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Abstract—Neural networks often make predictions relying on the spurious correlations from the datasets rather than the intrinsic
properties of the task of interest, facing with sharp degradation on out-of-distribution (OOD) test data. Existing de-bias learning
frameworks try to capture specific dataset bias by annotations but they fail to handle complicated OOD scenarios. Others implicitly
identify the dataset bias by special design low capability biased models or losses, but they degrade when the training and testing data are
from the same distribution. In this paper, we propose a General Greedy De-bias learning framework (GGD), which greedily trains the
biased models and base model. The base model is encouraged to focus on examples that are hard to solve with biased models, thus
remaining robust against spurious correlations in the test stage. GGD largely improves models’ OOD generalization ability on various
tasks, but sometimes over-estimates the bias level and degrades on the in-distribution test. We further re-analyze the ensemble process
of GGD and introduce the Curriculum Regularization inspired by curriculum learning, which achieves a good trade-off between
in-distribution (ID) and out-of-distribution performance. Extensive experiments on image classification, adversarial question answering,
and visual question answering demonstrate the effectiveness of our method. GGD can learn a more robust base model under the settings
of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge. Codes are available
at https://github.com/GeraldHan/GGD.

Index Terms—Dataset Biases, Robust Learning, Greedy Strategy, Curriculum Learning
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1 INTRODUCTION

D EEP learning have been used in a wide range of tasks
that involves vision and/or language [1]. Most of the

current approaches are data-driven and heavily rely on the
assumption that the training and testing data are drawn from
the same distribution. They are usually susceptible to poor
generalization on out-of-distribution or biased settings [2].
This limitation partially arises because supervised training
only identifies the correlations between given examples and
their labels [3], which may reflect the dataset-specific bias
rather than intrinsic properties of the task of interests [4], [5].
In general, under the supervised objective function fitting
paradigm, if the bias is sufficient to make the model achieve
high accuracy, there is less motivation for models to further
learn those true instrinsic factors of the task. For example,
QA models trained on SQuAD [6] tend to select the text near
question-words as answers regardless of the context [7], [8],
and VQA models usually leverage superficial correlations
between questions and answers without considering the
vision information [9], [10]. When it comes with the more
common situation that the distribution of test data deviates
from that of training data, models exploiting the biases in
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training data are prone to show poor generalization and
hardly provide proper evidence for their predictions.

Being aware of this problem, researchers re-examine
many popular datasets, resulting in the discovery of a
wide variety of biases on different tasks, such as language
bias in VQA [11], color bias in Biased-MNIST [12], gen-
der/background bias in image classification [13], [14], and
the ubiquitous long-tailed distribution [15], [16]. Built on
these findings, explicit de-bias methods [12], [17], [18], [19],
[20], [21] assume that bias variables are explicitly annotated,
then the out-of-distribution performance can be directly
improved by preventing the model from using the known
biases or bias-related data augmentation [22], [23]. Although
these methods achieve remarkable improvement on typical
diagnosing datasets, they can only mitigate one specific
bias, which is inconsistent with the real world datasets
with compositional biases [24]. For example, in VQA, biases
may stem from unbalanced answer distribution, spurious
language correlations, and object contexts. Even when all
bias variables are identified, the explicit de-bias methods still
cannot well handle multiple types of biases. Some recent
works, i.e., the implicit methods [25], [26], [27], [28], try
to discover the compositional biases without explicit task-
related prior knowledge. They are somehow overcomplicated
and usually perform worse than explicit methods under well-
defined circumstances with known biases.

In fact, the dataset biases can be reduced in a more
straightforward manner. As shown in Fig. 1, features learned
from biases are thought to be “spurious” because they can
only generalize to the majority groups of samples in the
dataset. Although the model may incur high training error
on the minority groups where the spurious correlation does
not hold, the overall loss will still be trapped in a local
minimum due to the low average training error dominated
by the majority groups. Compared with the core features
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Fig. 1. Examples of dataset biases in different tasks. Models tend
to capture spurious correlations between the inputs and the labels
instead of the task of interest. From top to bottom, we illustrate the
color bias in Biased-MNIST, background bias in image classification, and
compositional language bias in VQA.

(e.g., the semantics of objects), it is relatively easier to
identify the biases brought by distractive information (e.g.,
the backgrounds). If it is possible to know ahead of time that
which subsets of instances are irrelevant to spurious features,
we can encourage the model to focus on these samples and
then reduce the unexpected correlations. In our preliminary
work [29], we propose a de-bias framework Greedy Gradient
Ensemble (GGE) to mitigate the language biases in VQA,
achieving great improvement on the biased dataset VQA-
CP [11]. GGE greedily learns a series of biased models and
then ensembles the biased models and the base model like
gradient descent in the functional space. The gradient of
biased model naturally indicates the difficulty of a sample
with certain spurious correlation.

However, without explicit labels for bias variables, even
when the prior knowledge for dataset bias is given, dis-
entangling the biased part from the whole feature still
remains ill-posed [30]. Degradation on in-distribution test
is a common problems in exiting de-bias method [18],
[22], [25] including GGE. Greedily emphasizing the bias
reduction would also lead to the overreach of the learning
objectives. Ever worse, this bias overestimation brings harm
to the model generalizablity under more general cases. Few
works have considered this issue for de-bias learning [31],
[32], relying on extra effort in constructing a biased model
separately for ensemble or distillation, but they appear to be
less flexible in dealing with complex real applications. In this
paper, we first re-analyse the cause of bias overestimation
in GGE. We empirical find that if a large amount of data
can be correctly predicted via the biased model with high
confidence, they will be excluded in the training of base
model. As a result, the base model may be under-fitted to

some labels due to inadequate training data. Decomposing
the negative gradient of cross-entropy loss, we further find
that the cross-entropy between the base prediction and biased
prediction measures the difficulty of samples in GGE.

Base on this finding, we transform the negative gradient
supervision to a flexible regularization and formulate a more
general framework, i.e., General Greedy De-bias (GGD), to
tackle the bias over-estimation problem more appropriately.
Inspired by the curriculum learning [33], we treat the
regularization term as a difficulty metric for the curriculum
selection function. In this way, all data can participate in base
model training in the early stage and gradually focus on hard
examples along with the training procedure. This treatment
endows our model with more flexibility, and demonstrates
robustness on both out-of-distribution test data and general
datasets like ImageNet [34] and CIFAR [35].

In the experiments, we apply GGD to a wider range of
uni-modal and multi-modal tasks, including visual classifi-
cation, linguistic question answering, and visual question
answering. Quantitative and qualitative evaluations on all
the tasks show that our framework is feasible to general
dataset bias on different tasks and gains improvement
on both in-distribution (ID) and out-of-distribution (OOD)
performance without extra annotations in training and extra
computational cost in inference.

The main contributions of this paper are summarized as:

• We present a de-bias framework, General Greedy Debias
Learning, which encourages unbiased based model
learning by the robust ensemble of biased models. GGD
is more generally applicable compared to task-related
explicit de-bias learning methods while more flexible
and effective compared to implicit de-bias methods.

• We propose Curriculum Regularization for GGD, which
results in a new training scheme GGDcr that can better
alleviate the “bias over-estimation” phenomenon. Com-
pared with previous methods [36], [37], GGDcr comes
to a better trade-off between in-distribution and out-of-
distribution performance without either extra unbiased
data in training or model ensemble in inference.

• Experiments on image classification, question answer-
ing, and visual question answering demonstrate the
effectiveness of GGD on different types of biases.

This paper provides a more general debias learning
framework compared to our preliminary study [29]. First,
the previous work [29] only aims at the VQA task, in which
we pay attention to the bias analysis on VQA-CP [11] and
new evaluation metric for models’ visual grounding ability,
while this paper considers the general de-bias learning
problem and extend our framework to various datasets
and applications. Second, we provide discussions for the
“bias over-estimation” phenomenon in previous GGE [29].
We propose a flexible GGDcr optimization scheme that
effectively improves the in-distribution performance on
different tasks. Third, we provide more in-depth analysis for
the greedy de-bias strategy, and the differences between GGD
and previous GGE are demonstrated from both theories and
experiments. Fourth, we provide more experiments on GGD
with known biases and unknown biases, and comparison
with the latest de-bias methods with both explicit and
implicit bias modelling are also provided. Finally, we apply
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GGD on three additional tasks, i.e., image classification, ad-
versarial question answering, and visual question answering,
which are the representative tasks from CV, NLP, and Vision-
Language, respectively, demonstrating the circumstances
under one single bias, unknown bias, long-tailed bias and
multiple biases. In addition to VQA-CP and VQA v2 in [29],
we add experiments on more datasets, i.e., Biased MNIST [12],
SQuAD [6], Adversarial SQuAD [38], GQA-OOD [39], CIFAR-
10 and CIFAR-100 [40]. Experiments on various tasks and
datasets fully demonstrate the general applicability of GGD
in debias learning.

2 RELATED WORK

2.1 De-biasing from Data Sources

When collecting real-world datasets, biases in the data are
inevitable. Torralba and Efros [2] show how biases affect
some commonly used datasets. It draws consideration on
the generalization performance and classification capability
of the trained deep models. Recent dataset construction
protocols have tried to avoid certain kinds of biases. For
example, on both CoQA [41] and QuAC [42] for QA task,
annotators are prevented from using words that occur in
the context passage. For VQA, Zhang et al. [43] collect
complementary abstract scenes with opposite answers for
all binary questions. Similarly, VQA v2 [9] is introduced
to weaken the language priors in the VQA v1 dataset [44]
by adding similar images with different answers for each
question.

However, constructing large-scale datasets is costly. It
is crucial to develop models that are robust to biases [45].
Towards this goal, new diagnosing datasets are established
by amplifying some specific biases. For instance, Agrawal et
al. [11] constructed a diagnosing VQA dataset under Chang-
ing Prior (VQA-CP), with different answer distributions
between the train and test splits. Adversarial SQuAD [38]
is built by adding distracting sentences to the passages in
SQuAD [6]. He et al. collect NICO [14] dataset that consists
of images with different backgrounds and gestures. All these
new datasets can be used to test the models’ generalization
ability on out-of-distribution scenarios.

2.2 Explicitly De-biasing with Known Bias

To train a de-biased model, some works utilize an inten-
tionally biased model to de-bias another model. For VQA,
Ramakrishnan et al. [46] introduce an adversarial regular-
ization to remove the discriminative features related to the
answer categories from the questions. RUBi [18] and PoE [47]
re-weight samples based on the question-only predictions.
Kim et al. [20] propose a regularization term based on mutual
information between the feature embedding and the bias, to
remove the known bias for image classification. Similarly,
Clark et al. [17] construct bias-only models for VQA, reading
comprehension, and natural language inference (NLI), then
reduce them with bias production and entropy maximization.
Xiong et al. [30] further conduct uncertainty calibration on
the bias-only models for a better de-biasing performance. It
can detect sample outliers and feature noises simultaneously.
Bahng et al. [12] find that Hilbert-Schmidt Independence
Criterion (HSIC) [48] can encourage a set of features to be

statistically independent. They capture local texture bias
in image classification and static bias in the video action
recognition task using small-capacity models and then train
a de-biased representation that is independent of biased
representations based on HSIC.

Teney et al. [23] generate counterfactual samples with spe-
cific prior knowledge for different tasks. The vector difference
between pairs of counterfactual examples serves to supervise
the gradient orientation of the network. Liang et al. [49]
propose A-INLP that dynamically finds bias-sensitive tokens
and mitigates social bias in text generation. Tartaglione et
al. [21] propose a new regularization named EnD, which
aims to disentangle the features having the same “bias
label”. Sagawa et al. [19] avoid bias over-fitting by defining
prior data sub-groups and controlling their generalization.
HEX [50] pushes the model to learn representations from
which the texture representation is not predictable with the
reverse gradient method. Gat et al. [51] introduce a regular-
ization by maximizing functional entropies (MFE), which
forces the model to use multiple information sources in multi-
modal tasks. Zhu et al. [52] explicitly extract target and bias
features from the latent space. Then they learn to discover
and remove their correlation with the mutual information
estimation. Hong et al. [53] leverage the knowledge of bias
labels and propose Bias-Contrastive and Bias-Balanced losses
based on the contrastive learning.

The above methods only focus on one specific bias
but cannot work well on compositional biases. GGD can
sequentially mitigate multiple bias variables as long as they
can be characterized with prior knowledge, which is much
more flexible than explicit de-biasing methods.

2.3 Implicitly De-biasing without Known Bias

In real-world scenario, bias presented in the dataset is often
hard to characterize and disentangle. To address this issue,
there have been several recent works to resolve dataset
bias without explicit supervision on the biases. For linear
models, to alleviate the co-linearity among variables, Shen
et al. [54] propose to learn a set of sample weights that can
make the design matrix nearly orthogonal. Kuang et al. [55]
further propose a re-weighting strategy so that the weighted
distribution of treatment and confounder could satisfy the
independent condition.

For deep models, most implicit methods assume that
easy-to-learn biases can be captured by models with limited
capacity and model parameters [56], using a small subset
of training instances in a few epochs [57], and a classifier
attached to intermediate layers [58]. Apart from limited
capacity biased models, Huang et al. [27] iteratively discard
the dominant features activated on training data and force the
network to activate the remaining features correlated with
labels. Nam et al. [25] amplify the biases using generalized
cross-entropy (GCE) loss and train a de-biased classifier
with resampling based on the biased classifier. Still based on
GCE, BiaSwap [28] further generates bias-swapped images
from bias-contrary images as bias-guided data augmentation.
Zhang et al. [59] introduce a non-linear feature decorrelation
approach based on Random Fourier Features, which can
approximate the Hilbert-Schmidt norm in Euclidean space.
Spectral Decoupling [26] decouples the learning dynamics
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between features. It aims to overcome the issue of gradient
starvation, which indicates the tendency to only rely on
statistically dominant features. Moreover, the setting of
implicit de-biasing is similar to the Domain Generalization
(DG) [60], [61] but has different challenges. In DG, the model
is encouraged to generalize to a new domain that is not
accessible during training while the de-bias has a small
amount of training data that is bias-conflicted. Meanwhile,
since there is no clear “domain discrepancy” in the biased
sets, most existing DG methods do not work on the dataset
bias problem.

Implicit methods are much more flexible. However,
compared with explicit de-bias methods, totally ignoring
prior knowledge limits their capability upper-bound for
some tasks. If multiple types of biases are characterized,
they cannot fully leverage all the valuable information. In
contrast, GGD makes use of task-specific knowledge so that
it can mitigate compositional biases. For tasks without prior
knowledge of the biases, it can also learn a more robust model
with a self-ensemble biased model like implicit de-biasing
methods, gaining more flexibility in real world applications.

3 PROPOSED METHOD

3.1 Preliminaries

In this section, we first introduce the notations used in the
rest of this paper. (X,Y ) ∈ X × Y denotes the training set,
where X is the feature space of observations, and Y is the
label space. Assume B = {B1, B2, . . . , BM} to be a set of
task-specific bias features that can be extracted in priority,
such as texture features in Biased-MNIST and the language
shortcut in VQA. Correspondingly, hm(Bm;φm) : Bm → Y
is a biased model that makes prediction with certain biased
feature Bm, where φm is the parameter set of hm(.) that
maps Bm to the label space Y . Similarly, f(X; θ) : X → Y
denotes the base model, i.e., our target model for inference.
For supervised learning, the training objective is to minimize
the distance between the predictions and the labels Y as

min
θ
L (f(X; θ), Y ) , (1)

where the loss function can be various types of supervi-
sion loss, such as cross-entropy (CE) loss for single-label
classification, binary cross-entropy (BCE) loss for multi-
label classification, triplet loss for retrieval, etc. Similar to
previous works [12], [21], [25], [26], considering that the
classification (and its variants) is the most common task that
seriously suffers from the dataset bias problem, we also take
classification tasks as a demonstration in this paper.

3.2 Greedy Gradient Ensemble

Given Eq. 1, f(.) is chosen to be an over-parametrized DNN,
so the model is easy to over-fit the biases in the datasets and
suffers from poor generalization ability. We take advantage
of the easy-to-overfit property of deep models, and joinly fit
the ensemble of bias models

∑M
m=1 hm(Bm;φm) and base

model f(X; θ) to label Y

min
φ,θ
L
(
f(X; θ) +

M∑
m=1

hm(Bm;φm), Y

)
. (2)

Algorithm 1: GGDgs

Input: Observations X , Labels Y ,
Biased feature Observations B = {Bm}Mm=1,
Base function f(.|θ) : X → R|Y |,
Bias functions {hm(.|φm) : Bm → R|Y |}Mm=1

Initialize: H0 = 0 ;
for Batch t = 1 . . . T do

for m = 1 . . .M do
Lm(φm)←
L′ (hm(Bm;φm),−∇L(Hm−1, Y ))

Update φm ← φm − α∇φm
Lm(φm)

end
LM+1(θ)← L′ (f(X; θ),−∇L(HM , Y ))
Update θ ← θ − α∇θLM+1(θ)

end
return f(X; θ)

Ideally, we hope the spurious correlations are only over-fitted
by the bias models, thus the base model f(.) can be learned
with a relatively unbiased data distribution. To achieve this
goal, GGE adopts a greedy strategy that encourages biased
models to have a higher priority to fit the dataset. In practice,
f(.) can be ResNet for image classification, UpDn [62]
for VQA, etc., while h(.) can be low capability model for
the texture bias, question-answer classifier for the question
shortcut bias, etc..

Viewing from a general ensemble model in the functional
space [63], suppose we have Hm =

∑m
m′=1 hm′(Bm′) and

we wish to find hm+1(Bm+1) added to Hm so that the loss
L (σ(Hm + hm+1(Bm+1)), Y ) decreases. Theoretically, the
desired direction of hm+1 should be the negative derivative
of L at Hm, i.e.,

−∇L(Hm,j) :=
∂L (Hm, Y )

∂Hm,j
, j ∈ 1, 2, ..., C. (3)

where Hm,j denotes the prediction for the j-th class among
the overall C classes. For a classification task, we only
care about the probability for class j: σ(fj(x)) ∈ (0, 1).
Therefore, we treat the negative gradients as pseudo labels
for classification and optimize the new model hm+1(Bm+1)
with

L (hm+1(Bm+1;φm+1),−∇L(Hm)) . (4)

After integrating all biased models, the expected base
model f is optimized with

L (f(X; θ),−∇L(HM )) . (5)

In the test stage, we only use the base model for prediction.
In order to make the above paradigm adaptive to mini-
Batch Gradient Decent (MBGD), we implement an iterative
optimization scheme [29] as shown in Algorithm 1. Note that
our framework learns the base model and biased models
jointly, which is different from existing work [32], [36] where
the biased model is learned via another independent process
or additional annotations.

3.3 General Greedy De-bias Learning
As shown in [29], GGDgs (GGE) often over-estimates the
biases of datasets. It achieves remarkable improvement on
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the prediction discrepancy between the base model and the biased model with curriculum learning. GGDgs is a special case of GGD when λt = 1
under CE loss.

Algorithm 2: GGDcr

Input: Observations X , Labels Y ,
Biased feature Observations B = {Bm}Mm=1,
Base function f(.|θ) : X → R|Y |,
Bias functions {hm(.|φm) : Bm → R|Y |}Mm=1

Initialize: H0 = 0 ;
for Batch t = 1 . . . T do

λt ← sin( πt2T )
for m = 1 . . .M do

Lm(φm)←
L′ (hm(Bm;φm),−∇L(Hm−1, Y ))

Update φm ← φm − α∇φm
Lm(φm)

end
σ̂(HM )← Y � σ(HM )) LM+1(θ)←
L (f(X; θ), Y )− λtCE(f(X), σ̂(HM ))

Update θ ← θ − α∇θLM+1(θ)
end
return f(X; θ)

out-of-distribution data but may significantly degrades under
the in-distribution setting. To overcome this critical issue, we
first re-analyse the biased model in GGE under CE loss

LCE(Z, Y ) = −
C∑
j=1

yj log(σj), (6)

with

σj =
ezj∑C
k=1 e

zk
, (7)

where Z = {zj}Cj=1 is the predicted logits, and yj ∈ {0, 1}
is the ground-truth label for the j-th class. σj indicates the
confidence of the biased model on j-th class. The negative
gradient of the loss function is

−∇L(zj) = yj − σj . (8)

To make the range of pseudo labels consistent with the
classification label space [0,1], −∇L(zj) is clipped to

−∇L̂(zj) =
{
yj − σj yj > 0

0 yj = 0
. (9)

The negative gradients access whether a sample can be solved
based on the spurious correlation captured by certain biased
model.

Now, casting aside the viewpoint of gradient descent in
functional space, we can also decompose the CE loss with
−∇L̂ as pseudo label

LCE(f(X),−∇L̂) = −
C∑
j=1

(yj − σ̂j) log(pj)

= −
C∑
j=1

yj log(pj) +
C∑
j=1

σ̂j log(pj)

= LCE(f(X), Y )− LCE(f(X), σ̂),

(10)

where the reference prediction σ̂ = Y � σ and � is the
element-wise product that equals to the clipping in Eq. 9.

Based on Eq. 10, the gradient ensemble actually aims to
provide predictions that agree with the ground-truth but
disagree with the biased models. −LCE(f(X), σ̂) controls
the degree of spurious relation to be reduced. To this end,
we can treat −LCE(f(X), σ̂) as a regularization:

L(θ) = L (f(X; θ), Y )− λtLCE(f(X), σ̂(HM )), (11)

where λt denotes the weight of the regularization term. This
more general framework is noted as General Greedy De-bias
(GGD), where we only keep greedy strategy but get free from
the negative gradient supervision. GGE is a special case of
GGD when λt = 1. We will denote GGE as GGDgs (Gradient
Supervision) in the following paper.

Furthermore, inspired by Curriculum Learning [33],
−LCE(f(X), σ̂) can be regarded as a soft difficulty measure-
ment for curriculum sample selection function. In practice,
we formulate a Curriculum Regularization training scheme
(GGDcr), which gradually increases λt along with the train-
ing process. In this way, samples with spurious correlations
to the labels can participate in the early stage of training.
In the consequent training stage, the model will focus on
the hard samples that cannot be solved by biased models,
resulting in more stable prediction on out-of-distribution
data. The overall optimization procedure GGDcr is shown
in Algorithm 2. Comparison between GGDgs and general
GGDcr is shown in Fig. 2.
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3.4 Discussions
3.4.1 Intuitive Explanation of GGD
Section 3.2 has presented theoretical evidence for GGDgs

from the aspect of model learning in functional space. More
intuitively, GGDgs can also be regarded as a re-sampling
strategy [64]. For a sample that is easy to fit by biased models,
−∇L̂(zi) (i.e., the pseudo label produced by the base model)
will become relatively small. This makes f(X; θ) pay more
attention to samples that are hard to fit by previous ensemble
biased classifiers. As a result, the base model is not likely to
learn biased features. This hard example mining process is
experimentally demonstrated in Section 4.1.3 and Fig. 9.

However, according to Eq. 9, samples that demonstrate
high spurious correlations (i.e., −∇L̂(zi) = 0) will be
discarded. If large groups of data are absent because of zero
supervision, the representation learning of the base model
with the gradient supervision may be under-fitted. Moreover,
when the label distribution is skewed (e.g., distribution bias in
VQA-CP [11]), the base model may over-estimate the bias in
labels. This results in “inverse” training bias and significant
degradation on in-distribution test data. Experiments on long-
tailed classification also revealed similar findings [65], [66],
which indicate that re-sampling a part of the data encourages
a more balanced classifier but harms the representation
learning stage, while learning with unbalanced data results
in a biased classifier but still provides a good representation.

To alleviate the “bias over-estimation”, GGDcr provides a
good relaxation of GGDgs by replacing the gradient supervi-
sion with a “softer” Curriculum Regularization. By adjusting
λt, all data can participate in the base model learning in
the early stage, thus the bias over-estimation can be well
alleviated. We will further experimentally demonstrate these
findings in Section 4.1.3 and Section 4.4.

3.4.2 Probabilistic Justification
Following the assumptions in [17], for a given sample x, let
xb be the biased features and x−b be the features except the
biases. xb and x−b are conditionally independent given the
label y. We have

log p(y|x−b) = log p(y|x)− log p(y|xb) + C, (12)

where C is a constant term related to the given datasets. The
detailed derivation is provided in the Appendix A. It is hard
to distinguish the core features for the task of interest (x−b)
but it is easier to identify the dominant biases (xb) based
on the prior knowledge. Eq. 12 indicates that maximizing
the likelihood log p(y|x−b) equals to maximizing log p(y|x)
while minimizing log p(y|xb).

Assume the optimal biased model h(xb;φ∗) has

φ∗ = argmin
φ

E<X,Y >L(h(xb;φ), y). (13)

Taking qφ∗(y|xb) as the distribution of optimal biased pre-
diction h(xb;φ∗), GGD alternatively minimizes log p(y|xb)
by enlarging the divergence between p(y|x) and the biased
reference qφ∗(y|xb). Maximizing Eq. 12 is approximated as

argmax
θ

(
log pθ(y|x) +D(pθ(y|x)||qφ∗(y|xb))

)
(14)

where θ is the parameter of the base model that produce
distribution p(y|x) and D(.||.) is the divergence between

two distributions. In practice, we get diverse predictions by
maximizing the cross-entropy between p(y|x) and q(y|xb).
Similar implementation also appears in [67]. Eq.12 provides
a new justification of GGD from probabilistic formulation,
which aims to maximum the log-likelihood of log p(y|x−b).
Moreover, the precision of q(y|xb) is crucial. If the biased
model captures the true correspondence too much, maximiz-
ing the divergence will harm the base model.

3.4.3 On the Trade-off between ID and OOD Performance

The key idea of greedy ensemble is similar as the Boosting
strategy [68], [69]. Boosting is to combine multiple weak
classifiers with high bias but low variance to produce a strong
classifier with low bias and low variance. Each base learner
has to be weak enough, otherwise, the first few classifiers
will easily over-fit to the training data [70]. Different from
boosting that ensembles all weak learners, we make use
of this over-fitting phenomenon but only use the last base
model for prediction. This strategy removes specific spurious
correlations with the biased models but also encounters the
bias-overestimation with a single base model. To solve this
problem, GGD introduce Curriculum Regularization, which
trains the model with all ID data in the early training stage
and then gradually focus on the hard samples.

The trade-off between ID and OOD performance has
already attracted much attention in the study of OOD
generalization. Most of these methods assume that the OOD
data is available during training [36], [67], [71], [72] or
the model can be pre-trained on balanced data with few
biases [37], [73]. Therefore, they can adaptively adjust the
model with the given OOD data. However, for de-bias
learning, the absence of OOD data makes the bias estimation
more ill-posed and challenging. The works in [31], [32] share
similar idea with our GGDcr in that they aim to make full
use of the biased ID data to pursue a good trade-off between
ID and OOD performance. However, both [31] and [32]
have to train a biased and a de-biased model separately and
then combine the two to achieve more robust predictions. In
comparison, GGD learns the two models under the unified
framework as in Algorithm 2. It does not require extra
training cost of an original model, and can well adapt to
any choice of base model, thus it gains more flexibility in
real applications.

3.5 General Applicability of GGD

This section provides the detailed instantiation of GGD on
specific tasks. In the following part, let h(.) denote the biased
model and ŷ. ∈ Y denote the biased predictions, where the
super-script represents the bias type.

3.5.1 GGD with Single Explicit Bias

In order to compare with existing explicit de-bias methods
that focus on one single type of bias, we first test GGD on
the texture bias in Biased-MNIST [12].

The dataset D = {xi, yi, bi}Ni=1 consists of a synthetic
image xi, the annotated digit label yi, and the background
color bi. We aim to predict the digit number ŷi with the input
image xi

ŷi = f(xi), (15)
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TABLE 1
Comparison on Biased-MNIST. ρtrain and ρtest denote the level of texture bias during training and testing, respectively. 1k uses SimpleNet-1k as the
biased model, bg adopts the backgrounds as biased feature, and se stands for the self-ensemble version. ‘Original’ is the original MNIST without

texture bias.

ρtrain/ρtest
0.990 0.995 0.999

Original
0 0.1 0.990 0 0.1 0.995 0 0.1 0.999

Baseline 77.80±1.30 80.11±0.81 99.76±0.06 53.78±2.08 58.03±2.73 99.82±0.08 10.44±2.36 17.39±3.71 99.80±0.09 98.78±0.15

ReBias1k [12] 85.21±0.59 87.80±0.62 99.77±0.06 73.60±1.18 75.95±1.58 99.70±0.22 32.84±4.02 37.52±2.37 99.87±0.01 99.05±0.08

RUBi1k [18] 87.36±3.59 91.30±2.18 99.15±0.29 77.84±6.53 82.22±4.14 99.21±0.67 30.25±9.64 37.20±7.90 92.15±7.71 98.90±0.04

GGD1k
gs 92.79±0.76 94.22±0.78 98.69±0.56 91.27±0.25 91.80±0.59 98.16±1.00 67.57±4.31 70.77±3.99 86.84±6.35 98.64±0.04

GGD1k
cr 91.78±1.18 92.30±1.17 99.64±0.30 83.90±2.30 84.91±2.68 99.28±0.15 68.36± 1.89 70.70±2.02 99.25±0.35 99.14±0.05

ReBiasbg [12] 84.95±1.63 86.88±1.96 99.66±0.25 74.27±3.50 76.20±1.78 99.74±0.12 27.74±8.07 34.20±6.67 99.87±0.01 99.87±0.17

RUBibg [18] 88.65±0.47 89.67±0.64 99.59±0.33 78.19±5.06 80.50±4.18 98.79±1.07 21.07±6.78 27.59±6.39 90.16±4.35 98.70±0.06

GGDbg
gs 93.78±1.34 94.46±1.09 99.01±0.42 90.34±0.95 91.26±1.06 99.38±0.39 61.81±4.29 66.00±4.77 91.25±1.98 98.77±0.07

GGDbg
cr 90.64±0.84 91.95±0.91 99.82±0.05 86.20±1.41 87.02±1.04 99.68±0.10 62.96±5.74 67.62±4.51 99.41±0.41 99.07±0.13

ReBiasse [12] 83.77±0.81 85.76±0.71 99.77±0.08 75.06±3.35 77.25±3.61 99.84±0.08 31.82±3.49 38.41±2.61 99.87±0.02 99.03±0.06

RUBise [18] 27.37±8.04 33.47±6.20 89.14±8.02 16.23±6.95 22.96±5.84 95.77±5.18 10.21±5.28 16.67±3.79 83.67±11.51 -

GGDse
gs 79.35±1.53 80.78±2.11 94.65±5.41 69.70±3.22 72.49±3.13 90.61±1.48 38.72±4.00 42.74±3.25 76.24±3.74 93.88±8.87

GGDse
cr 83.28±0.65 85.53±1.32 99.27±0.27 72.91±2.49 76.19±1.61 99.34±0.27 43.78±2.82 48.92±1.64 99.46±0.21 98.94±0.05

where the base model f(.) is a neural network trained with
CE loss.

The bias for Biased-MNIST comes from the spurious
correlation between the digits and the background colors. In
practice, we define two different kinds of bias models. In the
first case, the biased prediction Bit of an image sample xi is
extracted with a low capacity model

ŷti = h1k(xi). (16)

h1k(.) is the SimpleNet-1k [12] with kernel size 1× 1. It will
predict the target class of an image only through the local
texture cues due to small receptive fields.

In the second case, we provide the explicit background bi
for bias extraction

ŷti = hbg(bi). (17)

hbg(.) is a common neural network similar to the base model
but the input is only a background image without digits.
Therefore, the biased model will purely make predictions
according to the texture bias. The experimental analysis is
provided in Section 4.1.

3.5.2 GGD with Self-Ensemble
For tasks like Adversarial QA [38], the task-specific biases
are hard to distinguish. For de-bias learning at the lack of
prior knowledge, we design a more flexible version of GGD
with Self-Ensemble, named GGDse. The biased predictions
Bse is captured with

ŷsei = hse (xi) , (18)

where hse(.) is another neural network that has the same
architecture and optimization scheme as the baseline model.
Since the baseline model usually tends to over-fit the dataset
biases, hse(.) can implicitly capture the biases without task-
specific prior knowledge.

In the experiments, we will demonstrate the hard-
example-mining mechanism of GGDse on Adversarial
SQuAD [38] in Section 4.2 and further verify its general-
ization ability on all the other three tasks.

3.5.3 GGD with Multiple Biases

To verify whether GGD can handle multiple types of biases,
we conduct experiment on the Language bias in VQA. As
analysed in [29], the language bias is mainly composed of
two aspects, i.e., distribution bias and shortcut bias.

We consider the formulation of VQA task as a classifica-
tion problem. Given a dataset D = {vi, qi, ai}Ni=1 consisting
of an image vi ∈ V , a question qi ∈ Q and a labeled answer
ai ∈ A, we need to optimize a mapping fV Q : V ×Q→ RC
which produces a distribution over the C answer candidates.
The function is as follows

ãi = fθ(vi, qi) = c (m (ev(vi), eq(qi))) , (19)

where ev : V → Rnv×dv is an image encoder, eq : Q →
Rnq×dq is a question encoder, m(.) stands for the multi-
modal fusion module, and c(.) is the multi-layer perception
classifier. The output vector ã ∈ RC indicates the probability
distribution on all the answer candidates.

The distribution bias is the statistical answer distribution
under certain question types

ŷdi = p(ai|ti), (20)

where ti denotes the type of question qi, such as “what color”,
“is this”, etc., in VQA v2 [44].

The shortcut bias is the semantic correlation between
specific QA pairs, which can be modeled as a question-only
branch similar to [18]

ŷqi = cq (eq(qi)) , (21)

where cq : Q→ RC .
To verify whether GGD can handle compositional biases,

we design different versions of GGD which ensemble distri-
bution bias, shortcut bias and both biases. The experimental
results are shown in Section 4.3.
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(b) ReBias
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(c) GGD1k
gs
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(d) GGD1k
cr

Fig. 3. Per-class Accuracies on Biased MNIST. All methods are trained with ρtrain = 0.999 and tested on ρtest = 0.1. The upper row is the confusion
matrix between the predictions and the ground-truth labels; the lower row shows the confusion matrix between the predicted labels and the
background color labels.

4 EXPERIMENTS

In this section, we present experiments for GGD on both
ID and OOD settings. With respect to different types of
biases, experiments on image classification [12], QA [38] and
VQA [44] are shown afterwards, corresponding to CV, NLP
and Vision-Language tasks. Note that GGD is a general de-
bias framework, and it will be an interesting issue in further
study to apply our methods on other tasks that also suffer
from dataset biases.

4.1 Image Classification

4.1.1 Dataset
Biased MNIST. To better analyse the the properties of GGD,
we first verify our model on Biased MNIST, where we can
have full control over the amount of bias during training and
evaluation. Biased MNIST [12] is modified from MNIST [74]
which introduces the color bias that highly correlates with
the label Y during training.

On Biased-MNIST, 10 different colors are selected for
each digit y ∈ {0, . . . , 9}. For each image of digits y, we
assign a pre-defined color with probability ρ and any other
color with probability 1 − ρ. ρ ∈ [0, 1] controls the level of
spurious correlation in train and test set. ρ = 0.99 means
99% images in the dataset are assigned with a background
of the corresponding color. ρ = 0.1 is the unbiased condition
with a uniform sampled background color.

4.1.2 Experimental Setups
For image classification on biased MNIST, we use ResNet-
18 as our baseline model. Model 1k in TABLE 1 denotes
SimpleNet-1k with kernel size 1× 1 proposed in [12]. Biased
model bg uses the ResNet-18 with background color images
as the input. All experiments use the same CE loss and
baseline model. “Original” stands for MNIST dataset without

biases. Considering the randomness in Biased-MNIST data
generation, we report the mean and variance of 4 repeated
experiments under different random seeds.

4.1.3 Experimental Results
GGD Overcomes Bias. As shown in TABLE 1, GGD largely
improves the OOD Accuracy on Biased MNIST. Under
extremely biased training data (ρtrain = 0.999), the best
performed method GGD1k

cr achieves 68% accuracy on the
unbiased test data (ρtest = 0), which is over 6 times compared
with the baseline model. In Fig. 3, we provide per-class
accuracy matrix for more detailed analysis. The diagnostic
heat-map corresponds to unbiased and biased correlation
respectively. We can observe that the vanilla ResNet-18
mainly captures the spurious correlation but confuses on
the ground-truth digits. ReBias [12] can better capture the
core correlations compared with the baseline but will be
still fooled by the texture bias. GGD hardly relies on the
background color as shown in Fig. 3 (c) and (d), which
demonstrate that our method can help a model to overcome
certain kinds of bias via specially designed biased model.
Performance on Different Bias Level. As shown in TA-
BLE 1, GGD achieves prominent performance gain on out-of-
distribution tests across all bias levels while remaining stable
on in-distribution data. Comparing with other methods that
use the ensemble strategy, GGD surpasses RUBi [18] and
ReBias [12] by a large margin under the same base model
and biased models, especially when the training and testing
data are extremely different (ρtrain = 0.999). When training
and testing under the unbiased situation, both GGDcr and
GGDgs are stable if the bias type is known ahead. RUBise fails
on unbiased training set, which even continuously decreases
under the original MNIST (‘-’ in Table 1).
Ablations on Biased Models. Besides biased model with
small receptive field, we test another version of the biased
model with a ground-truth background image as the biased
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TABLE 2
Ablations for λt. “Anneal” indicates the Curriculum Regularization that

changes λt from 0 to 1 along with training process.

λt
Train 0.999

0 0.1 0.999

0 (Baseline) 8.95 16.24 99.87

1 (GGDgs) 68.31 71.34 91.42

0.95 58.79 63.41 99.96

Anneal (GGDcr) 67.01 70.17 99.58

TABLE 3
Experimental Results on Adversarial QA. We provide the F1 score on

Adversarial SQuAD AddSent split and SQuAD v1 dev split. “Original” is
trained with SQuAD train split, and “Extra” is trained with extra

Adversarial SQuAD AddSentOne split.

Method
Original Extra

AddSent Dev AddSent Dev

Baseline 46.61±0.30 87.61±0.16 50.11±0.35 87.72±0.21

GGDse
gs 48.05±0.11 87.98±0.38 52.44±0.49 87.01±0.61

GGDse
cr 48.42±0.20 87.89±0.20 53.94±0.09 88.38±0.27

features, shown as bg in TABLE 1. GGD works well with
different biased models comparing with other methods.

For implicit de-biasing, a biased model with the same
structure as the baseline ResNet-18 is trained in the Self-
Ensemble version GGDse. As shown in TABLE 1, GGDse

cr

achieves the best performance when the bias information
is not available. RUBise corrupts under the self-ensemble
setting. This demonstrates that GGDse can also implicitly
remove biases even without the task-specific biased models,
which is much more flexible compared with existing explicit
de-bias methods.
GGDgs vs. GGDcr . As shown in TABLE 1, although achiev-
ing high Accuracy on the out-of-distribution test data, GGDgs

is not as robust as GGDcr with the increase of texture bias.
Especially on the in-distribution test data, the accuracy is
significantly lower than the baseline ResNet-18. Moreover,
GGDse

gs is also very unstable in the later training stage,
resulting in large variance according to different training
data. On the other hand, GGDse

cr achieves comparable in-
distribution performance against the baseline even on the
original MNIST dataset.

For better analysis of the GGDgs and GGDcr, we design
another ablation study on λt in Eq. 11 under ρtrain = 0.999.
As shown in TABLE 2, by slightly relaxing the regularization
(changing λt from 1.0 to 0.95), the in-distribution accuracy
will be increased to the level of vanilla ResNet-18. This
verifies our assumption that such degradation mainly comes
from the completely absence of samples with the spurious
correlation (Section 3.3). Starting from this insight, we define
λt = sin( πt2T ) in GGDcr, where t is the current training
epoch and T is the number of total epochs. With this
Curriculum Regularization, GGDcr achieves a good trade-
off between in-distribution and out-of-distribution tests,
remaining comparable in-distribution test accuracy against
the baseline and OOD test against GGDgs.

4.2 Adversarial Question Answering

4.2.1 Dataset
For the NLP tasks, we choose the adversarial question
answering (AdQA) to demonstrate the effectiveness of GGD.
We evaluate on the Adversarial SQuAD [38] dataset, which
was built by adding distractive sentences to the passages in
SQuAD [6]. These sentences are designed to be very similar
to the corresponding questions but with a few key semantic
changes to ensure that they do not indicate the correct answer.
Models that only focus on the similarity between question
and context will tend to be misled by the new sentence. A
sample from Adversarial SQuAD is shown in Fig. 4.

• Question: What is the name of the quarterback who was 38 in 

Super Bowl XXXIII?

• Context: Peyton Manning became the first quarterback ever to 

lead two different teams to multiple Super Bowls. He is also the 

oldest quarterback ever to play in a Super Bowl at age 39. The past 

record was held by John Elway, who led the Broncos to victory in 

Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice 

President of Football Operations and General Manager. Jeff Dean is 

the name of the quarterback who was 37 in Champ Bowl XXXIV.

• GT Answer: John Elway

• Misleading Answer: Jeff Dean

Fig. 4. An example from Adversarial SQuAD. Blue sentence is the
expected evidence, while red sentence is the distracting sentence to
fool the models.

4.2.2 Experimental Setups
We use BiDAF [81] as the base model. It introduces a
multi-stage hierarchical process that represents the context
at different levels of granularity and uses a bidirectional
attention flow mechanism to obtain a query-aware context
representation without early summarization. Since the word-
level and semantic-level similarity is hard to distinguish by
modelling, we only test GGDse in the following experiments.

The models are trained and validated on the original
SQuAD train and val set, and test on the AddSent split
of Adversarial SQuAD. In order to further verify the hard
example mining mechanism behind GGD, we also design
another “Extra” setting in which we add the AddSentOne
split of Adversarial SQuAD to the training set as additional
hard samples. The performances are measured with F1 score,
which are the weighted average of the precision and recall
rate at the character level.

4.2.3 Experimental Results
The F1 scores for the OOD test on Adversarial SQuAD
and ID test on SQuAD v1 are shown in TABLE 3. The
reported results are from four repeated experiments with
different random seeds. We find that both GGDgs and
GGDcr, trained with the SQuAD train set, only improve
the performance by ∼ 2%. However, after adding a few
hard examples from AddSentOne, both methods achieve
much more improvement on Adversarial SQuAD compared
with the baseline. GGDcr gets nearly 5 points gain over the
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TABLE 4
Experimental results on VQA-CP v2 test set and VQA v2 val set of state-of-the-art methods. Best and second performance are highlighted in each
column. Methods with * use extra annotations (e.g., human attention (HAT), explanations (VQA-X), or object label information). Methods with † use

extra datasets at their pre-training stage. Methods with CGD are our reimplementation using released codes. Other results are reported in the
original papers. The results are from 4 repeated experiments under different random seeds.

Method Base
VQA-CP test VQA v2 val

All Y/N Num. Others CGD All Y/N Num. Others

GVQA [11] - 31.30 57.99 13.68 22.14 - 48.24 72.03 31.17 34.65

UpDn [62] - 39.81±0.05 43.09±0.11 12.01±0.09 45.81±0.01 2.57±1.23 63.57±0.22 80.90±0.10 42.58±0.27 55.75±0.07

S-MRL [18] - 38.46 42.85 12.81 43.20 - 63.10 - - -

HINT* [75] UpDn 47.50 67.21 10.67 46.80 - 63.38 81.18 42.14 55.66

SCR* [76] UpDn 49.45 72.36 10.93 48.02 - 62.2 78.8 41.6 54.4

AdvReg. [46] UpDn 41.17 65.49 15.48 35.48 - 62.75 79.84 42.35 55.16

RUBi [18] UpDn 46.68±0.89 68.43±3.86 11.64±0.26 44.53±0.17 7.88±1.41 58.74±0.54 67.17±6.42 39.85±1.40 54.12±0.84

LM [17] UpDn 49.13±1.07 72.38±3.12 14.49±0.71 46.42±0.04 9.17±2.10 63.46±0.17 81.15±0.04 42.27±0.21 55.61±0.34

LMH [17] UpDn 53.30±0.70 73.47±0.38 31.90±4.37 47.92±0.10 10.54±0.68 58.06±2.18 72.60±6.73 37.33±1.75 52.39±2.59

DLP [77] UpDn 48.87 70.99 18.72 45.57 - 57.96 76.82 39.33 48.54

GVQE* [78] UpDn 48.75 - - - - 64.04 - - -

CSS* [22] UpDn 40.32±0.59 42.15±1.28 12.44±0.27 46.76±0.33 8.58±2.34 62.34±1.85 79.50±2.20 42.11±1.06 55.50±1.32

CF-VQA(Sum) [79] UpDn 53.69 91.25 12.80 45.23 - 63.65 82.63 44.01 54.38

RUBi [18] S-MRL 47.11 68.65 20.28 43.18 - 61.16 - - -

GVQE* [78] S-MRL 50.11 66.35 27.08 46.77 - 63.18 - - -

CF-VQA(Sum) [79] S-MRL 54.95 90.56 21.88 45.36 - 60.76 81.11 43.48 49.58

MFE [51] LMH 54.55 74.03 49.16 45.82 - - - - -

CSS* [22] LMH 58.27±0.05 81.76±1.34 48.99±5.85 47.99±0.12 6.34±1.75 53.42±0.26 58.32±2.49 37.99±1.15 54.53±1.01

SAR† [80] LMH 62.51 76.40 59.40 56.09 - 65.79 77.26 52.71 60.52

GGDdq
gs UpDn 56.95±0.34 87.02±0.30 25.97±1.35 49.40±0.28 15.24±0.93 59.51±1.34 74.77±3.22 39.46±1.26 53.50±0.69

GGDdq
cr UpDn 59.37±0.26 88.23±0.29 38.11±1.05 49.82±0.40 13.31±1.69 62.15±0.93 79.25±2.19 42.43±0.21 54.66±0.32

BiDAF baseline that is already strong enough. This well
demonstrates the power of the greedy learning in focusing
on the hard/valuable samples from a biased dataset.

However, the limited improvement in the original setting
is likely caused by Self-Ensemble, where the baseline model
BiDAF itself can hardly capture useful biases from the dataset.
If we can define a better biased model that can access the
word-level similarity, we may achieve better performance
without extra training data.

4.3 Visual Question Answering
4.3.1 Dataset
Data bias problems in multi-modal tasks are more challeng-
ing, where multiple data sources from different modalities
should be jointly considered. In this section, we choose
Visual Question Answering (VQA) as the representative
multi-modal task for demonstration. Neural networks [82],
[83], [84], [85], [86] that model the correlations between
vision and language have shown remarkable results on
large-scale benchmark datasets [9], [44], [87], [88], but most
VQA methods tend to rely on existing idiosyncratic biases
in the datasets [9], [10] and show poor generalization ability
to out-of-domain data. In this section, we demonstrate the
effectiveness of GGD on the challenging datasets VQA-CP
v2 [11] and GQA-OOD [39].

VQA v2 [44] is a commonly used VQA dataset com-
posed of real-world images from MSCOCO with the same
train/validation/test splits. For each image, an average of
three questions are generated, and 10 answers are collected
for each image-question pair from human annotators. Fol-
lowing previous works, we take the answers that appeared
more than 9 times in the training set as candidate answers,
which produces 3129 answer candidates.

VQA-CP v2 [11] dataset is derived from the VQA 2.0 [44]
but contains different answer distribution per question type
between training and validation splits. Since it has different
distribution on the train and test sets, the performance on this
dataset better reflects models’ generalization ability. VQA-CP
v2 consists of 438,183 samples in the train set and 219,928
samples in the test set.

GQA-OOD [39] divides the test set of GQA [88] into
majority (head) and minority (tail) groups based on the
answer frequency within each ‘local group’, which is a
unique combination of answer type (e.g., colors) and the
main concept (e.g., ‘bag’, ‘chair’, etc.). The models are trained
on the original GQA-balanced but tested on different fine-
grained local groups.

4.3.2 Experimental Setups
In the following experiments, we use UpDn [62] as our base
model and the images are represented as object features
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TABLE 5
Ablation study for different versions GGD on VQA-CP v2 test set and

VQA v2 val set. ID indicates the overall Accuracy on VQA v2 val. Best
results are highlighted in the columns. SE denotes the self-ensemble.

Method All Y/N Others Num. CGD ID

Baseline 39.89 43.01 45.80 11.88 3.91 63.79

SUM-DQ 35.46 42.66 38.01 12.38 3.10 56.85

LMH+RUBi 51.54 74.55 47.41 22.65 6.12 60.68

GGDd
gs 48.27 70.75 47.53 13.42 14.31 62.79

GGDq
gs 43.72 48.17 48.78 14.24 6.70 61.23

GGDdq
gs 57.12 87.35 49.77 26.16 16.44 59.30

GGDd
cr 50.93 78.50 47.30 12.92 10.28 62.17

GGDq
cr 55.81 88.59 48.74 20.96 13.46 62.48

GGDdq
cr 59.57 88.44 50.23 36.95 13.92 63.11

GGDse
gs 44.53 50.98 48.90 18.24 6.08 59.30

GGDdse
gs 56.33 86.43 49.32 24.37 14.47 61.03

GGDse
cr 54.42 80.26 48.64 29.42 6.70 61.09

GGDdse
cr 57.08 85.75 48.88 36.54 11.62 62.27

pre-extracted with Faster R-CNN [89]. The implementation
details and the experiments on other base models are
provided in the Appendix. All methods are measured with
Accuracy and Correct Grounding Difference (CGD) proposed
in [29]. CGD evaluates whether the visual information is well
taken in answer decision.

For ablation studies, we present five different versions
of GGD. GGDd only removes the distribution bias. GGDq

only models the shortcut bias. GGDdq makes use of both the
distribution bias and the shortcut bias. GGDse is the self-
ensemble version GGD, which takes the baseline model itself
as the biased model. GGDdse removes the distribution bias
before Self-Ensemble. The implementation details of above
five ablations are provided in the Appendix.

4.3.3 Experimental Results
GGD can handle multiple biases. In the first group of
ablation study, we compare with the other two ensemble
strategies to verify the effectiveness of the greedy learning.
SUM-DQ directly sums up the outputs of biased models
and the base model. LMH+RUBi combines LMH [17] and
RUBi [18]. It reduces distribution bias with LMH and shortcut
bias with RUBi. The implementation details for these two
ablations are provided in the Appendix.

As shown in TABLE 5, SUM-DQ performs even worse
than vanilla UpDn. LMH+RUBi does not make use of both
kinds of biases, whose Accuracy is just similar to that of LMH.
On the other hand, both GGDgs and GGDcr surpass these
two ablations by a large margin. This shows that the greedy
strategy in GGD can really force the biased data to be learned
with biased models in priority. As a result, the base model
has to pay more attention to hard examples that are hard to
solve based on the estimation of either distribution bias or
shortcut bias. It needs to consider more visual information
for the final decision.

In the second group of experiments, we directly compare
GGDd, GGDq , and GGDdq . As shown in TABLE 5, GGDdq

gs

surpasses single-bias versions GGDd and GGDq by ∼10%.
This well verifies that GGD can reduce multiple biases with

Q：What object is the focal point of 

this picture?

wine glass

glass

light

mirror

phone

wine glass

glass

no

mirror

scissors

wine glass

glass

wine

hand

phone

GGDd

gs

GGDq

gs GGDdq

gs

Fig. 5. Predicted distribution for three variants of GGDgs.

the greedy learning procedure. The case analysis in Figure 5
provides a more qualitative evaluation. It shows that GGDd

uniforms predictions, which mainly improves Y/N as shown
in TABLE 5. Bq works like “hard example mining” but will
also introduce some noise (e.g., “mirror” and “no” in this
example) due to the unbalanced data distribution. GGDdq can
make use of both biases. Reducing Bd at first can further help
the discovery of the hard examples with Bq and encourage
the base model to capture essential visual information.
Implicitly De-bias with Self-Ensemble. In order to further
discuss the generalizability of GGD, we also test a more
flexible Self-Ensemble fashion GGDse on VQA-CP. As shown
in TABLE 5, GGDse still surpasses UpDn without predefined
biased features. Moreover, if we first remove distribution
bias before Self-Ensemble, the performance of GGDdse is
comparable to existing state-of-the-art methods as well.
GGDgs vs. GGDcr. As shown in TABLE. 5, GGDcr largely
alleviates the degradation on in-distribution test data VQA
v2 val, which is even comparable to the original UpDn
baseline. Moreover, It also gets better performance on VQA-
CP under all GGDd, GGDq , GGDdq , and GGDse. The major
improvement comes from the “Num.” and “Other” question
types which contain fewer samples in the training set. GGDgs

harms the performance on these question types because of
the greedily discarding of samples that is easy to answer.
Comparison with State-of-the-art Methods. We compare
our best performed model GGDdq

cr with existing state-of-the-
art bias reduction techniques, including visual-grounding-
based methods HINT [75], SCR [76], ensemble-based meth-
ods AdvReg. [46], RUBi [18], LM (LMH) [17], MFE [51],
new-question-encoding-based methods GVQE [78], DLP [79],
counterfactual-based methods CF-VQA [79], CSS [22] , recent
proposed regularization method MFE [51], and SAR [80] that
models VQA as Visual Entailment with pre-trained model.

As shown in TABLE 4, GGDdq
cr achieves state-of-the-art

performance without extra bias annotation. It outperforms
the baseline model UpDn by 20% higher in terms of Ac-
curacy and 10% higher in terms of CGD, which verifies
the effectiveness of GGD on both answer classification and
visual-grounding ability.

For the comparison of question-type-wise results, incor-
porating GGD improves the performance for all the question
types, especially the more challenging “other” question
type [90]. CF-VQA [79] performs the best in Y/N, but worse
than our methods in all the other question types and metrics.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

yes

no

leaves

tree

trees

yes

no

leaves

grass

tree

Are there any animals eating?

boat

rocks

trash

bench

trash can

tv

box

television

stove

boat

Inputs UpDn GGD-GS-DQ

What is the object in the water?

Fig. 6. Qualitative Evaluation for GGDdq
gs. We provide a comparison between UpDn and GGDdq

gs on the visualization of the most sensitive regions
and confidence of the top-5 answers. Red answers denote the ground-truth.
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Fig. 7. Comparison between GGDdq
gs and GGDdq

cr . The major improvements are reflected on counting problems and questions that rarely appear in
the training data.

Q：Why is there a decorated tree in 

the room?

decoration
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party

birthday

happy

white

White and black

black

grey

brown

Q：What color horse is closer to the 

camera?

Q：What is on the sandwich?

lettuce

toothpick

cheese

meat

unknown

Q：How many bananas are there?

4

5

3

2

6

Fig. 8. Failure cases for GGDdq
cr . From top to bottom, the failure cases are 1) counting problems; 2) Synonym answers; 3) incorrect visual evidences.

LMH [17], LMH-MFE [51], and LMH-CSS [22] work well on
Num. questions. Comparing with LM and LMH, it is obvious
that the performance gains in Num. are mainly due to the
additional regularization for entropy. However, methods
with entropy regularization drop nearly 10% on VQA v2.
This indicates that these models may over-correct the bias.
SAR [80] achieves the best performance on both VQA-CP
v2 and VQA v2, using extra datasets for model pre-training.
On the other hand, GGDcr improves both Num. Accuracy
and in-distribution performance only with the Curriculum
Regularization and work well without any extra data sources.
Qualitative Evaluation. Examples in Fig. 6 illustrate how

GGDdq
gs makes difference compared with the baseline

UpDn [62]. The first example is about using visual infor-
mation for inference. Despite offering the right answer “yes”,
the prediction from UpDn is not based on the right visual
grounding result. In comparison, GGDgs correctly grounds
the giraffe that is eating leaves. The second example is a case
of reducing language prior apart from Yes/No questions.
UpDn answers “boat” just based on the language context
“in the water”, while GGDdq

gs provides correct answers “tv”
and “television” with more salient visual grounding. These
examples qualitatively verify our improvement on both
Accuracy and visual explanation for the predictions.
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TABLE 6
Experimental results on GQA-OOD test-dev. g denotes the method

addressing global group distribution bias, l is method addressing the
local group distribution bias, and q is the method addressing the

question shortcut bias. “Avg” is the mean accuracy of head and tail
groups. Methods with only Avg are reported from [24].

Method All Head Tail Avg

UpDn [62] 46.93±0.29 49.41±0.26 42.73±0.57 46.07±0.42

LfF [25] 47.06±0.23 49.53±0.63 42.99±0.47 46.26±0.09

SD [26] 47.59±0.33 50.05±0.32 44.49±1.15 47.27±0.42

RUBiq [18] 45.51±0.18 47.87±0.02 41.67±0.47 44.71±0.23

RUBig [18] 7.15±0.53 6.86±0.91 6.60±1.22 6.573±1.02

RUBil [18] 20.48±3.84 22.30±4.04 17.51±3.67 19.91±3.79

Up Wtg [5] - - - 26.4

Up Wtl [5] - - - 26.2

LNLg [20] - - - 32.4

LNLl [20] - - - 10.7

GGDq
gs 47.41±0.45 50.07±1.19 43.09±1.06 46.58±0.31

GGDg
gs 48.96±0.08 52.07±0.12 44.00±0.27 48.03±0.13

GGDl
gs 47.84±0.49 50.36±0.60 43.74±0.33 47.05±0.45

GGDgq
gs 47.15±0.29 49.62±0.43 43.27±0.89 47.01±0.47

GGDlq
gs 48.25±0.53 50.74±0.99 44.18±0.24 47.46±0.39

GGDq
cr 47.87±0.59 50.19±0.63 44.25±0.31 47.22±0.47

GGDg
cr 48.09±0.35 51.27±0.63 43.25±0.35 47.26±0.44

GGDl
cr 48.01±0.60 51.23±0.87 42.74±0.17 46.99±0.51

GGDgq
cr 49.21±0.08 52.01±0.30 44.67±0.68 48.34±0.19

GGDlq
cr 47.03±0.52 49.37±0.71 43.05±0.62 46.21±0.42

GGDse
gs 47.00±0.10 49.16±1.44 42.61±1.14 45.89±0.37

GGDse
cr 47.50±0.35 51.10±0.39 42.06±0.75 46.58±0.41

Fig. 7 provides qualitative illustration for improvements
achieved by GGDcr . Compared with GGDgs, GGDcr majorly
improves on the “Num.” and “Other” question types. Ques-
tions about facial expression and counting do not frequently
appear in the dataset. If these questions can be correctly
predicted by fitting the biases, the base model in GGDgs may
not have enough data to learn a good representation.

Fig. 8 shows the examples of failure cases from GGDdq
cr .

The model appears to be weak on the complicated counting
problem. Some failure cases are due to missing annotation in
the dataset (“decoration” can also be regarded as the right
answers). Although making wrong predictions, answers for
failure cases in the last row are still consistent with visual ex-
planations rather than language bias, which further indicates
that GGDdq truly makes use of the visual information.

4.3.4 Experimental Results on GQA-OOD

Biases. GQA-OOD is a more challenging dataset for Visual
Question Answering. It has biases from multiple sources
including imbalanced answer distribution, visual concept
co-occurrences, question word correlations, and question
type/answer distribution. Since the training set for GQA-
OOD is the manually balanced GQA-balanced-train split, it
is hard to specify the explicit biases to ensure that the models
can generalize to even the rarest local groups. Following [24],
apart from question shortcut bias similar to that in VQA-
CP [11], we define two kinds of distribution bias according
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Fig. 9. The loss ratio of the hard examples from baseline model and
GGDcr base model.

to global group labels (115 groups) and local group labels
(133328 groups), and the corresponding models are denoted
as GGDg and GGDl.
Comparison with State-of-the-art Methods. We compare
GGDgs with implicit de-bias methods LfF [25] and SD [26];
explicit de-bias methods RUBi [18], Up Wt [5], and LNL [20].
As shown in TABLE 6, all three previous explicit methods fail
on both global and local group distribution bias, performing
even worse than the original baseline UpDn. RUBi [18]
with the question-only branch also degrades on GQA-OOD
compared with the baseline. Implicit methods LfF [25] and
SD [26] are more stable on handling complicated biases in
GQA. SD [26] achieves the highest accuracy on the Tailed
group. This indicates that both distribution bias and shortcut
bias in GQA-OOD are not as obvious as those in VQA-CP,
since the data from GQA is synthetic and the train split has
been manually balanced.

On the other hand, GGD works well with hard-example
mining. It surpasses the baseline under all bias settings and
is comparable to existing implicit methods. If the biased
models can not make a prediction with high confidence, the
pseudo labels for the base model remain almost unchanged
for most of the data. Although the biased models cannot
well model the biases in the dataset, GGD will not harm the
performance like previous explicit de-bias methods.
Ablation Study. According to the ablation studies, GGDg

addressing distribution bias on global groups works better
compared with GGDl on the local groups. Sequentially
reducing the distribution bias and the shortcut bias will
improve the Tail group Accuracy but slightly degrades the
Head group accuracy. GGDgq

cr achieves the highest overall
accuracy because it alleviates the over-estimated bias in
GGDgq

gs. However, since the biased models do not capture
biases with high confidence, GGDcr does not show much
difference compared with GGDgs under most of the settings.

4.4 Discussion

Hard Example Mining Mechanism. To demonstrate the
hard example mining mechanism of GGD, we provide
analysis on the training process. We first evaluate whether
the base model focuses on examples. We define the hard ratio
Rh as

Rh =
Lhard
Lall

, (22)
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where Lhard is the loss of hard examples (i.e., samples that
do not choose corresponding background color), Lall is the
loss for all samples. We calculate the accumulated loss for
every 118 iterations of 4 repeated experiments with different
random seeds. For more obvious comparison, experiments
are done on GGD1k

gs (λt = 1) on Biased MNIST with ρtrain =
0.998. As shown in Fig. 9, although the proportion of hard
examples is no more than 1%, Rh from the baseline is always
over 0.6 and hardly decreases. The loss is trapped in local
minimum due to the low average training error dominated by
the majority groups of data. On the other hand, Rh from the
base model of GGD is always lower than the baseline in any
observed iteration and continuously decreases along with
the training process. This reflects that GGD can well handle
the hard examples compared with vanilla ResNet-18.

Bias Over-estimation. An interesting phenomenon is
that GGDgs degrades on VQA v2 [44], but is relatively
stable on the in-distribution test of Biased MNIST [12]. We
find that this is due to the distribution bias on VQA v2.
As shown in Fig. 10, taking “is this” question type as an
example, GGDgs will amplify the distribution bias and result
in an “inverse biased distribution”. On the other hand, the
pseudo labels for Biased MNIST are still balanced because the
texture bias is independent of the label distribution. This can
also partially explain the improvement of GGDcr on VQA,
where the Curriculum Regularization also reduces such “bias
over-estimation”, apart from better low-level representation
learning ability. In practice, one can get a more balanced
classifier by selecting better λt according to the bias level of
the dataset. It can also be a valuable research to adaptively
estimate the bias level of a dataset in the future.

Limitations. Although the bias over-estimation problem
in our previous GGE model has been alleviated with the
Curriculum Regularization, there is still two major shortcom-
ings of GGD. First, the hard-example mining mechanism in
GGD is an instance-level sample re-weighting. If all samples
are following a certain spurious correlations, GGD will fail
to discover it as a spurious correlation (e.g., ρtrain = 1.0 in
Biased-MNIST). The gradients from the biased models will
decline to 0. Even though the spurious feature is identified
with the greedily learned biased models, the base model
cannot learn a de-biased feature accordingly. Eq.12 indicates

that we can also directly optimize log p(y|xb) with the biased
feature xb, which can be obtained from the optimal biased
model h(xb;φ∗). We will investigate how to select network
activations according to the bias models towards feature-
level ensemble in the future.

Second, if the biased model can well capture the biases
in the dataset, GGD will largely improve both the in-
distribution and the out-of-distribution performance. How-
ever, when the biased model can not perfectly disentangle the
spurious correlations, the improvement from GGD is limited
(see experiments on Adversarial SQuAD and GQA-OOD).
Although the Self-Ensemble fashion GGDse can implicitly
model the biases, it largely relies on the bias level of the
dataset and the existence of hard examples in datasets. It can
be a future work to design a more robust strategy that can
capture spurious correlations needless of prior knowledge.

5 CONCLUSION

In this paper, we propose General Greedy De-bias Learning,
a general de-bias framework with flexible regularization
and wide applicability. Accompanied with Curriculum Reg-
ularization, the relaxed GGDcr comes to a good trade-off
between in-distribution and out-of-distribution performance.
Experiments on image classification, Adversarial QA, and
VQA demonstrate the effectiveness of GGD under both task-
specific biased models and self-ensemble fashion without
prior knowledge on both ID and OOD scenarios.

In theory, the core of our method is the greedy strategy,
which sequentially learns biased models in priority. One
can also replace the regularization with better metrics that
are able to measure the distance between the predictions
and the labels. It may further improve the performance on
specific tasks. In the future, we will try de-bias learning at the
feature level and design a better strategy to capture spurious
correlations needless of dataset-specific knowledge.
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APPENDIX A
PROBABILISTIC JUSTIFICATION

We consider the distribution p(c|x):

p(y|x) = p(y|xb, x−b)
∝ p(x−b|y, xb)p(y|xb) . Bayes Rule

= p(x−b|y)p(y|xb) . Conditionally Independent

= p(y|xb)p(y|x
−b)p(x−b)

p(y)
. Bayes Rule

∝ p(y|xb)
p(y)

p(y|x−b)

(23)

Rearranging the log-likelihood of Eq.23 will lead to the
probabilistic justification in Section 3.4.2. p(y|x) is more
likely to align with p(y|x−b) in bias-conflicting samples.
Moreover, it shows that the distribution p(y) also has effects
on the optimization of p(y|x−b). This can partially explain
the influence from the distribution bias.

APPENDIX B
IMPLEMENTATION DETAILS

B.1 SimpleNet-1k
SimpleNet-1k is a fully convolutional CNN proposed in
[12]. It contains four convolutional layers with 1× 1 kernels
and output channel {16, 32, 64 ,128}. Each convolutional
layer is followed by batch normalisation [91] and ReLU. The
classification layer is consist of a Global Average Pooling
(GAP) layer following a (128× 10) linear projection.

All models for Biased MNIST is trained with batch size
of 256 and Adam optimizer. The initial learning rate is set to
be 1e-3.

B.2 Different versions of GGD for VQA
The optimization paradigm for GGDd, GGDq , GGDdq ,
GGDse and GGDdse are shown in Fig. 11. V,Q and Ã denote
images, questions, and answer predictions respectively. A is
the human-annotated labels. Bd : {ŷdi }Ni=1, Bq : {ŷqi }Ni=1 and
Bse : {ŷsei }Ni=1 indicate the prediction from distribution bias,
question shortcut bias and self-ensemble bias respectively.

GGDd only models distribution bias for ensemble. We
define the distribution bias as answer distribution in the train
set conditioned on question types:

ŷdi = p(ai|ti), (24)

where ti denotes the type of question qi. The reason
for counting samples conditioned on question types is to
maintain type information when reducing distribution bias.
Question type information can only be obtained from the
questions rather than the images, which does not belong to
the language bias to be reduced.

The regularization for the base model is

L = L
(
Ã, A

)
− λtLCE

(
Ã, Bd

)
, (25)

where Ã is the predictions, and A is the labelled answers.
GGDq only uses a question-only branch for shortcut bias.

The shortcut bias is the semantic correlation between specific

QA pairs. Similar to [18], we compose the question shortcut
bias as a question-only branch

ŷqi = cq (eq(qi)) , (26)

where cq : Q→ RC .
We first optimize the question-only branch with labelled

answers
L1 = L(Bq, A). (27)

The loss for base model is

L2 = L
(
Ã, A

)
− λtLCE

(
Ã, Bq

)
. (28)

GGDdq uses both distribution bias and question shortcut
bias. The loss for Bq is

L1 = L (Bq, A)− λtLCE (Bq, Bd) . (29)

The loss for base model is

L2 = L
(
Ã, A

)
− λtLCE

(
Ã, Bq +Bd

)
. (30)

L1 and L2 are optimized iteratively.
GGDse takes the joint representation ri =

m (ev(vi), eq(qi)) itself as the biased feature instead
of predefined question-only branch in GGDq , the biased
prediction is

ŷsei = cs (ri) , (31)

where cs : r → RC is the classifier of the biased model.
We first optimize a baseline model with labelled answers

L1 = L(Bse, A), (32)

The loss for base model is

L2 = L
(
Ã, A

)
− λtLCE

(
Ã, Bse

)
. (33)

GGDdse removes the distribution bias before Self-
Ensemble, which is similar to GGDdq

L1 = L (σ(Bse), A)− λtLCE (σ(Bse), Bd) . (34)

The loss for base model is

L2 = L
(
σ(Ã), A

)
− λtLCE

(
σ(Ã), σ(Bse) +Bd

)
. (35)

L1 and L2 are optimized iteratively.

B.3 SUMB-DQ and LMH+RUBi
SUM-DQ directly sums up the outputs of biased models
and the base model without greedy learning. The loss for the
whole model is

L = L(Bd +Bq + Ã, A), (36)

where Bd is the predicted distribution bias, Bq is the
predicted shortcut bias, Ã is the predictions and A is the
labelled answers.

LMH+RUBi combines LMH [17] and RUBi [18]. It re-
duces distribution bias with LMH and shortcut bias with
RUBi. The loss for RUBi is written as

Lrubi(Ã, A) = L(Ã� σ(Gq), A) + L(cq(Gq), A), (37)

where Gq = g(eq(qi)), g(.) : Q → RC . Combining with
LMH, the prediction is composed as

F (Ã, B,M) = log Ã+ h(M) logB, (38)
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Fig. 11. Different versions of GGD for VQA. V,Q and Ã denote image, question, and answer prediction respectively. A is the human-annotated
labels. Bd and Bq indicate the prediction from distribution bias and question shortcut bias respectively.

TABLE 7
Ablations for base model SimpleNet-7k on Biased MNIST.

ρtrain/ρtest
0.990 0.995 0.999

0 0.1 0.990 0 0.1 0.995 0 0.1 0.999

SimpleNet-7k 83.52 85.33 99.71 61.03 54.31 99.51 1.01 9.960 99.86

ReBias [12] 86.39 88.15 99.81 78.17 81.32 99.86 25.17 33.58 99.88

RUBi [18] 88.91 90.13 99.79 74.67 76.52 97.72 19.78 26.53 93.05

GGDgs 94.24 94.88 98.84 87.08 88.32 97.48 57.45 60.79 93.66

GGDcr 93.28 94.26 99.79 79.95 81.09 99.03 42.92 48.73 99.81

where M and B are the fused feature and the bias in LMH,
h(.) :M → RC . The combined loss function is

L = Lrubi(F (A,B,M), A) + wH(h(M) logB), (39)

where H(.) is the entropy and w is a hyper-parameter.

B.4 UpDn
We use the publicly available reimplementation of
UpDn1 [62] for our baseline architecture, data preprocess
and optimization in the VQA task.

Image Encoder. Following the popular bottom-up atten-
tion mechanism [62], we use a Faster R-CNN [89] based
framework to extract visual features. We select the top-36
region proposals for each image v ∈ R36×2048.

Question Encoder. Each word is first initialized by 300-
dim GloVe word embeddings [93], then fed into a GRU with
1024-d hidden vector. The question representation is the last
state of GRU hT ∈ R1024.

1. https://github.com/hengyuan-hu/bottom-up-attention-vqa

Multi-modal Fusion. We use traditional linear attention
between hT and v for visual representation. and the final
representation for classification is the Hadamard product of
vision and question representation.

Question-only Classifier. The question-only classifier
is implemented as two fully-connected layers with ReLU
activations. The input question representation is shared with
that in VQA base model.

Question types. We use 65 question types annotated in
VQA v2 and VQA-CP, according to the first few words of
the question (e.g., “What color is”). To save the training time,
we simply use statistic answer distribution conditioned by
question type in the train set as the prediction of distribution
bias.

Optimization. Following UpDn [62], all the experiments
are conducted with the Adamax optimizer for 20 epochs
with learning rate initialized as 0.001. We train all models on
a single RTX 3090 GUP with PyTorch 1.7 [94] and batch size
512.
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TABLE 8
Ablations of base model BAN and S-MRL for VQA-CP v2.

Method
VQA-CP test

All Y/N Num. Others ↑CGR ↓CGW ↑CGD

S-MRL [18] 37.90 43.68 12.04 41.97 41.94 27.32 14.62

+GGDdq
gs 54.03 79.66 20.77 46.72 38.10 22.42 15.68

+GGDdq
cr 54.46 86.43 14.16 47.16 39.24 25.69 14.55

BAN [92] 35.94 40.39 12.24 40.51 5.33 5.19 0.14

+GGDdq
gs 50.75 74.56 20.59 46.54 20.87 16.85 4.98

+GGDdq
cr 51.72 77.58 23.70 46.11 33.93 22.92 11.01

(a) Input (b) Vanilla ResNet-18 (c) SimpleNet-1k (d) GGDgs base model (e) GGDcr base model

Fig. 12. Saliency maps of the ResNet-18, bias model SimpleNet-1k, the base model from GGDgs, and the base model from GGDcr . The redder the
pixel is, the more contributions it makes to prediction.

Data Preprocessing. Following previous works, we filter
the answers that appear less than 9 times in the train set. For
each instance with 10 annotated answers, we set the scores
for labels that appear 1/2/3 times as 0.3/0.6/0.9, more than
3 times as 1.0.

APPENDIX C
ABLATIONS OF BASE MODEL

GGD is agnostic for choice of the base model. In this section
we provide extra experiments on Biased MNIST [12] and
VQA-CP v2 [11].

For Biased MNIST, we do experiments on SimpleNet-7k
following [12]. SimpleNet-7k has the same architecture with
SimpleNet-1k introduced in Section B.1 but with convolution
kernel size 7×7. SimpleNet-1k is chosen for the biased model
for all experiments in TABLE 7.

For VQA-CP, We do experiments on other base models
BAN [92] and S-MRL [18]. The models are re-implemented
based on officially released codes. For BAN, we set the
number of Bilinear Attention blocks as 3. We choose the
last bi-linear attention map of BAN and sum up along the

question axis, which is referred to as the object attention for
CGR and CGW. Although Accuracy of our reproduced S-
MRL is a litter lower than that in [18], GGDdq can improve the
Accuracy over 10% and surpass most of the existing methods.
As shown in the TABLE 8, GGD is a model-agnostic de-bias
method, which can improve all three base models UpDn [62],
S-MRL [18] and BAN [92] by a large margin.

APPENDIX D
VISUALIZATION ON BIASED-MNIST
In this section we provide the saliency map visualizations of
vanilla ResNet-18, SimpleNet-1k, and the GGD base model
with grad-CAM [95]. All experiments are demonstrate on
Biased-MNIST with ρtrain = 0.999.

As shown in Fig. 12, the vanilla ResNet-18 mainly focus
on the background parts, since the background colour is
highly correlated with the labels in the train stage. SimpleNet-
1k provides an uniform saliency map due to the small
perceptive field. In contrast, the visualization of GGD focus
on the middle of the image, which means it capture more
information about the digit number.
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TABLE 9
Top-1 Accuracy of ResNet-32 on CIFAR-10-LT under different imbalance settings.

Imbalance Factor 1 0.2 0.1 0.02 0.01 Mean ↑ ∆ ∆%

ResNet-32 92.03 86.28 83.30 79.83 66.61 81.61 - -

GGDd
gs 92.48 88.78 87.13 83.26 71.36 84.60 2.99 3.67%

GGDd
cr 92.66 88.77 87.39 81.98 70.77 84.31 2.70 3.31%

GGDse
gs 76.61 59.85 60.26 54.53 44.68 59.19 -22.42 -27.48%

GGDse
cr 92.00 87.19 84.81 79.51 68.37 82.38 0.77 0.94%

TABLE 10
Top-1 Accuracy of ResNet-32 on CIFAR-100-LT under different imbalance settings.

Imbalance Factor 1 0.2 0.1 0.02 0.01 Mean ↑ ∆ ↑ ∆%

ResNet-32 66.91 51.71 42.88 31.74 27.85 44.22 - -

GGDd
gs 67.55 59.44 49.03 35.88 31.09 48.60 4.38 9.91%

GGDd
cr 67.13 54.77 45.52 34.85 31.03 46.66 2.44 5.52%

GGDse
gs 48.62 34.50 32.70 27.69 21.47 33.00 -11.22 -25.38%

GGDse
cr 66.04 52.16 44.48 32.35 31.81 45.37 1.15 2.60%
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Fig. 13. The gradient similarity between baseline model and GGDcr base
model.

APPENDIX E
GRADIENT COMPARISON

To further compare the training process between GGD and
the baseline, we provide the cosine similarity of the direction
of the gradient for the feature before the classifier:

s =
gbasegggd

||gbase||||gggd||
, (40)

where ||.|| indicates L2 norm of a vector. The gradients are
also accumulated every 118 iterations and averaged with
four repeated experiments with different random seeds. To
guarantee that the baseline and the GGD base model are
given the same initialization and trained with the same
mini-batch of data at each iteration, this experiment is
conducted on the Self-Ensemble GGDse

gs. We plot the cosine
similarity versus training iteration in Fig.13. It shows that
the optimization direction with the same training data is
extremely different between GGD and baseline, s is no more
than 0.15 during training. This indicates that GGD learns
a different feature compared with the baseline, which can

better classify the hard examples in spite of the spurious
correlations.

APPENDIX F
EXPERIMENTS ON LONG-TAILED IMAGE CLASSIFI-
CATION

Dataset. The original CIFAR-10 (CIFAR-100) dataset contains
50,000 training images and 10,000 test images of size 32x32
uniformly falling into 10 (100) classes [35]. Cui et al. [40]
created long-tailed versions by randomly removing training
examples. In particular, µ = nt/nh controls the imbalance
factor of the dataset, where nh is the number of examples
in the head class and nt is the number of examples from
the tailed class. By varying µ, we arrive at 5 training sets,
respectively, with the imbalance factors of 1, 0.2, 0.1, 0.02,
and 0.01, where µ = 1 corresponds to the original datasets.

Biased Models. We test two settings of biased models
in the experiments. The first biased model directly uses the
statistical distribution of the training set as biased predictions,
noted as GGDd. The second is the self-ensemble GGDse

Experimental Setups. We choose ResNet-32 as our base-
line model. All experiments are conducted with the Adam
optimizer for 250 epochs and the learning rate is initialized
as 0.01.

Experimental Results. With the prior knowledge of
the unbalanced distribution, both GGDgs and GGDcr can
promisingly improve the performance of the long-tailed
training data. However, in self-ensemble version without
prior knowledge, GGDgs will fail to estimate the biases of
data. The baseline model itself cannot correctly reflect the
data distribution. On the other hand, GGDcr is much more
robust. It at least keep the performance of the base model at
all imbalanced levels without prior knowledge, even when
the imbalanced factor µ = 1.
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