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Abstract

Contextual bandit and reinforcement learning algorithms have been successfully used in
various interactive learning systems such as online advertising, recommender systems, and
dynamic pricing. However, they have yet to be widely adopted in high-stakes application
domains, such as healthcare. One reason may be that existing approaches assume that
the underlying mechanisms are static in the sense that they do not change over different
environments. In many real-world systems, however, the mechanisms are subject to shifts
across environments which may invalidate the static environment assumption. In this
paper, we take a step toward tackling the problem of environmental shifts considering
the framework of offline contextual bandits. We view the environmental shift problem
through the lens of causality and propose multi-environment contextual bandits that allow
for changes in the underlying mechanisms. We adopt the concept of invariance from the
causality literature and introduce the notion of policy invariance. We argue that policy
invariance is only relevant if unobserved variables are present and show that, in that case,
an optimal invariant policy is guaranteed to generalize across environments under suitable
assumptions. Our results establish concrete connections among causality, invariance, and
contextual bandits.

1 Introduction
The problem of learning decision-making policies lies at the heart of learning systems. To
adopt these learning systems in high-stakes application domains such as personalized medicine
or autonomous driving, it is crucial that the learned policies are reliable even in environments
that have never been encountered before. In this paper, we consider the problem of learning
policies that are robust with respect to shifts across environments. We consider this question in
the setup of offline contextual bandits, which provides a mathematical framework for tackling
the above learning problems.

While recent studies in offline contextual bandits (Dudik et al., 2011; Bottou et al., 2013;
Swaminathan and Joachims, 2015a,b; Kallus, 2018; Athey and Wager, 2021; Zhou et al., 2022)
offer theoretical results and novel methodologies for policy learning from offline data, they
primarily focus on a fixed-environment setting (from now on, we will refer to this as the equal
distribution assumption) in which the underlying mechanisms do not change over time or
over different environments. In practice, however, shifts between environments often occur,
possibly invalidating the equal distribution assumption. In healthcare, for example, datasets
from different hospitals may not come from the same underlying distribution. As a result, a
learning agent that ignores environmental shifts may fail to generalize beyond the environments
it was trained on.

In the supervised learning context, the environmental shift problem has been studied under
different names, such as domain generalization, covariate shift adaptation, distributional ro-
bustness or out-of-distribution generalization (Sugiyama and Kawanabe, 2012; Muandet et al.,
2013; Volpi et al., 2018; Arjovsky et al., 2019; Christiansen et al., 2021). In domain gener-
alization, the goal is to develop learning algorithms that are robust to changes in the test
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distribution. Thus, a fundamental problem is how to characterize such changes. A promising
direction relies on a causal framework to describe the changes through the concept of inter-
ventions (Schölkopf et al., 2012; Rojas-Carulla et al., 2018a; Magliacane et al., 2018; Arjovsky
et al., 2019; Christiansen et al., 2021). A key insight is that while purely predictive methods
perform best if test and training distributions coincide, causal models generalize to arbitrarily
strong interventions on the covariates because of the modularity property of structural causal
models (see e.g., Pearl (2009)).

In real-world applications knowledge of the underlying causal graph and structural discrep-
ancies between environments may not be available. In recent years, invariance-based methods
have been exploited to learn the causal structure from data (Peters et al., 2016; Pfister et al.,
2018; Heinze-Deml et al., 2018). In invariant causal prediction (Peters et al., 2016), for example,
one assumes that the data are collected from different environments, each of which describes dif-
ferent underlying data-generating mechanisms, and uses this heterogeneity to learn the causal
parents of an outcome variable Y . The underpinning assumption is the invariance assumption,
which posits the existence of a set of covariates X in which the mechanism between X and Y
remains constant. A model based on such invariant covariates is guaranteed to generalize to
all unseen environments.

Our paper delineates an explicit connection among causality, invariance, and the environ-
mental shift problem in the context of contextual bandits. We develop a causal framework
for characterizing the environmental shift problem, and provide a practical and theoretically
sound solution based on the proposed framework.

Our contributions are threefold. First, we propose a multi-environment contextual bandit
framework that represents mechanisms underlying a contextual bandit problem by structural
causal models (SCMs; Pearl (2009)). The framework allows for changes in environments and
thereby relaxes the equal distribution assumption. We define environments as different per-
turbations on the underlying SCM, and we evaluate the policy according to its worst-case
performance in all environments. Second, using the proposed framework, we generalize the in-
variance assumption used in methods such as invariant causal prediction and define invariance
properties for policies that, under certain assumptions, guarantee generalizability to unseen
environments. Third, we develop an offline method for testing invariance under distributional
(policy) shifts, and provide an algorithm for finding an optimal invariant policy. In addition,
we highlight a setting in which causality and invariance are not necessary for solving the en-
vironmental shift problem. This insight takes us closer to understanding what causality can
offer in offline contextual bandits.

The remainder of our paper is organized as follows. Sections 1.1 and 1.2 briefly review
related work and introduces the offline contextual bandit problem. Section 2 formally defines
a causal framework for multi-environment contextual bandits and the main objective of our
problem’s formulation. Drawing on the proposed framework, Section 3 introduces invariance
properties for policies and provides the main theoretical contributions underpinning our solu-
tion for the environmental shift problem. Section 4 discusses the assumptions required to learn
invariant policies from offline data and presents an algorithm for learning an optimal invari-
ant policy. Section 5 provides simulation experiments that empirically verify our theoretical
results. In Section 6, we apply our framework to a warfarin dosing study.

1.1 Related Work
Our work is most closely related to the line of work studying invariance and generalizability
for prediction tasks in i.i.d. settings mentioned above (Rojas-Carulla et al., 2018a; Magliacane
et al., 2018; Arjovsky et al., 2019; Christiansen et al., 2021; Pfister et al., 2021). The environ-
mental shift problem is also related to the problem of transportability in causal inference (Pearl
and Bareinboim, 2011; Bareinboim and Pearl, 2014, 2016; Subbaswamy et al., 2019; Lee et al.,
2020; Correa and Bareinboim, 2020) which aims to generalize causal findings from source en-
vironments to a target environment. Our work differs from the transportability literature: we
neither assume prior knowledge of the underlying causal graph nor of the structural differences
between environments. Instead, we only assume that invariances in the observed environments
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are preserved in the target environment. Furthermore, while the goal in transportability is
to derive whether and how one can identify a causal quantity (e.g., an interventional distri-
bution) in the target environment based on data from the source environment, our goal is to
learn worst-case optimal policies based on the source environments.

Graphical models have been used in reinforcement learning to represent the underlying
Markov Decision Processes (MDP) under the framework of factored MDPs. Such methods,
however, focus mainly on providing efficient planning algorithms rather than generalizing to
a new environment (Kearns and Koller, 1999; Guestrin et al., 2003, 2002; Jonsson and Barto,
2006). Although some recent studies have explored the use of causality and invariance for tack-
ling the environmental shift problem in contextual bandits and, more generally, reinforcement
learning (Zhang et al., 2020; Sonar et al., 2021), the actual roles and benefits of causality and
invariance remain unclear and under-explored.

Our framework differs from the framework of causal bandits (Lee and Bareinboim, 2018;
Lattimore et al., 2016; Yabe et al., 2018; de Kroon et al., 2020). While causal bandits exploit
causal knowledge (either assumed to be known a priori or estimated from data) for improving
the finite sample performance in a single environment, our framework focuses on modeling
distributional shifts and the ability to generalize to new environments. Another line of work has
addressed the problem of policy evaluation and learning under unobserved confounding between
the action and the reward variables (Bareinboim et al., 2015; Sen et al., 2017; Tennenholtz
et al., 2020; Kallus and Zhou, 2020; Tennenholtz et al., 2021). In contrast, we consider the
complementary problem of unobserved confounding between the covariates and the reward
variables (see Section 3).

1.2 Offline Contextual Bandits
We briefly review the offline contextual bandit problem (Beygelzimer and Langford, 2009;
Strehl et al., 2010), considering a setup in which some of the covariates (also known as context
variables) are unobserved. More precisely, we assume that the covariates can be partitioned
into observed and unobserved variables X ∈ X and U ∈ U . Here, X and U are metric spaces;
the reader may think of X ⊆ Rd and U ⊆ Rp. As in the standard contextual bandit setup
(Langford and Zhang, 2008), for each round, we assume that the system generates a covariate
vector (X,U) and reveals only the observable X to an agent. From the observed covariates
X, the agent selects an action A ∈ A according to a policy π : X −→ ∆(A) that maps the
observed covariates to the probability simplex ∆(A) over the set of actions A. (In this work,
we assume A to be finite). Adapting commonly used notation, we write, for all x ∈ X and
a ∈ A, π(a|x) := π(x)(a). The agent then receives a reward R depending on the chosen action
A, and on both the observed and unobserved covariates (X,U).

In the classical setting, one assumes that the covariates are drawn i.i.d. from a joint dis-
tribution PX,U (an assumption we will relax when introducing multi-environment contextual
bandits in Section 2) and that the rewards are drawn from a conditional distribution PR|X,U,A.
The agent is evaluated based on the performance of its policy π which is measured by the
policy value:

V (π) := E(X,U)∼PX,U EA∼π(X) ER∼PR|X,U,A
[
R
]
.

The agent is now given a fixed training dataset that is collected offline: it consists of n
rounds from one or more different policies, i.e., D := {(Xi, Ai, Ri, πi(Xi))}ni=1, where Ai ∼
πi(Xi)

1 for all i ∈ {1, . . . , n}. The goal of the agent is then to find a policy π that maximizes
the policy value over a given policy class Π, i.e., π∗ ∈ arg maxπ∈Π V (π).

As mentioned, this setting assumes that the environment in which we deploy the agent is
identical to the environment in which the training dataset was collected. Section 2 introduces
a causal framework for multi-environment contextual bandits, a framework that relaxes the
equal distribution assumption.

1We assume knowledge of the initial policy πi to ease our presentation and focus our contribution on the
environmental shifts problem. Our theoretical results and algorithms remain unchanged even if the initial policy
is unknown and needs to be estimated from the offline data (see Appendix F for more details).
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2 A Causal Framework for Multi-environment Contextual
Bandits

Instead of having a fixed distribution PX,U over the covariates, we introduce a collection E of
environments such that, in each round, the covariates are drawn from an environment-specific
distribution PeX,U that depends on the environment e ∈ E in that round.

In practice, the agent only observes part of the environments Eobs ⊆ E and is expected
to generalize well to all environments in E including the unseen environments E \ Eobs. To
formalize the problem, we first introduce a model that puts assumptions on how environments
change the distributions of X, U and R. Specifically, an environment e can only perturb the
distribution of the reward R through altering the distribution of the covariates X and U . This
constraint makes it possible to generalize information learned from one set of environments
to another. In this formulation – even though the full conditional distribution of the reward
Pπ,eR|X,U,A is assumed to be fixed across environments – the observable distribution Pπ,eR|X,A after
marginalizing out the unobserved U may change from one environment to another (see, e.g.,
Figure 1(b))

Formally, the assumptions are constructed via an underlying class of SCMs indexed by the
environment and policy.2

Setting 1 (Multi-environment (acyclic) SCMs for bandits). Let X = X 1 × . . . × X d and
U = U1 × . . . × Up be products of metric spaces, A = {a1, . . . , ak} a discrete action space,
Π := {X −→ ∆(A)} the set of all policies, and E a collection of environments. For all π ∈ Π
and all e ∈ E we consider the following SCMs,

S(π, e) :


U := se(X,U, εU )

X := he(X,U, εX)

A := gπ(X, εA)

R := f(X,U,A, εR),

(1)

where (X,U,A,R) ∈ X × U × A × R, (se)e∈E , (he)e∈E , and f are measurable functions,
ε = (εU , εX , εA, εR) is a random vector with independent components and a distribution Qε =
QεU ⊗ QεX ⊗ QεA ⊗ QεR , and gπ and QεA are such that for all x ∈ X it holds that gπ(x, εA)
is a random variable on A with distribution π(x). Figure 1(a) visualizes the coarse-grained
structure of this setting. U,X, and A should be thought of as random vectors. Accordingly, he,
for example, is a function with a multivariate output; it is a short-hand notation in the sense
that a component of he does not need to depend on all X, for example. In particular, we assume
that the graph G (defined below) corresponding to the SCMs is acyclic, see Figure 1(b) and 1(c)
for an example.

We assume there exists a probability measure µ on X ×U ×A×R such that for all π ∈ Π
and all e ∈ E the SCM S(π, e) induces a unique distribution Pπ,e over (X,U,A,R) (see Bongers
et al. (2016) for details) which is dominated by µ and marginally has full support on X . We
denote the corresponding density by pπ,e and the corresponding expectations by Eπ,e. Whenever
a probability, density, or expectation does not depend on π, we omit π and write Ee[X] rather
than Eπ,e[X], for example.

Some remarks regarding Setting 1 are in order: (1) We only use the SCMs as a flexible way
of modeling the changes in the joint distribution with respect to the environment e and the
policy π. In particular, we do not use it to model any further intervention distributions that
do not correspond to a change of policy or environment. (2) In practice, the precise form of
the SCMs is unknown. Indeed, we will neither assume knowledge of the structural equations
nor complete knowledge of the graph structure, except that the constraints induced by (1)

2Readers familiar with the standard notion of SCMs may think about an SCM with a source node E.
S(π, e) then corresponds to an intervention on the action variable (change of policy) and on some of the
observed covariates variables (change of environment). Here, we consider fixed environments, so that we do not
have to consider them as random draws from an underlying distribution; see also Dawid (2002).
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(a) A summary of the causal structure of Set-
ting 1. The causal relations between X- and
U -covariates are not shown explicitly but as-
sumed to be acyclic (see (b) and (c) for ex-
amples).

π

π

X1

X2
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(b) Graph G induced by the data-
generating process in Example 1. G{2}
is the graph obtained when removing
the edge X1 → A.

π

π π

X1

X2

X3 U

e A R

(c) Graph G induced by a more compli-
cated data-generating process than (b).

Figure 1: Graphs summarizing different data-generating models. White and grey circles rep-
resent observed and hidden variables, respectively. (b) Here, {X2} is d-invariant, because
R ⊥⊥G{2} e | XS , see Definition 3. Any set S that contains X1 is not d-invariant because of
the open path e→ X1 ← U → R. In practice, we do not assume that the structure is known
but test for invariances (12) from data. This requires testing under distributional shifts: even
though {X2} is d-invariant, (12) may not hold for a policy π that depends on X1 and X2

because of the path e → X1 → A → R. (c) A more complex model, where the environments
do not act on all X variables. Although U has an edge into X3, the subset {X2, X3} is still a
d-invariant set – there is no edge from e to X3. Again, every subset of variables containing X1

is not d-invariant. (In fact, in examples (b) and (c), X1 is a strongly non-d-invariant variable,
see Definition 5, and cannot be part of a d-invariant set.)

hold. (3) The assumption of a dominating measure for all environments ensures that we can
always assume the existence of densities while also switching across environments. In par-
ticular, this avoids any measure-theoretic difficulties regarding conditional distributions. (4)
The assumption that the induced distributions over X have full support in all environments
ensures that the generalization problem when moving from Eobs to E does not involve any
extrapolation. Additionally, it ensures that conditional expectations such as Eπ,e[R | X = x]
can be uniquely defined for all x ∈ X as integrals of the conditional densities. (5) The environ-
ments are modelled fixed (and not random). However, we could also treat the environments as
random variables which can be considered a special case of the fixed-environment setting (see
Appendix E).

We now introduce the graph G over the variables (X1, . . . , Xd, U1, . . . , Up, A,R) that visual-
izes the structure of the SCMs S(π, e) (for all π ∈ Π and e ∈ E). We draw edges corresponding
to the assignments in (1), add edges from all X to A and add an environment node, which
has edges into all variables whose assignments are not the same in all environments. This is
similar to the selection diagrams in Pearl and Bareinboim (2011), with the difference that we
consider multiple environments.

More precisely, G is constructed as follows: Each coordinate of the variables (X,U,A,R)
corresponds to a node. The nodes are connected according to the assignments, that is, we
draw a directed edge from a variable B to a variable C if, for at least one environment e ∈ E ,
the variable B appears on the right-hand side of the assignment of variable C (see Figure 1(b)
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for an example). Let IX ⊆ {1, . . . , d} and IU ⊆ {1, . . . , p} index the variables Xj and U ` for
which the structural assignments Xj := hje(X,U, εX) and U ` := s`e(X,U, εU ) in (1) vary with
e, i.e., where there exist e, f ∈ E such that hje 6= hjf or s`e 6= s`f , respectively. The environments
E correspond to perturbations on variables XIX or UIU , which implies that for each e ∈ E the
distribution Pπ,e(XIX , UIU | U{1,...,p}\IU , X{1,...,d}\IX ) may vary. We augment the graph with
a square node e to represent the environments and draw a directed edge from the node e to each
of the perturbation targetsXIX and UIU . Furthermore, we draw edges from all nodes inX to A
and mark them with π (to represent their dependence on the policy). This graph G is assumed
to be acyclic, that is, to not contain any directed cycles. By the Markov condition, which holds
in SCMs (Peters et al., 2017), the graph G defined above encodes (conditional) independence
statements, which we will see relate to invariance, through the concept of d-separation. More
precisely, the Markov condition states that any d-separation statement in a graph implies
conditional independence (Pearl, 2009; Lauritzen et al., 1990; Peters et al., 2017). Here, we
refer to the standard definition of d-separation when not distinguishing between the different
types of nodes and denote by ⊥⊥G a d-separation statement in a graph G. For completeness,
we define d-separation in Appendix A.

For any S ⊆ {1, . . . , d}, we also define GS as the subgraph of G, in which, instead of all X,
only the covariates in S point into A:

GS := subgraph of G without edges X{1,...,d}\S to A. (2)

Neither G nor GS depends on the choice of policy.
We are now ready to define contextual bandits with multiple environments.

Definition 1 (Multi-environment Contextual Bandits). Assume Setting 1. In a multi-environment
contextual bandit setup, before the beginning of each round, the system is in an environment
e ∈ E. Then, the system generates a covariate vector (X,U) and reveals only the observable
X and the environment label e to the agent. Based on the observed covariates X, the agent
selects an action A according to the policy π : X −→ ∆(A). The agent then receives a reward R,
depending on the chosen action A and on both the observed and unobserved covariates (X,U).
More precisely, we assume for all i ∈ {1, . . . , n} that (Xi, Ui, Ai, Ri) are sampled independently
according to Pπi,eiX,U,A,R (see Setting 1). The training data contains data from environments in
Eobs. When

∣∣Eobs∣∣ = |E| = 1, the setup reduces to a standard contextual bandit setup.

In the multi-environment contextual bandit setup, the covariates on different rounds are not
identically distributed due to changes in the environments. We can thus use this framework to
model situations, where the test environments differ from training environments. We illustrate
this setting with the following example, which we will refer back to several times throughout
the paper.

Example 1. Consider a linear multi-environment contextual bandit with the following under-
lying SCMs

S(π, e) :



U := εU

X1 := γeU + εX1

X2 := αe + εX2

A := gπ(X1, X2, εA)

R :=

{
β1X

2 + U + εR, if A = 0

β2X
2 − U + εR, if A = 1,

where εR, εA, εX1 , εX2 are jointly independent noise variables with zero mean, γe, αe ∈ R for all
e ∈ E, β1, β2 ∈ R, and A = {0, 1}. Figure 1(b) depicts the induced graph G. In this example,
the environments influence the observed covariates in two ways: (a) they change the mean
of X2 via αe and (b) they change the conditional mean of X1 given U via γe, while the rest
of the components remain fixed across different environments. Here, the environment-specific
coefficient γe modifies the correlation between the observable X1 and the unobserved variable
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U , and consequently between X1 and the reward R. Thus, an agent that uses information
from X1 to predict the reward R in the training environments may fail to generalize to other
environments. To see this, consider a training environment e = 1 and a test environment
e = 2 and let γ1 = 1, γ2 = −1 be the environment-specific coefficients in the training and test
environments, respectively. In the training environment, we have a large positive correlation
between X1 and U , and consequently the agent will learn that the action A = 0 yields a higher
expected reward when observing a positive value of X1 (and A = 1 otherwise). However,
the correlation between X1 and U becomes negative (and large in absolute value) in the test
environment, which means that the policy that the agent learned from the training environment
will now be harmful. We will see in Section 3 that a policy that depends on a d-invariant set
({X2} in this example) does not suffer from this generalization problem and is guaranteed to
generalize across different environments.

A similar structure appears in the medical example discussed in Section 6. There, A is the
dose of a drug, R is a response variable, X are observed patient features and U are unobserved
genetic factors. The environment e is (a proxy of) the continent on which the data was
collected.

2.1 Distributionally Robust Policies
To evaluate the performance of an agent across different environments, we define a policy value
that takes into account environments. In particular, we focus on the worst-case performance
of an agent across environments.

Definition 2 (Robust Policy Value). For a fixed policy π ∈ Π, and a set of environments E,
we define the robust policy value V E(π) ∈ R as the worst-case expected reward

V E(π) := inf
e∈E

Eπ,e
[
R
]
. (3)

Intuitively, an agent that maximizes the robust policy value is expected to perform well
(relative to other agents) in the most harmful environment. The idea of optimizing worst-case
performance has been suggested in the reinforcement learning literature (Garcıa and Fernández,
2015; Amodei et al., 2016) to ensure safe behavior of an agent and prevent catastrophic events
and has also been used to formulate adversarial training (Bai et al., 2021) as well as out-of-
distribution generalization (Ye et al., 2021).

We now assume that, for several observed environments, we are given an i.i.d. sample from
a multi-environment contextual bandit, see Definition 1. More precisely, we assume to observe
D := {(Xi, Ai, Ri, πi(Xi), ei)}ni=1, where ei ∈ Eobs, Ai ∼ πi(Xi), (Xi, Ai, Ri)

ind.∼ Pπi,eiX,A,R for all
i ∈ {1, . . . , n}. Using only D, we aim to solve the following maximin problem3:

arg max
π∈Π

V E(π). (4)

If we do not observe all the environments, solving the maximin problem (4) is impossible
without further assumptions. A baseline approach to this problem is to pool the data from
all training environments and learn a policy that maximizes the policy value ignoring the
environment structure. We show in Appendix B that this is indeed optimal if the observed
covariates explain all of the environment based distributional shifts in R, e.g., if all relevant
covariates have been observed. However, if for example, hidden variables are present, the
pooling approach does not necessarily yield an optimal policy and the learned policy may fail
to generalize to unseen test environments.

3The maximum can always be attained when Π is an unrestricted policy class and takes a form similar to
(21).

7



3 Invariant Policies for Distributional Robustness
We now consider the general case in which the environment shifts may not be explained by the
observed covariates. To this end, we introduce d-invariant sets and policies, and show that,
under Setting 1, the maximin problem (4) can be reduced to finding an optimal d-invariant
policy given certain assumptions, see Proposition 1 and Theorem 1. This becomes particularly
relevant if important variables remain unobserved. If all variables are observed, it suffices to
pool the observed environments.

Remark 1. If there are no hidden variables, one can solve the objective (4) by a standard
policy optimization using all covariates X, without taking into account further concepts such
as invariance or causality. This statement is made precise and proved as Proposition 5 in
Appendix B.

Nevertheless, in more realistic cases (see e.g., Figures 1(b) and 1(c)), d-invariant sets and
policies (introduced below) play a central role in solving the distributionally robust objective
(4).

Definition 3 (d-invariant Sets4). A subset S ⊆ {1, . . . , d} is said to be d-invariant if the
following d-separation statement holds:

R ⊥⊥GS e | XS , (5)

where GS is defined in (2).

Our approach relies on the existence of a d-invariant set. We therefore make this assumption
explicit.

Assumption 1. There exists a subset S ⊆ {1, . . . , d} such that S is d-invariant.

Under faithfulness (Pearl, 2009), Assumption 1 is testable from the observed data (see
Section 4.1). Next, we define d-invariant policies. For all subsets S ⊆ {1, . . . , d}, let us denote
the set of all policies that depend only on XS by ΠS := {π ∈ Π | ∃πS : XS → ∆(A) s.t. ∀x ∈
X , π(·|x) = πS(·|xS)} ⊆ Π.

Definition 4 (d-invariant Policies). A policy π is said to be d-invariant with respect to a
subset S ⊆ {1, . . . , d} if S is a d-invariant set and π ∈ ΠS.

We denote by Sinv := {S ⊆ {1, . . . , d} | S is d-invariant} the collection of all d-invariant
sets and Πinv := {π ∈ Π | ∃S s.t. π is d-invariant w.r.t. S} the collection of d-invariant policies.
For now, we assume to have access to the set of d-invariant policies Πinv. Section 4 discusses
when and how we can learn Πinv from the observed data.

Because of the hidden variables U , the conditional mean Eπ,e[R | X = x] is not ensured to
be stable across the environments. Nevertheless, a d-invariant policy ensures that parts of the
conditional mean are unchanged across environments.

Lemma 1. Let S ∈ Sinv be a d-invariant set and π ∈ ΠS. It holds for all e, f ∈ E and x ∈ XS

that
Eπ,e

[
R | XS = x

]
= Eπ,f

[
R | XS = x

]
. (6)

Proof. See Appendix D.3. �

For S ∈ Sinv, Lemma 1 implies that if a policy π ∈ ΠS is optimal among ΠS in the observed
environments, then π is also optimal among ΠS in all environments (Proposition 1(i)). With
the following assumption, we show in Proposition 1(ii) that the same holds when replacing ΠS

by Πinv.
4The notion of d-invariant sets is related to S-admissibility in Pearl and Bareinboim (2011). We use the

term ‘d-invariant’ to emphasize that the definition is based on the d-separation statement (6) and involves
the unseen environments. In related contexts, sometimes the term ‘generalizing’ is used (Pfister et al., 2019).
Section 4 introduces the invariance hypothesis (12) that is testable from the observed data and discusses the
assumptions required to connect the two conditions.
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Assumption 2. Let G be the graph of the SCMs in Setting 1. Then, for all ` ∈ {1, . . . , p},
there must be an edge from U ` to R in G.

Proposition 1. Assume Setting 1 and Assumption 1. Then the following statements hold.

(i) Let S ∈ Sinv and πSopt ∈ arg maxπ∈ΠS
∑
e∈Eobs E

π,e[R]. We then have

∀π ∈ ΠS : V E(π) ≤ V E(πSopt). (7)

(ii) Let π∗ ∈ arg maxπ∈Πinv

∑
e∈Eobs Eπ,e[R]. If Assumption 2 holds, we have

∀π ∈ Πinv : V E(π) ≤ V E(π∗). (8)

Proof. See Appendix D.5. �

Proposition 1 shows that a d-invariant policy that is optimal under the observed environ-
ments outperforms all other d-invariant policies, even on the test environments. But what
about other policies that are not d-invariant? We will see in Theorem 1 that under certain
assumptions on the set E of environments, they cannot perform better than the above π∗ either.

The key argument in the proof of Proposition 1(ii) is the identifiability of the optimal d-
invariant set. Assumption 2 is necessary for this identifiablity: if the assumption is violated and
there are multiple d-invariant sets, one can, in general, not say which of those d-invariant sets
is optimal with respect to all environments E (see Appendix L for a more detailed discussion).
While, without Assumption 2, the d-invariant set that is most predictive on Eobs is no longer
guaranteed to be worst-case optimal, it still satisfies a weaker guarantee shown in Theorem 1(i)
below.

We now outline the assumptions on the set E of environments facilitating this result. As
seen in Example 1, the crucial difference between a d-invariant policy π{2} (a policy that only
depends on X2) and a non-d-invariant policy π{1,2} (a policy that depends on both X1 and
X2) is that π{1,2} can use information related to variables confounded with the reward (X1

in this example) that may change across environments. In cases where the environments do
not change the system ‘too strongly’ it can therefore happen that using such information is
beneficial across all environments. In practice, however, one might not know how strong the
test environments can change the system in which case such information can become useless
or even harmful. Intuitively, this happens, for example, if environments exist where the non-d-
invariant confounded variables no longer contain any information about the reward. Formally,
we make the following definition.

Definition 5 (Confounding Removing Environments). For j ∈ {1, . . . , d}, we say that the
variable Xj is strongly non-d-invariant if for all S ⊆ {1, . . . , d}

R 6⊥⊥GS e | XS∪{j}.

An environment e ∈ E is said to be a confounding removing environment if for all π ∈ Π it
holds that

Xj ⊥⊥Gπ,e U, (9)

for all strongly non-d-invariant variables Xj, where Gπ,e is the graph induced by the SCM
S(π, e).

The two d-separation statements in Definition 5 are in different graphs: Both graphs GS
and Gπ,e are subgraphs of G. The distinction that is important for this definition is that while
GS contains all edges between the covariates (X,U) that appear in at least one environment,
the graph Gπ,e only contains the edges that are active in the environment e ∈ E . Furthermore,
to provide more understanding of the strongly non-d-invariant variables, we characterize a
graphical criterion for such variables in Appendix D.4. There we show that the strongly non-d-
invariant variables are the variables that are directly affected by e and are confounded with R
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through U , and descendants of such variables. These strongly non-d-invariant variables should
not be included if one wants to find d-invariant sets. For example in Figure 1(c), the variable
X1 is strongly non-d-invariant and the d-invariant sets {X2} and {X2, X3} are the sets that
do not contain X1.

To give an example of a confounding removing environment, consider the graph GS in
Example 1 (see Figure 1(b)). For any subset S where {1} ⊆ S the path e → X1 ← U → R
is open, and therefore X1 is strongly non-d-invariant. A confounding removing environment
is an environment that removes the incoming edge from U to X1. In such an environment,
the variable X1 does not contain any information about the reward R. A similar notion
of confounding removing environments is used in Christiansen et al. (2021) in the setting of
prediction.

The existence of confounding removing environments implies that at least in some of the
environments it is impossible to benefit from a non-d-invariant policy. To ensure that one
cannot benefit in the worst-case, we therefore introduce the following assumption.

Assumption 3. For all e ∈ E, there exists f ∈ E such that f is a confounding removing
environment and it holds that PeX = PfX .

To give an example, let I ⊆ {1, . . . , d} index the variables Xj for which there is an edge
from e to Xj in the graph G. If the set E of environments consists of arbitrary interventions
on XI , then Assumption 3 is satisfied.

Theorem 1. Assume Setting 1 and Assumption 1. Let π∗ be an optimal d-invariant pol-
icy under the observed environments, π∗ ∈ arg maxπ∈Πinv

∑
e∈Eobs E

π,e[R]. We then have the
following statements.

(i) Let πa be the policy that always chooses an action a ∈ A. We have for all e ∈ E that

max
a∈A

Eπa,e[R]5 ≤ Eπ
∗,e[R]. (10)

(ii) If Assumptions 2 and 3 hold, we have

∀π ∈ Π : V E(π) ≤ V E(π∗). (11)

Proof. See Appendix D.6. �

The first statement of Theorem 1 implies that in all environments the expected reward
under an optimal d-invariant policy is larger than any optimal context-free policy. In other
words, the information gained from the d-invariant set of covariates (the set that π∗ depends
on) is generalizable across environments in the sense that it is not harmful in any environment.
The second statement states that if the environments E are sufficiently strong (Assumption 3)
then an optimal d-invariant policy π∗ maximizes the robust policy value V E .

The above results motivate a procedure to solve the distributionally robust objective (4).
Proposition 1 implies that if we consider a policy class containing only the d-invariant policies,
the maximin problem reduces to a standard policy optimization problem. Theorem 1 shows
that an optimal d-invariant policy, under Assumption 3, is a solution to the distributionally ro-
bust objective. In other words, given a training dataset D, we seek to operationalize the follow-
ing two steps: (a) find the set Πinv of all d-invariant policies (Section 4.1 discusses under which
assumptions this is possible), (b) use offline policy optimization to solve arg maxπ∈Πinv

V E
obs

(π)
on the dataset D.

One of the key components of the proposed method is to test whether a policy π, which
may be different from the policy generating the data, is d-invariant using data obtained from
the observed environments Eobs. The following section proposes such a test, discusses the
assumptions required to learn the set of d-invariant policies, and gives a detailed description
of the whole procedure.

5A (conditional) expectation under πa can also be written in terms of do-notation (Pearl, 2009), e.g.,
∀a ∈ A, x ∈ X : Eπa,e[R | X = x] = Ee[R | X = x, do(A = a)]. We use the πa notation to make our
presentation consistent.

10



4 Learning an Optimal Invariant Policy

4.1 Learning Invariant Sets
Our theoretical results (Proposition 1 and Theorem 1) in the previous section assume that the
set of all d-invariant policies Πinv is given. We now turn to the task of learning Πinv which
boils down to searching for the collection of all d-invariant sets Sinv using data obtained from
the observed environments Eobs. To this end, we first define, for all S ⊆ {1, . . . , d}, π ∈ Π and
E ′ ⊆ E , the null hypothesis

H0(S, π, E ′) : Pπ,e
R|XS is the same for all e ∈ E ′. (12)

In the case E ′ = Eobs, we refer to H0(S, π, Eobs) as Eobs-invariance (which does not consider the
unseen environments). Furthermore, we call a set S invariant if there exists π ∈ ΠS such that
H0(S, π, Eobs) holds and a policy π invariant with respect to S if π ∈ ΠS and S is invariant.
We now state our core assumptions that make learning possible.

Assumption 4. For all S ⊆ {1, . . . , d}, the following holds:

(i) ∃π ∈ ΠS : H0(S, π, E) true =⇒ R ⊥⊥GS e | XS

(ii) ∀π ∈ ΠS : H0(S, π, Eobs) true =⇒ H0(S, π, E) true

Assumption 4(i) connects the conditional distribution invariance used in the null hypothesis
(12) to the d-invariance condition given in (5) (The reversed implication follows by Lemma 3,
Appendix D.3.) This assumption is a special case of the faithfulness assumption (Pearl, 2009)
which is a fundamental assumption in causal discovery methods (e.g., Glymour et al. (2019))
that, in linear SCMs, holds with probability one if the linear coefficients are drawn from
a distribution that is absolutely continuous with respect to Lebesgue measure (Meek, 1995;
Spirtes et al., 2000). Assumption 4(ii) ensures that any invariance found in the observed
environments Eobs can be generalized to all environments E . Implicitly, it requires that the
observed environments are sufficiently heterogeneous6. This type of assumption is also at the
core of other invariance-based methods (Rojas-Carulla et al., 2018b; Magliacane et al., 2018;
Arjovsky et al., 2019; Pfister et al., 2021).

At first glance, Assumption 4(i) suggests that we have to check the hypothesisH0(S, π, E) for
all π ∈ ΠS to conclude whether or not S is d-invariant. Fortunately, as shown in Proposition 2,
we actually only need to check the null hypothesis for a single π ∈ ΠS .

Proposition 2. Assume Setting 1 and Assumption 4. Then, for all subsets S ⊆ {1, . . . , d}
and for all policies π, π̃ ∈ ΠS, it holds that

H0(S, π, E) true ⇐⇒ H0(S, π̃, E) true. (13)

Proof. See Appendix D.9. �

Assumption 4 and Proposition 2 make the learning problem tractable. The task of testing
whether a set S is d-invariant boils down to testing the Eobs-invariance hypothesisH0(S, πS , Eobs)
for a single πS ∈ ΠS . We therefore have the flexibility to choose any πS from ΠS to test the
hypothesis (called the test policy). We discuss strategies for choosing the test policy in Sec-
tion 4.4.

Testing H0(S, πS , Eobs) for πS ∈ ΠS by directly checking for a change in the conditional
distributions across environments in the observed data is, however, not in general possible. This
is because the observed data may have been generated based on an initial policy π0 that does
not satisfy π0 ∈ ΠS . It can therefore happen that H0(S, πS , Eobs) is true but H0(S, π0, Eobs)
is not.

6For example, if the observed environments are identical, we clearly would not be able to distinguish d-
invariant sets from other sets using the observed data. Assumption 4(ii) prevents such cases.
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We illustrate this point using the example graph G given in Figure 1(b). For a policy
depending only on S = {2} the environment e is d-separated from R given X{2} in G{2},
which implies that {2} is d-invariant, and in particular that H0({2}, π{2}, Eobs) is true by the
Markov property (see Lemma 3 in Appendix D.3). However, if the initial policy π0 depends
on both X1 and X2, then the path e → X1 → A → R in Figure 1(b) is open, which implies,
by Assumption 4, that H0({2}, π{1,2}, Eobs) is not true.7

Thus, in general, we cannot directly test the Eobs-invariance hypothesis of a set S by
using the observed data that were generated by the initial policy. Instead, we need to test
H0(S, πS , Eobs) for a policy πS ∈ ΠS that is different from the data-generating policy π0 (by
Proposition 2 it suffices to test a single policy). As we detail in the following section, we can
do so by applying an off-policy test for invariance by resampling the data to mimic the policy
πS .

4.2 Testing Invariance under Distributional Shifts
Consider a fixed set S ⊆ {1, . . . , d} and a pre-specified test policy πS ∈ ΠS (see Section 4.4
for how to choose πS). To test the hypothesis H0(S, πS , Eobs), we apply the off-policy test
from Thams et al. (2021), which draws a target sample from πS by resampling the offline
data – drawn from π0 – and then tests the invariance in this target sample. More formally,
let Eobs := {e1, . . . , eL} and suppose that for every ej ∈ Eobs a dataset Dej consisting of
ne observations Dej = {(Xej

i , A
ej
i , R

ej
i , π

0(A
ej
i |X

ej
i ))}

nej
i=1 is available. For each environment

ej , we draw a weighted resample Dej ,π
S

of Dej using the weighted resampling procedure
introduced in Thams et al. (2021).8 We then apply an invariance test ϕS(De1,π

S

, . . . , DeL,π
S

)
to the resampled data, to test the Eobs-invariance hypothesis H0(S, πS , Eobs). An invariance
hypothesis test ϕS is a function (into {0, 1}) that takes data from environments e1, . . . , eL,
each of size mei , and tests whether S is invariant. Here, ϕS = 1 indicates that we reject the
hypothesis of invariance. We detail a concrete test ϕS in Section 4.4. In Appendix F, we
provide details on the resampling scheme, that is, a formal definition of Dej ,π

S

and show that
the theoretical guarantees on the asymptotic level proved in Thams et al. (2021) also extend
to our application.

4.3 Algorithm for Invariant Policy Learning
The previous sections discuss finding invariant subsets S. We now discuss how to employ this
in an algorithm that learns an optimal invariant policy. We assume that we are given an off-
policy optimization algorithm off_opt that takes as input a sample D := (De1 , . . . , DeL) and
a policy space Π, and returns an optimal policy π∗ and its estimated expected reward Êπ

∗
(R).

Here, we present one choice of off_opt that we use in the experimental section; our ap-
proach can also be applied with other off-policy optimization algorithms. Given a policy space
ΠS , we consider an optimal policy of the form

πS(a | x) := 1
[
a = arg max

a′∈A
QS(x, a′)

]
, (14)

where QS(x, a) := 1
L

∑L
`=1 E

πa,e` [R | XS = x] denotes the pooled conditional mean under the
policy that always selects an action a.9

Let π0 be an initial policy generating the sample D. By our assumption in Setting 1,
the policy π0 depends only on the observed covariates X. We therefore have that for all

7In the same example, when conditioning on {1, 2}, the path e → X1 ← U → R is also open, which shows
that S = {1, 2} is not a d-invariant set.

8Importance weighting is not applicable here because the test statistics of an invariance test cannot be
expressed in terms of weighted averages. See also the discussion in Thams et al. (2021).

9In our framework, changing the policy corresponds to intervening on the underlying SCM (see Setting 1).
The expression QS(x, a) is derived from expectations under such interventions and can thus be considered a
causal quantity.
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S ⊆ {1, . . . , d} the pooled conditional mean QS(x, a) is identifiable for all a ∈ A and x ∈ XS
as shown in Lemma 2 below.

Lemma 2. Let S ∈ Sinv be a d-invariant set. It holds for all x ∈ XS and all a ∈ A that

QS(x, a) =
1

L

L∑
`=1

Eπ
0,e`
[

R
π0(A|X) | X

S = x,A = a
]
. (15)

Proof. See Appendix D.7. �

Here, we express the causal quantity QS(x, a) entirely in terms of expecations under the
observed policy π0 by using reweighting. Equivalently, one can also express QS(x, a) with the
backdoor adjustment formula (Pearl, 2009). While the two formulations are equivalent, the
resulting estimators are different (see the discussion in Appendix C).

We propose to estimate QS by a weighted least squares approach in which we consider a
parameterized function class {fθ : XS × A −→ R | θ ∈ ΘS} and assume that there exists a
unique θS0 ∈ ΘS such that for all x ∈ XS and a ∈ A it holds that QS(x, a) = fθS0 (x, a). That
is, we consider

θ̂Sn := arg min
θ∈ΘS

1

L

L∑
`=1

1

ne`

ne∑̀
i=1

(fθ(A
e`
i , X

e`
i
S

)−Re`i )2

π0(Ae`i | X
e`
i )

, (16)

where n := (ne1 , . . . , neL). We then plug the estimate Q̂S := fθ̂Sn
into (14) to obtain our

(estimated) optimal policy. Proposition 3 shows that, under some regularity conditions, θ̂Sn is
a consistent estimate of θS0 .

Proposition 3. Assume Setting 1 and Assumption 1. Let S ∈ Sinv be a d-invariant set.
Assume that

(i) ΘS is compact,

(ii) there exists a unique θS0 ∈ ΘS s.t. ∀x ∈ XS, ∀a ∈ A : QS(x, a) = fθS0 (x, a)µ-a.s.,

(iii) ∀x ∈ XS ,∀a ∈ A : θ → fθ(x, a) is continuous on ΘS,

(iv) ∀e ∈ Eobs : Eπ
0,e[supθ∈ΘS (R− fθ(X,A))2] <∞,

(v) ∃δ > 0 s.t. ∀x ∈ X ,∀a ∈ A : π0(a|x) ≥ δ.

Then, θ̂Sn is a consistent estimate of θS0 , i.e., ‖θ̂Sn − θS0 ‖∞ → 0 in probability as ne1 , . . . , neL →
∞.

Proof. See Appendix D.8. �

We summarize the overall procedure for learning an optimal invariant policy, see Algo-
rithm 1: The algorithm iterates over all subsets S ⊆ {1, . . . , d} and checks the invariance
condition using the off-policy invariance test given in Algorithm 2. The choices of the hypoth-
esis test ψS and the test policy πS are discussed in Section 4.4. For each iteration, if the set S is
invariant, we learn an optimal policy π∗S within the policy space ΠS and compute its estimated
expected reward Êπ

∗
S (R) using off_opt. Then, the algorithm returns an optimal policy π∗S

such that the estimated expected reward Êπ
∗
S (R) is maximized. Lastly, the algorithm returns

null if no invariant sets are found.
Algorithm 1 requires us to iterate over all subset S ⊆ {1, . . . , d} which may be computa-

tionally intractable when d is large. We suggest two approaches for reducing the computational
complexity of the algorithm. First, one can use a variable screening method (e.g., Lasso re-
gression Tibshirani (1996)) to filter out the variables that are not predictive of the reward. If
an optimal invariant set is a subset of the Markov blanket MB(R) of the reward, applying a
variable screening step prior to Algorithm 1 would not change the algorithm’s output on the
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Algorithm 1: Learning an optimal invariant policy
Input: data D = (De1 , . . . , DeL), off-policy optimization off_opt, hypothesis tests

and test policies {(ψS , πS)}S⊆{1,...,d}
initialize maximum reward maxR← −∞ ;
initialize optimal invariant policy π∗inv ← null ;
// loop over all subsets
for S ∈ P({1, . . . , d}) do

// test for invariance
is_inv← test_inv(D,πS , ψS , S) ;
// (see Algorithm 2)
// update best invariant set
if is_inv then

π∗S , Ê
π∗S (R)← off_opt(D,ΠS) ;

if maxR < Êπ
∗
S (R) then

maxR← Êπ
∗
S (R) ;

π∗inv ← π∗S ;
end

end
end
Output: optimal invariant policy π∗inv

Algorithm 2: Testing the invariance of a set S with given test policy πS

Function test_inv(data D = (De1 , . . . , DeL), test policy πS , hypothesis test ψS ,
target set S):
// resampling according to πS

for e = e1, . . . , eL do
for i = 1 to |De| do

compute weights: rei ←
πS(aei | x

e,S
i )

π0(aei | xei )
;

end
choose resampling size me with GOF-heuristic in Thams et al. (2021) ;
draw De,πS := (De

i1
, . . . , De

ime
) from De with prob. ∝

∏me
`=1 r

e
i`

;
end
DπS ← (De1,π

S

, . . . , DeL,π
S

);
// verifying invariance condition
is_invariant← ψS(DπS ) ;
return is_invariant

population level (see Peters et al. (2016); Rojas-Carulla et al. (2018b); Pfister et al. (2021)).
This approach is particularly efficient when the Markov blanket is sparse, that is, |MB(R)| � d.

Second, one may apply a greedy search instead of the exhaustive search in Algorithm 1.
More specifically, we suggest to follow the greedy search introduced in Rojas-Carulla et al.
(2018b). The greedy algorithm starts with an empty set Ŝ = ∅. For each iteration, we search
over the neighboring sets of the candidate set Ŝ, which are obtained by adding or removing
one predictor to or from Ŝ. If any of the neighboring sets are accepted by the invaraince test,
we select the one with the highest expected reward. If the test rejects all the neighbors, we
select a neighbor that yields the largest p-value of the test.
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4.4 Specifications of the Target Test
The resampling procedure detailed in Algorithm 2 requires a hypothesis test for the Eobs-
invariance null hypothesis that has power against the alternatives. We discuss one such test in
Section 4.4.1 below. Moreover, in Sections 4.4.2 and 4.4.3, we discuss two choices of the test
policy that aim to improve the power of the resampling test.

4.4.1 Invariant residual distribution test

We now detail a test ϕS to test Eobs-invariance in the target sample. We first pool data from all
environments into one dataset and estimate the conditional Eπ

S

[R | XS ] using any prediction
method (such as linear regression or a neural network). We then test whether the residuals
R−Eπ

S

[R | XS ] are equally distributed across the environments e ∈ E , i.e., we split the sample
back into L groups (corresponding to the environments) and test whether the residuals in these
groups are equally distributed (see also Peters et al. (2016), for example). We then define ϕS
to be the composition of these operations, that is, ϕS returns 1 if the test for equal distribution
of the residuals is rejected.

In the simulation and the warfarin case study (Section 5 and 6), we use the Kruskal-
Wallis test (Kruskal and Wallis, 1952) to test whether the residuals have the same mean across
environments; this test holds pointwise asymptotic level for all α ∈ (0, 1) (see Proposition 7
in Appendix F). To obtain power against more alternatives, one could also use other tests,
such as a two-sample kernel test with maximum mean discrepancy (Gretton et al., 2012) and
then correct for the multiple testing using Bonferroni-corrections (see also Rojas-Carulla et al.
(2018a), for example).

4.4.2 Optimizing the test policy for power

To check whether a subset S is invariant, we only need to test the Eobs-invariance for a single
policy π ∈ ΠS (see Proposition 2). This provides us with a degree of freedom that we can
leverage. Intuitively, the non-invariance may be more easily detectable in some test policies
compared to others. We can therefore try to find a policy that gives us the strongest signal for
detecting non-invariance. We maximize the power of the test by minimizing the p-value of the
test. In a population setting, this would return small p-values for non-invariant sets, whereas
for invariant sets one would not be able to make the p-values arbitrarily small, since they are
uniformly distributed. In a finite sample setting, this type of power optimization can lead to
overfitting (which would break any level guarantees); to avoid this we use sample splitting.

As presented in Section 4.2, for each environment e, we obtain a target sample De,πS from
a test policy πS by resampling the sample De that was generated under the policy π0, and then
test Eobs-invariance in the target sample. The probabilities for obtaining the reweighted sample
conditioned on the original sample are given by the importance weights, see Appendix F. Here,
we optimize the ability to detect non-invariance over a parameterized subclass of ΠS ,

ΠΘ
S := {πSθ | θ ∈ Θ},

where Θ =×a∈AR|S| and πSθ is a linear softmax policy, i.e., for all xS ∈ R|S| and a ∈ A:

πSθ (a|xS) =
exp

(
θ>a x

S
)∑

a′ exp
(
θ>a′x

S
) .

This is the parameterization we chose in the experiments below, but other choices work, too.
To check for the Eobs-invariance condition of a subset S, the idea is then to find a policy

πSθ ∈ ΠΘ
S such that, in expectation, the test power is maximized, i.e., we need to solve the

following optimization problem:

arg max
θ∈Θ

E
[
pw(DπSθ ) | D

]
,
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where D := (De1 , . . . , DeL) is all the observed data and pw is a function that takes as input
the reweighted sample DπSθ and outputs the power of the test. Since we condition on D, the
expectation is only with respect to the resampling of DπSθ . For many invariance tests, the
test power pw(DπSθ ) cannot be directly obtained, but one can minimize the p-value of the test
instead. This motivates the objective function

arg min
θ∈Θ

E
[
pv(DπSθ ) | D

]
, (17)

where pv is a function that takes as input the reweighted sample DπSθ and outputs the p-
value of the test. We then employ gradient-based optimization algorithms to solve the above
optimization problem, where the gradient is derived using the log-derivative. More precisely,
let J(θ) := E

[
pv(DπSθ ) | D

]
be our objective function which now depends on the parameters

θ. The gradient of the objective function J(θ) can be derived as follows

∇J(θ) = ∇E
[
pv(DπSθ ) | D

]
= ∇

∑
d

P(DπSθ = d | D)pv(d)

=
∑
d

P(DπSθ = d | D)∇ logP(DπSθ = d | D)pv(d)

= E
[
∇ logP(DπSθ | D)pv(DπSθ ) | D

]
.

This expectation can be estimated by drawing repeated resamples DπSθ , where P(DπSθ | D)
is determined by the resampling weights. In practice, we apply stochastic gradient descent
(Zhang, 2004), i.e., at each iteration of the optimization we compute the gradient only from a
single resample. As we argue in Appendix H, we can further speed up the optimization process
substantially by a minor modification to the resampling weights, corresponding to sampling
with replacement instead of distinct weights.

The optimization yields a policy π∗θ that approximately satisfies π∗θ ∈ arg minπθ∈ΠS J(θ).
We can then use π∗θ as a test policy for testing the invariance of S. Lastly, to preserve the
level of the statistical test, we split the original sample into two halves, perform the power
optimization procedure on one half, and verify the invariance condition on the other half. The
algorithm is presented in Algorithm 4 in Appendix I. We only use the approximation of the
resampling weights for the power optimization and use the actual resampling weights for the
final resampling, so the level guarantee of Proposition 7 in Appendix F still holds.

4.4.3 Using a uniform target distribution

Since the procedure in Section 4.4.2 may be computationally challenging, especially if the
algorithm is repeated many times as in Section 5. A computationally simpler approach is for
each a ∈ A to test invariance under the test policy πa ∈ Π∅, which always chooses the action
a, and then combine the resulting p-values using Bonferroni corrections (Dunn, 1961). Beyond
computational simplicity, this has an additional benefit: Across environments there may be a
cancelling effect of the difference in means due to different dependencies on the action in each
environment. By testing the invariance of the conditional mean of the reward in each action,
such cancelling effects are accounted for.

4.5 Learning Causal Ancestors under Distributional Shifts
Sections 4.1 and 4.2 discuss an approach to learn invariant sets from off-policy data. The
learned invariant sets are then used to find an optimal invariant policy as discussed in Sec-
tion 4.3. Besides learning an optimal invariant policy, one can further use the proposed off-
policy invariance test to analyze the causal structure. More specifically, the learned invariant
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sets allow us to look for potential observed causal ancestors AN(R)10 of R by taking the in-
tersection of the accepted sets. This approach is similar to invariant causal prediction (Peters
et al., 2016), except that here, we employ the off-policy invariance test to account for the
distributional shift between the initial and the test policies, and allow for hidden variables.

Now we outline a method for finding AN(R) from the offline data obtained from multiple
environments De1 , . . . , DeL . For all ej ∈ Eobs and S ⊆ {1, . . . , d}, let us denote by Dej ,π

S

a weighted resample of Dej , and ψS an invariance test for the Eobs-invariance hypothesis
H0(S, πS , Eobs) as discussed in Section 4.2 and Appendix F. For ease of presentation, we assume
that ne1 = · · · = neL =: n. Then, we propose to estimate the causal ancestors of R by

ŜnAN :=
⋂

S:ψS(De1,π
S
,...,DeL,π

S
)=0

S. (18)

We detail the whole procedure in Algorithm 3 in Appendix G. Proposition 4 shows that this
method controls the probability of wrongly selecting an incorrect variable.

Proposition 4. Assume Setting 1, and that Sinv is non-empty. Let ŜnAN be the estimated set
of causal ancestors given in (18) and assume that the invariance tests ψS used in (18) have
pointwise asymptotic level α ∈ (0, 1). It then holds that

lim inf
n→∞

P(ŜnAN ⊆ AN(R)) ≥ 1− α. (19)

Proof. See Appendix D.10. �

5 Simulation Experiments
To verify our theoretical findings we perform two simulation experiments, where we consider
a linear multi-environment contextual bandit setting similar to Example 1 with the following
SCM S(π, e) (which induces the graph shown in Figure 1(b)):

U := εU , X1 := γeU + εX1 , X2 := αe + εX2 ,

A ∼ π(A | X1, X2), R := βA,1X
2 + βA,2U + εR,

where εU , εX1 , εX2 , εR ∼ N (0, 1), A takes values in the space {a1, . . . , aL}, γe and αe are
parameters that depend on the environment e, and βa1,1, . . . , βaL,1, βa1,2, . . . , βaL,2 are pa-
rameters that are fixed across environments. Appendix J.1 contains details on how the pa-
rameters are chosen in the experiments. The code for all the experiments is available at
https://github.com/sorawitj/invariant-policy-learning.

5.1 Generalization and Invariance
We first consider an oracle setting, where we know a priori which subsets are invariant. From
our data-generating process, it follows that {X2} is the only invariant set. We then compare
an invariant policy which depends only on X2 with a policy that uses both X1 and X2. We
train both policies on a dataset of size 10′000 obtained from multiple training environments
under a fixed initial policy π0 (see Appendix J.2). In both cases, we employ a weighted
least squares to estimate the expected reward E[R | A,XS ], where S is the subset that the
policy uses. The policy then takes a greedy action w.r.t. the estimated expected reward, i.e.,
arg maxa Ê[R | A = a,XS ] (see Section 4.3). Then we evaluate both policies on multiple unseen
environments and compute the regret with respect to the policy that is optimal in each of the
unseen environments. Figure 2 shows the results. Each data point represents the evaluation on
an unseen environment. The y-axes show the regret value and the x-axes display the distance

10Formally, AN(R) ⊆ {1, . . . , d} is defined as the set of indicies j for which there is a directed path from Xj

to R in G.
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Figure 2: The generalization performance (in terms of regret) of the policy based on an invariant
set {X2} and the policy based on a non-invariant set {X1, X2}. The left and the right plot
show the results when the training environments consist of two and six different environments,
respectively. In both cases, the worst-case regret for the invariant policy is upper bounded
while this is not the case for the non-invariant policy.

from each unseen environment to the training environments (the distance is computed as the
`2-distance between the average value of the pairs (γetr , αetr ) in the training environments and
the pair (γe, αe) in the unseen test environment). The plot shows that the worst-case behavior
of the invariant policy is smaller than the non-invariant one. In particular, for environments
different from the training environments the gain can be significant. This empirically supports
our result of Theorem 1.

5.2 Learning Invariant Policies
In practice, we do not know in advance which sets are invariant. We now aim to find an
invariant policy from a dataset generated under an initial policy π0 which takes both X1 and
X2 as input. To do so, we employ the method proposed in Section 4.2 for testing invari-
ance under distributional shifts. More precisely, we generate a dataset of size n from multiple
training environments under the initial policy π0 and apply the off-policy invariance test (see
Section 4.4) to verify the invariance property of each subset in {∅, {X1}, {X2}, {X1, X2}}.
We repeat the experiment 500 times and plot the acceptance rates at various sample sizes
(n = 1′000, 3′000, 9′000, 27′000, 81′000) (these numbers denote the total sample size, that is,
number of observations, summed over all environments). The resulting acceptance rates are
shown in Figure 3. Our method yields high acceptance rates for the set {X2}, which indeed
is invariant, while the acceptance rates for other sets gradually decrease as the sample size
increases. Furthermore, we can see that our test is more powerful when the number of training
environments increases (keeping the total number of observations fixed). Our test is conserva-
tive (the acceptance rate is above the 95% level in the left plot) because the target test is not
exact (the true conditional expectation is not given). In Appendix J.3, we conduct the same
experiment with an exact test, using the true conditional expectation, which shows the correct
level.

6 Warfarin Dosing Case Study
We evaluate our proposed approach on the clinical task of warfarin dosing. Warfarin is a
blood thinner medicine prescribed to patients at risk of blood clots. The appropriate dose
of warfarin varies from patient to patient depending on various factors such as demographic
and genetic information (Consortium, 2009). Our case study is based on the International
Warfarin Pharmacogenetics Consortium (IWPC) dataset (Consortium, 2009) which consists
of 5′700 patients who were treated with warfarin, collected from 21 research groups on 4
continents. The IWPC dataset contains the optimal dose of warfarin for each of the patients
as well as their information on demographic characteristics, clinical and genetic factors. The
warfarin dosing problem has been used in a number of previous works evaluating off-policy
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Figure 3: Acceptance rates for the off-policy invariance test proposed in Section 4.2 for varying
sample sizes. With increasing sample size, only the invariant set {X2} is accepted. Here, more
environments (right) seems to yield higher test power than fewer environments (left).

learning algorithms (Kallus and Zhou, 2018; Bertsimas and McCord, 2018; Zenati et al., 2020).
Similarly to these works, we formulate the warfarin dosing problem as a multi-environment
contextual bandit problem as follows.

• The covariates (X) are patient-level features including demographic, clinical and genetic
factors.

• The actions (A) are recommended warfarin doses output by a policy. We discretize the
actions into three equal-sized buckets (low, medium, high) based on the quantiles of the
optimal warfarin dose.

• The reward (R) depends on the recommended dose and the optimal dose: For each
patient i, the reward Ri(a) for an action a ∈ {low,medium, high} is computed as

Ri(a) := |Yi −m(a)|, (20)

where Yi is the optimal warfarin dose for a patient i and m(a) is a median value of the
optimal warfarin doses within the bucket a. Here, we assume that neither the reward
function nor the optimal warfarin doses are known to the agent. Instead, for each patient
i, only the reward for the action Ai is observed, i.e., Ri := Ri(Ai).

• The environments (E) are proxies for continents. The continent information is not directly
contained in the dataset, but we create proxies for the continent by clustering the 21
research groups into 4 clusters based on their proportion of the patients’ race within each
group. We believe that the resulting clusters roughly correspond to 4 different continents.

To reduce the search space, we select the top 10 features that are most predictive for the optimal
warfarin dose using the permutation feature importance method (Breiman, 2001). The top 10
features include 4 demographic variables, 4 clinical factors, and 2 genetic factors.

We consider two experimental setups to illustrate the benefits of our invariant learning
approach. In the first setup, we directly apply our method to the IWPC dataset. Here,
including invariance does not seem necessary in that our method performs similarly to other
baselines (but not worse). It does, however, generate some causal insight into the problem. The
second setup is a semi-real setting, where we introduce an artificial, non-invariant confounder.

We now outline our first experimental setup and the results. We first generate training
data {(Xi, Ai, Ri, ei)}ni=1 by drawing actions Ai from a policy π0 ∈ ΠBMI that is constructed
from linear regression Yi ≈ f(XBMI

i ) of the optimal dose onto the BMI (see Appendix K.1 for
more details).

6.1 Candidate Methods
Using the generated training data, we empirically compare the performance of the following
policy learning methods:
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Figure 4: Empirical results on the original dataset. Each point represents the expected reward
of a policy on the corresponding test environment. The square points represent the mean
value of the expected rewards. In this setup, all candidate methods yield similar performances
on all of the test environments. This result indicates that the test environments may not be
significantly different from the training environments.

• Invariant Policy Learning (Inv): This is our proposed method. We first perform the
off-policy invariance test using the test described in Section 4.4.3 to search for potential
invariant sets. We then take the top 20 sets with the largest p-values S20

inv as the candidate
invariant sets. For each S in S20

inv, we fit the policy optimization algorithm described in
Section 4.3 with XS as the covariates (the same algorithm is also used in other candidate
methods below). Lastly, we select the top 3 sets that yield the largest expected rewards
(computed using 5-fold cross-validation).

• Predictive Policy Learning (Pred): This method serves as a baseline for policy learning
that solely maximizes the expected reward. For each subset S, we fit the policy opti-
mization algorithm with XS as the covariates. We then take the policies corresponding
to the top 3 sets with the largest expected rewards.

• All Set Policy Learning (All): This method serves as another baseline where we take all
of the patient’s features and fit the policy optimization algorithm.

6.2 Evaluation Setup & Results
We compare the policy learning methods using the following ‘leave-one-environment-out’ eval-
uation procedure.

1. Select e ∈ E = {1, . . . , 4} as a test environment. Split the training data into Dtst :=
{(Xi, Ai, Ri, ei)}ntst

i=1 , where ei = e andDtr := {(Xi, Ai, Ri, ei)}ntr
i=1, where ei ∈ {1, . . . , 4}\

{e}.

2. Using Dtr, train the policies with candidate methods detailed in Section 6.1.

3. Evaluate the fitted policies by computing the expected reward on Dtst using the true
reward function (20).

We repeat the above procedure for each e ∈ E and display the evaluation result in Fig 4.
The performances of all candidate methods are similar. Even though the proposed invariant
approach does not yield a higher reward compared with the baselines, it does not worsen
the performance, either. This suggests that we can gain the stability benefit of an invariant
policy without having to sacrifice predictiveness. Indeed, the stability benefit could prevent
the learned invariant policy from being suboptimal when a new test environment is sufficiently
different from the training environments as we show in Section 6.4
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Figure 5: Empirical results on policy learning with a non-invariant predictor (see Section 6.4).
Each point represents the expected reward of a policy on the corresponding test environment.
In this setup, our proposed method (Inv) outperforms the two baselines (Pred and All) that
ignore the environment structure, while approaching the performance of the invariant oracle
(Oracle-Inv).

6.3 Analyzing Invariant Sets
In addition to learning an optimal invariant policy, we can use the invariance-based approach
to further analyze the dependence between the patient’s features and the reward as discussed
in Section 4.5. In particular, we apply the off-policy invariant causal prediction algorithm (see
Algorithm 3 in Appendix G) to find potential causal ancestors of the reward. On this dataset,
with a confidence level of 5%, the algorithm returns the empty set, which can happen if the
covariates are highly correlated, for example Heinze-Deml et al. (2018). Nonetheless, we can
still extract more information by obtaining the defining sets (see Section 2.2 in Heinze-Deml
et al. (2018)). The resulting defining set of size 2 is {Race, VKORC1} (see Appendix K.2 for
more details on the variables). These variables are potential causal ancestors in the sense that
at least one variable in these sets is a causal ancestor.

6.4 Semi-real experiment
To further illustrate the benefits of the invariance-based learning approach, we consider a
semi-real setup where we introduce hidden variables and a non-invariant predictor. We remove
the two genetic factors from the patient’s features and create a non-invariant predictor that
depends on those two factors as follows.

We first fit a linear regression to estimate the optimal warfarin dose from the genetic factors
and denote the resulting coefficients by β. To mimic environmental perturbations, we perturb
β depending an environment e ∈ E resulting in βe := γeβ, where γe is an environment-specific
parameter. We define the non-invariant predictor in the environment e ∈ E as Xn-inv :=

XG>βe, where XG are the two genetic features. We then add Xn-inv as part of the patient’s
features and remove XG. The training data are generated in a similar fashion as in the first
setup, except that the initial policy does not only depend on the BMI score XBMI but also on
the non-invariant predictor Xn-inv.

In addition to the candidate methods described in Section 6.1, we introduce an additional
baseline for this setup.

• Oracle invariant Policy (Oracle-Inv): By construction, we know that Xn-inv is a strongly
non-d-invariant variable (see Definition 5). This method serves as an oracle version of the
invariant policy learning method by searching for the top 3 sets that do not containXn-inv

such that their corresponding policies yield the largest expected reward (the procedure
is similar to the Pred method with Xn-inv being removed).
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We evaluate the candidate methods using a similar procedure as described in Section 6.2.
Figure 5 illustrates the evaluation result. Our proposed method (Inv) yields a higher expected
reward than the two baselines on most of the test environments. This is because the two
baselines ignore the environment structure and use information from Xn-inv in their resulting
policies, while the invariant method uses the invariance test to remove this non-invariant proxy
variable. Furthermore, the performance of our proposed method is almost on par with the
invariant oracle (Oracle-Inv), except for the test environment e = 3, in which our approach is
unable to ignore the non-invariant predictor, possibly because the non-invariance that would
be implied by Assumption 4 may not be strong enough (for our test) when Eobs = {1, 2, 4}.

7 Conclusion
This paper tackles the problem of environmental shifts in offline contextual bandits from a
causal perspective. We introduce a framework for multi-environment contextual bandits that
is based on structural causal models and frame the environmental shift problem as a distribu-
tionally robust objective over environments that are induced by different perturbations on the
covariates. We prove that if there are no unobserved confounders, taking into account causal-
ity and invariance is not necessary for obtaining the distributionally robust policies. However,
causality and invariance can become relevant when not all variables are observed. To tackle
settings with unobserved confounders, we adapt invariance-based ideas from causal inference
to the proposed framework and introduce the notion of invariant policies. Our theoretical
results show that under certain assumptions an invariant policy that is optimal on the training
environments is also optimal on all unseen environments, and therefore distributionally robust.
We further provide a method for finding invariant policies based on an off-policy invariance
test. It can be combined with any existing policy optimization algorithm to learn an optimal
invariant policy. We believe that our contributions shed some light on what causality can offer
in contextual bandit and, more generally, in reinforcement learning problems.

For future work, there are several directions that would be interesting to investigate. One
direction is to explore the use of invariance-based ideas in the adaptive setting, in which the
goal of an agent is to optimally adapt to a changing environment. Learning agents may require
fewer and safer explorations in a new environment if they carry over invariance information
from previous environments. It may further be possible to extend invariance-based ideas from
the contextual bandit setting to the full reinforcement learning problem with long-term conse-
quences and state dynamics. Although some previous works have explored this direction (Zhang
et al., 2020; Sonar et al., 2021), we believe that the connections with respect to causality and
invariance are not yet fully understood. In the i.i.d. setting, recent work has investigated trad-
ing off invariance and predictability (Rothenhäusler et al., 2021; Pfister et al., 2021; Jakobsen
and Peters, 2020; Oberst et al., 2021; Saengkyongam et al., 2022). We believe that a similar
idea can be applied to contextual bandit and reinforcement learning problems. Lastly, if one
can gain additional knowledge of the test environments, one may aim to optimize objectives
other than the worst-case performance which could lead to a different class of generalization
guarantees.

This paper considers invariance as a dichotomous property and could be a first step towards
using invariance-based ideas for building safer and more robust adaptive learning systems.
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Appendix A Pearl’s d-separation
Definition 6 (Pearl’s d-separation (Pearl, 2009; Peters et al., 2017)). Let G be directed acyclic
graph (DAG) with nodes V. Let Vi, Vm ∈ V and S ⊆ V \ {Vi, Vm}. A path between nodes Vi
and Vm is said to be blocked by a set S if there exists a node Vk ∈ V such that one of the
following holds:

1. Vk ∈ S and

Vk−1 → Vk → Vk+1

or Vk−1 ← Vk ← Vk+1

or Vk−1 ← Vk → Vk+1,

2. neither Vk nor any of its descendants is in S and

Vk−1 → Vk ← Vk+1.

For any three disjoint subsets A,B,S ⊆ V of nodes in G, we say that A and B are d-separated
by S, denoted by A ⊥⊥G B | S if every path between nodes in A and B is blocked by S.

(This formulation is taken from Peters et al. (2017).)

Appendix B Policy Learning without Unexplained Envi-
ronment Shifts

This section presents an assumption under which it is not beneficial to explicitly take into
account the environment structure. In particular, simply pooling the data from all training
environments and applying a standard value-based policy learning algorithm yields a solution
to (4). This result sheds light on the role of causality and invariance in contextual bandits and
reinforcement learning. The relevant assumption is the following.

Assumption 5. Assume that R ⊥⊥G e | X.

In words, under Assumption 5, the influence of the environment e on the reward R can be
fully explained by the observed covariates X. This assumption holds, for example, if there are
no hidden confounders between X and R that are directly affected by e.

The following proposition shows that under Assumption 5 there is a population optimal
policy that does not depend on the environments. In particular, this optimal policy can be
learned from data obtained in any observed subset of the environments Eobs ⊆ E .

Proposition 5. Assume Setting 1 and Assumption 5. Let Eobs ⊆ E be a non-empty subset of
observed environments and π∗ ∈ Π be a policy such that for all x ∈ X and all a ∈ A

π∗(a|x) > 0 =⇒ a ∈ arg max
a′∈A

QE
obs

(x, a′), (21)

where QE
obs

(x, a) := 1
|Eobs|

∑
e∈Eobs Eπa,e[R | X = x] and πa is the policy that always selects a.

Then,
π∗ ∈ arg max

π∈Π
V E(π),

i.e., π∗ is a solution to the maximin problem (4).

Proof. See Appendix D.1. �
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This type of generalization is well-established in the context of regression. In the contextual
bandit setting the value function Eπ,e[R] changes across environments, so instead one needs to
use that the Q-function Qe(x, a) = Eπa,e[R | X = x] does not change across environments e ∈ E
and then argue that this implies that the optimal policy remains the same in each environment.
Proposition 5 suggests that we can estimate an optimal policy by pooling the data from training
environments and applying a standard value-based policy learning algorithm. This is indeed
the case.

Let Q̂n be an estimator of the conditional mean Eπa [R | X] that is based on n independent
observations (Xi, Ai, Ri) from potentially different environments. The following proposition
shows that such an approach indeed yields a consistent estimate of an optimal policy given
that Q̂n is consistent.

Proposition 6. Assume Setting 1 and Assumption 5. Let Q̂n be a uniformly consistent esti-
mator of QE

obs

, that is, for all a ∈ A it holds that

lim
n→∞

ED
[

sup
x∈X

∣∣Q̂n(x, a)−QE
obs

(x, a)
∣∣] = 0,

where ED is an expectation over the n observations (Xi, Ai, Ri) used to estimate Q̂n. Let π̂n
be any policy that maximizes Q̂n, i.e., for all x ∈ X and all a ∈ A it holds that

π̂n(a|x) > 0 =⇒ a ∈ arg max
a′∈A

Q̂n(x, a′).

Then, the robust policy value converges towards its optimal value, that is

lim
n→∞

ED
[∣∣V E(π̂n)−max

π∈Π
V E(π)

∣∣] = 0.

Proof. See Appendix D.2. �

The same argument would work if instead of pooling, one considers only a single en-
vironment. In practice, however, one would make use of all available data. Whether it
is possible to construct a uniformly consistent estimator Q̂n depends on the model class
that can be assumed in the structural assignment of R, and on the policy used in generat-
ing the observations. For example, in the case of additive confounding and noise such as
f(X,U,A, εR) = f1(X,A) + f2(U, εR) with f1 and f2 in some function classes and a policy π
that has full support, (i.e., ∀a ∈ A, x ∈ X : π(a | x) > 0), one can consider a least squares
estimator of the form

Q̂E
obs

n := arg min
f1

1

n

n∑
i=1

(f1(Xi, Ai)−Ri)2.

The assumptions of Proposition 6 are then satisfied under further constraints on the function
class and noise distributions, e.g., linear functions, Gaussian noise, and bounded domains.

Appendix C Backdoor Adjustment and Reweighting Ap-
proaches

In our work, we take a reweighting approach for estimating the causal estimand (as presented
in Section 4.3) as opposed to using the backdoor adjustment formula. We have decided to use
the reweighting approach for several reasons.

(i) To test the Eobs-invariance hypothesis, the reweighting approach allows us to use the
resampling procedure (Thams et al., 2021) that allows to apply arbitrary invariance tests
while perserving pointwise asymptotic level. In contrast, it is not immediate how one can
develop an asymptotically valid test based directly on the formula given by the backdoor
adjustment.
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(ii) It has been shown in several works (see e.g., Jung et al. (2020a), Jung et al. (2020b))
that the reweighting approach may be more efficient in many settings than estimators
derived from the backdoor adjustment formula.

It has been shown in Jung et al. (2020b) that the two formulations imply equivalent iden-
tification results for causal effects. More specifically, any causal effect that is identified by
do-calculus (Pearl, 1995) (e.g., by the backdoor adjustment formula) can also be identified
via empirical risk minimization in a reweighted distribution. For completeness, we make this
connection explicit for the setting considered in this work.

Consider the observed variables (X,A,R) in Setting 1 with a fixed initial policy π0 in a
fixed environment e ∈ E . For notational convenience, we denote the density pπ

0,e simply by p
and assume, without affecting the generality of the result, that all the variables are discrete.
Fix S ⊆ {1, . . . , d} and define N := {1, . . . , d} \ S as the complement of S. We are interested
in the causal quantity pπa(r|xS) or equivalently, using do-notation, p(r|do(a), xS). (Note that
the causal quantity p(r|do(a), xS) is the same for any π0). Since the graph G in Setting 1
satisfies (i) X-variables are non-descendants of A and (ii) PA(A) ⊆ X, we have that X satisfies
the backdoor criterion and hence the causal quantity p(r|do(a), xS) is identifiable via the
adjustment formula (see (Pearl, 2016, Section 3.5))

p(r|do(a), xS) =
∑
xN

p(r|a, xN , xS)p(xN |xS). (22)

We will now show that p(r|do(a), xS) can also be expressed in terms of a reweighted distribu-
tion. To this end, we define a weighting factor r(xN , xS , a) := p(a)

p(a|xN ,xS)
, and define a target

distribution q(xN , xS , a, r) := r(xN , xS , a)p(xN , xS , a, r). The following statements hold.

• Using an appropriate factorization, we get

q(r, a, xN , xS) = r(xN , xS , a)p(xN , xS , a, r)

= p(r|a, xN , xS)p(a)p(xN |xS)p(xS). (23)

• From (23), we have

q(xS) =
∑
r,a,xN

p(r|a, xN , xS)p(a)p(xN |xS)p(xS)

= p(xS). (24)

• From (23), we have

q(a) =
∑

r,xN ,xS

p(r|a, xN , xS)p(a)p(xN |xS)p(xS)

= p(a). (25)

• From (23) and (24), we have

q(r, a, xN |xS) = q(xN , xS , a, r)
1

q(xS)

= p(r|a, xN , xS)p(a)p(xN |xS)p(xS)
1

p(xS)

= p(r|a, xN , xS)p(a)p(xN |xS). (26)
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• From (23) and (24), we have

q(a|xS) =
1

q(xS)
q(a, xS)

=
1

p(xS)

∑
r,xN

q(r, a, xN , xS)

=
1

p(xS)

∑
r,xN

p(r|a, xN , xS)p(a)p(xN |xS)p(xS)

= p(a)

= q(a). (27)

Now, we show that the backdoor adjustment formula for p(r|do(a), xS), given in (22), can be
expressed in terms of a conditional density in the target distribution q as follows

p(r|do(a), xS) =
∑
xN

p(r|a, xN , xS)p(xN |xS) by (22)

=
∑
xN

p(r|a, xN , xS)p(xN |xS)
p(a)

p(a)

=
1

p(a)

∑
xN

q(r, a, xN |xS) by (26)

=
1

p(a)
q(r, a|xS)

=
1

q(a)
q(r, a|xS) by (25)

= q(r|a, xS). by (27)

Appendix D Proofs

D.1 Proof of Proposition 5
Proof. Let e ∈ E , a ∈ A and x ∈ X be arbitrary. By the Markov property (see Lemma 3) we
have that Eπa,e

[
R | X = x

]
does not depend on the environment. This, in particular, implies

that for all e ∈ E , all x ∈ X and all a ∈ A, it holds that

QE
obs

(x, a) = 1
|Eobs|

∑
f∈Eobs

Eπa,f [R | X = x]

= Eπa,e[R | X = x]. (28)

We thus have for all policies π ∈ Π and for all x ∈ X that

max
a∈A

QE
obs

(x, a)

= max
a∈A

Eπa,e[R | X = x]

≥
∑
a∈A

Eπa,e[R | X = x]π(a | x)

=
∑
a∈A

Eπ,e[R | X = x,A = a]π(a | x)

= Eπ,e[R | X = x]. (29)
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Next, take the expectation over X on both sides to get

Ee
[

max
a∈A

QE
obs

(X, a)] ≥ Ee
[
Eπ,e[R | X]

]
= Eπ,e

[
R
]
.

Finally, taking the infimum over e ∈ E leads to

inf
e∈E

Ee
[

max
a∈A

QE
obs

(X, a)] ≥ inf
e∈E

Eπ,e
[
R
]
. (30)

Let π∗ be a policy such that for all x ∈ X and all a ∈ A

π∗(a|x) > 0 =⇒ a ∈ arg max
a′∈A

QE
obs

(x, a′). (31)

Then π∗ satisfies, for all e ∈ E ,

Eπ
∗,e
[
R
]

= Ee
[

max
a∈A

QE
obs

(X, a)].

Therefore (30) implies
π∗ ∈ arg max

π∈Π
inf
e∈E

Eπ,e
[
R
]
,

which completes the proof of Proposition 5. �

D.2 Proof of Proposition 6
Proof. Define for all n ∈ N the term

c(n) := max
a∈A

sup
x∈X
|QE

obs

(x, a)− Q̂n(x, a)|.

As A is assumed to be finite and because Q̂n is assumed to be uniformly consistent, it holds
that

lim
n→∞

ED[c(n)] = 0. (32)

Moreover, as shown in (28), in the proof of Proposition 5, we know that for all e ∈ E , all a ∈ A
and all x ∈ X it holds that

QE
obs

(x, a) = Eπa,e[R | X = x].

This implies that for all x ∈ X and all e ∈ E it holds that

Eπ̂n,e[R | X = x]

=
∑
a∈A

Eπa,e[R | X = x]π̂n(a|x)

=
∑
a∈A

QE
obs

(x, a)π̂n(a|x)

=
∑
a∈A

Q̂n(x, a)π̂n(a|x)

+
∑
a∈A

(QE
obs

(x, a)− Q̂n(x, a))π̂n(a|x). (33)

Each of the sums only contains one terms, since π̂n puts all mass on a single action. Next,
observe that ∣∣∣∣∣∑

a∈A
(QE

obs

(x, a)− Q̂n(x, a))π̂n(a|x)

∣∣∣∣∣
≤
∑
a∈A

∣∣∣QEobs(x, a)− Q̂n(x, a)
∣∣∣ π̂n(a|x)

≤ c(n) (34)
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and ∑
a∈A

Q̂n(x, a)π̂n(a|x)

= max
a∈A

Q̂n(x, a)

= max
a∈A

QE
obs

(x, a) (35)

+ (max
a∈A

Q̂n(x, a)−max
a∈A

QE
obs

(x, a)).

Using (33), (34) and (35) together with the triangle inequality yields∣∣∣∣Eπ̂n,e[R | X = x]−max
a∈A

QE
obs

(x, a)

∣∣∣∣
=
∣∣∣max
a∈A

Q̂n(x, a)−max
a∈A

QE
obs

(x, a)

+
∑
a∈A

(QE
obs

(x, a)− Q̂n(x, a))π̂n(a|x)
∣∣∣

≤ 2c(n).

This in particular implies that for all e ∈ E and all x ∈ X it holds that

max
a∈A

QE
obs

(x, a)− 2c(n) ≤ Eπ̂n,e[R | X = x]

and that
Eπ̂n,e[R | X = x] ≤ max

a∈A
QE

obs

(x, a) + 2c(n).

Taking the expectation over X and the infimum over E in both inequalities leads to

V E(π∗)− 2c(n) ≤ V E(π̂n) ≤ V E(π∗) + 2c(n),

where π∗ is the policy defined in (21). Finally, we use (32) and Proposition 5 to get that

lim
n→∞

ED
[
|V E(π̂n)−max

π∈Π
V E(π)|

]
≤ lim
n→∞

ED[4c(n)] = 0.

This completes the proof of Proposition 6. �

D.3 Proof of Lemma 1
The key argument in the proof of Lemma 1 is a Markov property that we formulate as a lemma
below.

Lemma 3 (Extended Markov Property). Assume Setting 1. For all subsets S ⊆ {1, . . . , d}, it
holds for all Z ∈ {U1, . . . , Up, R} that

Z ⊥⊥GS e | XS

=⇒
∀π ∈ ΠS : Pπ,e

Z|XS is the same for all e ∈ E ,

where the symbol ⊥⊥G denotes d-separation in the graph G.

Using Lemma 3, the proof of Lemma 1 goes as follows.

Proof. Let Sinv be a d-invariant set and πinv ∈ ΠSinv

be a d-invariant policy with respect to
Sinv. By Definition 3, we have R ⊥⊥GSinv e | XSinv

. It then holds by Lemma 3 for all x ∈ XSinv

and all e, f ∈ E that

Eπ
inv,e

[
R | XSinv

= x
]

= Eπ
inv,f

[
R | XSinv

= x
]
.

�
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D.3.1 Proof of Lemma 3

Proof. Lemma 3 corresponds to a global Markov property in the augmented graph (including
the non-random environment index). Such results are well-established and used in settings in
which E is finite, for example in influence diagrams (Dawid, 2002). The result, however, also
holds for more general, even uncountable E .

To prove this, we first fix S ⊆ {1, . . . , d}, π ∈ ΠS and Z ∈ {U,R}. Furthermore, let
e ∈ E , let Σ be the discrete σ-algebra on E and let νe : Σ → [0, 1] be a probability measure
that puts non-zero mass on {e}. We can then replace the environment indicator in the SCM
S(π, e) with a random variable E with distribution νe. This induces a joint distribution over
(E,X,U,A,R) that is globally Markov with respect to the graph GS , where e is now replaced
by E (see Pearl (2009) Thm 1.4.1 or Lauritzen et al. (1990)). Additionally, it satisfies that
(X,U,A,R) | E = e has the same distribution as the distribution induced by S(π, e). Therefore
the d-separation Z ⊥⊥GS E | XS (which is implied by Z ⊥⊥GS e | XS) implies that the joint
distribution (E,X,U,A,R) satisfies the following conditional independence

Z ⊥⊥ E | XS . (36)

Next, denote by pπ the density of (E,X,U,A,R) with respect to a product measure with the
discrete measure as the E-component and for all e ∈ E denote by pπ,e the induced density of
S(π, e). Then, by construction of the densities and using the conditional independence in (36)
it holds that for all x ∈ XS , all z ∈ supp(Z) and all f ∈ E with νe(f) > 0 that

pπ,f (z | XS = x) = pπ(z | XS = x,E = f)

= pπ(z | XS = x)

=: wz(x),

The function wz therefore no longer depends on the environment f nor on νe. Since νe(e) > 0,
this in particular implies that for all x ∈ XS and all z ∈ supp(Z) it holds that

pπ,e(z | XS = x) = wz(x).

As this construction works for all e ∈ E , this completes the proof of Lemma 3. �

D.4 Stable Blanket and Invariance
In this section, if not explicitly stated otherwise, all causal relations such as parents, descen-
dants, ancestors etc. refer to the graph G. Moreover, we use the convention that k ∈ DE(Xk),
where DE(Xk) ⊆ {1, . . . , d} denotes only the X-variable descendants of Xk. We first define
the strongly non-d-invariant set:

SSNI := {j ∈ {1, . . . , d} | ∃k ∈ CI : j ∈ DE(Xk)},

where CI are confounded and directly intervened on nodes (i.e., for k ∈ CI there exists ` ∈
{1, . . . , p} such that e → Xk ← · · · ← U ` → · · · → R in G) and define SI := {1, . . . , d} \ SSNI.
Furthermore, we define SR ⊆ {1, . . . , d} to be the set of X-variables such that j ∈ SR if and
only if Xj → R in G or there is a directed path Xj → · · · → R in G, where · · · consists of
U -variables. The following Lemma will serve as a basis for our proofs of Proposition 1 and
Theorem 1.

Lemma 4 (properties of SI). Assume Setting 1 and Assumption 2. Then, for all S ∈ Sinv, it
holds that S ⊆ SI and if a d-invariant set exists, it holds that SR ⊆ SI, SI is d-invariant and

j ∈ SSNI ⇐⇒ Xj is strongly non-d-invariant.

Proof. The proof is divided into four parts (S.1, S.2, S.3 and S.4):
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S.1 We prove that if S ∈ Sinv then S ⊆ SI by contraposition. Let S ⊆ {1, . . . , d} be a subset
such that there exists j ∈ S but j ∈ SSNI. This implies that there exist k ∈ {1, . . . , d}
and ` ∈ {1, . . . , p} such that e → Xk ← · · · ← U ` → · · · → R in G and j ∈ DE(Xk).
Since j ∈ DE(Xk), the path e → Xk ← · · · ← U ` → · · · → R is open given XS , and
therefore R 6⊥⊥G e | XS . By Definition 3, this implies that S is not d-invariant, leading
to a contradiction.

S.2 In this step, we prove that if a d-invariant set exists, it holds that SR ⊆ SI. We prove this
by contraposition. Assume that there exists j ∈ SR such that j ∈ SSNI. This implies that
there exist k ∈ {1, . . . , d} and ` ∈ {1, . . . , p} such that e → Xk ← · · · ← U ` → · · · → R
in G and j ∈ DE(Xk). Now, we construct a contradiction by showing that this would
imply that no d-invariant set exists. Let S ⊆ {1, . . . , d} be an arbitrary set. There are
two possibilities,

(a) j ∈ S: Using the same argument as in S.1, we have that S is not a d-invariant set.

(b) j /∈ S: Since j ∈ SR but j ∈ SSNI there exists a directed path (using that j ∈
DE(Xk))

e→ Xk → · · ·︸︷︷︸
part 1

→ Xj → · · ·︸︷︷︸
part 2

→ R,

where part 2 either has length zero or consists only of U -variables (by definition
of SR). The only way this path can be blocked by XS is if either k, j or one of
the variables in part 1 are contained in S. However, if this is the case the path
e → Xk ← · · · ← U ` → · · · → R is open given XS . Since the edges from X to A
are not relevant in this case, this in particular means that R 6⊥⊥GS e | XS , which by
Definition 3 implies that S is not d-invariant.

As these are the only two possibilities, we have shown that no d-invariant set exists,
which is a contradiction. Therefore SR ⊆ SI.

S.3 Now we prove that if a d-invariant set exists, then SI is d-invariant. In this step, all the
graphical statements are understood to be taken in GSI . Let ρ be an arbitrary path from
e to R in GSI . We first consider the two trivial cases. (i) ρ enters R through A, i.e., that
it has the form

e→ · · ·Xj → A→ R.

By construction of GSI this path can only be in GSI if j ∈ SI which implies that it is
blocked by XSI . (ii) ρ enters R directly from U -variables. Let U ` be the U -variable on
ρ that is closest to e, then ρ has the form e → U ` · · · → R. By Assumption 2, there
must be an edge from U ` to R and hence ρ simplifies to e → U ` → R. Because U ` is
unobserved, any set S ⊆ {1, . . . , d} would then not be d-invariant which contradicts to
the assumption that there is a d-invariant set. Next we consider more involved cases,
assume that ρ enters R either through a U - or X-variable. Let U ` be the U -variable on
ρ that is closest to e and Xj be the X-variable on ρ that is closest to U `. We consider
the two following cases:

(1) U ` does not exist: This implies that ρ does not contain any unobserved variables U
and hence ρ can enter R only through an X-variable. By S.2, we have SR ⊆ SI and
hence it holds that ρ is blocked by XSI .

(2) U ` exists: ρ has the form

ρ : e→ Xr · · ·︸︷︷︸
part 1

U ` · · ·︸︷︷︸
part 2

→ R,

where part 1 could be of length zero or it could consist of further X-variables and
part 2 could be of length zero or it could consist of further X-or U -variables. By
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Assumption 2, we have that there must be an edge from U ` to R and hence there
exists another path

ρ̃ : e→ Xr · · ·︸︷︷︸
part 1

U ` → R,

where part 1 corresponds to the part 1 from path ρ. It suffices to show that ρ̃
is blocked by XSI : whenever ρ̃ is blocked by XSI , ρ is blocked by XSI too (as
U ` /∈ XSI . We now consider the following three cases for ρ̃:

(i) ρ̃ : e→ · · ·Xj → U ` → R,
(ii) ρ̃ : e→ · · · → Xj ← U ` → R,
(iii) ρ̃ : e→ · · ·Xk ← Xj ← U ` → R,

in each case the · · · can also be of length zero.
Case (i): We show by contradiction that ρ̃ is blocked by XSI . Assume ρ̃ is open
given XSI , i.e., j ∈ SSNI. Let S ⊆ {1, . . . , p} be an arbitrary subset. If j ∈ S, then
by the definition of SSNI there exists k ∈ {1, . . . , d} and c ∈ {1, . . . , p} such that
e→ Xk ← · · · ← U c → · · · → R in G and j ∈ DE(Xk) and hence R 6⊥⊥GSI e | XS . If
j /∈ S, then the path ρ̃ is open given XS and hence R 6⊥⊥GSI e | XS . Therefore, there
is no d-invariant set which contradicts to the fact that a d-invariant set exists.
Case (ii): In this case, Xj is a collider on ρ̃. Assume ρ̃ has the form e → Xj ←
U ` → R. This implies that DE(Xj) ⊆ SSNI and hence ρ̃ is blocked by XSI . Thus, in
order for ρ̃ to be open givenXSI it must have the form e→ · · ·Xk → Xj ← U ` → R.
Now, we consider the following two cases separately:

(a) k ∈ SI: This directly implies that ρ̃ is blocked by XSI .
(b) k 6∈ SI: By definition of SI it holds that DE(Xk) ∩ SI = ∅. Hence, also

DE(Xj)∩SI = ∅ which since Xj is a collider implies that ρ̃ is blocked by XSI .

We have therefore shown that in Case (ii) the path ρ̃ is blocked by XSI .
Case (iii): In this case, let Xc be the collider closest to Xj on ρ̃. Again we consider
two cases:

(a) j ∈ SI: This directly implies that ρ̃ is blocked by XSI .
(b) j 6∈ SI: Since DE(Xc) ⊆ DE(Xj), this implies that DE(Xc) ∩ SI = ∅. Hence,

the path ρ̃ is blocked by XSI .

We have therefore shown that in Case (iii) the path ρ̃ is blocked by XSI . Combining
all cases, we have shown that any path ρ̃ from e to R is blocked by XSI in GSI .

S.4 It remains to show that

j ∈ SSNI ⇔ Xj is strongly non-d-invariant.

We show each direction separately. First, let j ∈ SSNI. By the definition of SSNI it holds
that there exists k ∈ {1, . . . , d} and ` ∈ {1, . . . , p} such that e → Xk ← · · · ← U ` →
· · · → R in G and j ∈ DE(Xk). As this path does not involve A it is contained in GS for
all subsets S ⊆ {1, . . . , d}. Moreover, since Xk is a collider and the only X-variable on
this path, it holds that this path will be open given XS∪{j} for all subsets S ⊆ {1, . . . , d}.
Therefore, Xj is strongly non-d-invariant. Next, to show the reverse direction let j ∈ SI.
Then, by S.3 it holds that SI is d-invariant. So in particular R ⊥⊥GSI e | XSI , which since
j ∈ SI implies that j is not strongly non-d-invariant.

This completes the proof of Lemma 4. �

As shown in Lemma 4 the set SI is d-invariant and contains all d-invariant sets if a d-
invariant set exists. It will be used in the proofs of Proposition 1 and Theorem 1 to find the
optimal d-invariant policy, as it encodes all invariant available information about the reward.
The set SI is related to stable blankets as defined in Pfister et al. (2021).
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D.5 Proof of Proposition 1
Proof. As before, we define πa(a′ | x) := 1

[
a′ = a

]
as the policy that always selects the action

a. We first show an intermediate result and then turn to the proof of Proposition 1.

Lemma 5. Let S ∈ Sinv be an invariant set. It holds for all e, f ∈ E that

arg max
π∈ΠS

Eπ,e[R] = arg max
π∈ΠS

Eπ,f [R]. (37)

Proof. Let S ∈ Sinv be a d-invariant set and e ∈ E be an environment. By the same arguments
as in (29) we have, for all πS ∈ ΠS , x ∈ XS it holds that

max
a∈A

Eπa [R | XS = x] ≥ Eπ
S

[R | XS = x],

where we drop the environment e in the expectations as S is d-invariant (see Lemma 1). Taking
the expectation over XS on both sides yields

Ee
[

max
a∈A

Eπa [R | XS ]
]
≥ Ee

[
Eπ

S

[R | XS ]
]

= Eπ
S ,e[R]. (38)

Let π̄ ∈ ΠS be a policy that satisfies for all a ∈ A and for µ-a.e. x ∈ XS

π̄(a|x) > 0 =⇒ a ∈ arg max
a′∈A

Eπa′
[
R | XS = x

]
. (39)

We have that

Eπ̄,e[R] = Ee
[
Eπ̄[R | XS ]

]
= Ee

[
max
a∈A

Eπa [R | XS ]
]
.

By (38), we then have that π̄ ∈ arg maxπ∈ΠS E
π,e[R]. We now show the reverse direction, i.e.,

if π∗ ∈ arg maxπ∈ΠS E
π,e[R], then π∗ satisfies (39).

Let π∗ ∈ arg maxπ∈ΠS E
π,e[R]. By (38), we again have

Eπ
∗,e[R] = Ee

[
max
a∈A

Eπa [R | XS ]
]
.

Since, for all e ∈ E , the distribution of X has full support (by the assumption in Setting 1), π∗
satisfies for all a ∈ A and for µ-a.e. x ∈ XS

π∗(a|x) > 0 =⇒ a ∈ arg max
a′∈A

Eπa′
[
R | XS = x

]
. (40)

Thus, the policy π∗ satisfies (40) if and only if π∗ ∈ arg maxπ∈ΠS E
π,e[R]. Furthermore, since

(40) does not depend on e, it then holds for all e, f ∈ E that

arg max
π∈ΠS

Eπ,e[R] = arg max
π∈ΠS

Eπ,f [R]. (41)

�

Now we prove the first statement of Proposition 1. To this end, let

πSobs ∈ arg max
π∈ΠS

∑
e∈Eobs

Eπ,e[R].

By Lemma 5, we have for all e, f ∈ E that

arg max
π∈ΠS

Eπ,e[R] = arg max
π∈ΠS

Eπ,f [R].
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So in particular, for all e ∈ E , it holds that

πSobs ∈ arg max
π∈ΠS

Eπ,e[R].

Thus it holds for all e ∈ E , all S ∈ Sinv and all πS ∈ ΠS that

Eπ
S
obs,e[R] ≥ Eπ

S ,e[R].

Taking the infimum over e ∈ E on both sides yields

V E(πSobs) = inf
e∈E

Eπ
S
obs,e[R] ≥ inf

e∈E
Eπ

S ,e[R] = V E(πS).

Because this inequality holds for all S ∈ Sinv and all πS ∈ ΠS , this implies

∀π ∈ ΠS : V E(πSobs) ≥ V E(π). (42)

This completes the proof of Proposition 1(i).
Next we prove the second statement of Proposition 1. The proof arguments are largely sim-

ilar to those of the first statement except here we make use of the set SI defined in Section D.4
which is a superset of all other d-invariant sets. The proof is divided into two steps (S.1, S.2)

S.1 In the first step, we derive an upper bound on the expected reward of arbitrary d-
invariant policies. By Lemma 4, it holds that S ⊆ SI for all S ∈ Sinv. We then have, for
all S ∈ Sinv, a ∈ A, and e ∈ E , that

Eπa,e[R | XS , XSI\S ] = Eπa,e[R | XSI ], (43)

This is closely related to the predictiveness property of stable blankets (see Pfister et al.
(2021)).

Now, we expand the conditional expectation and get for all e ∈ E that

Ee
[

max
a∈A

Eπa,e[R | XS ]
]

= Ee
[

max
a∈A

EeXSI\S
[
Eπa,e[R | XS , XSI\S ]

]]
,

and by Jensen’s inequality,

≤ Ee
[
EeXSI\S

[
max
a∈A

Eπa,e[R | XS , XSI\S ]
]]

= Ee
[

max
a∈A

Eπa,e[R | XS , XSI\S ]
]
,

and by (43),

= Ee
[

max
a∈A

Eπa,e[R | XSI ]
]
.

Combining this with (38), we have

Ee
[

max
a∈A

Eπa,e[R | XSI ]
]
≥ Eπ

S ,e[R]. (44)

S.2 In the second step, we are now ready to prove the main result of the statement. To this
end, let

π∗ ∈ arg max
π∈Πinv

∑
e∈Eobs

Eπ,e[R].

Since (44) holds for all S ∈ Sinv, we have for all e ∈ E that

arg max
π∈ΠSI

Eπ,e[R] = arg max
π∈Πinv

Eπ,e[R].
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Then, By Lemma 5 we have for all e, f ∈ E that

arg max
π∈Πinv

Eπ,e[R] = arg max
π∈Πinv

Eπ,f [R].

So in particular, for all e ∈ E , it holds that

π∗ ∈ arg max
π∈Πinv

Eπ,e[R].

Thus it holds for all e ∈ E , all S ∈ Sinv and all πS ∈ ΠS that

Eπ
∗,e[R] ≥ Eπ

S ,e[R].

Taking the infimum over e ∈ E on both sides yields

V E(π∗) = inf
e∈E

Eπ
∗,e[R] ≥ inf

e∈E
Eπ

S ,e[R] = V E(πS).

Because this inequality holds for all S ∈ Sinv and all πS ∈ ΠS , this implies

∀π ∈ Πinv : V E(π∗) ≥ V E(π). (45)

This completes the proof of Proposition 1(ii).

�

D.6 Proof of Theorem 1
Proof. We first prove the first statement of Theorem 1. Fix a policy

π∗ ∈ arg max
π∈Πinv

∑
e∈Eobs

Eπ,e[R].

Using the same argument as we made in Section D.5(S.3), we get that for all e ∈ E it holds
that

Eπ
∗,e[R] = Ee

[
max
a∈A

Eπa [R | XSI ]
]
. (46)

Hence by Jensen’s inequality it holds that

Eπ
∗,e[R] ≥ max

a∈A
Ee
[
Eπa [R | XSI ]

]
= max

a∈A
Eπa,e[R].

This completes the proof of the first statement.
Next, we prove the second statement of Theorem 1. To do so, we use the following lemma,

which is proved in Section D.6.1 below.

Lemma 6 (Upper bound). Assume Setting 1, Assumptions 2, 4 and 3, and that Sinv 6= ∅.
Let π ∈ Π \Πinv be an arbitrary non-d-invariant policy. Then it holds that

V E(π) ≤ inf
e∈E

EeXSI
[

max
a∈A

Eπa
[
R | XSI

]]
.

To finish the proof of Theorem 1, fix again a policy

π∗ ∈ arg max
π∈Πinv

∑
e∈Eobs

Eπ,e[R].

Then, by Proposition 1(ii), it holds that

∀π ∈ Πinv : V E(π) ≤ V E(π∗). (47)

Furthermore, Lemma 6 together with (46) implies that

∀π ∈ Π \Πinv : V E(π) ≤ V E(π∗). (48)

Combining (47) and (48) concludes the proof of Theorem 1. �
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D.6.1 Proof of Lemma 6

Proof. Recall the terminology and notation from Section D.4. The proof can be split into two
parts:

1. We first prove that if e ∈ E is a confounding removing environment it holds for all π ∈ Π
that

∀j ∈ SSNI : R ⊥⊥Gπ,e Xj | XSI , A. (49)

2. We then prove the upper bound using step 1) as the main argument.

Step 1) Let e ∈ E be a confounding removing environment and fix j ∈ SSNI and π ∈ Π. By
Lemma 4 it holds that Xj is strongly non-d-invariant. Therefore, since e is a confounding
removing environment, we get that

Xj ⊥⊥Gπ,e U. (50)

Now, let ρ be an arbitrary path from Xj to R in Gπ,e. We consider the following (separate)
cases that can occur:

(a) ρ enters R through A: Then the path ρ is blocked by XSI and A because A is not a
collider and hence blocks ρ.

(b) ρ only contains A and X-variables and enter R through X-variables: Then there exists
k ∈ {1, . . . , d} such that ρ ends with Xk → R. This implies that k ∈ SR since Gπ,e is
a sub-graph of G. Furthermore, since by Lemma 4 (recall that Sinv 6= ∅) SR ⊆ SI, this
implies that k ∈ SI. Hence, ρ is blocked by XSI and A because Xk is not a collider.

(c) ρ contains at least one U -variable: Let ` ∈ {1, . . . , p} such that U ` is the U -variable
closest to Xj on ρ, i.e., ρ has the form

Xj · · ·U `︸ ︷︷ ︸
γ

· · · → R.

Now, by (50) it holds that γ is blocked (given the empty set) in Gπ,e and by construction
it only consists of X-variables (except U `). Therefore, there must be at least one collider
on γ. Let Xk be the collider closest to U ` and let Xm (this could be Xj) the variable
that comes right before Xk on γ, i.e.,

Xj · · ·Xm → Xk ← · · ·U `.

We consider two cases:

(i) First, assume that DE(Xk) ∩ SI 6= ∅ (in Gπ,e), then it holds, by the definition of
SI and since Gπ,e is a subgraph of G, that m ∈ SI as well (otherwise none of the
descendants of Xk could be in SI as DE(Xk) ⊂ DE(Xm)). However, Xm is not a
collider and therefore ρ is blocked given XSI and A.

(ii) Second, assume DE(Xk) ∩ SI = ∅, then it in particular holds that k ∈ SSNI which
by Lemma 4 implies that Xk is strongly non-d-invariant. Hence, because e is a
confounding removing environment, it holds that Xk ⊥⊥Gπ,e U . However, Xk was
selected to be the collider closest to U ` which means that the part of γ from Xk to
U ` is open in Gπ,e leading to a contradiction.

We have therefore shown that the path ρ is always blocked given XSI and A. Since ρ was
arbitrary this implies that R ⊥⊥Gπ,e Xj | XSI , A.
Step 2)

Now, we are ready to prove the main result. Let π ∈ Π\Πinv be an arbitrary non-d-invariant
policy, and let S ⊆ {1, . . . , d} such that π ∈ ΠS . We have

V E(π)

= inf
e∈E

Eπ,e
[
R
]
,
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by the tower property of conditional expectation,

= inf
e∈E

EeXSI ,XS\SI
[
Eπ,e

[
R | XSI , XS\SI

]]
= inf

e∈E
EeXSI ,XS\SI

[ ∫
Eπa,e

[
R | XSI , XS\SI

]
π(a|XS)µ(da)

]
.

Now, we use Assumption 3. For each e ∈ E we choose a confounding removing environment
f(e) such that Pπ,f(e)

X = Pπ,eX . Because the confounding removing environments are a subset of
E , we have

V E(π)

= inf
e∈E

EeXSI ,XS\SI
[ ∫

Eπa,e
[
R | XSI , XS\SI

]
π(a|XS)µ(da)

]
≤ inf

e∈E
Ef(e)

XSI ,XS\SI

[ ∫
Eπa,f(e)

[
R | XSI , XS\SI

]
π(a|XS)µ(da)

]
.

Using that Pπ,f(e)
X = Pπ,eX , we then have

V E(π)

≤ inf
e∈E

EeXSI ,XS\SI
[ ∫

Eπa,f(e)
[
R | XSI , XS\SI

]
π(a|XS)µ(da)

]
.

Next, we use (49) which states that for all j ∈ {1, . . . , d} it holds that R ⊥⊥Gπ,e Xj | XSI , A.
Then, by the Markov property, we get

V E(π)

≤ inf
e∈E

EeXSI ,XS\SI
[ ∫

Eπa,f(e)
[
R | XSI

]
π(a|XS)µ(da)

]
,

we can then omit f(e) since SI is a d-invariant set (by Lemma 4 since Sinv 6= ∅),

= inf
e∈E

EeXSI ,XS\SI
[ ∫

Eπa
[
R | XSI

]
π(a|XS)µ(da)

]
= inf

e∈E
EeXSI

[ ∫
Eπa

[
R | XSI

]
EeXS\SI

[
π(a|XS)

]
µ(da)

]
,
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letting π̃(a|XSI) := EeXS\SI [π(a|XS)],

= inf
e∈E

EeXSI
[ ∫

Eπa
[
R | XSI

]
π̃(a | XSI)µ(da)

]
≤ inf
e∈E

EeXSI
[

max
a∈A

Eπa
[
R | XSI

]]
.

�

D.7 Proof of Lemma 2
Proof. Let π0 be an initial policy generating the training data. For each e ∈ Eobs := {e1, . . . , eL}
and S ∈ Sinv, we have that

Eπa,e[R | XS ] = Ee[Eπa,e[R | X] | XS ]

= Ee[Eπ
0,e
[πa(A|X)
π0(A|X)R | X

]
| XS ]

= Ee[Eπ
0,e
[ 1{A=a}
π0(A|X)R | X

]
| XS ]

= Eπ
0,e
[ 1{A=a}
π0(A|X)R | X

S
]

= Eπ
0,e
[

R
π0(A|X) | X

S , A = a
]
.

We therefore have for all x ∈ XS and a ∈ A that

QS(x, a) =
1

L

L∑
`=1

Eπ
0,e`
[

R
π0(A|X) | X

S = x,A = a
]
.

�

D.8 Proof of Proposition 3
Proof. Fix S ∈ Sinv, let π̃ be the uniform random policy given for all x ∈ X and all a ∈ A by

π̃(a|x) = 1
|A|

and define η(A,X,R, θ) := 1
π0(A|X) (fθ(A,X

S) − R)2. First, we rewrite the objective function
in (16) in terms of η as follows

Hn(θ) := 1
L

L∑
`=1

1
ne`

ne∑̀
i=1

(fθ(A
e`
i ,X

e`
i
S

)−Re`i )2

π0(A
e`
i |X

e`
i )

= 1
L

L∑
`=1

1
ne`

ne∑̀
i=1

η(Ae`i , X
e`
i , R

e`
i , θ).

We now show that (a) E[Hn(θ)] is uniquely minimized at θS0 and (b) Hn(θ) satisfies the weak
uniform law of large numbers. Then, together with (i) and (iii), Theorem 2.1 in Newey and
McFadden (1994) implies that θ̂Sn → θS0 in probability as desired.

First, we show (a). Taking the expectation, we have

E
[
Hn(θ)

]
= 1

L

L∑
`=1

Eπ
0,e`
[
η(A,X,R, θ)

]
. (51)
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Next, let e ∈ Eobs be any observed environment, it holds for all a ∈ A and for µ-a.e. x ∈ XS
that

Eπ̃,e[R | A = a,XS = x] = Eπa,e[R | XS = x]

(∗)
= 1

L

L∑
`=1

Eπa,e` [R | XS = x]

= QS(a, x)

(∗∗)
= fθS0 (a, x) (52)

where (∗) holds because XS is d-invariant, and (∗∗) holds by (ii). Now, since the conditional
mean Eπ̃,e[R | A = a,XS = x] is the (almost surely) unique minimizer of

Eπ̃,e[(fθ(A,XS)−R)2],

(52) implies that θS0 = arg minθ∈ΘS E
π̃,e[(fθ(A,X

S)−R)2]. Furthermore, using that

Eπ̃,e[(fθ(A,XS)−R)2] = Eπ
0,e[ π̃(A|X)

π0(A|X) (fθ(A,X
S)−R)2]

= 1
|A| E

π0,e[η(A,X,R, θ)],

we get that

θS0 = arg min
θ∈ΘS

Eπ̃,e[(fθ(A,XS)−R)2]

= arg min
θ∈ΘS

Eπ
0,e[η(A,X,R, θ)]

= arg min
θ∈ΘS

1
L

L∑
`=1

Eπ
0,e` [η(A,X,R, θ)]

= arg min
θ∈ΘS

E[Hn(θ)].

Hence, we have shown (a).
Next, we show (b), that is, the objective function Hn(θ) satisfies the weak uniform law of

large numbers. By (v) and (iv) we have for all e ∈ Eobs that Eπ
0,e[supθ∈ΘS η(A,X,R, θ)] <∞.

Furthermore, define h`(θ) := 1
ne`

∑ne`
i=1 η(Ae`i , X

e`
i , R

e`
i , θ), then by Lemma 2.4 in Newey and

McFadden (1994) it holds for all ` ∈ {1, . . . , L} that supθ∈ΘS

∥∥∥h`(θ)− Eπ
0,e` [η(A,X,R, θ)]

∥∥∥
2
→

0 in probability as ne` →∞ and hence that supθ∈ΘS ‖Hn(θ)− E[Hn(θ)]‖2 → 0 in probability
as ne1 , . . . , neL →∞, which proves (b).

As explained at the beginning, the result now follows by applying Theorem 2.1 in Newey
and McFadden (1994). This completes the proof of Proposition 3. �

D.9 Proof of Proposition 2
Proof. Fix a set S ⊆ {1, . . . , p}, and let π, π̃ ∈ ΠS . Assume H0(S, π, E) is true. By Assump-
tion 4(i), we have that R ⊥⊥GS e | XS . Furthermore, since π̃ ∈ ΠS this implies by Lemma 3
that Pπ̃,e

R|XSinv is the same for all e ∈ E which implies that H0(S, π̃, E) is true. This concludes
the proof of Proposition 2. �

D.10 Proof of Proposition 4
Proof. Let S∗ := AN(R) be the set of observed ancestors of R. In this proof, all the graphical
statements are understood to be taken in GS∗ . Assume that a d-invariant set S exists. Then,
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by Theorem 2 of Tian et al. (1998), S ∩ S∗ is d-invariant, too (indeed, S intersected with all
ancestors of R is d-invariant but as S does not contain any hidden variables, this set equals
S ∩ S∗).

We are now ready to prove the statement of the proposition. From (18) we have,

lim inf
n→∞

P(ŜnAN ⊆ S∗)

= lim inf
n→∞

P(
⋂

S:ψS(De1,π
S
,...,DeL,π

S
)=0

S ⊆ S∗)

≥ lim inf
n→∞

P(ψS∩S
∗
(De1,π

S∩S∗

, . . . , DeL,π
S∩S∗

) = 0)

≥1− α,

where the last inequality follows by Proposition 7. This completes the proof of Proposition 4.
�

Appendix E Connection to Random Environments
It is possible to define multi-environment contextual bandits using random environments.

Setting 2 (Random Environment Contextual Bandits). Let X = (X1, . . . , Xd) ∈ X = X 1 ×
. . . × X d, U = (U1, . . . , Up) ∈ U = U1 × . . . × Up, A ∈ A = {a1, . . . , ak}, R ∈ R, E ∈ E. For
any π ∈ {π : X −→ ∆(A)}, let gπ denote the function that ensures, for all x ∈ X , gπ(x, εA)
equals π(x) in distribution for a uniformly distributed εA. Now, consider functions s, h, and
f , a factorizing distribution Pε = PεE ×PεU ×PεX ×PεA×PεR whose εA component is uniform,
and a structural causal model S(π) given by

S(π) :



E := εE

U := s(X,U,E, εU )

X := h(X,U,E, εX)

A := gπ(X, εA)

R := f(X,U,A, εR).

Assume further that for all π, the SCM induces a unique distribution over (E,X,U,A,R),
which we denote by Pπ. The structure of the SCM S(π, e) can be also visualized by a graph G
which is constructed in a similar way to the graph in Setting 1, except that the environment
becomes one of the variable nodes in this graph.

Remark 2. Setting 2 is a special case of Setting 1 in the following sense: Assume, starting
from Setting 2, for all i ∈ {1, . . . , n} that (Xi, Ui, Ai, Ri, Ei), are independent and distributed
according to PπiX,U,A,R,E . Then, defining he(·, ·) := h(·, e, ·), we have that, for all i ∈ {1, . . . , n},
(Xi, Ui, Ai, Ri), are independent and distributed according to Pπi,EiX,U,A,R, using Setting 1.

Appendix F Details for Section 4.2
In Section 4.2, we propose to use the resampling procedure in Thams et al. (2021) to test the
hypothesis of invariance under a test policy πS ∈ ΠS .

For every e ∈ Eobs, we have a datasetDe consisting of ne observationsDe
i = (Xe

i , A
e
i , R

e
i , π

0(Aei |Xe
i ))

is available.11 For all e ∈ Eobs and all i ∈ {1, . . . , ne} define the relative weights as

r(De
i ) :=

πS(Aei |Xe
i )

π0(Aei |Xe
i )
. (53)

11It is possible to allow for a different initial policy π0
i at each observation i. One then needs to define the

relative weights r(Dei ) := πS(Aei |Xe
i )/π0

i (Aei |Xe
i ).
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Then, for all e ∈ Eobs, we draw a weighted resample De,πS := (De
i1
, . . . , De

ime
) of size me from

De with weights

wei1,...,ime :=


∏me
`=1 r(D

e
i`

)∑
(j1,...,jme )

distinct

∏me
`=1 r(D

e
j`

)
(i1, . . . , ime) distinct

0 otherwise.
(54)

We then apply an invariance test to the resampled data De1,π
S

, . . . , DeL,π
S

. A family of
invariance tests {ϕS}S⊆{1,...,d} is a collection of functions such that for each S, ϕS is a function
(into {0, 1}) that takes data from environments e1, . . . , eL, each of size mei , and tests whether
S is invariant. Here, ϕS = 1 indicates that we reject the hypothesis of invariance. We say the
test has pointwise asymptotic level if for all invariant sets S and all π ∈ ΠS it holds that

lim sup
min{me1 ,...,meL}→∞

Pπ(ϕS(De1,π
S

, . . . , DeL,π
S

) = 1) ≤ α.

We state that the overall procedure (resampling and then testing) has asymptotic level as long
as the test ϕS has asymptotic level. For simplicity, we assume that ne1 = · · · = neL =: n
and me1 = · · · = meL =: m. The following result follows directly from (Thams et al., 2021,
Theorem 1)

Proposition 7. Let S ⊆ {1, . . . , d} and suppose that for each environment e1, . . . , eL, we
observe a dataset De consisting of n observations De

i = (Xe
i , A

e
i , R

e
i , π

0(Aei | Xe
i )). Consider

πS ∈ ΠS and assume that for all e ∈ E, Eπ
0

[r(De
i )

2] < ∞, where r is defined in (53).
Let m = o(

√
n) and for all e, let De,πS := (De

i1
, . . . , De

im
) be a resample of De drawn with

weights given by (54). Let ϕS be a hypothesis test for invariance of the conditional expectation
Eπ

S ,e[R | XS ] that has pointwise asymptotic level α ∈ (0, 1) when ϕS is applied to data sampled
with πS. Applying ϕS to the resampled data yields pointwise asymptotic level, that is,

lim sup
n→∞

Pπ
0

(ϕS(De1,π
S

, . . . , DeL,π
S

) = 1) ≤ α

if S is invariant.

Proof. We only show that this problem with environments can be cast in the setting of Thams
et al. (2021), which has no reference to environments. Here, we assume that we have the same
number of observations in each environment. The main idea is to create a dataset DE , such
that each observation in DE consists of an observation from each of the environments De.

First, we randomly permute the observations within each dataset De to obtain a set D̃e.
Then, we construct an auxiliary dataset DE , where the i’th observation DEi of DE is the
concatenation of the i’th observation (after permutation) from each of the environments, DEi :=
(D̃e1

i , . . . , D̃
eL
i ).

We can now apply the resampling methodology from Thams et al. (2021) to draw a sequence
(DEi1 , . . . , D

E
im

) with weights given by

wEi1,...,im :=


∏m
`=1 r(D

E
i`

)∑
(j1,...,jm)

distinct

∏m
`=1 r(D

E
j`

)
(i1, . . . , im) distinct

0 otherwise.

where

r(DEi ) :=
πS(Ãe1i | X̃

e1
i )

π0(Ãe1i | X̃
e1
i )
· · · π

S(ÃeLi | X̃
eL
i )

π0(ÃeLi | X̃
eL
i )

,

and X̃e
i , Ã

e
i are the i’th observation of D̃e. Because the observations are independent, both

within and between environments, the probability of drawing the sample (DEi1 , . . . , D
E
im

) =
((De1

i1
, . . . , DeL

i1
), . . . , (De1

im
, . . . , DeL

im
)) is equal to the probability of drawing firstm observations

from e1, (De1
i1
, . . . , De1

im
), and then m from e2 etc. The result then follows directly from Thams

et al. (2021). �
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In other words, we can test whether S is invariant by resampling the data and applying an
invariance test on the resampled dataset. Proposition 7 states that this procedure holds level
asymptotically. We assume knowledge of the initial policy π0 to ease our presentation. We
can, in fact, show the pointwise asymptotic validity even if the initial policy π0 is unknown
and has to be estimated from the offline data (see Thams et al. (2021) Theorem 2).

Appendix G Algorithm: Off-policy Invariant Causal Pre-
diction

Below, we present an algorithm for finding the causal ancestors AN(R) of the reward R under
a change in policy.

Algorithm 3: Off-policy Invariant Causal Prediction
Input: data D = (De1 , . . . , DeL), hypothesis tests and test policies

{(ψS , πS)}S⊆{1,...,d}
initialize the collection of invariant sets Sinv ← {};
// loop over all subsets
for S ∈ P({1, . . . , d}) do

// test for invariance
is_inv← test_inv(D,πS , ψS , S) ;
// (see Algorithm 2)
// update the accepted invariant set
if is_inv then

add S to Sinv

end
end
// get the estimated causal ancestors
ŜAN ←

⋂
i Sinv[i] ;

Output: the estimated causal ancestors ŜAN

Appendix H Faster power optimization
In Section 4.4.2, we show that we can optimize the power to detect non-invarince by gradient
descent. In particular, the gradient is

∇J(θ) = E
[
∇ logP(DπSθ | D)pv(DπSθ )

]
,

where DπSθ is a resample of the data D and pv is a function returning a p-value of our invariance
test. P(DπSθ | D) is given by Equation (54), but as discussed in Thams et al. (2021), this may
be infeasible to compute if n is very large.

As a computationally efficient alternative, Thams et al. (2021) proposes an approximate
resampling scheme, where a sequence (i1, . . . , ime) (distinct or non-distinct) is sampled with
replacement. That is, the weights are given by

wθ,(i1,...,ime ) :=

∏me
`=1 rθ(D

e
i`

)∑
(j1,...,jm)

∏me
`=1 rθ(D

e
j`

)

=

∏me
`=1 rθ(D

e
i`

)(∑ne
j=1 rθ(D

e
j )
)me .
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This expression is much easier to compute than Equation (54), because the denominator is a
sum over ne terms (instead of ne!/(ne −me)!). In particular, we get

∇θ logP(DπSθ | D) = ∇θ logwθ,(i1,...,ime )

=

me∑
`=1

∇θ log rθ(D
e
i`

)−me∇θ log

ne∑
j=1

rθ(D
e
j ).

Algorithm 4 splits the data in two halves: we optimize power on the first half of the data and
test for invariance on the second half. We only use the above approximation for the power
optimization, where we need to explicitly compute the normalization constant of the weights.
In the second half of Algorithm 4, we use Equation (54) (i.e., we do not use the approximate
weights), because Proposition 7 requires the weights to be those given in Equation (54). If n
is so large that we cannot sample by explicitly computing the weights Equation (54), there
are several options for sampling from the scheme without computing the denominator – see
Thams et al. (2021) for a variety of approaches.

Appendix I Invariance test with optimized test policy
In this section we provide Algorithm 4, which tests the invariance of a set by choosing a test
policy πS that optimizes the power of the invariance test, as discussed in Section 4.4.2.

Appendix J Simulation Details

J.1 Data Generating Process
We generate data from the following SCM S(π, e):

U := εU , X1 := γeU + εX1 , X2 := αe + εX2 ,

A ∼ π(A | X1, X2), R := βA,1X
2 + βA,2U + εR,

where εU , εX2 , εX1 , εR ∼ N (0, 1), A takes values in the space {a1, . . . , aL}. In our experi-
ments, we consider L = 3 and randomly draw the parameters βa1,1, . . . , βa3,1, βa1,2, . . . , βa3,2
from N (0, 1), while the environment-specific parameters γe, αe are drawn from N (0, 4). These
parameters are then fixed across all experiment runs.

J.2 Initial Policy
We construct an initial policy π0 in Section 5 as follows. First, we generate a training data
D := {(X1

i , X
2
i , Ai, Ri, ei)}ni=1 from the uniform random policy and partition the dataset D

according to the action values: Da1 , . . . , DaL . Then, for each action a ∈ {a1, a2, a3}, we fit
a linear regression on Da to estimate the reward R from X1 and X2. Denote the resulting
regressor as fa. The initial policy is then constructed as

π0(A = a | X1, X2) ∝ exp

{
1

2
fa(X1, X2)

}
.

J.3 Invariant Test with True Conditional Expectation
This section contains Figure 6, in which we display acceptance rates for the same experiment
as in Section 5.2 but with an exact test, using the true conditional expectation. The figure
suggests that the procedure indeed holds level.
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Algorithm 4: Testing the invariance of a set S with optimization over test policies
πS

Function test_inv_opt_π(data D = (De1 , . . . , DeL), function pv yielding the p-value
of an invariance test, target set S, learning rate γ=1e-3, significance level α):
// sample splitting
for e = e1, . . . , eL do

ne,sp ← ceil(|De|/2) ;
De,1 ← {(xei , aei , rei , π0(aei |xei ))}

ne,sp
i=1 ;

De,2 ← {(xei , aei , rei , π0(aei |xei ))}
|De|
i=ne,sp+1;

end
// optimizing power
Initialize policy parameters θ ;
while not converged do

for e = e1, . . . , eL do
for i = 1 to ne,sp do

compute weights: rei ←
πSθ (aei | x

e,S
i )

π0(aei | xei )
;

end
choose resampling size me with GOF-heuristic in Thams et al. (2021) ;
draw De,πSθ := (De,1

i1
, . . . , De,1

ime
) with replacement from De,1 with

probabilities ∝ rei ;
end
D1,πSθ ← (De1,π

S
θ , . . . , DeL,π

S
θ );

compute p-value: pv(D1,πSθ ) ;
compute gradient: ∇ logP(D1,πSθ ) update policy parameters:
θ ← θ − γpv(D1,πSθ )∇ logP(D1,πSθ ) ;

end
// verifying invariance condition
for e = e1, . . . , eL do

for i = ne,sp + 1 to |De| do

compute weights: rei ←
πSθ (aei | x

e,S
i )

π0(aei | xei )
;

end
choose resampling size me with GOF-heuristic in Thams et al. (2021) ;
draw De,πSθ := (De,2

i1
, . . . , De,2

ime
) with replacement from De,2 with probabilities

∝ rei ;
end
D2,πSθ ← (De1,π

S
θ , . . . , DeL,π

S
θ );

is_invariant← pv(D2,πSθ ) ≥ α ;
return is_invariant

Appendix K Warfarin Case Study

K.1 Initial Policy
We generate the training data {(Xi, Ai, Ri, ei)}ni=1, where ei ∈ E = {1, . . . , 4} under the
following initial policy. We fit a linear regression to estimate the optimal warfarin dose from
BMI score. Let us denote the resulting regressor by fBMI. The initial policy π0 then selects
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Figure 6: Acceptance rates for the off-policy invariance test with true conditional expectation.
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Figure 7: Analysis on the generalization performance and the degree of invariance. The y-axes
represent the expected reward of policies with different subsets, while the x-axes represent their
corresponding p-values return from the invariance test. The result shows that a policy that
depends on a subset with a higher degree of invariance is more likely to generalize better to a
new environment.

actions according to the following (unnormalized) distribution:

π0(A = a | XBMI) ∝ exp

{
1

2

∣∣fBMI(XBMI)−m(a)
∣∣−1
}
,

where, as before, m(a) denotes a median value of the optimal warfarin doses within the bucket
a.

K.2 Defining Sets
The resulting defining set is {Race, VKORC1}. The following are the details of these variables
(see also Consortium (2009)):

• VKORC1: Genetic information – vitamin K epoxide reductase complex, subunit 1.

• Race: Racial categories as defined by the U.S. Office of Management and Budget.

K.3 P-value and Generalization Analysis
In the semi-real experiment (see Section 6.4), we further analyze the generalization perfor-
mance of each candidate set and its corresponding p-value returned by the invariance test.
To distinguish the effects of invariance and predictiveness on the generalization performance
(measured by the expected reward on a test environment), we partition the subsets into four
groups depending on their performance on the training environments (1 is the least predictive
and 4 is the most predictive).
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Within each predictiveness group, the scatter plots in Figure 7 display a correlation between
the p-value returned by the invariance test and the expected reward under a test environment.
This result indicates that a policy that depends on a subset with a higher degree of invariance
(higher p-value) tends to generalizes better to a new environment. The correlation is strongest
in the test environment e = 4 in which we could also observe the largest performance gap
between invariant and non-invariant approaches, see Figure 5.

Appendix L
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Figure 8: Example setting illustrating that Assumption 2 is required to derive the theoretical
results in Proposition 1(ii) and Theorem 1(ii).

We now discuss an example (presented in Figure 8) that justifies Assumption 2. In this
example, the variables U1 and U2 influence only the observed covariates X but not the reward
R. This example would lead to the following problems in Proposition 1(ii) and Theorem 1.

First, the subsets {X1, X4} and {X2, X3} are both d-invariant, but no set of size 3 or more
is d-invariant. By symmetry, there is no guarantee that a d-invariant set that is optimal in the
training environments will also be optimal in a new test environment because e.g. {X1, X4}
might be optimal on the training data while {X2, X3} is optimal on the test data. This then
refutes the statement in Proposition 1(ii). Assumption 2 fixes this problem as it ensures the
existence of a largest d-invariant set which is a superset of all other d-invariant sets (see the
proof of Lemma 4), and rules out this example.

Second, there is no strongly non-d-invariant variable (see Definition 5) in this example and
hence Assumption 3 does not guarantee the existence of a confounding removing environment.
This implies that a set E of environments can be arbitrary, for instance, it could be a singleton
E = {e}. In that case, Theorem 1(ii) would no longer hold (but Theorem 1(i) remains valid).
We therefore require Assumption 2 for proving the results of Proposition 1(ii) and the second
statement of Theorem 1(ii).
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