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Neural Belief Propagation for Scene Graph
Generation
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Abstract—Scene graph generation aims to interpret an input image by explicitly modelling the objects contained therein and their
relationships. In existing methods the problem is predominantly solved by message passing neural network models. Unfortunately, in
such models, the variational distributions generally ignore the structural dependencies among the output variables, and most of the
scoring functions only consider pairwise dependencies. This can lead to inconsistent interpretations. In this paper, we propose a novel
neural belief propagation method seeking to replace the traditional mean field approximation with a structural Bethe approximation. To
find a better bias-variance trade-off, higher-order dependencies among three or more output variables are also incorporated into the
relevant scoring function. The proposed method achieves the state-of-the-art performance on various popular scene graph generation
benchmarks.

Index Terms—Scene Graph Generation, Message Passing, Variational Approximation, Graph Neural Networks, Belief Propagation.
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1 INTRODUCTION

G IVEN an input image, scene graph generation (SGG)
seeks to explicitly model the objects appearing in the

scene and their relationships. It is a structured prediction
task, in which the output interpretations (or labels) are
usually conditionally dependent. In current SGG models
[1], [2], [3], [4], [5], [6], [7], [8], the discriminative undi-
rected probabilistic graphical models like conditional ran-
dom fields (CRFs) [9], [10] are often applied to model the
above conditional dependencies using the relevant scoring
functions. Due to the combinatorial nature of the structured
outputs in SGG applications, it is generally computationally
intractable to compute the underlying posterior directly.

To this end, variational Bayes (VB) modelling [11], [12]
is generally employed for the SGG tasks, in which the
variaitonal inference step aims to pursue the optimum
interpretations using a maximum aposteriori (MAP) infer-
ence, while the variational learning step seeks to fit the
model posterior with the ground-truth training samples via
a classical cross entropy loss. For tractability, the variational
distribution in current SGG models is generally assumed to
be fully decomposable, and the resulting VB is also known
as mean field variational Bayes (MFVB) [11], [12].

Specifically, message passing neural networks (MPNNs)
[4], [5], [6], [7], [8] are generally employed to model the
above MFVB framework aiming to leverage the inference
capability of the MFVB as well as the feature representation
learning ability of the deep learning models. The resulting
MPNN-based MFVB formulation has became the de facto
methodology for the current SGG models, in which two fun-
damental modules are required, namely, visual perception
and visual context reasoning [13]. The former extracts a set
of region proposals within the input image while the latter
infers the optimum instance/relationship interpretations for
those region proposals.
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However, the above MPNN-based MFVB formulation
suffers from two main drawbacks: 1) Most of the ap-
plied scoring functions in the current SGG models only
consider pairwise dependencies. The higher-order depen-
dencies among three or more output variables are largely
ignored. Such higher-order dependencies play a vital role
in generating consistent interpretations since they constrain
the possibilities of certain interpretation combinations. For
instance, < man play football > is more likely to occur
than < plant play football >. Without the relevant third-
order conditional dependencies, one can not guarantee the
above preference or tendency; 2) The variational distribution
used to approximate the model posterior generally assumes
the output variables are totally independent without any
structural dependencies. Such factorized distributions en-
able efficient variational inference but they sacrifice the
accuracy [14]. In the true posterior, many latent variables
are dependent and the mean field approximation, by con-
struction, fails to capture this dependency [15].

To address the above issues, inspired by the recently
proposed factor graph neural network (FGNN) model [16]
tailored for point cloud segmentation tasks, we propose a
novel neural belief propagation (NBP) paradigm aiming to
replace the previous mean field approximation [11], [12]
with a structural Bethe approximation [17], [18]. This is
because the Bethe approximation, compared with the naive
mean field approximation, has the potential to provide a
better model of the log evidence [19]. To capture higher-
order dependencies other than the common pairwise de-
pendencies, a new scoring function is defined in this paper,
which enable us to find a better bias-variance trade-off [20].
More importantly, the proposed NBP paradigm, rather than
applying the max-product rule as in the FGNN model,
simulates a sum-product strategy in order to avoid under-
estimating the model posterior [21]. Unlike the previous
ubiquitous MPNN-based MFVB SGG models, the proposed
NBP paradigm combines the inference ability of the Bethe
approximation strategy and the feature representation learn-
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Fig. 1: Comparison between the traditional MPNN-based
MFVB paradigm and the proposed NBP paradigm. In SGG,
given an input image I , a factor graph representing the
factorization of a scoring function is constructed, in which
x and f represent the object and factor (relationship) ver-
tices, respectively. A variational distribution q(x) is often
used to approximate the computationally intractable model
posterior p(x|I) derived from the relevant scoring function.
Unlike MPNN-based MFVB, NBP includes certain higher-
order dependencies (fijk) into the scoring function aiming
to find a better bias-variance trade-off, and incorporates
relevant pairwise dependencies (qij and qjk) into the vari-
ational distribution seeking to estimate the model posterior
better.

ing capability of the deep neural networks. The specific
comparison between the traditional MPNN-based MFVB
paradigm and the proposed NBP paradigm is demonstrated
in Fig.1. The proposed generic NBP paradigm achieves the
state-of-the-art performance on two popular SGG bench-
marks: Visual Genome and Open Images V6.

The main contributions of this paper can be summarized
as follows:

1) A novel NBP paradigm is proposed to replace the
traditional MPNN-based MFVB paradigm aiming to
solve the two main drawbacks mentioned above.

2) To incorporate the pairwise dependencies into the
variational distribution, a novel Factor-to-Variable
and Variable-to-Factor MPNN framework is pro-
posed in the NBP paradigm. Unlike FGNN model
which seeks to address a MAP inference task, it aims
to solve a relevant marginal inference task.

3) Two novel node adjacency sets are designed in the
NBP paradigm to define the edges of the applied
factor graph, which aims to include certain higher-
order dependencies into the relevant scoring func-
tion.

4) To our knowledge, we are the first one to apply
such NBP paradigm to accomplish the complex SGG
tasks.

This paper is organized as follows: Section 2 and Section
3 present the related work and the proposed neural belief
propagation method, respectively. The experimental results
and the associated analysis are elaborated in Section 4.
Finally, the conclusions are drawn in Section 5.

2 RELATED WORK

As structured prediction tasks, current SGG applications
often aim to achieve two main objectives: extracting infor-
mative feature representations and implementing unbiased
long-tailed recognition. They could facilitate the down-
stream computer vision tasks like image captioning [22],
[23], [24] or visual question answering [25], [26], [27].

2.1 Extracting Informative Representations

Current SGG models often rely on a MPNN-based MFVB
paradigm to learn discriminative representation for node
and edge prediction. They mainly focus on graph structure
design and contextual feature fusion strategies via message
passing mechanisms.

To achieve context modelling, various graph structures
have been proposed in recent years. A popular choice is to
apply a sequential model [4] or a fully-connected graph to
model the context [5], [28]. Another choice is to investigate
the sparse graph structures [24] by associating the down-
stream tasks or trimming the relationship proposals based
on category or geometry information of subject-object pairs.

To incorporate the context information into the exist-
ing SGG models, different message passing mechanisms
have been explored. Some of them apply message passing
between the entities proposals [7], [8], [29] while others
aggregate the contextual information between the entities
and predicates [6].

2.2 Long-tailed Recognition

To alleviate the ubiquitous biased relationship prediction
problem caused by the long-tail data distribution, three
directions are investigated in literature: data re-sampling,
cost-sensitive losses and transfer learning.

Specifically, data re-sampling tries to over-sample un-
derrepresented (tail) classes and under-sample populated
(head) classes, aiming to generate a more uniform training
distribution. Specifically, oversampling is often achieved by
duplicating samples or by synthesizing data. The represen-
tative data re-sampling strategies include dataset resam-
pling [30], [31], [32], instance-level resampling [33], [34] and
a mixed bi-level data resampling [35]. Based on the class
frequency or difficulty, different costs are assigned in the
cost-sensitive losses [36], [37] to the incorrect prediction
of different samples. For classes with fewer samples, one
should assign higher weights or enforce larger margins.
Weights can be estimated by the inverse class frequency or
meta-learning. Transfer learning methods [38], [39], [40] aim
to transfer information from head to tail classes. Recently,
[41] formulates the SGG task as a causal model and present
an unbiased learning method based on causal inference.

Unlike the above mainstream SGG models which naively
assume the output variables in the variational distribution
are independent, the proposed NBP method incorporates
the structural pairwise dependencies into the correspond-
ing variational distribution. The factorized variational dis-
tributions applied in the mainstream SGG models enable
efficient variational inference but they sacrifice the accuracy
[14]. Motivated by [16], [42], [43], the approach aims to
solve the SGG tasks by simulating a belief propagation

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3243306

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



3

Fig. 2: Overview of the proposed neural belief propagation (NBP) method, in which the green dash line represents the
proposed visual context reasoning module. Given an input image, visual perception module detects a set of region
proposals. A feature vector factor graph G = (X,F,E) is constructed based on the above region proposals, in which
the vertex variable set X , the factor set F and the related edge set E are all associated with the corresponding feature
vectors. With such a feature vector factor graph, one can infer the resulting marginals via stacking various NBP layers plus
a final MLP. Each of the NBP layers consists of two message passing neural network (MPNN) models: Factor-to-Variable
MPNN and Variable-to-Factor MPNN, which essentially correspond to the two types of messages within the classical
belief propagation method. Given the resulting marginals of the factor graph G, one can easily compute the optimum
interpretations (for related vertex variables and pairwise factors, which corresponds to instances and predicates in a scene
graph) via simple argmax operations. A cross-entropy loss is applied to train the proposed NBP method.

methodology rather than the classical MFVB framework. To
our knowledge, the proposed NBP method is the first one
to use the neural belief propagation type methodology to
solve the complex SGG tasks. Specifically, to find a better
bias-variance trade-off [20], a new scoring function with
higher-order dependencies is proposed and the structure
of the related factor graph is defined by two novel node
adjacency sets. Compared with the ubiquitous mean field
approximation applied in the mainstream SGG models, the
structural Bethe approximation employed in the proposed
NBP method is a better estimation of the log evidence [19].
Besides, the mean field approximation often underestimates
the underlying model posterior [14].

3 PROPOSED METHODOLOGY

In this section, we first formulate the SGG problem. This will
be followed by the development of a novel scoring function
and a discussion of the proposed neural belief propagation
method. Fig.2 shows an overview of the proposed neural
belief propagation method, which is described in detail in
the figure caption.

3.1 Problem Formulation
As a structured prediction task, given an input image, SGG
aims to model the potential objects as well as their rela-
tionships via certain inference strategies. The scene graph

consists of a set of intertwined semantic triplet structures,
in which each triplet includes three components: a subject,
a predicate and an object. In the current SGG settings, one
only focuses on inferring the pairwise relationships, where
the relationship between two interacting instances (subject
and object) in an input image is termed as a predicate. Such
structured prediction task can be naturally modelled by a
discriminative undirected probabilistic graphical model, i.e.
Conditional Random Field.

Generally, the above undirected graphical model can
be further transformed into a factor graph [11], [44]. It is
a bipartite probabilistic graphical model, which aims to
model the dependencies among the random variables via
factorizing a corresponding scoring function:

S(x) =
∏
r∈R

fr(xr) (1)

where the dependencies among each subset of variables
(clique) xr are modeled by a corresponding non-negative
factor function fr . Fig.3 demonstrates a simple factor graph,
in which factor f1 depends on subset {x1}, f2 depends on
subset {x1, x3} and f3 depends on subset {x2, x3}. Here,
f1 corresponds to a 1-vertex clique, while f2 and f3 have
2-vertex cliques. With the above scoring function S(x),
one can compute the corresponding probability distribution
p(x) =

∏
r∈R fr(xr)/Z , where Z is the associated partition

function.
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Fig. 3: An example factor graph. f1 corresponds to 1-vertex
(subset with only one vertex variable {x1}) clique, while
f2 and f3 have 2-vertex (subsets with two vertex variables
{x1, x3} and {x2, x3}, respectively) cliques.

Given the above factor graph, a classical belief propaga-
tion method [17], [18] is commonly applied to accomplish
the relevant inference tasks. As a message passing method,
belief propagation performs inference on graphical models
by locally marginalizing over random variables, which is
also known as the sum-product algorithm. It can efficiently
compute the associated marginals via exploring the unique
structure of the applied factor graph. Specifically, it works
by sending real-valued functions called messages along the
associated edges. With such messages, the nodes can ex-
change their beliefs about other nodes and thus transporting
the associated probabilities. Based on whether the node
receiving the message is a variable node or factor node, there
are two types of messages: Variable-to-Factor message and
Factor-to-Variable message. Specifically, Variable-to-Factor
message µxi→fa is the product of the messages from all
other neighboring factor nodes N(xi) except fa:

µxi→fa =
∏

a∗∈N(xi)\fa

µfa∗→xi(xi) (2)

while Factor-to-Variable message is the product of the factor
with messages from all other nodes, marginalized over all
variables xa except xj :

µfa→xj
=

∑
xa\xj

fa(xa)
∏

i∈N(fa)\j

µxi→fa(xi) (3)

where, after recursively running the above two steps until
convergence, the associated marginal p(xj) can be com-
puted as:

p(xj) ∝
∏

a∈N(xj)

µfa→xj (xj) (4)

Specifically, suppose we can model a target SGG task
using a factor graph G = (X,F,E), in which X represents
a variable vertex set including all the potential instances
(x1, x2, ..., xu) detected by the associated visual perception
module, F is a corresponding factor set containing all the
potential relationships (f1, f2, ..., fw) among the instances,
E is an edge set in which the edge eij only exists if the
factor fj is connected to the variable vertex xi. Here, u
and w represent the number of instances and relation-
ships, respectively. The corresponding scoring function for
G = (X,F,E) can be described as follows:

S(I, x) = S(I, x1, x2, ..., xu) =
w∏
j

fj(I, Cj) (5)

where Cj ⊆ {x1, x2, ..., xu} is a potential clique and fj rep-
resents a non-negative factor function which characterizes
the dependencies among the vertex variables within Cj .

With the above scoring function, one can directly com-
pute the model posterior p(x|I) as:

p(x|I) = S(I, x)∑
x S(I, x)

=
S(I, x)

S(I)
(6)

where S(I) is the partition function. Due to the exponen-
tial structural outputs in SGG tasks, such model posterior
p(x|I) is generally computationally intractable. Therefore,
variational inference (VI) technique is often used to approx-
imate p(x|I) with a computationally tractable variational
distribution q(x). For tractability, q(x) assumes the output
variables are fully independent, and it can decomposed as
follows:

q(x) =
u∏

i=1

qi(xi) (7)

where qi(xi) represents the local variational approximation
of the i-th output variable xi. Such VI is also known as
mean field variational inference (MFVI), and the relevant
VB framework is often called mean field variational Bayes
(MFVB) [11], [12]. Specifically, current SGG models are gen-
erally formulated as a MPNN-based MFVB framework, in
which two fundamental modules are often required, namely,
visual perception and visual context reasoning [13]. The for-
mer extracts a set of region proposals within the input image
while the latter infers the optimum instance/relationship
interpretations for those region proposals.

Unlike the above traditional MPNN-based MFVB frame-
work, in this paper, a neural belief propagation method-
ology is employed to solve the SGG tasks, which lever-
ages both the inference capability of the belief propagation
method and the feature representation learning ability of
the deep neural networks. Given an instance interpreta-
tion set C and a relationship interpretation set R, an SGG
task can be modelled as a corresponding genetic factor
graph G = (X,F,E), in which one needs to infer each
marginal distribution corresponding to each vertex vari-
able xi ∈ C, i = 1, 2, ..., u within X as well as each
factor fj ∈ R, j = 1, 2, ..., w within F . In current SGG
settings, only pairwise dependencies (2-vertex cliques) are
required to be scored. Specifically, to efficiently infer the
relevant marginal distributions from the above factor graph
G = (X,F,E), a neural belief propagation method imple-
menting the classical sum-product rule is employed. With
the above marginal distributions, one can easily compute
the optimum interpretations x∗ via additional argmax op-
erations.

3.2 Proposed Scoring Function

In current SGG models, the scoring function S(I, x) only
incorporates two types of cliques: 1-vertex cliques C =
{xi}, i = 1, 2, ..., u and 2-vertex cliques C = {xi, xj}, j ∈
N(i), where j is the vertex around the target vertex i.
The former measures the similarity between I and each
potential variable vertex xi while the latter characterizes
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the dependency between two interacting variable vertexes
{xi, xj}.

S(I, x) =
u∏
i

[fi(I, xi)
∏

j∈N(i)

fij(xj , xi)] (8)

Such scoring function formulation only considers the pair-
wise dependencies among the vertex variables, which may
underestimate the ground-truth posterior pr(x|I). In the
ground-truth posterior pr(x|I), higher-order dependency
among the latent variables commonly exist, yet the scoring
function applied in the current SGG models, by construc-
tion, fails to capture this higher-order dependency. As a re-
sult, the model posterior p(x|I) produced by such a scoring
function is not a tight approximation of the ground-truth
posterior pr(x|I). The consequence of the approximation
error is a model bias.

To lower the above model bias and find a better bias-
variance trade-off, in this paper, we propose a novel scor-
ing function formulation, which incorporates multi-vertex
(higher than 2-vertex) cliques into the associated scoring
function:

S(I, x) =
u∏
i

[fi(I, xi)
∏

j∈N(i)

fij(xj , xi)]
∏
h

fh(xh) (9)

where h ⊆ {x1, x2, ..., xu} is a multi-vertex clique with
fh as its corresponding factor function. In the proposed
scoring function formulation, for an input image I with u
detected vertex variables {x1, x2, ..., xu}, the multi-vertex
clique h = {x1, x2, ..., xu} includes all the potential detected
vertex variables.

For feasibility and tractability, we choose the current
higher-order clique (involving all the detected instances in
an input image) rather than other types of higher-order
cliques (with 3-vertex or 4-vertex). Specifically, with our
proposed higher-order clique, one can easily define the
relevant clique structure by including all the detected in-
stances in an input image, and only one corresponding
higher-order potential term is required to incorporate into
the scoring function. In contrast, with other types of higher-
order cliques, we need to add combinatorial higher-order
potential terms into the scoring function, and improving the
complexity of a model (e.g. incorporating more high-order
potential terms into the scoring function) would substan-
tially increase the computation burden. More importantly, it
is hard to define the structures of other higher-order cliques
since only the structures of the pairwise cliques (pairwise
relationships) are well-defined in the current SGG settings.

The above formulation considers the global contex-
tual information via incorporating the above multi-vertex
cliques into the target scoring function. Essentially, it low-
ers the model bias by aiming to pursue a better bias-
variance trade-off. Traditionally, improving the complexity
of a model would undoubtedly increase the associated
computational burden. To this end, a novel neural belief
propagation method is introduced in the following subsec-
tion.

3.3 Neural Belief Propagation
To efficiently infer the associated marginal distributions for
the above complex scoring function, in this section, we pro-

pose a novel neural belief propagation (NBP) method, which
combines the powers of both classical belief propagation
algorithm and the modern message passing neural network
structures. The proposed NBP method extends the current
message passing neural network so that it can break the
previous universal yet naive independence assumption. To
better illustrate the proposed method, we first present a
generic message passing neural network framework, fol-
lowed by the introduction of a specific FGNN structure.
Finally, we explain how we build the proposed NBP method
based on such an FGNN structure.

3.3.1 Generic Message Passing Neural Network
Following [45], in this section, we present a generic message
passing neural network (MPNN) structure for the current
SGG models. With such generic framework, one can easily
define a new graph neural network model by modifying the
related message passing operations.

Specifically, given a graph G = (X,E) with a set of
nodes X and a set of pairwise edges E, suppose each
node xi is associated with a feature representation vi and
each possible pairwise edge eij is associated with a feature
representation tij (where j ∈ N(i) is a neighbouring node
to i), the above generic message passing neural network can
be described as:

mi =
∑

j∈N(i)

M(vi, vj , tij), v̂i = U(vi,mi) (10)

where mi represents the intermediate message obtained
from a relevant neural network M , v̂i is the updated fea-
ture representation of the node xi by feeding vi and mi

into a corresponding neural network U . The summation
aggregator in the above equation can be replaced by other
operations. Such a generic framework can be generally
applied to any graph with only pairwise edges.

3.3.2 Factor Graph Neural Network
To extend the above formulation to the generic factor graphs
with extra edges, other than the pairwise ones, a factor
graph neural network (FGNN) structure [16] has recently
been proposed. Specifically, a FGNN layer follows a unique
MPNN structure, which can be denoted as follows:

v̂i = max
j∈N(i)

Q(tij)M(vi, vj) (11)

where the functions Q and M are implemented by neural
networks, in which Q : Rdin → Rm×n transforms the
input tij ∈ Rdin into an m × n weight matrix, while
M : Rdin+din → Rn maps the concatenated feature vector
[vi, vj ] ∈ Rdin+din into a length-n feature vector. Here,
din represents the input feature dimension, m denotes the
dimension of the output feature vector and n is a hyper pa-
rameter for Q net. Correspondingly, a new length-m feature
vector v̂i is produced after the above matrix multiplication
and aggregation.

With the above unique MPNN structure, FGNN encodes
the higher order features via incorporating extra factor
nodes. Consider a factor graph G = (X,F,E). Suppose
each vertex variable xi ∈ X is associated with a feature
variable vi, each factor fj ∈ F is associated with a factor
feature gj , and each edge eij , j ∈ N(i) connecting xi and
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fj is associated with an edge representation tij . An FGNN
layer consists of two important modules: Variable-to-Factor
MPNN and Factor-to-Variable MPNN, which are defined as
follows:

ĝj = max
i∈N(j)

Q(tij |φV F )M([vi, gj ]|ψV F )

v̂i = max
j∈N(i)

Q(tij |φFV )M([vi, gj ]|ψFV )
(12)

where φ and ψ are used to parameterize the neural networks
Q and M , respectively. As shown in the above equation,
those two MPNN modules have similar structures but dif-
ferent parameters. More importantly, one can simulate k
max-product iterations via stacking k FGNN layers, plus
a linear layer at the end. In other words, with the above
FGNN structure, one can perform inference over the associ-
ated factor graph akin to the classical max-product method.

3.3.3 Neural Belief Propagation Method
To extend the above FGNN model to efficiently solve the
complex SGG tasks, we propose a novel neural belief prop-
agation (NBP) method in this paper. In contrast to the FGNN
model which seeks to accomplish a MAP inference task, the
proposed NBP method aims to solve a relevant marginal
inference task. In other words, it simulates a sum-product
rule rather than the max-product strategy aiming to avoid
underestimating the model posterior [21].

Specifically, given an input image I , SGG aims to infer
the optimum interpretations x∗ as:

x∗ = argmax
x

p(x|I) = argmax
x

S(I, x) (13)

where p(x|I) represents the model posterior and S(I, x)
denotes the associated scoring function. The above inference
task is essentially formulated as a maximum aposteriori
estimation problem (MAP), which is generally NP-hard to
solve for structured prediction tasks like SGG. Following
[21], such NP-hard MAP inference can be formulated as
an integer linear program and further transformed into a
relevant relaxed linear program. More importantly, one can
unify the above MAP inference with the related marginal
inference as follows:

q∗ = argmax
q

Eq(x)S(I, x) + TH(q(x)) (14)

where q(x) is a variational distribution and H(q(x)) is its
entropy. T is a temperature parameter where T = 1 for
marginal inference and T = 0 for MAP inference. On the
right hand side of Equation (14), the first expectation term
leads to a unimodal variational distribution since it prefers
q(x) to place its mass on the MAP estimate, while the
second entropy term produces a multimodal variational dis-
tribution since it encourages q(x) to be diffuse. Compared
with the MAP inference, the marginal inference could find a
trade-off between the above two scenarios and thus poten-
tially avoid underestimating the complex model posterior
p(x|I). To this end, in this paper, T is often set to 1, and we
prefer to first infer the marginals and then compute the opti-
mum interpretations x∗ via additional argmax operations.
Empirically, we find the above solution often produces a
better performance than the exact MAP inference route. In
particular, two fundamental modules are often required in

current SGG models, namely, visual perception and visual
context reasoning. The former seeks to locate and instantiate
the objects and predicates within the input image, while the
latter aims to infer their consistent interpretations.

Given an input image I , visual perception module pro-
duces a set of object region proposals boi ∈ R4, i = 1, ..., u,
as well as a set of predicate region proposals bpj ∈ R4, j =
1, ..., w, where u and w represent the number of instances
and predicates detected in the input image, respectively.
Correspondingly, one could extract the relevant vertex fea-
ture set vi ∈ Rd, i = 1, ..., u and the related pairwise factor
feature set gj ∈ Rd, j = 1, ..., w by applying a ROI pooling
on the feature maps obtained from the visual perception
module. Given a set of object classes C and a set of relation-
ship categories R, a visual context reasoning module aims
to infer the resulting instance and predicate interpretation
sets xi ∈ C, i = 1, ..., u and fj ∈ R, j = 1, ..., w based
on the above latent feature representation sets. Besides, in
this paper, a higher-order region proposal bh ∈ R4 is further
obtained by computing the bounding box of the union of the
bounding boxes of all the instances within the input image.
With bh, one could also extract a corresponding higher-order
factor feature gh. We argue, that it is beneficial to incorporate
the higher-order factor node fh into the applied scoring
function, even though it is not required to be classified in
current SGG tasks. Up until now, we have already associated
the corresponding feature representations for both vertex
variables X and factor variables F .

Furthermore, to complete the feature representation as-
sociation task for the factor graph G = (X,F,E), one
needs to first define the relevant edges E and then asso-
ciate feature representations for E. In particular, to specify
the edges between the vertex variables X and the factor
variables F , two novel node adjacency sets are proposed,
based on the proposed scoring function, namely, pairwise
node adjacency set and higher-order node adjacency set. The
former aims to capture two types of pairwise dependency:
1) dependency between an instance and a predicate (e.g.
man and walking on); 2) dependency between an instance
and another instance (e.g. man and street), while the latter
seeks to capture the higher-order dependency among all the
involving nodes within the input image (e.g. man, street,
walking on).

Moreover, to leverage the inference capability of the
sum-product rule and the feature representation learning
capability of the message passing neural networks, accord-
ing to the nature of SGG tasks, novel Variable-to-Factor
and Factor-to-Variable MPNN structures are proposed to
construct an NBP layer. Suppose we have c NBP layers, a
feature dimension list (d1, d2, ..., dc) is predefined to specify
the dimensions of the output feature representations of
those NBP layers. Within the l-th layer, given the vertex
feature vli ∈ Rdl and the factor feature glj ∈ Rdl , the
proposed Variable-to-Factor and Factor-to-Variable MPNN
structures are defined as follows:

gl+1
j = H(

∑
i∈N(j)

Q(T ([vli, g
l
j ]) | φV F )M([vli, g

l
j ] | ψV F ))

vl+1
i = H(

∑
j∈N(i)

Q(T ([vli, g
l
j ]) | φFV )M([vli, g

l
j ] | ψFV ))

(15)
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where vl+1
i ∈ Rdl+1 and gl+1

j ∈ Rdl+1 are the updated
vertex and factor feature representations, to be used as the
input vertex and factor feature representations in the next
(l + 1)-th NBP layer. H : Rm → Rdl+1 is a neural network
to map the intermediate length-m feature representation to
the final length-dl+1 feature representation.N represents the
above node adjacency sets, which are used to define the
edges of the applied factor graph. T : Rdl+dl → Rdl is a
neural network aiming to produce a feature representation
for each possible edge. φ and ψ are employed to param-
eterize the associated neural networks Q : Rdl → Rm×n

and M : Rdl+dl → Rn, respectively. As shown in the
above equation, the applied Variable-to-Factor and Factor-
to-Variable models have the same MPNN structures, but
with different parameterizations (depicted using the sub-
scripts V F and FV ).

In particular, within the l-th NBP layer, for each potential
edge within the node adjacency sets N , we employ a neural
network T : Rdl+dl → Rdl to map the concatenation of the
vertex feature vli ∈ Rdl and the factor feature glj ∈ Rdl into
an edge feature representation, which is then transformed
by an m × n matrix via another neural network Q : Rdl →
Rm×n. The feature representation concatenation [vli, g

l
j ] is

subsequently mapped into a length-n feature representation
via a neural network M : Rdl+dl → Rn. Correspondingly, a
new length-m feature representation is obtained via a rele-
vant matrix multiplication for each potential edge. Further-
more, a mean aggreagator is applied for all related edges to
produce the resulting m dimensional feature representation.
Finally, a neural network H : Rm → Rdl+1 is employed to
map the above m dimensional feature to the final length-
dl+1 feature representation, which is used as the input to
the next (l + 1)-th NBP layer. In this paper, we use a multi-
layer perceptron (MLP) to implement the above associated
neural networks.

Finally, with the above NBP layers, for each vertex vari-
able (instance) and each pairwise factor variable (predicate)
inG = (X,F,E), anm×1 feature vector is produced, which
is further mapped into a corresponding logit via an associ-
ated MLP. A cross entropy loss is employed to train the
above NBP method. As a result, the proposed NBP method
extends the current message passing neural networks, in
which the pairwise dependencies are incorporated into the
associated variational approximation. In other words, one
can apply a structural Bethe approximation [17], [18] to
replace the previous ubiquitous mean field approximation.
By virtue of the proposed NBP method, a tighter variational
approximation is obtained for the underlying model poste-
rior p(x|I) [17], [18].

4 EXPERIMENTS

To validate the proposed neural belief propagation method,
two popular scene graph generation benchmarks - Visual
Genome [46] and Open Images V6 [47] - are utilized in
this section. For each benchmark, we first introduce the
experimental configuration, followed by the comparisons
with the state-of-the-art methods. The ablation study and
the visualization results are also included in the last two
subsections.

Fig. 4: Three disjoint category groups in Visual Genome
training split (follows a long-tail data distribution as demon-
strated above): head (red bars), body (green bars) and tail
(blue bars). y axis represents the number of samples.

4.1 Visual Genome

4.1.1 Experimental Configuration
Benchmark: As the most popular SGG benchmark, Visual
Genome [46] consists of 108,077 images with an average
of 38 objects and 22 relationships per image. Following the
data split protocol in [50], in this experiment, we choose the
most frequent 150 object classes and 50 predicate classes.
Specifically, we split Visual Genome benchmark into two
sets: a training set (70%) and a test set (30%). An evaluation
set (5k) is further extracted from the training set for model
validation. To investigate the biased relationship prediction
problem caused by long-tail data distribution, according
to the instance number in training set [51], we split the
categories into three disjoint sets: head (more than 10k),
body (0.5k ∼ 10k) and tail (less than 0.5k), as demonstrated
in Fig.4.
Evaluation Metrics: Due to the reporting bias caused by
the data imbalance [41], in this paper, we choose mean
Recall mR@K as the evaluation metric instead of the tradi-
tional Recall R@K . Unlike R@K which only concentrates
on common predicate categories and underestimates the
informative predicate categories, mR@K averages the re-
calls across the predicate categories. Following the previous
methods, we test the proposed NBP method on three tasks:
predicate classification (PredCls), scene graph classification
(SGCls) and scene graph detection (SGDet). Specifically,
PredCls task aims to predict the predicate labels given the
input image, the ground-truth bounding boxes and object
labels; SGCls task tries to predict the object and predicate
labels given the input image and the ground-truth bounding
boxes; SGDet task generates the scene graph from the input
image.
Implementation Details: Following [41], [35], in this exper-
iment, ResNeXt-101-FPN [52] (backbone) and Faster-RCNN
[53] (object detector) are applied to construct the visual
perception module. Like the previous methods, we choose a
step training strategy, in which the parameters of the visual
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TABLE 1: A performance comparison on Visual Genome dataset.

Method
PredCls SGCls SGDet SGDet(R@100)

mR@50 mR@100 mR@50 mR@100 mR@50 mR@100 Head Body Tail

RelDN† [48] 15.8 17.2 9.3 9.6 6.0 7.3 34.1 6.6 1.1

Motifs [4] 14.6 15.8 8.0 8.5 5.5 6.8 36.1 7.0 0.0

Motifs* [4] 18.5 20.0 11.1 11.8 8.2 9.7 34.2 8.6 2.1

G-RCNN† [6] 16.4 17.2 9.0 9.5 5.8 6.6 28.6 6.5 0.1

MSDN† [49] 15.9 17.5 9.3 9.7 6.1 7.2 35.1 5.5 0.0

GPS-Net† [8] 15.2 16.6 8.5 9.1 6.7 8.6 34.5 7.0 1.0

GPS-Net†∗ [8] 19.2 21.4 11.7 12.5 7.4 9.5 30.4 8.5 3.8

VCTree-TDE [41] 25.4 28.7 12.2 14.0 9.3 11.1 24.5 13.9 0.1

BGNN [35] 30.4 32.9 14.3 16.5 10.7 12.6 33.4 13.4 6.4

NBP 28.5 30.6 15.1 16.5 12.9 14.7 31.7 15.0 8.9

• Note: Using bold to represent the proposed NBP method. All the above methods apply ResNeXt-101-FPN as the backbone. ∗ means the
re-sampling strategy [33] is applied in this method, and † depicts the reproduced results with the latest code from the authors. In the most
difficult yet representative SGDet task, compared with BGNN algorithm, the proposed NBP method improves the mR@50 and mR@100
performance by (12.9 − 10.7)/10.7 = 20.6% and (14.7 − 12.6)/12.6 = 16.7%. Unlike the previous models which mainly detect the common
head predicate categories, the proposed NBP method concentrates on detecting the more informative body and tail predicate categories. This
could mitigate the biased predicate predication problem caused by the long-tail data distribution. As a result, to further improve the overall
SGDet performance, the proposed NBP method achieves much higher detection performance on the more informative body and tail predicate
categories at the expense of a relatively low detection performance on the common head predicate categories.

perception module are kept frozen during the training pe-
riod and we only train the visual context reasoning module.
The batch size bs is set to 12. A bi-level data resampling
strategy [35] is adopted in this experiment, in which we set
the repeat factor t = 0.07, instance drop rate γd = 0.7 and
the weight of fusion of the entities features ρ = −5. In this
paper, we choose different numbers of NBP layers for the
above three tasks. Specifically, we employ two NBP layers
in the PredCls task and only one NBP layer is applied in the
SGCls task. For the SGDet task, we use three NBP layers.
An SGD optimizer with the learning rate of 0.008 × bs is
applied to train the above three tasks.

4.1.2 Comparison with State-of-the-art Methods
Comparison with the original NBP method: For a fair
comparison, in this experiment, we compare the proposed
NBP method with several state-of-the-art baseline models.
Some of them were reproduced using the author’s latest
codes, while others utilize the original codes but with a
specific re-sampling strategy [33]. As demonstrated in Table
1, the proposed NBP method achieves the state-of-the-art
performance in the SGCls and SGDet tasks, and comparable
performance in PredCls task. Specifically, for the most rep-
resentative SGDet task, compared with the previous best
BGNN model, the proposed NBP method improves the
mR@50 and mR@100 performance by 20.6% and 16.7%.

Moreover, to investigate the biased relationship predic-
tion problem caused by the long-tail data distribution, we
compare the R@100 performance on the long-tail category
groups in the SGDet task in Table 1. For the informative tail
and body predicate categories, the proposed NBP method
achieves the state-of-the-art performance. In particular, it
outperforms the previous methods by a large margin for
the most informative tail predicate categories. This implies
the proposed NBP method is capable of detecting the in-
formative predicate categories, which are hindered by the

TABLE 2: Performance comparison on the Visual Genome dataset with a balance
adjustment strategy.

PredCls SGCls SGDet

Method mR@50 mR@100 mR@50 mR@100 mR@50 mR@100

Motifs+BA [40] 29.7 31.7 16.5 17.5 13.5 15.6

VCTree+BA [40] 30.6 32.6 20.1 21.2 13.5 15.7

Transformer+BA [40] 31.9 34.2 18.5 19.4 14.8 17.1

NBP+BA 35.8 37.9 20.5 21.9 14.8 17.3

• Note: All the above methods apply the same balance adjustment strategy as in [40] .

problem of having a fewer samples for training. Compared
with the previous SGG models, which predominantly detect
the common predicate categories, it can achieve relatively
unbiased training. To mitigate the biased relationship pre-
diction problem caused by the long-tail data distribution,
such unbiased training is much needed for SGG models.
Comparison with the derived NBP+BA method: Following
[40], to achieve an even more unbiased training, we adopt a
generic balance adjustment strategy in the proposed NBP
method, aiming to correct two aspects of imbalance: the
semantic space imbalance and the training sample imbal-
ance. For the semantic space level imbalance, a semantic
adjustment process is applied to induce the predictions by
the NBP method to be more informative by constructing
an appropriate transition matrix. For the training sam-
ple imbalance, a balanced predicate learning procedure is
employed to extend the sampling space for informative
predicates. Here, the term informative predicate is used in
reference to the Shannon information theory, in which the
predicates occurring less frequently are deemed to contain
more information. With such simple yet effective informa-
tion measurement scheme, one can easily generate balanced
training samples for the proposed NBP method.

As demonstrated in Fig.5, compared with the NBP
method, the resulting NBP+BA algorithm has more bal-

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3243306

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



9

Fig. 5: Comparison of the mR@100 performance (repre-
sented as black dots) for each predicate category with the
proposed NBP method and the resulting NBP+BA algo-
rithm. Here, y axis denotes the min-max normalized fre-
quency. Compared with the NBP method, the resulting
NBP+BA algorithm has more balanced training samples, in
which the informative tail (blue bars) and body (green bars)
predicate categories have comparable training samples as
the common head (red bars) predicate categories.

anced training samples, in which the informative tail and
body predicate categories have comparable training samples
as the common head predicate categories. For the infor-
mative tail and body predicate categories, the resulting
NBP+BA algorithm generally outperforms the NBP method.
In Fig.5, the black dots denote the mR@100 performances.
It can be seen that the black dots for NBP+BA algorithm are
generally higher than the ones for the NBP method.

For a fair comparison, in this experiment, the resulting
NBP+BA method is compared with three baseline models as
presented in [40]. Specifically, based on the Shannon infor-
mation theory, the balanced predicate learning procedure
discards the redundant training samples of the common
head group, and keeps most of the training samples of the
informative body and tail groups. As a result, the training
samples of the NBP+BA method are more balanced and
the resulting data distribution is no longer a long-tail dis-
tribution. Moreover, with the transition matrix introduced
in the semantic adjustment process, the predictions from
the NBP method are further mapped into more informative
ones. As demonstrated in Table 2, the resulting NBP+BA
method outperforms the previous state-of-the-art methods
by a large margin in Visual Genome benchmark, especially
for the PredCls task.

4.2 Open Images V6
4.2.1 Experimental Configurations
Benchmark: Open Images V6 [47] is another popular SGG
benchmark, which consists of 301 object categories and
31 predicate categories. Compared with Visual Genome, it
provides a superior annotation quality. In Open Images V6,

TABLE 3: A performance comparison on the Open Images V6 dataset.

Method mR@50 R@50 wmAP rel wmAP phr score wtd

RelDN† [48] 33.98 73.08 32.16 33.39 40.84

RelDN†∗ [48] 37.20 75.34 33.21 34.31 41.97

VCTree† [7] 33.91 74.08 34.16 33.11 40.21

G-RCNN† [6] 34.04 74.51 33.15 34.21 41.84

Motifs† [4] 32.68 71.63 29.91 31.59 38.93

VCTree-TDE† [41] 35.47 69.30 30.74 32.80 39.27

GPS-Net† [8] 35.26 74.81 32.85 33.98 41.69

GPS-Net†∗ [8] 38.93 74.74 32.77 33.87 41.60

BGNN [35] 40.45 74.98 33.51 34.15 42.06

NBP 41.97 75.54 34.44 35.66 43.08

• Note: All the above methods apply ResNeXt-101-FPN as the backbone. ∗ means the
re-sampling strategy [33] is applied in this method, and † depicts the reproduced
results with the latest code from the authors.

there are 126,368 training images, 5322 test images and 1813
validation images. In this experiment, we adopt the same
data processing protocols as in [8], [48], [47].
Evaluation Metrics: Following the evaluation protocols in
[8], [48], [47], the following evaluation metrics are chosen
in this experiment: the mean Recall@50 (mR@50), the regu-
lar Recall@50 (R@50), the weighted mean AP of relation-
ships (wmAPrel) and the weighted mean AP of phrase
(wmAPphr). Like [8], [47], [48], the weight metric score is
defined as: scorewtd = 0.2×R@50+0.4×wmAPrel+0.4×
wmAPphr .
Implementation Details: Following the previous experi-
ment, for the visual perception module, ResNeXt-101-FPN
[52] is employed as the backbone and Faster-RCNN [53]
is applied as the object detector. As we adopt the step
training strategy, freeze the model parameters of the above
visual perception module and only train the visual context
reasoning module. Moreover, the above bi-level data re-
sampling strategy [35] with the same settings is also utilized
in this experiment. We set the batch size bs to 12 and use
two NBP layers in the visual context reasoning module. An
Adam optimizer with learning rate of 0.0001 is applied to
train the proposed NBP method.

4.2.2 Comparison with State-of-the-art Methods
As demonstrated in Table 3, we compare the proposed
NBP method with various state-of-the-art methods on the
Open Images V6 benchmark. For a fair comparison, in this
experiment, most of the baseline models are re-implemented
with the author’s latest codes. Some of them are used
with an additional re-sampling strategy [33]. The proposed
NBP method achieves the state-of-the-art performance on
all evaluation metrics. Specifically, for the representative
mR@50 metric, the proposed NBP method outperforms the
previous methods by a large margin. Clearly, the above
superior performance on the complex Open Images V6
benchmark verifies the effectiveness of the proposed NBP
method.

4.3 Ablation Study

In this section, for the proposed NBP method, we first
investigate the impact of different types of aggregators on
the final scene graph detection performance. Specifically,
we compare the SGDet performances of two models: NBP

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3243306

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



10

Fig. 6: Visualization of the qualitative results of the ground-truth (GT), the baseline model BGNN, the ablated variant NBP
without higher-order dependencies, the proposed NBP method and the derived NBP+BA algorithm in the SGDet task. The
black, orange and green arrows represent the triplets with head predicate categories, the triplets with body or tail predicate
categories and the reasonable triplets detected by models which are not included in GT, respectively. Compared with the
baseline model BGNN, the scene graphs generated by the proposed NBP method and the derived NBP+BA algorithm
are much closer to the ground-truth scene graph GT. Moreover, by adding higher-order dependencies, the proposed NBP
method could potentially detect more triplet structures.

TABLE 4: An ablation study of different types of aggre-
gators.

Method Aggregator Type mR@20 mR@50 mR@100

NBP max 9.2 12.1 14.2

NBP mean 10.0 12.9 14.7

• Note: Two types of aggregators - max and mean - are com-
pared in this table.

method with the max aggregator and NBP method with
mean aggregator, as shown in Table 4. We observe that the
NBP method with the mean aggregator constantly outper-
forms its counterpart NBP algorithm with the max aggre-
gator. This implies that, compared with the max-product
method, the sum-product algorithm is more suitable for the
scene graph generation task. As a result, in the proposed
NBP architecture, we advocate the use of the mean aggre-
gator, instead of the max aggregator, as demonstrated in
Equation (15).

Furthermore, we conduct another ablation study to in-
vestigate the impact of the proposed scoring function on
the final scene graph generation performance. In this study,
the baseline model is set to an NBP method with a scoring

TABLE 5: An ablation study of different types of scoring
functions.

Method Scoring Function mR@20 mR@50 mR@100

NBP without HO 7.5 10.5 12.4

NBP with HO 10.0 12.9 14.7

• Note: HO stands for higher order.

TABLE 6: An ablation study of the bias-variance
trade-off.

Method Scoring Function tS@20 tS@50 tS@100

NBP without HO 0.105 0.142 0.168

NBP with HO 0.148 0.197 0.223

• Note: HO stands for higher order.

function containing only unary and pairwise dependencies.
As demonstrated in Table 5, the above baseline model is
compared with the NBP method employing the proposed
scoring function specified in Equation (9). It can be seen
that the proposed scoring function with the higher order
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dependencies generally produces better performance across
all the evaluation metrics, which implies the global contex-
tual information injected by the higher order dependencies
play an important role in generating a more consistent
interpretation for an input image. This is mainly because the
proposed scoring function reduces the model bias, which
leads to a better bias-variance trade-off.

In supervised learning, the bias-variance trade-off is a
central problem. Ideally, one aims to choose a model that
both accurately captures the regularities in its training data,
but also generalizes well to unseen data. However, in real-
ity, it is generally impossible to achieve both at the same
time. High-bias learning algorithms typically produce sim-
pler models that may fail to capture important regularities
(i.e. underfit) in the data. In contrast, methods with high
variance may be able to represent their training set well
but are at risk of overfitting to noisy or unrepresentative
training data. As a result, to avoid the above underfitting or
overfitting scenarios, one needs to find a better bias-variance
trade-off. Specifically, based on the bias–variance decompo-
sition of mean squared error [20], the expected total error
is the summation of bias2, variance and irreducible error,
where bias represents the difference between the average
prediction of our model and the correct value which we are
trying to predict, variance depicts the variability of model
prediction for a given data point or a value which tells us
spread of our data, irreducible error is the error that can
not be reduced by creating good models, which is a measure
of the amount of noise in our data.

For simplicity, we omit the irreducible error in this
ablation study and set the total error to be the summation
of bias2 and variance. In particular, the total error tE is
computed as follows:

tE = (E[f̂(x)]− f(x))2 + E[(f̂(x)− E[f̂(x)])2] (16)

where f̂(x) represents the predicted scene graph for the
input image x, while f(x) denotes the ground-truth scene
graph of x. In this paper, we employ a mean recall rate
mR@K (where K represents the number of top triplet
predictions) to measure the closeness of the prediction to
the ground-truth result. Note, mR@K increases when the
prediction f̂(x) is closer to the ground-truth result f(x).
Therefore, one could reformulate the above equation as:

tS@K = (E[mR@K])2 + E[(mR@K − E[mR@K])2] (17)

where tS@K represents the total similarity when choosing
the top K triplet predictions. Specifically, tS@K increases
when a model achieves a better bias-variance trade-off. As
shown in Table 6, the total similarity tS@K substantially
increases if we incorporate the higher-order dependencies
into the scoring function, which indicates our proposed NBP
model achieves a better bias-variance trade-off.

4.4 Visualization of the Results
To intuitively demonstrate the superiority of the proposed
method, in Fig.6, we visually compare the qualitative results
of the ground-truth (GT), the baseline model BGNN, the
ablated variant NBP without higher-order dependencies,
the proposed NBP method and the derived NBP+BA algo-
rithm in the SGDet task. Compared with the baseline model

BGNN, the proposed NBP method is capable of detecting
more informative body and tail predicates. For instance,
the proposed NBP could detect an additional belonging to
predicate for the middle image. Besides, the spatial infor-
mative predicates such as < under > or < near > can
also be detected. Moreover, the derived NBP+BA method
further improves the above capability. For example, it could
detect an additional hanging from predicate for the top
image, or even a new reasonable predicate parked on
(which is not included in the ground-truth scene graph
GT) for the bottom image. In a word, compared with the
baseline model BGNN, the scene graphs generated by the
proposed NBP method and the derived NBP+BA algorithm
are much closer to the ground-truth scene graph GT. Finally,
compared with the ablated variant NBP without the higher-
order dependencies, the proposed NBP method with higher-
order dependencies was able to detect more meaningful
triplets, e.g. the hair belonging to man triplet for the
middle image, or the building along street triplet for the
bottom image.

5 CONCLUSION

In this paper, we proposed a novel neural belief propaga-
tion method, which aims to solve two main drawbacks of
the previous mean field message passing neural network
models, namely that: 1) the output variables are considered
to be fully independent within the approximation; 2) only
pairwise dependencies are incorporated into the associated
scoring function. To find a better bias-variance trade-off,
a novel scoring function incorporating higher order de-
pendencies is proposed. The proposed NBP method aims
to simulate a classical sum-product algorithm to infer the
optimum interpretations for an input image. We validated
the proposed generic method on two popular scene graph
generation benchmarks: Visual Genome and Open Images
V6. The extensive experimental results clearly demonstrate
its superiority.
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