytelling framework with
encoder-decoder structure is devised to simultaneously
optimize the knowledge-enriched attention network,
group-wise semantic module and multi-modal story
decoder in an end-to-end fashion. It has been shown
that the proposed KAGS scheme is both efficient and
effective.

The rest of this paper is organized as follows. We intro-
duce in Section 2 the related works in both image captioning
and visual storytelling. The proposed knowledge-enriched
attention network with group-wise semantic model is de-
scribed in detail in Section 3. We present in Section 4
the statistic performances, ablative studies and visualization
analyses. Finally, we conclude this paper in Section 5.

2 RELATED WORK

2.1 Image Captioning
Image captioning aims at automatically generating a natural
language sequence to depict the complex visual contents
occurred in a single image, and it can be generally divided
into two categories. First, benefiting from the rapid devel-
oping technology of natural language machine translation,
most early approaches [17]–[23] attempted to establish the
captioning framework with encoder-decoder structure and
achieved satisfying performances. In these common ap-
proaches, CNN was usually regraded as encoder to extract
image features, and RNN was often used to decode the
integrated representations for sentence production. In [17],
Mao et al. designed the m-RNN framework consisted of
two sub-networks including a CNN-based image encoder
and a RNN-based sentence decoder to accomplish sentence
generation. Vinyals et al. [18] leveraged the CNN to ex-
tract visual representations and applied the long short-term
memory (LSTM) [24] to output the final image description.
Jia et al. [19] proposed a gLSTM model to add the extracted
semantic contexts in each LSTM unit for guiding global
image content generation. Second, a set of innovated meth-
ods with an attention mechanism [25]–[29] have been pro-
posed to further improve image captioning performances by
highlighting meaningful visual and textual information in
recent years. Xu et al. [25] designed a LSTM-based decoder
with soft attention and hard attention modules to focus
on important image areas for generating accurate words in
the decoding process. You et al. [26] presented a semantic
attention model that integrates the extracted semantic visual
feature proposals into the hidden states and RNN-based
decoders for better language description. In [27], Lu et al.
developed an adaptive attention structure to selectively
choose image regions for obtaining meaningful features.
Furthermore, Anderson et al. [30] proposed a bottom-up
and top-down attention framework to explore the object-
level salient regions and relate each region with one cor-
responding word for sentence generation. Li et al. [28]
performed a scene graph strategy [11] to capture enriched
structural information with semantic entities and pairwise
relations. Yang et al. [29] proposed the CaptionNet model
as an enhanced LSTM to focus on positive visual cues
and absorb richer semantics for better feature encoding. In
this work, the encoder-decoder structure is also developed
by additionally merging attention mechanism and global
guidance for robust feature representation.

2.2 Visual Storytelling
Visual storytelling is a challenging task in multimedia com-
munities since the designed approaches should bridge an
association between the group of visual messages and the
sequential natural languages. As an emerging and promis-
ing topic, visual storytelling has attracted much attention of
researchers and a number of elaborate innovations are pro-
posed. Generally, visual storytelling models can be grouped
into end-to-end framework and multi-stage based approach.
First, end-to-end framework is popular due to its efficiency
for generating stories in a unified structure. Wang et al. [1]
proposed a classical visual storytelling framework that has
been the most popular base structure of following studies.
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Fig. 1. Pipeline of the proposed KAGS for visual storytelling. The framework contains four key components: (a) a Faster-RCNN network and a
ResNet backbone to extract regional features and high-level convolutional features; (b) the proposed KAN to obtain the attentive heterogeneous
representations by exploiting the intra- and inter- interactions of visual and knowledge concepts; (c) the proposed GSM to explore the global guided
aggregation with a set of hierarchical second-order pooling algorithms in a convolutional feature group; and (d) a story generation that fuses the
multi-modal information in a decoder to produce the final predicted sentences.

This framework designed an end-to-end structure to encode
the sequential converted features jointly by bidirectional
gated recurrent units (GRU) and decoded these processed
features separately for the final story. Huang et al. [31]
designed a hierarchical two-level decoder to produce the se-
mantic topic and generate a sentence for each single image,
and reinforcement learning was applied for optimization.
In [32], a commonsense-driven generator was employed
to caption essential external messages for abundant multi-
sentence expressions. Jung et al. [3] proposed a hide and tell
model to acquire the imaginative storyline by bridging the
feature gap of image stream. To ensure the interesting and
informative characteristics of story, Hu et al. [33] designed
three human-like criteria combined with a reinforcement
learning structure and achieved superior performances on
human evaluation metrics. Second, many multi-stage ap-
proaches were also emerging which strengthened the di-
versity and informativeness of frameworks. Hsu et al. [34]
merged various extracted concepts into decoder for more
diverse descriptions. Yao et al. [35] designed a hierarchi-
cal framework to plan the storyline in the first stage and
wrote the topic-based story in the second stage. Moreover,
several works [7], [8] introduced the external commonsense
knowledge from bases like OpenIE [36], Visual Genome [37]
or ConceptNet [12] for more diverse descriptions, where
Hsu et al. [7] proposed a three-stage framework to produce
external knowledge to guide the decoder, Chen et al. [8]
designed a concept selection module to select enriched
concept candidates and then sent them in a visual-language
pre-trained model to produce full stories. In this work, an

end-to-end model is designed while considering efficiency,
informativeness and coherency. Particularly, the proposed
one-stage model can train and inference all modules in
a unified fashion to promote its efficiency, and the at-
tentive commonsense knowledge and global semantic are
also introduced to increase the feature representation for
improving the informativeness and consistency of KAGS,
respectively.

3 KNOWLEDGE-ENRICHED ATTENTION NETWORK
WITH GROUP-WISE SEMANTIC

3.1 Framework Overview

The proposed KAGS is illustrated in Fig. 1. First, a
knowledge-enriched attention network is designed to ex-
plore the intra- and inter- interactions of visual and textual
features in Section 3.2. Meanwhile, a group-wise semantic
module with a set of second-order pooling algorithms is
developed to capture the global guided aggregation of se-
quential convolutional features in Section 3.3. Finally, the
produced multi-modal features are sent into the multi-
modal story decoder to generate the final reasonable and
coherent story in Section 3.4.

With a group of N associated images I = {In}Nn=1

as input, the task of visual storytelling aims to exploit
the effective intra- and inter-feature representations of this
image stream, producing a reasonable and coherent story
with multiple descriptive sentences S = {Sn}Nn=1. To tackle
this issue, a novel KAGS model is elaborately designed to
generate the story S in an end-to-end manner.
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The overall structure of the proposed KAGS model is
illustrated in Fig. 1, which consists of four main compo-
nents: (a) Encoder, (b) Knowledge-enriched Attention Net-
work (KAN), (c) Group-wise Semantic Module (GSM), and
(d) Story Generation. Specifically, given a group of rele-
vant images I , the model first leverages the general object
detection framework Faster-RCNN [16] and ResNet [15]
backbones as the encoder to extract boxes of regional-
visual features R = {Rn}Nn=1 and the corresponding labels
L = {Ln}Nn=1 with high confidence, and the high-level
representations in the last convolutional layer C = {Cn}Nn=1,
respectively. Then, Ln of each image is fed into KAN to
explore external knowledge. For the semantic label Ln ∈ L,
the ConceptNet [12] is introduced to generate the knowl-
edge concepts Kn from external enhanced knowledge base
that can further boost the capability of absorbing imagina-
tive and reasonable concepts, thus a group of knowledge
concepts K = {Kn}Nn=1 can be acquired. Moreover, to fully
utilize the regional-visual features Rn and the knowledge
concepts Kn, a cascade cross-modal attention (CCA) mod-
ule is designed to progressively model the dense semantic
interactions of intra features (image-to-image or text-to-text)
and inter features (image-to-text), outputting the enhanced
knowledge concepts and attentive regional-visual features.
The whole process is defined as [Kn

P ,R
n
P ] = Fcca(Kn,Rn),

where Fcca(·, ·) and P represent the function of CCA mod-
ule and the number of cascade layers in CCA, respectively.

Moreover, the recent works [4], [38] have shown that an
outstanding non-linear feature capability of second-order
pooling is achieved by exploiting both channel-wise and
spatial-wise interactions. Thereby, the GSM with hierarchi-
cal second-order pooling is designed to capture the topic-
aware consistency of group convolutional features C =
{Cn}Nn=1, and then produces a global-visual aggregation
Ã = Fgsm(C), which can help to capture the global guided
semantic and avoid noisy interference. Finally, the model
feds Kn

P , RnP and Ã into the multi-modal story decoder,
generating the predicted sentence Sn.

3.2 Knowledge-enriched Attention Network

As aforementioned, to overcome the problem of insuf-
ficient external information and distracted features, the
knowledge-enriched attention network (KAN) is designed
to increase the external priors from current knowledge
repository and establish intra- and inter- dense correlations
of cross-modal features. In fact, several existing knowledge-
based methods [8], [13], [39] for visual storytelling also
devote to leverage external implicit knowledge for better
model performance, but they only focus on the intra cor-
respondence of textual concepts instead of considering the
inter association of heterogeneous information that is crucial
to visual storytelling, resulting in sub-optimal representa-
tion capability. Differently, the proposed KAN constructs
the interactions of both enriched knowledge and visual
concepts based on CCA, which establishes the long-range
dependencies of homogeneous and heterogeneous features
between any pairwise feature vectors. Therefore, enriched
textual knowledge and visual features can be assigned with
higher attention weights in meaningful feature dimensions,
facilitating to a more optimized visual storytelling estima-

tion than the methods only considering textual informa-
tion [8], [13], [39].

Fig. 2. The schematic diagram of two attention units employed by the
proposed CCA module, where the left unit is self-attention and the right
unit is cross-attention.

Knowledge Graph. To offer current storytelling datasets
more imaginary and reasonable concepts, the proposed
KAGS establishes commonsense knowledge graphs based
on the semantic labels L detected by Faster-RCNN [16].
Similar to [8], [32], KAGS adopts the generalized Con-
ceptNet [12] as the knowledge extractor to collect numer-
ous commonsense words with rich imagination, abundant
emotions and objective facts. Specifically, the knowledge
concepts Kn = {Kn

k}Kk=1 is constructed for the given se-
mantic label Ln, where K indicates to employ the the top-
K candidates of the nth image based on their scores of
confidence, and each Kn

k is composed of two entities and
one edge relation.
Cascade Cross-modal Attention. Given the extracted rich
knowledge, a tricky challenge is that many selected concepts
are irrelevant to the visual information, thus introducing
many interferences that reduce the story description accu-
racy. Recently, the method [9] investigates the visual-textual
guided encoding pattern to selectively highlight the positive
information and suppress the negative message. Motivated
by this and the self-attention mechanism in [14], the CCA
module is designed through stacking self-attention (SA) and
cross-attention (CA) as shown in Fig. 2 to progressively
explore and optimize cross-modal interactions. In detail,
having the query matrix Mq ∈ Rm×d, the key matrix
Mk ∈ Rm×d and the value matrix Mv ∈ Rm×d, the attentive
feature F ∈ Rm×d can be obtained by summing all values
of Mv with the corresponding matrix weights learned from
Mq and Mk, and the dot-product attention is defined as

F = Attention(Mq,Mk,Mv) = softmax(
MqM>k√

d
)Mv, (1)
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where 1√
d

, m and d represent scale factor, vector number
and feature dimension, respectively.

In order to enhance the feature capacity of different
subspaces, a multi-head attention mechanism [14] is also
leveraged, which consists of h parallel subspaces. The atten-
tive feature F is formulated as

F = MultiHead(Mq,Mk,Mv)

= [head1, head2, · · · , headh]Wo,
(2)

headi = Attention(MqWi
q,MkWi

k,MvWi
v), (3)

where Wi
q ∈ Rd×dq , Wi

k ∈ Rd×dk and Wi
v ∈ Rd×dv

are the learnable projection matrices of the ith head, and
Wo ∈ R(h×dv)×d. In this schema, the multi-head attention
is applied to both of the SA and CA units, followed by the
function LS(·) consisting of a point-wise addition, a linear
layer and a BatchNorm layer. In Fig. 2, given the visual
features Fv or the textual features Ft of each image, the SA
unit outputs the self-attentive representation as

SA(Fv) = LS(MultiHead(Fv, Fv, Fv)),
SA(Ft) = LS(MultiHead(Ft, Ft, Ft)).

(4)

Similarly, both visual features Fv and textual features Ft
can be fed into CA unit, generating the cross-attentive
representation as

CA(Ft, Fv) = LS(MultiHead(Ft, Fv, Fv)), (5)

Now, the proposed CCA can be constructed by cascading
P − 1 layers as shown in Fig. 1 (b), which is represented
as Fcca = [F (1)

cca,F (2)
cca, · · · ,F (P−1)

cca ]. Specifically, the pth

cascade layer of Fcca including two SA units and one CA
unit can be defined as

[Kn
p+1,R

n
p+1] = F (p)

cca(Kn
p ,R

n
p )

= [CA(SA(Kn
p ), SA(Rnp )), SA(Rnp )],

(6)

where Kn
p , Rnp , Kn

p+1 and Rnp+1 represent input knowledge
concepts, input regional-visual features, output knowledge
concepts and output regional-visual features at the pth

cascade layer, respectively. For F (1)
cca, we set original input

features Rn1 = Rn and Kn
1 = Kn. Finally, the outputs

[Kn
P ,R

n
P ] = F (P−1)

cca (Kn
P−1,R

n
P−1) with Eq. (6) are regarded

as the enhanced knowledge concepts and attentive regional-
visual features of CCA, respectively.

The designed KAN has proved its superior potential to
collect external commonsense facts and capture long-range
pairwise correlations of cross-modal features, so as to bet-
ter discriminate the valuable heterogeneous representations
from imaginative corpus and visual contexts. Nevertheless,
KAN only establishes multiple interactions of single image,
neglecting to explore the topic-aware global consistency that
is necessary for visual storytelling. To tackle this problem,
the group-wise semantic module (GSM) is further devel-
oped to exploit the global guided aggregation as presented
in the following Section 3.3.

3.3 Group-wise Semantic Module
One major difficulty in visual storytelling task is the lack
of storyline, leading to the incoherent expressions of multi-
ple sentences. To this end, a group-wise semantic module

Fig. 3. The schematic diagram of SOP. Given an input feature tensor
with size h × w × d, it is fed into SOP, which consists of two 1 × 1
convolutions, one transpose multiplication operator and one row-wise
convolution, generating a 1 × 1 × d global guided aggregation.

composed of several second order pooling algorithms is
developed to capture the global consistent guidance.
Second Order Pooling (SOP). Given the convolutional fea-
ture tensor X ∈ Rh×w×d as shown in Fig. 3, where h, w
and d represent the height, width and channel dimension
of feature tensor, respectively. SOP first introduces a 1 × 1
convolution to reduce the channel number from d to c,
thus projecting the convolutional feature from high to low
dimension while alleviating the computation cost. Then SOP
converts a h × w × c feature tensor to a c × c covariance
matrix by computing dense semantic interactions regard-
less of positional distance. Each element in the covariance
matrix indicates the similarity of any pairwise vectors in the
feature tensor, which formulates the high-order property of
significant holistic representation by introducing a quadratic
operator and thus can enable the model with the capacity of
non-linear feature discrimination. Finally, a row-wise convo-
lutional layer and a 1× 1 convolutional layer are leveraged
to convert the c× c covariance matrix to a 1×1×d tensor to
highlight the meaningful feature channels. Specifically, the
process of SOP can be described as

X̃ = SOP (X)

= f1×1(frow([R(f1×1(X))]> ∗ [R(f1×1(X))])),
(7)

where X̃ ∈ R1×1×d, ∗ indicates matrix multiplication, R is a
reshaping operator that flattens a tensor from size h×w× c
to (hw) × c, f1×1 and frow represent a 1 × 1 convolution
and a row-wise convolution, respectively.
Group-wise Semantic. In Fig. 1(c), the GSM module first
inputs every feature representation Cn ∈ Rh×w×d into
SOP with Eq. (7), and then the SOP outputs the processed
tensor C̃

n ∈ R1×1×d. Afterwards, all processed tensors are
sequentially concatenated into A = [{C̃n}Nn=1] ∈ RN×1×d,
producing an initial group-wise semantic representation.
Similarly, the GSM again sends A into SOP with Eq. (7)
to capture the long-range semantic associations along the
channel-wise dimension, generating the global-visual aggre-
gation Ã ∈ R1×1×d that can contribute to the subsequent
multi-modal story decoder in Section 3.4, which can be
formulated as

Ã = Fgsm(C)
= SOP ([{SOP (Cn)}Nn=1]).

(8)

As a consequence, the SOP can strengthen the non-linear
feature capability by learning higher-order statistic depen-
dencies of holistic representation [38], and the GSM can
capture the global consistent representation of group-wise
features along the channel-wise dimension as shown in
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Fig. 4. Illustration of the proposed multi-modal story decoder. For the
knowledge indicator vector K̄n, the regional-visual indicator vector R̄n,
the global-visual indicator vector Ã, the previous regional hidden state
hrnt−1, the previous global hidden state han

t−1 and the previous word
embedding wn

t−1 as inputs, the decoder feds these vectors into a two-
stream structure by combining the CA unit and LSTM to obtain a set of
vectors vrnt , hrnt , van

t and han
t . Finally, these vectors are concatenated

and sent into following layers to obtain the current word prediction wn
t .

Fig. 6, facilitating to acquire topic-aware information for
coherent and narrative descriptions.

3.4 Multi-modal Story Decoder

To fully utilize the produced attentive local-visual features,
enhanced knowledge concepts and global-visual aggrega-
tion, a multi-modal story decoder is designed to explore the
final contextual representation with above multi-modal fea-
tures, generating reasonable and coherent sentences of the
final story. Figure 4 illustrates the diagram of the proposed
multi-modal story decoder. Specifically, in order to generate
the nth sentence with various representations including
attentive regional-visual features RnP , enhanced knowledge
concepts Kn

P and global-visual aggregation Ã, the model
first flattens RnP ∈ RM×d to R̄n ∈ R1×d, Kn

P ∈ RK×d to
K̄n ∈ R1×d with designed flatten layer composed of two
linear layers and one softmax layer, resulting in the regional-
visual indicator vector R̄n and the knowledge indicator
vector K̄n, where M , K and d denote the number of de-
tected regional boxes, graph relations and feature channels,
respectively.

To further exploit compact interactions of visual fea-
tures, enriched contexts and word embedding, a regional-
visual and global-visual based story decoder is designed
by combining the CA unit and LSTM to accomplish multi-
modal inference. Particularly, for regional-visual informa-
tion reasoning of the nth image at the time step t (see the
left side of Fig. 4), the decoder sends the previous regional
hidden state hrnt−1, the knowledge indicator vector K̄n, the
previous word embedding wn

t−1 and the regional-visual in-
dicator vector R̄n into LSTM, outputting the current regional

hidden state hrnt . Afterwards, the decoder considers hrnt
as the query of the CA unit, and R̄n is set as the key or
value of the CA unit. As a result, the output of the CA
unit followed with an embedded layer obtains the attended
regional representation vrnt by encouraging the cross-modal
correlations between R̄n and hrnt , which can be formulated
as

hrnt = LSTM(K̄n ⊕wn
t−1 ⊕ R̄n,hrnt−1), (9)

vrnt = Embed(CA(hrnt , R̄
n
)), (10)

where Embed(·) represents a fully-connected layer and ⊕
denotes the concatenation operator. Similarly, with the input
of the previous global hidden state hant−1, the knowledge
indicator vector K̄n, the previous word embedding wn

t−1
and the global-visual aggregation Ã, the global-visual in-
formation reasoning (see the right side of Fig. 4) can also
generate the current global hidden state hant and attended
global representation vant , which can be formulated as

hant = LSTM(K̄n ⊕wn
t−1 ⊕ Ã,hant−1), (11)

vant = Embed(CA(hant , Ã)). (12)

Next, the contextual vector vnt is calculated by concate-
nating vrnt , hrnt , vant and hant , followed with a GLU [40]
and a linear layer, respectively. Finally, the contextual vector
vnt is fed into a softmax layer to generate the current word
embedding wn

t . Definitely, the word generation probability
can be formulated as

p(wn
t |wn

1:t−1) = softmax(vnt ), (13)

where the prediction p is a probability distribution over
the Visual Storytelling (VIST) dataset [41] vocabulary Vs.
Finally, the word embedding wn

t is transformed into word
wnt , obtaining the sub-story Sn = {wn1 , · · · , wnT } of story S ,
where T represents the length of sub-story Sn.

3.5 Training and Inference Procedure

In the training stage, given a group of N images, all the
key components of the proposed model in Fig. 1 are jointly
trained on the VIST dataset [41] for story prediction. The
cross-entropy loss is employed in the training stage as

L(θ) = −
N∑
n

T∑
t

log(pnθ (gnt |g
n
1 , · · · , g

n
t−1)), (14)

where θ indicates the set of optimized parameters during
training, gnt represents the tth word embedding in the
ground-truth sub-story gn. Eventually, the goal is to mini-
mize the loss L(θ). In the inference stage, the model predicts
the story using the beam search method with the beam size
equal to 3.

4 EXPERIMENTS

4.1 Implementation Details

Following the previous works [1], [31], [42], the proposed
KAGS model adopts the ResNet-152 [15] pretrained on the
ImageNet [43] dataset for convolutional feature extraction
and utilizes the Faster-RCNN [16] pretrained on the Ima-
geNet [43] dataset and the Visual Genome [37] dataset for
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regional-level feature extraction, where the original convo-
lutional feature and the regional feature are a 7 × 7 × 2048
tensor and a 1×2048 tensor, respectively. Then these features
are transposed into tensors with the channel dimension
equal to 1024. The number of images in an album is set as 5.
For each commonsense graph, the max number of relations
is set as 20. Moreover, the number of the detected regional
boxes is set as 36, the dimension of word embedding is
set as 1024, the feature dimension in the hidden layer of
LSTM is set to 512, and the number of cascade layers (i.e.,
P − 1) in CCA is set as 6. In the current work, the cross-
entropy loss is used to train the whole model and the
Adam optimizer [44] is employed with the initial weight
decay 5 × e−4 and the learning rate 4 × e−4. The model is
converged in only 21 epochs with the batch size equal to 50,
note that the model does not leverage any post processing
such as reinforcement learning [22]. The words appearing
more than 3 times in the training dataset are selected to
build a storytelling vocabulary with a size of 9, 837. Then
the vocabulary size is extended to 12, 322 with external
knowledge base. During inference, the beam search strategy
is leveraged with the beam size of 3 for visual storytelling
prediction. The model is implemented with PyTorch1 with a
Tesla V100 for acceleration.

4.2 Dataset and Automatic Metric Evaluation

VIST Dataset. The VIST dataset [41] is a customized dataset
for visual storytelling, which contains 210, 819 specific im-
ages and 10, 117 interesting Flicker albums. It is challenging
to employ VIST for visual storytelling, because the story
descriptions are more subjective and need emotional and
imaginative concepts that do not appear explicitly in im-
ages. Following the previous work [1], the broken photos
are removed and 40, 098 training groups, 4, 988 validation
groups and 5, 050 testing groups are constructed. Each
group consists of 5 images collected from one photo album
and each image usually corresponds to one sentence. Every
album has 5 differentiate stories as reference.
Automatic Metric Evaluation. Comprehensive experiments
are conducted on the VIST dataset in terms of four
automatic metrics including BLEU [45], METEOR [46],
ROUGE L [47] and CIDEr [48]. These metrics calculate the
similarities and relevances between the predicted story and
reference. Concluding in [41], the METEOR score is chosen
as the key performance indicator for its high correlation
with human evaluation standards.

4.3 Comparison with State-of-the-art Methods on Auto-
matic Metrics

The proposed KAGS model is compared with other twelve
state-of-the-art visual storytelling approaches including (1)
seq2seq [41], an original model with RNN-based struc-
ture; (2) BARNN [49], a relational attended model with
designed GRU; (3) h-attn-rank [50], a hierarchical attentive
recurrent network; (4) XE-ss [1], a LSTM-based encoder-
decoder model; (5) AREL [1], an adversarial reward op-
timizing framework; (6) HPSR [51], a hierarchical image

1. [Online]. Available: https://pytorch.org/

encoder-decoder model; (7) HSRL [31], a hierarchical re-
inforcement learning framework; (8) VSCMR [52], a con-
ceptual exploration network; (9) ReCO-RL [33], a relevant
context reinforcement learning method; (10) INet [3], an
imaginative concept reasoning network; (11) SGVST [13], a
scene-graph knowledge enhanced model; and (12) IRW [42],
a multi-graph knowledge reasoning framework. For fair
comparisons, this paper directly presents the statistic results
provided by the authors or conducts the experiments by the
official source codes of these competing approaches.

4.3.1 Qualitative Results
Figure 5 presents several visual comparisons between the
proposed KAGS model and the methods AREL [1] and
VSCMR [52], together with the human-annotated referenced
stories (GT). Generally, compared with the other two ap-
proaches (i.e., AREL and VSCMR), KAGS can better gener-
ate emotional, imaginative, coherent and accurate descrip-
tions by jointly exploring the knowledge enriched cross-
modal interactions and global semantic guidance.

Specifically, the left album of the five images in Fig. 5
is related to a graduation activity with various scenes, it is
apparent that the predicted sentences obtained by KAGS
show promising performances. For the second sentence
of VSCMR, it simply produces the sentence “there was a
lot of people there” and neglects to record the detailed
visual and implicit contexts in this picture, leading to sub-
optimal results. Notwithstanding, the second sentence of
KAGS shows the description “the crowd was excited for the
graduation ceremony”, where the word “excited” properly
depicts the emotions of people and the phrase “graduation
ceremony” accurately illustrates the social activity using
the information from knowledge graphs, confirming the
capability of KAGS to capture rich emotions and external
contexts according to visual and textual information. For
the fourth sentence of AREL (i.e., “he was so proud of
him”), it only characterizes the emotions of people and
is irrelevant to the precise visual context in this photo,
which is ambiguous to understand. However, the fourth
sentence of KAGS outputs the sentence “the students were
happy to finally graduate”, which highly corresponds to the
graduation topic of this photo album.

Moreover, the story generation of the right photo album
in Fig. 5 is also challenging due to its numerous characters
and various semantic objects in different scenarios. In the
estimated story obtained by AREL, the third and fourth sen-
tences show the repetitive phrase “had a great time”, which
impairs the abundant descriptions of this story. Notwith-
standing, the proposed KAGS can avoid this problem and
generate sentences with different formats and styles (i.e., the
third and fourth sentences generated by KAGS). In addition,
regarding the fifth sentence of story, the VSCMR method
predicts the sentence of “everyone had a great time at the re-
ception”, which generally introduces the event happened in
this scene. And the proposed KAGS generates the sentence
of “after the wedding they all posed for pictures”, which
shows that the generated sentence is associated with the
visual information in the fourth image, further validating
the long-range dependency capacity of the proposed KAGS
model. Totally, the experimental results demonstrate that the
designed model is able to obtain favorable story estimations
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Fig. 5. Visualization of the comparison between the proposed KAGS and other state-of-the-art methods including AREL, VSCMR and ground-truth.
It only visualizes parts of the extracted commonsense knowledge graphs due to space limit.

TABLE 1
Statistic comparisons of KAGS with other state-of-the-art approaches, where the bold font indicates the best performance.

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE L CIDEr
seq2seq [41] (NAACL2016) - - - 3.5 31.4 - 6.8
BARNN [49] (AAAI2017) - - - - 33.3 - -
h-attn-rank [50] (EMNLP2017) - - 21.0 - 34.1 29.5 7.5
XE-ss [1] (ACL2018) 62.3 38.2 22.5 13.7 34.8 29.7 8.7
AREL [1] (ACL2018) 63.7 39.0 23.1 14.0 35.0 29.6 9.5
HPSR [51] (AAAI2019) 61.9 37.8 21.5 12.2 34.4 31.2 8.0
HSRL [31] (AAAI2019) - - - 12.3 35.2 30.8 10.7
VSCMR [52] (ACMMM2019) 63.8 39.5 23.5 14.3 35.5 30.2 9.0
ReCO-RL [33] (AAAI2020) - - - 12.4 33.9 29.9 8.6
INet [3] (AAAI2020) 64.4 40.1 23.9 14.7 35.6 29.0 10.0
SGVST [13] (AAAI2020) 65.1 40.1 23.8 14.7 35.8 29.9 9.8
IRW [42] (AAAI2021) 66.7 41.6 25.0 15.4 35.6 29.6 11.0
KAGS 70.1 43.5 25.2 14.7 36.2 31.4 11.3

in several challenging conditions, confirming the superior
performance of the proposed KAGS model.

4.3.2 Quantitative Results
The comparison of the proposed KAGS model with other
state-of-the-art approaches is also presented in Table 1,
where it can be observed that the statistic results of KAGS
show better performances than the competing approaches
by a large margin. Generally, the proposed KAGS achieves
the best scores in terms of six metrics including BLEU-
1, BLEU-2, BLEU-3, METEOR, ROUGE L and CIDEr, and
obtains the second best performance on BLEU-4. Specifi-
cally, KAGS achieves the BLEU-1 score of 70.1, the BLEU-
2 score of 43.5, the BLEU-3 score of 25.2, the METEOR
score of 36.2, the ROUGE L score of 31.4 and the CIDEr

score of 11.3, significantly surpassing the scene graph based
method SGVST [13] by 5.0%, 3.4%, 1.4%, 0.4%, 1.5% and
1.5%, respectively. Moreover, compared with the second
best method IRW [42] that leverages many external knowl-
edge including scene graph, commonsense graph and event
graph, the proposed KAGS model can achieve higher scores
on most metrics. Particularly, 70.1 versus 66.7 on BLEU-1,
43.5 versus 41.6 on BLEU-2, 25.2 versus 25.0 on BLEU-3,
36.2 versus 35.6 on METEOR, 31.4 versus 29.6 on ROUGE L,
11.3 versus 11.0 on CIDEr. In summary, the quantitative
results confirm that the proposed modules can boost the
performance of visual storytelling by enhancing interac-
tions of heterogeneous information and capturing the global
guidance of storyline.
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4.4 Experimental Analysis
4.4.1 Ablation Study
To investigate the effectiveness of the proposed modules,
ablative experiments are conducted in absence of KAN &
GSM (KAGS-KG), KAN (KAGS-K), CCA (KAGS-C) and
GSM (KAGS-G), respectively. The statistic results are pre-
sented in Table 2.

TABLE 2
Ablation study of the proposed model on the VIST dataset, here
KAGS-KG, KAGS-K, KAGS-C and KAGS-G represent the model

without KAN & GSM, KAN, CCA, and GSM, respectively. The bold font
represents the best performance.

Metrics KAGS-KG KAGS-K KAGS-C KAGS-G KAGS
BLEU-1 62.6 66.7 68.5 68.4 70.1
BLEU-2 37.7 41.7 42.5 42.0 43.5
BLEU-3 21.6 24.4 24.8 24.7 25.2
BLEU-4 12.7 14.4 14.6 14.5 14.7
METEOR 34.3 36.0 35.5 35.4 36.2
ROUGE L 28.5 31.2 30.5 31.1 31.4
CIDEr 7.8 9.5 11.0 10.7 11.3

First, without GSM, the KAGS-G presents apparent per-
formance degradation on the VIST dataset, particularly on
the metrics of BLEU-1 and BLEU-2 with the evaluation
scores being declined from 70.1 to 68.4 by 1.7%, from 43.5 to
42.0 by 1.5%, respectively. In addition, the visualized activa-
tion maps obtained by GSM are illustrated in Fig. 6, which
proves that GSM can focus more attention on the global
consistent regions while removing the semantic foreground
and background interferences. Therefore, the statistic results
prove the positive effects of GSM to capture the long-range
dependencies for global guidance.

Fig. 6. Effectiveness of GSM to capture topic-aware global consistency.
Top to down: input images, activation maps without GSM, activation
maps with GSM.

Second, without CCA, the statistic results of KAGS-
C also show obvious performance drop on all metrics,
especially on the metrics of METEOR and ROUGE L, the
former score reduces from 36.2 to 35.5 by 0.7% and the
latter score reduces from 31.4 to 30.5 by 0.9%, respectively.
The ablative results verify the effectiveness of the designed
CCA to establish the cross-modal interactions for visual and
textual information enhancement.

Third, without KAN, all the metrics obtained by KAGS-
K present significant decrease on the VIST dataset. Es-
pecially, KAGS outperforms KAGS-K by a large margin
in terms of BLEU-1, BLEU-2 and CIDEr, with the scores
being 70.1 versus 66.7, 43.5 versus 41.7 and 11.3 versus
9.5, respectively. It is worth noting that KAN can capture
the external rich knowledge and explore the correlation of
heterogeneous information, facilitating to more abundant
and reasonable descriptions.

Finally, without KAN and GSM, the statistic perfor-
mance of KAGS-KG has extreme decline in terms of all met-
rics, further demonstrating the superiority of the designed
KAN and GSM to learn attentive multi-modal representa-
tion and global semantic tailored to the visual storytelling
task.

4.4.2 Visualization Analysis
In order to better verify the effectiveness of GSM and KAN,
the class activation map [53] of each image and the attention
distributions of each image region during word generation
are visualized in Fig. 6 and Fig. 7, respectively.

First, as aforementioned, the class activation map of each
image is visualized in Fig. 6, where the class activation
map is computed by Mn = CnÃ

>
referenced from [53].

In the second line of Fig. 6, the model fails to discriminate
the consistency among group images and suffers from the
background clutters, such as wrongly localizing the people
under the stage in the second image and introducing the
background interferences in the third image. Nevertheless,
the designed GSM can well capture the consistent charac-
teristics of bride and groom in this image sequence and
suppress the background clutters, thus again confirming the
advantages of triggering the global semantic of group-wise
features.

Second, several generated sentences of differentiate im-
ages are presented in Fig. 7 to illustrate the effectiveness of
KAN, where the whiter the color of image regions are, the
higher attention weights are given to these regions. When
referring to generate the nouns (e.g., ‘runners’, ‘street’, ‘flow-
ers’, ‘woman’, ‘mountain’), the module prefers to assign
higher weights to the relevant areas; when predicting the
verbs, KAN often gives more valuable attention weights
to both of the local and non-local areas of relative action.
Moreover, the imaginative words can be assigned with
higher attention scores by KAN according to surrounding
environments. For example, in the first line of Fig. 7, the
region corresponding to the noun ‘runners’ is highlighted
by assigning higher attention weights, when generating the
verb ‘running’, the module pays more attention on runners’
legs as well as their whole bodies. In the second line of Fig. 7,
the noun ‘garden’ doesn’t significantly appear in this image,
but higher weights are correctly assigned to the surrounding
areas of the flower. The visualized examples further verify
the merit of KAN of paying attention to important regions,
meaningful actions and abstract areas.

4.5 Human Evaluation
The previous works [1], [52] have concluded that automatic
evaluation metrics can not reflect the semantic properties of
many stories (e.g., coherence and expressiveness), therefore
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Fig. 7. Visualization of KAN, where the whiter color of an image area represents that higher attention weights are given to that area.

TABLE 3
Statistic results of human evaluation metrics, here the percentage numbers represent the confident scores of the tester believe that a model

surpasses its opponent, and Tie means the tester can not choose the better story.

Methods XE-ss vs KAGS AREL vs KAGS VSCMR vs KAGS IRW vs KAGS
Choice XE-ss KAGS Tie AREL KAGS Tie VSCMR KAGS Tie IRW KAGS Tie
Relevance 35.9% 59.5% 4.6% 38.2% 51.0% 10.8% 32.1% 47.6% 20.3% 36.0% 42.9% 21.1%
Expressiveness 27.1% 66.4% 6.5% 31.5% 58.8% 9.7% 33.5% 45.2% 21.3% 34.3% 39.6% 26.1%
Concreteness 32.8% 60.9% 6.3% 37.9% 49.4% 12.7% 30.8% 44.3% 24.9% 31.7% 37.2% 31.1%

human evaluation metrics [52] are further adopted for com-
parison in pairwise manner. Specifically, 150 photo albums
with a total of 750 images from the VIST test dataset are
randomly selected and two stories generated by KAGS and
another competing method are presented for every volun-
teer, noting that the optional orders in each item are shuffled
for fairness. Then each volunteer needs to choose a better
story according to the metrics of relevance, expressiveness
and concreteness. The detailed illustrations of these three
criteria are defined as follows.

• Relevance describing the precise topic of happened
activity in image sequence.

• Expressiveness generating the grammatical, imaginary,
coherent and abundant sentences.

• Concreteness providing the narrative and concrete de-
scriptions of image contexts.

Table 3 lists four comparison tests: XE-ss [1] vs KAGS,
AREL [1] vs KAGS, VSCMR [52] vs KAGS, and IRW [42]
vs KAGS. As seen from the results, it is obvious that the
statistic results of KAGS are better than other competing
methods in all the three metrics. Especially, the scores of
KAGS are much higher than XE-ss by 23.6%, 39.3% and
28.1% in terms of relevance, expressiveness and concrete-
ness, respectively. Compared with newest method IRW, the

proposed KAGS model also shows superior performances
and achieves more significant advantages than the scores
on automatic evaluation metrics. Thus, it can empirically
prove that the generated stories of KAGS can better obtain
the storyline of image sequence, produce the imaginative
words and generate concrete descriptions, which can not be
obviously revealed by automatic metrics.

5 CONCLUSION

A knowledge-enriched attention network with group-wise
semantic for visual storytelling has been developed, which
consists of two main novel designs: KAN and GSM. The
proposed KAN is designed to leverage the external knowl-
edge and visual information extracted to characterize the
cross-modal interactions with attention mechanism. In or-
der to obtain the storyline with global feature guidance, a
novel GSM is devised to explore the group-wise semantic
with second-order pooling. All these extracted multi-modal
representations are then fed into the decoder for story
generation. Finally, a one-stage encoder-decoder framework
is established to optimize all these designed modules in
an end-to-end manner. Extensive experiments on the VIST
dataset have been carried out to demonstrate the superior
performance of the proposed KAGS model as compared
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with other state-of-the-art methods. The proposed KAGS
scheme is capable of learning robust feature representations
at regional and global levels to achieve superior perfor-
mances. However, there is still some gaps between the
storyline generated by KAGS and that of human storytellers
who are trained to generate narrative stories with human
language styles. We are working on taking this KAGS to
its next level by considering the following three aspects:
(1) investigating reinforcement learning rewards correlated
with human evaluation to enhance natural expression, (2)
studying more effective frameworks to accomplish visual
storytelling in more sophisticated and realistic scenarios
which contain much interference, and (3) generating dense
visual storytelling under a complex scenario where the
target image sequence contains multiple storylines.
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