
1

Flattening-Net: Deep Regular 2D
Representation for 3D Point Cloud Analysis

Qijian Zhang, Junhui Hou, Yue Qian, Yiming Zeng, Juyong Zhang, and Ying He

Abstract—Point clouds are characterized by irregularity and unstructuredness, which pose challenges in efficient data exploitation and
discriminative feature extraction. In this paper, we present an unsupervised deep neural architecture called Flattening-Net to represent
irregular 3D point clouds of arbitrary geometry and topology as a completely regular 2D point geometry image (PGI) structure, in which
coordinates of spatial points are captured in colors of image pixels. Intuitively, Flattening-Net implicitly approximates a locally smooth
3D-to-2D surface flattening process while effectively preserving neighborhood consistency. As a generic representation modality, PGI
inherently encodes the intrinsic property of the underlying manifold structure and facilitates surface-style point feature aggregation. To
demonstrate its potential, we construct a unified learning framework directly operating on PGIs to achieve diverse types of high-level
and low-level downstream applications driven by specific task networks, including classification, segmentation, reconstruction, and
upsampling. Extensive experiments demonstrate that our methods perform favorably against the current state-of-the-art competitors.
We will make the code and data publicly available at https://github.com/keeganhk/Flattening-Net.

Index Terms—Point cloud, regular representation, point geometry image, deep neural network, unsupervised learning

F

1 INTRODUCTION

THE recent decade has witnessed remarkable advance-
ment of deep learning architectures, especially convolu-

tional neural networks (CNNs), in analyzing regular visual
modalities, such as 2D images/videos and 3D volumes [1],
[2], [3], [4], [5], where powerful convolution operations can
be naturally and efficiently performed on such dense and
uniform grid structures. However, it is highly non-trivial
to adapt the existing learning frameworks that have been
well-developed in regular data domains to the unstructured
point cloud modality that is typically characterized by spar-
sity, irregularity, and unorderedness. Different from regular-
domain visual understanding scenarios where a variety of
off-the-shelf backbone feature extraction networks [6], [7],
[8], [5], [9], [10], [11] are available, such that researchers
can devote themselves to designing downstream processing
units for specific visual tasks, there is still a lack of generic
and mature feature learning paradigms for point clouds.

One of the most straightforward strategies to deal with
irregularity is to pre-transform raw point clouds to regular
data representation structures through rasterization. Volu-
metric models [12], [13], [14] are a representative family of
such processing pipelines, in which spatial points are quan-
tized into occupancy grids, such that standard 3D convolu-
tions can be directly applied for feature extraction. However,

• Q. Zhang, J. Hou, Y. Qian, and Y. Zeng are with the Depart-
ment of Computer Science, City University of Hong Kong, Hong
Kong SAR. Email: qijizhang3-c@my.cityu.edu.hk; jh.hou@cityu.edu.hk;
yueqian4-c@my.cityu.edu.hk; ym.zeng@my.cityu.edu.hk;

• J. Zhang is with the School of Mathematical Sciences, University of
Science and Technology of China, Hefei, Anhui, 230026 China. Email:
juyong@ustc.edu.cn;

• Y. He is with the School of Computer Science and Engineering, Nanyang
Technological University, Singapore, 639798. Email: yhe@ntu.edu.sg;

This work was supported in part by the Hong Kong Research Grants Council
under Grant 11202320, Grant 11219422, and Grant 11218121, and in
part by the Natural Science Foundation of China under Grant 61871342.
Corresponding author: Junhui Hou

due to the sparsity of point cloud data, most computational
resources can be wasted on empty voxels, which becomes
the major computational bottleneck. Moreover, limited by
the cubic growth of computational complexity and memory
footprint, the voxelization-based paradigm only applies to
low-resolution volumes. The follow-up works further intro-
duce octree [15], [16] and kd-tree [17] based hierarchical
adaptive indexing structures to reduce computational and
memory costs, which become applicable to high-resolution
volumes and allow to capture geometric details. Alterna-
tively, projective models [18], [13], [19], [20], [21] represent a
3D shape by multiple 2D view images, and then aggregate
view-wise features extracted from mature 2D CNNs to form
a global shape descriptor. Despite its dominating perfor-
mance in classification/retrieval tasks, the projection-based
paradigm relies on external large-scale image databases for
pretraining and is not directly applicable to fine-grained 3D
understanding tasks requiring point-wise prediction, such
as semantic segmentation and normal estimation.

Without adopting rasterization as a pre-processing pro-
cedure for structure conversion, point-based models [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33] directly take
point sets as input and can produce point-wise embeddings
conveniently. As a pioneering work, PointNet [22] is built
upon shared multi-layer perceptrons (MLPs) that lift point
coordinates to high-dimensional features, and then extracts
a global codeword by applying channel-wise max-pooling.
The follow-up works are devoted to tailoring convolution-
like operators defined on point sets and mimicking conven-
tional CNN architectures. Besides, since graph convolution
is naturally suitable for irregular data modeling, there also
exist a family of specialized graph-based models [34], [35] that
demonstrate great potential in point cloud feature learning.
However, as pointed out in [36], [37], most computational
resources in point-based models are wasted on the process
of neighborhood construction (e.g., k-NN) and structuriza-

ar
X

iv
:2

21
2.

08
89

2v
2 

 [
cs

.C
V

] 
 7

 F
eb

 2
02

3

https://github.com/keeganhk/Flattening-Net


2

Point Cloud

SFM GRM

Planar Embedding Point Geometry Image

3D-to-2D Irregular-to-Regular

Classification

Segmentation

Reconstruction

Upsampling

Downstream Tasks

Fig. 1. Given an irregular point cloud of arbitrary geometric and topological structures, Flattening-Net generates a regular point geometry image
(PGI) that encodes point coordinates as pixel colors while preserving local neighborhood consistency effectively. In the first stage, the input 3D
points are embedded onto a 2D unit square domain through the SFM module. In the second stage, we resample the embedding points on lattice
grids to produce a regular PGI. As a generic representation modality for point clouds, PGI naturally fits into a rich variety of high-level and low-level
downstream applications driven by specific task networks.

tion, rather than on the actual feature extraction, which can
significantly limit model efficiency as the number of input
points increases. Moreover, point-based models typically
suffer from unsatisfactory scalability and generality when
dealing with varying number of input points, which means
that one should carefully configure network structures and
hyperparameters, (e.g., neighborhood size) to accommodate
input data with different number of points.

In this paper, we seek to represent an unstructured
point cloud by a regular grid structure dubbed as point
geometry image (PGI), which encodes Cartesian coordinates
of points as color values of image pixels. Intuitively, we
can interpret the structural conversion between point clouds
and PGIs as a locally smooth deformation between irregular
points on the target 3D surface and regular grids on the
pre-defined 2D lattice, which can meaningfully unfold and
flatten 3D surfaces onto 2D planar domains. Technically, as
illustrated in Figure 1, we present an unsupervised deep
neural architecture called Flattening-Net, a two-stage learn-
ing framework composed of a surface flattening module
(SFM) and a grid resampling module (GRM). In the first
stage, we explore two complementary learning paradigms
for building locally smooth mappings between 3D object
surfaces and 2D planar domains, based on which we design
the SFM for generating planar flattenings from the original
point cloud. In the second stage, we redistribute the irregu-
lar embedding points to dense grid positions of a uniform
lattice by solving an assignment problem, which can deduce
a three-channel image structure. Figure 2 visualizes a gallery
of PGIs generated from various 3D object models and scene
scans.

Driven by the structural characteristics of PGIs, we cus-
tomize concentric-square convolution (CSConv), an efficient
feature extraction operator that is suitable for aggregating
statistics on local manifolds, to produce vectorized regional
descriptors in a unified and scalable fashion. We also investi-
gate specific task networks coupled with CSConv to achieve
downstream applications, including classification, segmen-
tation, reconstruction, and upsampling. It is worth noting
that our major focus is to enrich the application scenarios
and to reveal the universality of the PGI representation,
rather than to customize highly-specialized processing tech-
niques for pursuing the best performance in all evaluation
tasks involved in experiments. Still, it turns out that our
methods can perform favorably against the current state-of-
the-art competitors.

In general, our processing pipeline can be divided into

two separate stages: 1) data representation; and 2) feature
extraction. The former explores how to represent irregular
point cloud data by regular grid structures, and the latter
continues to explore how to efficiently and elegantly extract
features in the transformed regular representation domain.
Architecturally, our method shares similar big pictures with
previous rasterization-based learning frameworks in terms
of creating regular representations for irregular geometric
data. However, volumetric grids and multi-view images are
irreversible representations, which means that it is basically
impossible to accurately recover the original point clouds,
and hence are typically restricted as pre-processing steps to
support regular-domain processing techniques. Differently,
PGI serves as a generic representation modality for 3D point
clouds, which is highly accurate and naturally reversible. In
a sense, our job is simply to rearrange unordered points with
learned “canonical” orders without destroying the original
geometry information.

In summary, this work makes the following key contri-
butions:

• we represent irregular 3D point clouds by regular 2D
PGIs via Flattening-Net, which can be conveniently
implemented in an unsupervised manner and turns
to be transferable between different data domains;

• we customize CSConv for unified, scalable, and ef-
ficient surface-style point feature extraction on PGIs;
and

• we design task-specific networks for rich application
scenarios to enable practical verification of the poten-
tial of our PGI representation structures.

The remainder of this paper is organized as follows. In
Section 2, we discuss three families of closely-related works
and include brief reviews of specialized deep learning-
based 3D point cloud processing fields involved in our
subsequent experiments. Section 3 introduces the proposed
Flattening-Net for generating regular PGI representation
structures from irregular point clouds in an unsupervised
manner. Section 4 further proposes CSConv that directly
operates on PGIs for surface-style regional embedding and
builds different task-specific networks. Section 5 begins with
quantitative experimental evaluations of PGI representation
quality, and then provides downstream task performances
and comparisons. In Section 6, we additionally present in-
depth discussions about some critical issues to help better
assess and understand the value of our work. Finally, we
conclude this paper in Section 7.



3

airplane chair car person

scene scans

Fig. 2. Visualization of 2D PGI representation structures generated from diverse object-level and scene-level 3D point clouds, where we colorize
input points, planar embeddings, and the resulting PGIs according to their correspondence relationships, such that pixel colors uniquely reflect
spatial positions. It is observed that the generated PGIs have smooth color distributions, indicating that spatial continuity is effectively maintained
during such a surface-to-plane mapping process.

2 RELATED WORK

In this section, we mainly focus on three aspects of research
advancement closely related to the actual scope of our work:
parameterization-, surface-, and deformation-based models
for 3D geometric signal learning. Additionally, considering
that our proposed PGI representation structure is applied
to a variety of downstream point cloud processing applica-
tions for experimental evaluation, we also include necessary
discussions about representative task-driven deep learning
frameworks for completeness.

2.1 Parameterization-based Models

In the geometry processing community, there exist a family
of parameterization-based works that are devoted to general-
izing standard CNNs in regular domains to geometric deep
learning architectures in irregular domains. Masci et al. [38]
proposed to construct a polar coordinate system to extract
local 3D patches and defined geodesic convolutions on man-
ifolds. Later, Boscaini et al. [39] used oriented anisotropic
diffusion kernels as an alternative patch operator. Monti et
al. [40] employed Gaussian mixture kernels to implement
a parametric, instead of fixed, patch extraction procedure.
These methods parameterize local 3D surfaces around each
query point and formulate convolution as intrinsic template
matching, which cannot fully incorporate global context. To
remedy this issue, Sinha et al. [41] adopted global spher-
ical parameterization to create geometry images (GIs), as
initialized in [42], from genus-zero manifolds. The follow-
up work [43] further investigated a correspondence-based
procedure to produce consistent GIs for shapes of the same
category. Maron et al. [44] developed a global seamless
parameterization method that maps sphere-like surfaces to
a flat torus. To generate low-distortion surface-to-image rep-
resentations, Haim et al. [45] employed a covering map and
provided a learning framework for spherical signals. These

methods generate regular representations of 3D geometry,
which make it possible to introduce standard CNNs without
modifications. Unfortunately, their frameworks are still built
upon traditional optimization algorithms and only apply to
sphere-type (genus-zero) surfaces. Moreover, these methods
operate on mesh models with connectivity information and
thus are not directly applicable to unstructured point clouds.
In particular, a more generic regular geometry parameteri-
zation scheme can be found in [46], which supports a wider
range of geometric modality like meshes and point clouds.

2.2 Surfaced-based Models
In real-world applications, 3D geometric signals are usually
generated by various depth sensors and LiDAR scanners
to describe the actual boundary surfaces of physical objects
and scenes, making “surface” a natural and critical repre-
sentation modality for 3D geometry. Accordingly, there exist
a special family of surface-based models that directly work
on surface geometry of point clouds and are supposed to
be less vulnerable to surface deformations. Tatarchenko et
al. [47] proposed to project local neighbors of each spatial
point onto the corresponding tangent plane and explored
different interpolation schemes to construct virtual tangent
images for performing convolutions. However, this method
is sensitive to normal estimation. Lin et al. [48] extended
the projection-interpolation working mechanism to a more
general and implicit learning process by predicting the soft
weighting maps, which can be more flexible and robust to
deal with complex shapes. Komarichev et al. [49] presented a
new orientation-invariant annular convolution operator that
defines convolutional kernels in ring-shaped regions on the
projection domain. This method directly learn features from
points without interpolation, but still needs to approximate
point normals through explicit plane fitting. Comparatively,
in our method, there is no such need to estimate normals or
to fit planes which are cumbersome and vulnerable, and the



4

original geometry in the 3D space is preserved. In addition
to the above plane-based learning strategies, other methods
[50], [51], [52], [53], [54], [55], [56], [57] also investigated an
alternative paradigm of performing convolution on spheri-
cal signals. Coors et al. [52] adapted convolutional filters by
encoding projection distortions. Jiang et al. [55] proposed to
define spherical convolutions as a learned linear combina-
tion of parameterized differential operators. Other different
line of works [53], [51], [54] particularly focus on learning
rotation-invariant representations from spherical signals.

2.3 Deformation-based Models

Based on the observation that point clouds are discretized or
sampled from object surfaces, researchers have developed a
series of deformation-based neural architectures used for 3D
shape generation, point cloud reconstruction, and unsuper-
vised learning. Yang et al. [58] proposed to deform an initial
2D lattice grids to reconstruct input point clouds through a
folding-based decoder that is built upon shared MLPs, in an
attempt to enhance the representation ability of intermediate
feature encodings. Groueix et al. [59] used multiple learnable
parameterizations to decode the target surface. Considering
that genus-zero primitives (e.g., lattice grids) are insufficient
to capture highly complex topological structures, Chen et al.
[60] presented a graph-based decoder with graph topology
inference and filtering. Instead of using manually specified
uniform grid structures, Deprelle et al. [61] attempted to use
learned 3D templates that are pre-generated from training
data. Recently, Pang et al. [62] presented a topology-friendly
auto-encoder that enables to adaptively break the edges of
a single primitive graph, making it easier to tackle objects
of various genera or scenes with multiple components. The
core intuition of these methods is that neural networks tend
to fit a relatively smooth transformation function, such that
adjacent data points tend to be mapped to close locations in
the target space. In summary, these methods deform initial
templates to target shapes, differently, our method attempts
to flatten 3D surface points onto 2D planar domains, which
turns to be the exactly opposite working direction (3D-to-2D
vs. 2D-to-3D) with complementary characteristics.

2.4 Deep Learning-based Point Cloud Processing

In recent years, deep learning has become the dominating
technique for almost all mainstream point cloud processing
and understanding tasks. In addition to shape classification
[14] and part segmentation [63] that serve as the most pop-
ular tasks for benchmarking generic point cloud networks,
here we restrict our attentions to point cloud reconstruction
and upsampling application scenarios. We refer the readers
to [64] for a comprehensive survey on deep learning for 3D
point clouds.

Driven by reconstruction objectives, auto-encoders play
a crucial role in representation learning of point clouds, with
rich applications in 3D surface modeling, shape editing, and
unsupervised learning. Wu et al. [65] extended generative
adversarial networks (GANs) from 2D images to 3D voxels.
Li et al. [66] introduced a recursive auto-encoder to capture
the hierarchical organization of object parts. Achlioptas et al.
[67] built a point cloud auto-encoder upon MLPs and then

trained a plain GAN in the fixed latent space. Deformation-
based networks [58], [59], as discussed in Section 2.3, also
demonstrated great potential in generating compact shape
encodings. Implicit models [68], [69], [70] aim to describe
continuous surfaces without discretization by implicit fields,
which can be more efficient for high-quality representation.

Following 2D image super-resolution [71], [72], 3D point
cloud upsampling is also attracting growing attentions. The
pioneering deep learning architecture PU-Net [73] learned
multi-scale point-wise features and expanded sparse point
sets through multi-branch MLPs. Yu et al. [73] presented a
multi-step progressive upsampling (MPU) framework for
capturing and restoring different levels of geometric details,
which can be computationally expensive due to multi-stage
supervision. Li et al. [74] introduced GANs to construct PU-
GAN for points distribution modeling, in order to improve
the uniformity of the upsampling results, which works well
on non-uniform point cloud data. Qian et al. [75] presented
PUGeo-Net, a geometry-centric upsampling framework that
generates dense samples in 2D parametric domains, which
are further lifted to the 3D space through linear transforma-
tions to touch the target surface.

3 FLATTENING-NET FOR PGI GENERATION

3.1 Overview

Given an input 3D point set P ∈ RN×3 containing N points,
Flattening-Net is designed to convert P into a regular 2D
PGI representation structure I ∈ R3×m×m. Here, m is a
user-specified factor that determines the image resolution,
and thus M = m ×m denotes the number of pixels in the
generated PGI. We can directly obtain the corresponding 3D
point set Q ∈ RM×3 encoded in its equivalent image form
I through reshaping operations.

Technically, Flattening-Net is a two-stage learning archi-
tecture consisting of a surface flattening module (SFM) that
can map spatial points to planar embeddings hierarchically,
such that each 2D point on the embedded plane corresponds
to a certain 3D point on the input shape, and a grid resam-
pling module (GRM) that redistributes embedding points
on a uniform lattice to construct a regular grid structure. In
what follows, we detail these core components one by one.

3.2 Surface Flattening Module

In this module, our goal is to build a locally smooth map-
ping between 3D object surfaces and 2D planar domains
through point-wise embedding. To achieve this, we investi-
gate two learning architectures for parameterizing irregular
3D point clouds onto 2D lattice grids: 1) Grid-to-Surface
Deformation (G2SD); 2) Surface-to-Plane Flattening (S2PF).
Conceptually, G2SD deforms a pre-defined 2D lattice to the
target 3D point cloud, while S2PF adopts an opposite work-
flow that maps 3D spatial points to 2D planar embeddings.

Despite the architectural similarities, these two learning
approaches have complementary characteristics in terms of
generating planar flattenings, i.e., G2SD is good at produc-
ing locally smooth parameterizations for complete objects,
while S2PF is able to flatten local surfaces in a geometri-
cally meaningful manner. However, they both suffer from
similar computational limitations in processing dense point



5

Reconstruction Loss

Encoder Concat

Lattice Grids

MLPs

1 x d

N x 3 N’ x 3

Per-Grid ConcatenationSpatial Coordinates

Codeword

Spatial Coordinates

N’ x 2

N’ x (d+2)

“auto-encoder”

(a) Grid-to-Surface Deformation (G2SD)

Encoder Concat MLPs

N x 3

1 x d

N x (d+3) N x 2

Codeword

Per-Point ConcatenationSpatial Coordinates Planar Embeddings

Repulsion Loss

(b) Surface-to-Plane Flattening (S2PF)

Fig. 3. Overall workflows of G2SD and S2PF in terms of learning point-wise mappings between 2D and 3D domains. (a) The G2SD architecture,
formulated as an auto-encoder, tends to deform fixed 2D lattice grids to reconstruct the input 3D point cloud. (b) The S2PF architecture solves the
opposite problem, which explicitly maps the input 3D points onto a 2D plane driven by a repulsion loss.

clouds and cannot deal with complex topological structures.
These observations motivate us to formulate a hierarchical
hybrid framework to achieve high-quality regular geometry
parameterizations while maintaining efficiency.

In the following, we first introduce the detailed design of
G2SD and S2PF in Section 3.2.1 and 3.2.2, and then provide
experimental comparisons to explain their complementarity,
based on which we describe how the hierarchical hybrid
framework is constructed and trained in Section 3.2.3.

3.2.1 Grid-to-Surface Deformation (G2SD)
The basic idea of G2SD has been explored in existing works
[58], [59] that deform fixed 2D lattice grids to form a target
3D shape. In these works, this 2D-to-3D shape deformation
process is particularly developed for 3D object generation or
unsupervised learning under an auto-encoder framework,
with purposes of enhancing the representation ability of
the intermediate global shape encodings. Differently, we re-
consider G2SD as a generative model to achieve regular
geometry parameterization, i.e., an indirect way of flattening
3D surface geometry onto the 2D lattice space.

As shown in Figure 3, both G2SD and S2PF begin with
extracting a 1D codeword z from input points to encode the
global shape information compactly, which can be achieved
by any commonly-used deep set encoders. In our implemen-
tation, we adopt PointNet-vanilla [22] to obtain point-wise
embeddings and perform max-pooling to obtain z.

After codeword extraction, the subsequent workflow of
the G2SD architecture can be formulated as

R = φ([D; z]), (1)

whereD ∈ RN ′×2 defines a 2D lattice with n′×n′ uniformly
distributed grids (N ′ = n′ × n′), [·; ·] represents channel
concatenation, and φ(·) denotes a non-linear transformation
operator that can be implemented by shared MLPs. In such
an auto-encoding framework, we reconstruct a point cloud
R ∈ RN ′×3 that is supposed to recover the input point cloud

P ∈ RN×3 under some point-set similarity metrics, such as
Chamfer Distance (CD) and Earth Mover’s Distance (EMD).
To deal with complex 3D shapes, we can successively stack
multiple G2SD units to empower the whole reconstruction
framework. For example, a two-stack learning architecture
can be described asR = φ2([φ1([D; z]); z]), where φ1(·) and
φ2(·) denote two separate layers of shared MLPs.

Intuitively, since neural networks tend to learn a rela-
tively smooth transformation function, we can always ex-
pect that neighboring grids on the 2D lattice are locally
utilized as a whole to approximate a 3D patch region on
the target shape. Thus, we can geometrically interpret G2SD
as “paper-folding”.

3.2.2 Surface-to-Plane Flattening (S2PF)
In contrast to G2SD, we propose a new working mechanism
called S2PF to explore the possibility of inversely flattening
3D shapes onto 2D planes. The proposed S2PF shares some
spirit of G2SD, as they both adopt shared MLPs as building
blocks to obtain point-wise mappings between 3D and 2D
domains. Following the preceding notations, we formulate
our S2PF architecture as

F = σ(φ([P; z])), (2)

where σ(·) represents the sigmoid function used to restrict
the generated planar embedding points F ∈ RN×2 within a
unit square domain [0, 1]2.

As we discussed previously, since φ(·) approximates a
smooth mapping, points from the original surface can be
flattened in a locally-continuous manner. For convenience,
we denote the i-th spatial point in P and its embedding
point in F as pi = (xi, yi, zi) and fi = (ui, vi). For any two
neighboring embedding points fi and fj , we can expect that
their corresponding pre-images pi and pj should also be
close to each other in the original 3D space.

Different from G2SD that is optimized by reconstruction
loss functions, we propose to impose a repulsion constraint



6

G2SD

G2SD S2PF

Embedded Resampled3D ShapesReshaped

S2PF

“cone”

“airplane”

Fig. 4. Comparison of G2SD and S2PF in terms of regular geometry
parameterization. Given a target shape represented by N spatial points,
G2SD reconstructs an N ′ × 3 point cloud that is further reshaped as a
3 × n′ × n′ 2D image, S2PF directly maps input points onto a 2D plane
and then performs resampling on lattice grids to construct a 2D image.
We treat point coordinates as pixel colors to visualize the corresponding
three-channel images.

to stretch point distribution by punishing clustered pairs of
planar embedding points until they can be separated by an
appropriate distance threshold ε. Mathematically, we define
the repulsion constraint on the generated F as

Lrepulsion(F) =
N∑
i=1

max
(
0, ε− ‖fi − fj‖2

)
, (3)

where ‖·‖2 computes the L2 norm of a vector, and fj is the
unique nearest neighbor of fi in the embedding point set F .
We set the distance threshold ε = 1/(m − 1), which means
the grid interval of a uniform m×m lattice and works well.
In practice, we observe that the learning process is basically
insensitive to a smaller value of ε, since it does not hurt the
separability of embedding points and we always perform
normalization to re-scale F into [0, 1]2.

Comparisons between G2SD and S2PF. The G2SD and
S2PF learning architectures show complementary features
when applied to generate regular geometry representations,
and also share obvious limitations in some practical aspects.

Through extensive experiments, we observe that G2SD
is always able to produce locally smooth parameterizations,
even for complex topological structures, but fails to unfold
3D surfaces in a geometrically-meaningful manner. By con-
trast, S2PF can “flatten” local surfaces or objects with simple
topology in a true sense. Figure 4 shows two typical exam-
ples. For the simple cone object, G2SD simply preserves local
smoothness, while S2PF flattens it with global continuity.
However, for the complex airplane object, S2PF cannot find
a nice “cut” to “open up” the complete object, but tends to
learn a “view projection”, which deviates from our objective
to maintain local neighborhood consistency.

In addition, it turns out that both G2SD and S2PF cannot
deal with dense point clouds, which limits their potentials
in capturing geometric details. As the number of consumed
points increases, the training cost (including GPU memory
footprint and computational complexity) grows fast, and it
can be much harder to converge.

Based on these observations, we are motivated to design
a hierarchical hybrid flattening architecture, as detailed in
the following subsection, such that we can produce high-
quality flattenings for complex shapes while maintaining
efficiency when dealing with dense inputs.

3.2.3 Hierarchical Hybrid Flattening
Our basic idea is to decompose the input point cloud into a
sparse set of guidance points and the corresponding context
points, which are separately flattened onto planar domains
and then assembled to form a complete geometry represen-
tation in an image-like structure. Intuitively, we treat G2SD
as a “teacher” network to guide the learning of its “student”
S2PF network, which fully exploits the complementarity of
the two opposite learning architectures.

Technically, we start by applying farthest point sampling
(FPS) to generate guidance points PG ∈ RNG×3 from input
points P ∈ RN×3. Treating each guidance point as a patch
centroid, we employ k-NN to search NC spatial neighbors,
which can deduce a collection of context points C = {Ci}NG

i=1,
where Ci ∈ RNC×3.

To achieve hierarchical flattening, we first train a G2SD
network that consumes guidance points PG and pre-defined
lattice grids G ∈ R2×nG×nG to reconstruct NG = nG × nG
points, which are reshaped into P̂G ∈ R3×nG×nG . We denote
the entries of G and P̂G at pixel position (û, v̂) as G(û,v̂) ∈ R2

and P̂G(û,v̂)
∈ R3, respectively. According to the working

mechanism of G2SD, we know that P̂G(û,v̂)
is deformed

from fixed G(û,v̂). Inversely, we can interpret such a mapping
relationship as: the spatial point P̂G(û,v̂)

should be flattened
onto a 2D grid position which we denote as f̂ = (û, v̂).
By considering all point pairs between G and PG, we can
obtain a set of planar embedding points F̂G ∈ RNG×2.
Next, we deploy an S2PF network that directly maps PG

to planar embeddings FG ∈ RNG×2. Here, we consider F̂G

as preliminary knowledge acquired from the teacher G2SD
network, and train the student S2PF network by minimizing
L1 loss between FG and F̂G:

Lguidance(FG; F̂G) =
NG∑
i=1

∥∥∥fGi
− f̂Gi

∥∥∥
1
, (4)

where fGi and f̂Gi represent the i-th point in FG and F̂G.
Conclusively, we take three steps to train an S2PF net-

work that flattens guidance points PG to FG on a 2D plane:

1) train a teacher G2SD network to obtain F̂G;
2) initialize a student S2PF network by minimizing
Lguidance(FG; F̂G); and

3) fine-tune the S2PF network under the constraint of
Lrepulsion(FG).

After that, we deploy another separate S2PF network for
flattening context points Ci to FCi ∈ RNC×2 under repul-
sion constraints Lrepulsion(FCi), i = 1, ..., NG. Since local
patches have simple topological structures, S2PF can easily
generate geometrically-meaningful flattenings. Besides, PG

is sparse and only depicts coarse geometry, which can make
it easier for G2SD to generate smoother and more accurate
reconstructions.

3.3 Grid Resampling Module (GRM)

The preceding SFM embeds the guidance points PG and the
corresponding context points {Ci}NG

i=1 onto the unit square
domains, where we obtain FG and {FCi}

NG
i=1, respectively.

GRM aims to assemble them into a complete embedding set,



7

(a) Resample on Sparse Grids (b) Resample on Dense Grids

Fig. 5. In grid resampling, we map irregular planar embeddings to regu-
lar pixels. In general, resampling with sparse grids may yield significant
information loss (a), while resampling with dense grids can effectively
reduce such loss (b).

and generate the required regular geometry representation
structure by grid resampling.

We consider every single point fGi
in FG as the global

mapping coordinate of the local patch Ci, and within Ci we
treat FCi

as local mapping coordinates for the patch points.
However, planar embedding points obtained from SFM are
not guaranteed to be located at grid positions of a regular
lattice. To this end, we need an additional grid resampling
procedure to redistribute the irregular embedding set over
uniform grids and generate a completely regular PGI.

Mathematically, we can formulate the GRM as an assign-
ment problem

min
Wg,Wl

i

‖WgGg −FG‖F +
NG∑
i=1

∥∥∥W l
iGli −FCi

∥∥∥
F
, (5)

where we aim to optimize a set of permutation matrices
Wg ∈ RNG×NG and {W l

i}
NG
i=1 ∈ RK×NC to uniquely as-

sign the global and local embedding coordinates FG and
{FCi}

NG
i=1 to pre-defined 2D grid points with minimal cost of

total movement. Note that Gg ∈ RNG×2 denotes an nG×nG
lattice such that Wg defines a bijection with respect to the
guidance points FG, while Gli ∈ RK×2 denotes a redundant
k×k lattice with K = k×k > NC , which means that only a
subset of the grid points form a one-to-one correspondence
with the context points FCi . We fill in the rest unmatched
grid positions in Gli by selecting the closest neighbors from
FCi . As illustrated in Figure 5, using denser grids inevitably
introduces representation redundancy, but it can effectively
reduce loss of points during resampling. In practice, Eq. (5)
can be efficiently solved by the Auction algorithm [76].

Combining global and local mapping coordinates after
grid assignment, we can obtain a k × k square block, which
we call a geometry image block, for each patch of context
points, after which we globally assemble all blocks into a
complete PGI denoted as I ∈ R3×m×m. Obviously, a PGI is
composed of nG×nG square blocks, each of which contains
k × k pixels. Following the preceding notations, we have
M = NG×K and m = nG×k. For simplicity, we uniformly
configure nG = 16 in all experimental setups.

4 DEEP FEATURE LEARNING FROM PGIS
The preceding section introduces Flattening-Net for creating
regular PGI representation structures from raw point clouds.
In this section, we will take a step forward towards learning
deep features directly from the generated PGIs, after which
we can equivalently achieve various point cloud processing
and understanding tasks.

Embedded Points

Resampled Pixels Square-wise Embedding

Partition FCEmbed

Structural 
Codeword

Embed

Positional 
Codeword

Concat

Regional 
Embedding

FC

Fig. 6. Illustration of the proposed CSConv operator directly working on
PGI representation structures to achieve efficient and scalable regional
embedding. Given a geometry image block whose pixels are resampled
from embedded spatial points, we sequentially partition the whole block
scope into innermost-, intermediate-, and outermost-squares. Treating
each square as a point set, we adopt shared MLPs followed by channel-
wise max-pooling to output vectorized square-wise embeddings, which
are concatenated in order and further fused through a separate FC layer
into a structural codeword. In parallel, we perform absolute coordinates
embedding to generate a positional codeword. Finally, we concatenate
and fuse the structural and positional codewords to obtain the regional
embedding vector.

As afore-mentioned, since the overall surface embedding
process is implemented through a hierarchical (global-local)
flattening workflow, PGIs are intrinsically block-structured.
Besides, local patch parameterizations (obtained from S2PF)
within the blocks are produced in a geometrically meaning-
ful manner, which naturally supports surface-style feature
aggregation paradigms. Hence, motivated by such two as-
pects of properties, we customize a novel concentric-square
convolution (CSConv) operator, as introduced in Section
4.1, based on which we further construct a unified regional
embedding layer that operates on PGIs to efficiently extract
local geometry descriptors from all the nG × nG blocks. To
enable practical evaluations on actual applications, in Sec-
tion 4.2, we make additional efforts on task-specific network
design for tackling diverse types of downstream point cloud
processing and understanding scenarios, including high-
level tasks of classification and segmentation and low-level
tasks of reconstruction and upsampling. Functionally, the
proposed CSConv is designed to serve as a plug-in compo-
nent in the whole processing pipeline to bridge the front-end
Flattening-Net and the back-end task-specific network, with
purpose of achieving efficient and scalable downstream
learning while in the meantime sufficiently exploiting the
unique structural properties of PGIs.

In the following, we comb the core working mechanism
and sketch the major architectural design for readability and
brevity. We also refer readers to the supplementary material
and source code for more detailed and complete technical
implementations.

4.1 CSConv for Regional Embedding

As depicted in Figure 6, our core motivation lies in mod-
eling 3D surface geometry by means of an ordered (from



8

central to peripheral scope) sequence of concentric squares
partitioned separately from each geometry image block.

More specifically, we consider a square-shaped geometry
image block, denoted as B ∈ R3×k×k, containing K points.
We partition the whole block into three concentric squares,
i.e., innermost, intermediate, and outermost square regions,
sequentially denoted as {Sinner,Sinter,Souter}. Treating each
concentric square as a separate point set, we pre-normalize
each set of points into a unit sphere for capturing struc-
tural information from the relative coordinates, and deploy
shared MLPs to generate high-dimensional point-wise em-
beddings. We perform channel-wise max-pooling to deduce,
from each of the three concentric square regions, the corre-
sponding vectorized representations {vinner,vinter,vouter},
which are concatenated in order and further fed into a fully-
connected (FC) layer for inter-squares fusion, producing a
structural codeword vr . In parallel, in order to gain aware-
ness of positional information from absolute coordinates of
local patch points, we directly deploy 1 × 1 convolutions
to the image structure of block B and then apply k × k
spatial max-pooling to produce a positional codeword va.
Finally, we concatenate the structural codeword vr and the
positional codeword va to generate a regional embedding
vector v ∈ Rdv . Hence, given a complete PGI representation
structure composed of nG × nG geometry image blocks, we
obtain a regular 2D feature map denoted as V ∈ Rdv×nG×nG

through CSConv. In all experimental setups, we uniformly
generate fixed-length regional embeddings with dv = 128.

Generally, CSConv serves as a customized operator for
PGIs, featured by square-wise embedding and aggregation,
which facilitates learning the underlying manifold structure
of the corresponding local patch surface. By bridging PGIs
and task-specific networks via CSConv, the overall down-
stream processing pipeline uniformly begins with the low-
resolution feature map (i.e., V) assembled by regional em-
bedding vectors, achieving satisfactory efficiency as well as
scalability. As the number of input points (i.e., N ) increases
significantly, the computational complexity of CSConv only
grows moderately and there is no need to adjust the subse-
quent network configuration, since practically nG is usually
much smaller than m and can be maintained unchanged for
tackling different number of input points.

4.2 Task Network Design

To evaluate the potential and effectiveness of the proposed
PGI representation structure, we make additional efforts to
design downstream task networks for four typical types of
point cloud learning applications, including 1) classification,
2) segmentation, 3) reconstruction, and 4) upsampling. For
the first three scenarios, the task-specific network is
connected to the preceding CSConv-driven regional
embedding component, meaning that the subsequent
feature extraction pipeline uniformly starts from a regional
embedding feature map (i.e., V). In particular, considering
that the processing pipeline of point cloud upsampling
separately operates on small 3D patches locally constructed
from the whole shape, we directly convert the input patch
with N points to its 2D PGI representation structure
with a resolution of n × n (where N = n2) without
the hierarchical parameterization strategy. Thanks to the

structural conversion, we can regard 3D point cloud
upsampling as 2D image super-resolution, which is
implemented by standard 2D CNN architectures without
introducing CSConv for regional embedding before the
subsequent task network. In what follows, we sketch the
corresponding task-specific network design one by one.

Task Network for Classification. As a global geometry
understanding problem, 3D shape classification is perhaps
the most common and fundamental benchmark task for the
evaluation of point cloud learning models. In general, our
goal is to deduce a vectorized global shape signature, which
is further transformed to the final category scores through a
stack of several FC layers.

In our implementation, we investigate two different
variants of deep shape classifiers, dubbed as FlatNet-
Cls-P and FlatNet-Cls-D, by resorting to two classic
and widely used point feature extraction paradigms as
proposed in PointNet [22] and DGCNN [35], respectively.
For the FlatNet-Cls-P variant, we apply a stack of
1 × 1 convolutional layers to V and obtain a vectorized
shape signature by 2D global max-pooling. For the
FlatNet-Cls-D variant, we adopt EdgeConv [35], a graph-
style point convolution operator, to generate point-wise
embeddings and then obtain a vectorized shape signature
via concatenating the outputs of both 2D global max-
pooling and average pooling.

Task Network for Segmentation. Instead of categorizing
the whole geometric shape, 3D object/scene segmentation is
a more fine-grained point cloud understanding task for per-
point semantic labeling. Accordingly, our goal is to deduce
point-wise features, instead of a single global feature vector,
which are then point-wisely mapped to semantic categories
through several layers of shared MLPs.

Considering the similarity between the classification and
segmentation tasks in terms of the overall technical pipeline,
here we extend the preceding two variants of classification
task networks to the segmentation scenario, namely
FlatNet-Seg-P and FlatNet-Seg-D, through replacing the
last spatial pooling operations with the top-down feature
interpolation procedure as adopted in [23]. In particular,
for typical scene segmentation tasks where per-point colors
are consumed as additional input information, we append
color attributes to the corresponding pixel positions to
create a 6-dimensional (i.e., coordinates and colors) image
structure to be fed into CSConv for regional embedding.
Accordingly, we construct the task network variant called
FlatNet-Scene-Seg by resorting to the progressive local
feature aggregation mechanism as proposed in [77].

Task Network for Reconstruction. Auto-encoders serve as
a classic unsupervised learning framework consisting of
an encoding process for extracting compact feature repre-
sentations and a decoding process for reconstructing input
signals. Motivated by the structural regularity of PGIs, we
implement point cloud reconstruction under an image auto-
encoding pipeline, such that we can naturally incorporate
standard 2D spatial convolutions.

Accordingly, we design a PGI-driven task network
called FlatNet-Rec. In the encoding stage, for an input



9

point cloud and its corresponding PGI, we also begin with
an nG × nG regional embedding feature map V passing
through a series of convolutional layers accompanied by 2×
spatial pooling. Thus, we compactly deduce a 2D feature
map and reshape it into a vectorized global codeword. In
the decoding stage, we feed the learned global codeword
into another group of convolutional layers accompanied by
2× spatial up-scaling to generate an nG×nG coarse feature
map denoted as Vdec. On one hand, we aim to restore
NG guidance points from Vdec, serving as side-output
supervision. On the other hand, we locally generate patches
centered at each restored guidance point through shared
MLPs. A complete reconstruction result is produced by
assembling all locally restored patches. The overall training
objective involves both pixel-wise L1 loss and point-wise
CD loss.

Task Network for Upsampling. As afore-mentioned, the
current community implements point cloud upsampling via
a patch-based processing pipeline, instead of consuming the
whole object/scene directly as input. The training process
relies on paired data of sparse and dense patches locally
constructed from complete 3D models. During the inference
phase, an input sparse point cloud is redundantly decom-
posed into a collection of overlapping patches, which will be
separately upsampled. In order to obtain a complete dense
point cloud with the explicitly specified scale factor, one can
assemble points from all the upsampled patches and then
apply FPS to sample the required number of points.

Here, our major motivation is to convert the problem of
3D point cloud upsampling to 2D image super-resolution.
Architecturally, 2D convolutional learning frameworks are
adopted to produce high-resolution PGIs, which are equiv-
alent to dense point sets. Following previous development
protocols in [74], we experiment with 4× point upsampling,
which corresponds to 2× image super-resolution. Formally,
given a sparse local patch containing N points as well as its
PGI representation structure with a resolution of n × n, we
aim to generate a larger 2n × 2n PGI as an indirect way of
obtaining a denser set of 4N points.

By resorting to previous successful single image super-
resolution frameworks, we construct a task network dubbed
as FlatNet-Ups, where we implement spatial interpolation
of PGIs under the popular pre-upsampling [71] and global
residual learning [72] paradigm. For an input low-resolution
PGI (LR-PGI), we begin with applying the 2× bicubic image
interpolation to compute an enlarged LR-PGI, which further
passes through a series of convolutional layers to generate a
residual map for restoration of geometric details and outlier
removal. Thus, the addition of the enlarged LR-PGI and the
residual map gives the desired output of a high-resolution
PGI (HR-PGI). The whole learning process is supervised by
a combination of pixel-wise L1 loss (between predicted and
ground-truth HR-PGIs), point-wise EMD loss, and auxiliary
distribution uniformity constraints (as proposed in [74]).

5 EXPERIMENTS

Generally, we evaluate the potential of our regular geometry
representation approach from two perspectives. First, we
customized two aspects of computational metrics in terms

TABLE 1
Quantitative geometry fidelity metrics computed between the generated
PGIs and the original point clouds on ModelNet40 and ShapeNetPart

datasets under different number of input points.

Dataset # Points PGI Resolution Geometry Fidelity

ModelNet40 1024 80 × 80 99.993%
ModelNet40 2048 112 × 112 99.915%
ModelNet40 5000 160 × 160 99.662%
ModelNet40 10000 240 × 240 99.678%

ShapeNetPart 2048 128 × 128 99.913%

TABLE 2
Trade-off between redundancy and accuracy (geometry fidelity) when
generating PGI representation structures of various resolutions from

input point clouds uniformly containing 10000 points.

Resolution Redundancy Geometry Fidelity

240 × 240 4.76× 99.678%
224 × 224 4.02× 99.532%
208 × 208 3.33× 99.174%
192 × 192 2.69× 98.329%
176 × 176 2.10× 96.688%
160 × 160 1.56× 93.629%
144 × 144 1.07× 88.735%
128 × 128 0.64× 81.537%

of geometry fidelity and neighborhood consistency to quan-
titatively reflect the representation quality of the generated
PGIs. Then, we showed the practical effectiveness of Flatten-
ingNet when coupled with the subsequent feature learning
pipelines and the corresponding task-specific networks in
different downstream applications.

5.1 Representation Quality
The proposed PGI representation structure is designed to be
a generic geometry modality for point cloud data. Thus, one
critical problem is to quantitatively depict the representation
quality of the generated PGIs in regular 2D planar domains
with respect to the original raw point clouds in irregular
3D domains. Specifically, we customized the following two
aspects of computational metrics.

1) Geometry Fidelity. We consider an input point cloud
P containing N points and its corresponding PGI repre-
sentation structure I of dimensions m × m, which can be
equivalently regarded as M points. Considering that the
actual information loss is caused by missing points when
performing grid resampling, we define the geometry fidelity
metric as the ratio of the number of non-missing points to
the number of input points (i.e., N ).

We performed evaluation on varying resolutions of PGIs,
which correspond to varying number of input points, on the
whole ModelNet40 [14] and ShapeNetPart [63] repositories
consisting of 12311 and 16881 3D object models, respectively.
As reported in Table 1, it is observed that the ratio of missing
points can be reduced to an almost negligible degree as long
as we configure sufficiently large resolution (i.e., m) for PGI
generation. In the meantime, however, it is worth reminding
that larger image resolution leads to higher representation



10

TABLE 3
Quantitative neighborhood consistency metrics derived from different
choices of J and J̄ on ModelNet40, where the number of guidance

points (i.e., NG) is uniformly configured as 256.

NG J J̄ Neighborhood Consistency

256 8 8 47.14%
256 8 16 71.18%
256 8 32 89.31%
256 16 16 49.17%
256 16 32 73.69%
256 16 64 91.66%

redundancy, as shown in Table 2. In practice, we are sup-
posed to flexibly adjust the trade-off between redundancy
and accuracy according to specific computational/memory
budget and task property.

2) Neighborhood Consistency. In contrast to the irregu-
larity and unstructuredness of raw point clouds, one major
characteristic of the proposed regular geometry representa-
tion structure lies in that spatial consistency (i.e., adjacency
relations) within local neighborhood should be effectively
preserved during the process of 3D-to-2D embedding. More
intuitively, neighboring points in the original 3D space are
still supposed to be adjacent after being embedded onto the
2D planar space. Here, we need to remind that topological
distortions are theoretically inevitable in most cases, unless
the target 3D surface is strictly homeomorphic to a 2D plane.

We consider a guidance point set PG ∈ RNG×3, which is
point-wisely flattened to generate a planar embedding point
set FG ∈ RNG×2. Note that there is naturally a (row-wise)
one-to-one bijection mapping between PG and FG, i.e., the
i-th 2D embedding point fGi

∈ FG is obtained from the i-th
3D guidance point pGi

∈ PG. Based on this observation, we
tend to quantitatively derive the neighborhood consistency
metric in the following three steps:

1) we search for J spatial neighbors of fGi
, denoted as

f
(j)
Gi

(j = 1, ..., J ), among all 2D embedding points
in FG. Then we can directly locate a 3D guidance
point p(j)

Gi
that is mapped to f

(j)
Gi

since they share the
same row-wise index in PG and FG, respectively.

For convenience, we denote Ωi =
{
p

(j)
Gi

}J

j=1
.

2) in the original 3D space, we further search for
J̄ spatial neighbors of pGi among all 3D guid-
ance points in PG, which are similarly denoted as

Ω̄i =
{
p̄

(j)
Gi

}J̄

j=1
.

3) we compute the percentage of points in Ωi that
can be found in Ω̄i, then deduce the neighborhood
consistency metric by iterating the same procedures
on all the NG guidance points (i.e., averaged for
i = 1, ..., NG).

It is worth mentioning that local patch parameterizations
that operate on context points C are excluded from the above
evaluation process, because in our working mechanism the
2D embeddings of context points are naturally restricted
in the scope of the corresponding guidance point, without
violating the local adjacency requirement.

TABLE 4
Overall accuracy (OA) of different deep shape classification methods
on ModelNet40. “∗” means that point-wise normals are consumed as

additional input attributes.

Method # Points OA (%)

PointNet-vanilla [22] 1024 87.1

PointNet [22] 1024 89.2

PointNet++ [23] ∗ 5000 91.9

SpiderCNN [28] ∗ 1024 92.4

SO-Net [26] ∗ 5000 93.4

PointConv [30] ∗ 1024 92.5

DGCNN [35] 1024 92.9

FlatNet-Cls-P 1024 92.6

FlatNet-Cls-D 1024 93.4

TABLE 5
Ablative analysis of CSConv on ModelNet40 classification.

Variant OA (%)

FlatNet-Cls-P (w/o CSConv) 90.5 (−2.1)
FlatNet-Cls-D (w/o CSConv) 92.2 (−1.2)

FlatNet-Cls-P (w/ k × k Conv) 90.9 (−1.7)
FlatNet-Cls-D (w/ k × k Conv) 92.5 (−0.9)

In the ideal case, where local neighborhood consistency
is completely maintained, Ωi and Ω̄i contain the same set of
points (if we set J = J̄ ). In practice, however, when dealing
with point clouds with arbitrarily complex geometry and/or
topology, there inevitably exist distortions. Hence, we may
as well appropriately relax the above evaluation protocol by
specifying a larger value for J̄ , such that J̄ ≥ J .

Following such a principle, we experimented with di-
verse combinations of J and J̄ on ModelNet40 (where
NG = 256). As shown in Table 3, the local neighborhood
consistency is effectively preserved during the generation
of PGIs.

5.2 Shape Classification

We conducted experiments on the ModelNet40 [14] dataset,
consisting of 12311 synthetic mesh models covering 40
object categories, to benchmark shape classification perfor-
mances. Under the official split, there are 9843 shapes in the
training set and 2468 shapes in the testing set.

To quantitatively demonstrate the efficiency and scal-
ability of our method, we actually experimented with
an increasing number of input points, i.e., N =
{1024, 2048, 5000, 10000}, uniformly discretized from the
original mesh faces. For the creation of PGIs, we config-
ured NC = {12, 24, 50, 100} and k = {5, 7, 10, 15} within
Flattening-Net to produce different image resolutions, i.e.,
m = {80, 112, 160, 240}, respectively. During training, we
employed common data augmentation strategies, including
random translation, ground-axis rotation, and anisotropic
rescaling, to boost the generalization ability. During testing,
we did not adopt any voting scheme, which turns to be
highly cumbersome and unstable.



11

Table 4 reports the classification accuracy of different
point cloud learning frameworks on ModelNet40. Note that
our FlatNet-Cls-P and FlatNet-Cls-D are supposed to be
regarded as the extensions of the corresponding baseline
models PointNet-vanilla [22] and DGCNN [35], respectively,
since our task networks are composed of the same building
blocks of point-wise MLP [22] and EdgeConv [35]. Compar-
atively, although the PointNet-vanilla baseline with 87.1%
accuracy shows limited modeling capacity, our FlatNet-Cls-
P variant still achieves much better performance with 92.6%
accuracy. For the stronger DGCNN baseline with 92.9%
accuracy, our FlatNet-Cls-D variant further brings 0.5%
performance gain to reach 93.4% accuracy. Furthermore, we
can expect to achieve better performances by replacing more
powerful baseline models in addition to [22], [22], [35].

Figure 7 compares the specific statistics of computational
efficiency among our learning frameworks and other three
representative models [22], [23], [35]. For different number
of input points, we evaluated accuracy, FLOPs, and latency
during the inference stage. Here, we can draw the following
several aspects of conclusions:

• As a representative point-wise convolutional learn-
ing paradigm, PointNet [22] shows satisfactory effi-
ciency for processing sparse point clouds. However,
the computational complexity grows linearly as the
number of input points increases. More importantly,
due to the limited modeling capability and the lack of
neighborhood aggregation, consuming denser point
clouds as inputs cannot produce higher accuracy, e.g.,
showing degraded performance when dealing with
10000 points.

• Thanks to the hierarchical feature abstraction mech-
anism, PointNet++ [23] achieves stable performance
boost for processing denser point clouds. In practice,
since its first set abstraction layer uniformly samples
512 centroids, the measurement of FLOPs is main-
tained unchanged. However, the downsampling pro-
cess of FPS can be extremely time-consuming, which
limits its scalability to large-scale point clouds.

• DGCNN [35] is perhaps the most popular backbone
network for point feature extraction, which achieves
highly competitive performance and acceptable com-
putational burden for processing sparse point clouds.
When we increase the number of input points from
1024 to 2048, it can contribute obvious performance
gain. However, a major shortcoming is the extremely
high computational and memory cost for dense point
clouds. Practically, processing a single input model
containing 5000 points requires 5GB GPU memory in
the training phase, making it impossible to converge
on ordinary computation devices due to small batch
size. Therefore, in Figure 7, we did not provide the
corresponding statistics for 5000 and 10000 points.

• For both the FlatNet-Cls-P and FlatNet-Cls-D vari-
ants, we observed stable performance improvement
as well as insignificant growth of FLOPs and latency
when dealing with dense inputs.

In addition to evaluating the whole learning pipeline, we
performed ablative analysis of the proposed CSConv opera-
tor. First, to validate its necessity, we removed the CSConv-

TABLE 6
Performance of real-scanned point cloud object classification on the
OBJ_ONLY and OBJ_BG settings of ScanObjectNN, in which our

Flattening-Net is pretrained on ShapeNetCore and directly applied to
generate PGIs on ScanObjectNN without fine-tuning.

Method # Points OBJ_ONLY OBJ_BG

PointNet [22] 1024 79.2 73.3

PointNet++ [23] 1024 84.3 82.3

SpiderCNN [28] 1024 79.5 77.1

DGCNN [35] 1024 86.2 82.8

FlatNet-Cls-P 1024 86.5 85.9

FlatNet-Cls-D 1024 87.7 86.4

driven regional embedding component while maintaining
the subsequent task network unchanged. As shown in the
first two rows of Table 5, our pipelines suffer from obvious
performance degradation. Second, to verify the superiority
of our customized surface-style regional embedding proce-
dure over standard convolutional operations, we designed
another two variants by replacing CSConv with 2D convo-
lutions with the kernel size and sliding stride set as k×k. As
shown in the last two rows of Table 5, such a modification
brings performance boost over the above two baselines to
some extent, but is still inferior to the original frameworks.

To demonstrate the transferability of Flattening-Net for
point cloud parameterization in the learning-based manner,
we further performed verification under a transfer learning
scenario. Here, we started by pretraining Flattening-Net on
ShapeNetCore [78], a large-scale synthetic shape repository
containing over 50000 object models. After pretraining, we
transferred it to generate PGIs from all point cloud mod-
els of the real-scanned ScanObjectNN [79] dataset without
fine-tuning (i.e., the network parameters were fixed), after
which we trained the same FlatNet-Cls-P and FlatNet-Cls-
D variants for evaluation. Table 6 compares the classifi-
cation accuracy of different learning frameworks, where
our methods show highly competitively performance. Since
ScanObjectNN is known to be a much more challenging
benchmark dataset, where the object models are typically
noisy, incomplete, and accompanied by background points
(in the OBJ_BG setting), the above experiments and compar-
isons can strongly validate the transferability of Flattening-
Net, even for different datasets with big domain gaps.

5.3 Semantic Segmentation
We experimented with part segmentation of 3D objects on
the ShapeNetPart [63] dataset, which is composed of 16881
labeled models covering 16 object categories with totally 50
different parts. Following the official split, we have 14007
models for training and 2874 for testing. In this experiment,
each point cloud contains 2048 points uniformly sampled
from the original mesh models. Accordingly, we configured
NC = 24 and k = 8 (i.e., m = 128) within Flattening-
Net for the generation of PGIs. As reported in Table 7, both
FlatNet-Seg-P and FlatNet-Seg-D variants outperform their
corresponding baselines, e.g., PointNet and DGCNN, with
obvious margins.

Following the same settings in Section 5.2, here we also
performed ablative analysis of CSConv in the part segmen-



12

Fig. 7. Comparison of classification accuracy, FLOPs, and latency of different methods when dealing with increasing number of input points.

TABLE 7
Performance of part segmentation on ShapeNetPart measured by

mean intersection-over-union (mIoU), where “∗” means that point-wise
normals are consumed as additional input attributes.

Method # Points mIoU (%)

PointNet [22] 2048 83.7

PointNet++ [23] ∗ 2048 85.1

SpiderCNN [28] ∗ 2048 85.3

SO-Net [33] ∗ 2048 84.9

PointConv [30] ∗ 2048 85.7

DGCNN [35] 2048 85.1

FlatNet-Seg-P 2048 84.9

FlatNet-Seg-D 2048 85.8

TABLE 8
Ablative analysis of CSConv on ShapeNetPart segmentation.

Variant mIoU (%)

FlatNet-Seg-P (w/o CSConv) 84.1 (−0.8)
FlatNet-Seg-D (w/o CSConv) 85.2 (−0.6)

FlatNet-Seg-P (w/ k × k Conv) 84.5 (−0.4)
FlatNet-Seg-D (w/ k × k Conv) 85.5 (−0.3)

tation scenario. Table 8 lists the corresponding performances
of four different model variants, according to which we can
draw consistent conclusions of the necessity and superiority
of the regional embedding procedure built upon CSConv.

In addition to object-level understanding tasks, we fur-
ther experimented with scene-level parsing to verify the uni-
versality of our PGI-driven point cloud learning paradigm.
S3DIS [80] is a widely-used indoor scene semantic segmen-
tation dataset for large-scale colored point clouds composed
of 271 single rooms located in 6 different areas, with over
270 million densely annotated points covering 13 semantic
classes. Following previous pipelines [77], instead of directly
processing raw data, we performed grid sub-sampling and
then cropped each complete room into multiple overlapping
sub-regions. In the inference phase, we merged predictions
on all the cropped sub-regions while performing voting on
repeatedly processed points, and then projected the seman-
tic labels of downsampled points to raw data. In terms of the

TABLE 9
Performance of large-scale indoor scene segmentation on Area-5 of

S3DIS measured by mean class accuracy (mAcc) and mean
intersection-over-union (mIoU).

Method mAcc (%) mIoU (%)

PointNet [22] 49.0 41.1

PointCNN [29] 63.9 57.3

SPG [81] 66.5 58.0

HPEIN [82] 68.3 61.9

RandLA-Net [77] 71.5 62.5

KPConv [32] 72.8 67.1

FPConv [48] 68.9 62.8

FlatNet-Scene-Seg 71.9 62.4

generation of PGIs from scene croppings, we followed the
same development protocol in the preceding ScanObjectNN
classification experiments to pretrain our Flattening-Net on
ShapeNetCore and then directly transfer to S3DIS with
network parameters fixed.

Table 9 reports indoor scene segmentation performance
of different methods, among which [81], [82], [77] are par-
ticularly specialized for point cloud semantic segmentation
scenarios. It is observed that our FlatNet-Scene-Seg variant
still achieves competitive performances, which validates the
effectiveness of our method when extended to scene data.

5.4 Point Cloud Reconstruction

We evaluated the learning capacity of different paradigms of
deep point auto-encoders in terms of reconstruction quality
under the same codeword length. We adopted the same data
preparation protocols as introduced in the preceding shape
classification experiments on ModelNet40 [14] to create PGIs
from 2048 and 5000 points. For comparison, we developed
two baseline point cloud auto-encoding frameworks, i.e., an
MLP-based [67] model called Baseline-Rec-M and a folding-
based [58] model called Baseline-Rec-F. The former directly
regresses point-wise coordinates through a stack of multiple
FC layers, while the latter deforms a pre-defined 2D lattice
to approximate the target 3D shape.

Table 10 quantitatively compares the reconstruction
quality as well as model sizes of different methods. For
MLP-based frameworks, the corresponding network com-



13

TABLE 10
Quantitative performance of point cloud reconstruction on ModelNet40

measured by Chamfer distance (CD) and model size (MS)
corresponding to different number of input points.

Method # Points CD (10−3) MS (MB)

Baseline-Rec-M 2048 1.75 60

Baseline-Rec-M 5000 1.61 322

Baseline-Rec-F 2048 1.69 37

Baseline-Rec-F 5000 1.22 37

FlatNet-Rec 2048 0.93 35

FlatNet-Rec 5000 0.85 35

(a)

(b)

(c)

(d)

Fig. 8. Visual comparison of point cloud reconstruction results generated
by (b) Baseline-Rec-M, (c) Baseline-Rec-F, and (d) our FlatNet-Rec for
auto-encoding (a) the input point clouds. In particular, we also show the
PGI representation structures corresponding to (a) and (d).

plexity grows significantly when dealing with dense point
clouds because the number of output neurons exactly relies
on the required number of reconstructed points, resulting
in greater learning difficulty. For folding-based frameworks,
the same network configuration can be applied to recon-
struct different number of points while achieving better
reconstruction quality under both sparse and dense input
settings. Comparatively, our FlatNet-Rec variant produces
the lowest reconstruction errors with moderate model size.
Figure 8 visually compares the reconstruction results ob-
tained by different methods, in which it can be observed
that our results are closer to input shapes with less noises
and outliers.

5.5 Point Cloud Upsampling
We conducted experiments on 4× point cloud upsampling
using the same dataset as [74] (which we call PU147), where
there are 147 training models and 27 testing models. Under

TABLE 11
Quantitative performance of point cloud upsampling on PU147

measured by Chamfer distance (CD), Hausdorff distance (HD), and
point-to-surface (P2F) distance.

Method P2F (10−3) CD (10−3) HD (10−3)

PU-Net [73] 6.97 0.72 8.93

MPU [84] 3.93 0.49 6.06

PU-GAN [74] 2.40 0.29 4.75

PUGeo-Net [75] 2.85 0.32 3.28

FlatNet-Ups 2.11 0.25 2.93

TABLE 12
Comparison of regular 2D representation-based 3D shape recognition
frameworks on ModelNet40 classification with different input types of

classic GIs, spherical parameterizations (S.P.) produced by
equirectangular projection, and the proposed PGIs.

Method Para. Type OA (%)

DLGI [41] GIs 83.9

SNGC [45] GIs 91.6

EP-Cls-P S.P. 88.5

EP-Cls-I S.P. 90.1

FlatNet-Cls-P PGIs 92.6

FlatNet-Cls-D PGIs 93.4

the same development protocol, the numbers of points in
the input sparse model and the target ground-truth model
are 2048 and 8192, respectively. In the actual training and in-
ference stages, input patches uniformly contain 256 points.
Figure 9 illustrates the workflow of upsampling sparse local
patches through PGI super-resolution.

Table 11 compares our upsampling network of FlatNet-
Ups with previous deep learning-based frameworks that are
specialized for point cloud upsampling. It can be observed
that our PGI-driven framework outperforms the other meth-
ods in terms of all the three evaluation metrics with obvious
margins. Figure 10 provides some visual comparisons of the
upsampling results obtained by different methods, in which
our results show better surface mesh reconstruction quality.
In fact, in our implementation, we only incorporated some
fundamental design experience from the research commu-
nity of image super-resolution [83]. Still, our experimental
results have already demonstrated the potential of adapting
2D image processing techniques for our PGI representations.
We reasonably expect that further performance improve-
ment can be achieved by introducing more advanced and
specialized image-domain learning modules.

6 DIFFERENCES BETWEEN PGIS AND GIS
Essentially, both the proposed point geometry image (PGI)
and the traditional geometry image (GI) [42] are designed
for regular 2D representation of 3D geometric information,
which produce a three-channel colored image at the output
end. Nevertheless, we emphasize that PGIs are fundamen-
tally different from GIs in terms of generation and target
domain. More specifically, GIs are created from meshes and
generated by optimization-based surface parameterization



14

(b)

(c)

(d)

(e)

(f)(a)

(b)

(a)

(c) (e)

(d) (f)

(b)

(a)

(c) (e)

(d) (f)

“bicubic”

“bicubic”

“bicubic”

“refine”

“refine”

“refine”

Fig. 9. Illustration of the processing pipeline of FlatNet-Ups that imple-
ments 3D point cloud upsampling as 2D PGI super-resolution. Given (a)
an input sparse point cloud patch, we generate (b) an LR-PGI and then
apply standard bicubic image interpolation to obtain (c) an enlarged LR-
PGI, which corresponds to (d) the coarsely upsampled patch. After that,
the initial enlarged LR-PGI is refined into the resulting (e) HR-PGI, which
corresponds to the desired (f) dense upsampling result.

algorithms [85], [86], [87], [88], [89], [90], which are able to
compute high-quality GIs from 3D shapes with relatively
simple geometry and topology. In practice, the generation
pipeline of GIs is often used for GPU-accelerated rendering
and texture mapping in applications of movies and video
games. Increasing the complexity of geometry/topology can
pose significant challenges to these methods. Moreover, the
above mesh-oriented computational process is restricted to
manifold meshes, despite the fact that most real-world 3D
models are non-manifolds. These challenges can seriously
diminish the application of classic GIs in 3D geometric deep
learning. By contrast, our method is particularly developed
for unstructured point clouds with arbitrary geometry and
topology, working for both manifolds and non-manifolds.
As a generic representation modality for 3D deep learning,
our PGIs support a much wider range of downstream point
cloud processing and understanding scenarios.

As mentioned in Section 2.1, previous studies [41], [45]
also explore similar deep learning-based shape recognition
pipelines where off-the-shelf 2D CNNs are directly applied
to classic GIs, as shown in the first two rows of Table 12. In
addition, we further experimented with two equirectangu-
lar projection (EP)-driven baseline frameworks, as shown in
the middle two rows of Table 12. The variant of EP-Cls-P is
modified from our preceding FlatNet-Cls-P by changing the
input signals from PGIs to spherical parameterizations pro-
duced by EP while maintaining all the other components.
For the variant of EP-Cls-I, as conducted in [45], we employ
Inception-V3 [8] for image feature extraction. We can draw

some useful conclusions from the above comparisons. First,
the two EP-based baselines underperform our methods, in
that local neighborhood consistency and manifold property
are greatly destroyed, which hinders effective feature aggre-
gation. Second, classic GIs turn to be sub-optimal when used
as inputs for the subsequent deep networks. We reason that
this is caused by the loss of geometric structure during the
conversion from raw data to genus-zero manifold meshes.

7 CONCLUSION

This paper focuses on regular 2D representation for irregu-
lar 3D geometry of unstructured point clouds. We proposed
an unsupervised learning architecture, namely Flattening-
Net, to convert arbitrary point clouds into PGI structures,
capturing spatial coordinates in image pixels while effec-
tively preserving local neighborhood consistency. Accord-
ingly, we further developed CSConv, a novel surface-style
point convolution operator, which achieves efficient and
scalable regional embedding. We demonstrated the effec-
tiveness of Flattening-Net by applying PGIs to diverse point
cloud processing and understanding applications, in which
our frameworks show highly competitive performance, al-
though our major goal is not to pursue state-of-the-arts in all
involved application scenarios by designing various fancy
and complicated task-specific network architectures.

In conclusion, our extensive experimental results have
convincingly indicated the potential and universality of
PGIs in 3D deep learning. We believe that such a regular
geometry representation modality will open up many new
possibilities in the point cloud community. In the future, we
plan to extend the scope of our geometry parameterization
approach from static 3D point clouds to dynamic sequences
while preserving spatio-temporal correspondence between
consecutive frames. In terms of downstream applications, it
is promising to construct PGI-based point cloud compres-
sion frameworks that are highly desired in various practical
scenarios [91], where mature 2D image/video codecs can be
seamlessly introduced, as done in [92], [93].

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” Proc. NeurIPS,
vol. 25, pp. 1097–1105, 2012.

[2] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional
neural networks,” in Proc. CVPR, 2014, pp. 1725–1732.

[3] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learn-
ing spatiotemporal features with 3d convolutional networks,” in
Proc. ICCV, 2015, pp. 4489–4497.

[4] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in Proc. CVPR, 2015, pp. 3431–
3440.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. CVPR, 2016, pp. 770–778.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” Proc. ICLR, 2015.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proc. CVPR, 2015, pp. 1–9.

[8] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-
thinking the inception architecture for computer vision,” in Proc.
CVPR, 2016, pp. 2818–2826.

[9] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated resid-
ual transformations for deep neural networks,” in Proc. CVPR,
2017, pp. 1492–1500.



15

(a) (b) (c) (d) (e) (g)(f)(a) (b) (c) (d) (e) (g)(f)

Fig. 10. Visual comparison of point cloud upsampling results. Given (a) input sparse point clouds and (b) dense ground-truths, we present typical
upsampling examples generated by (c) PU-Net [73], (d) MPU [84], (e) PU-GAN [74], (f) PUGeo-Net [75], and (g) our FlatNet-Ups.

[10] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. CVPR, 2017,
pp. 4700–4708.

[11] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in Proc. ICML, 2019, pp. 6105–
6114.

[12] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural
network for real-time object recognition,” in Proc. IROS, 2015, pp.
922–928.

[13] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas,
“Volumetric and multi-view cnns for object classification on 3d
data,” in Proc. CVPR, 2016, pp. 5648–5656.

[14] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3d shapenets: A deep representation for volumetric shapes,” in
Proc. CVPR, 2015, pp. 1912–1920.

[15] G. Riegler, A. Osman Ulusoy, and A. Geiger, “Octnet: Learning
deep 3d representations at high resolutions,” in Proc. CVPR, 2017,
pp. 3577–3586.

[16] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, “O-cnn:
Octree-based convolutional neural networks for 3d shape anal-
ysis,” ACM Trans. Graph., vol. 36, no. 4, pp. 1–11, 2017.

[17] R. Klokov and V. Lempitsky, “Escape from cells: Deep kd-
networks for the recognition of 3d point cloud models,” in Proc.
ICCV, 2017, pp. 863–872.

[18] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3d shape recognition,” in Proc.
CVPR, 2015, pp. 945–953.

[19] E. Kalogerakis, M. Averkiou, S. Maji, and S. Chaudhuri, “3d shape
segmentation with projective convolutional networks,” in Proc.
CVPR, 2017, pp. 3779–3788.

[20] T. Yu, J. Meng, and J. Yuan, “Multi-view harmonized bilinear
network for 3d object recognition,” in Proc. CVPR, 2018, pp. 186–
194.

[21] A. Kanezaki, Y. Matsushita, and Y. Nishida, “Rotationnet: Joint
object categorization and pose estimation using multiviews from
unsupervised viewpoints,” in Proc. CVPR, 2018, pp. 5010–5019.

[22] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in Proc.
CVPR, 2017, pp. 652–660.

[23] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep
hierarchical feature learning on point sets in a metric space,” in
Proc. NeurIPS, 2017, pp. 5105–5114.

[24] F. Groh, P. Wieschollek, and H. Lensch, “Flex-convolution,” in
Proc. ACCV, 2018, pp. 105–122.

[25] B.-S. Hua, M.-K. Tran, and S.-K. Yeung, “Pointwise convolutional
neural networks,” in Proc. CVPR, 2018, pp. 984–993.

[26] J. Li, B. M. Chen, and G. H. Lee, “So-net: Self-organizing network
for point cloud analysis,” in Proc. CVPR, 2018, pp. 9397–9406.

[27] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M.-H. Yang,
and J. Kautz, “Splatnet: Sparse lattice networks for point cloud
processing,” in Proc. CVPR, 2018, pp. 2530–2539.

[28] Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao, “Spidercnn: Deep
learning on point sets with parameterized convolutional filters,”
in Proc. ECCV, 2018, pp. 87–102.

[29] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “Pointcnn:
Convolution on χ-transformed points,” in Proc. NeurIPS, 2018, pp.
828–838.

[30] W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convolutional
networks on 3d point clouds,” in Proc. CVPR, 2019, pp. 9621–9630.

[31] Y. Liu, B. Fan, S. Xiang, and C. Pan, “Relation-shape convolutional
neural network for point cloud analysis,” in Proc. CVPR, 2019, pp.
8895–8904.

[32] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette,
and L. J. Guibas, “Kpconv: Flexible and deformable convolution
for point clouds,” in Proc. ICCV, 2019, pp. 6411–6420.

[33] Z. Zhang, B.-S. Hua, and S.-K. Yeung, “Shellnet: Efficient point
cloud convolutional neural networks using concentric shells statis-
tics,” in Proc. ICCV, 2019, pp. 1607–1616.

[34] N. Verma, E. Boyer, and J. Verbeek, “Feastnet: Feature-steered
graph convolutions for 3d shape analysis,” in Proc. CVPR, 2018,
pp. 2598–2606.

[35] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,”
ACM Trans. Graph., vol. 38, no. 5, pp. 1–12, 2019.

[36] Z. Liu, H. Tang, Y. Lin, and S. Han, “Point-voxel cnn for efficient
3d deep learning,” in Proc. NeurIPS, 2019.

[37] Q. Xu, X. Sun, C.-Y. Wu, P. Wang, and U. Neumann, “Grid-gcn for



16

fast and scalable point cloud learning,” in Proc. CVPR, 2020, pp.
5661–5670.

[38] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst,
“Geodesic convolutional neural networks on riemannian mani-
folds,” in Proc. ICCV Workshop, 2015, pp. 37–45.

[39] D. Boscaini, J. Masci, E. Rodoià, and M. Bronstein, “Learning shape
correspondence with anisotropic convolutional neural networks,”
in Proc. NeurIPS, 2016, pp. 3197–3205.

[40] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M.
Bronstein, “Geometric deep learning on graphs and manifolds
using mixture model cnns,” in Proc. CVPR, 2017, pp. 5115–5124.

[41] A. Sinha, J. Bai, and K. Ramani, “Deep learning 3d shape surfaces
using geometry images,” in Proc. ECCV, 2016, pp. 223–240.

[42] X. Gu, S. J. Gortler, and H. Hoppe, “Geometry images,” Proc.
SIGGRAPH, vol. 21, no. 3, pp. 355–361, 2002.

[43] A. Sinha, A. Unmesh, Q. Huang, and K. Ramani, “Surfnet: Gen-
erating 3d shape surfaces using deep residual networks,” in Proc.
CVPR, 2017, pp. 6040–6049.

[44] H. Maron, M. Galun, N. Aigerman, M. Trope, N. Dym, E. Yumer,
V. G. Kim, and Y. Lipman, “Convolutional neural networks on
surfaces via seamless toric covers,” ACM Trans. Graph., vol. 36,
no. 4, pp. 71–1, 2017.

[45] N. Haim, N. Segol, H. Ben-Hamu, H. Maron, and Y. Lipman,
“Surface networks via general covers,” in Proc. ICCV, 2019, pp.
632–641.

[46] D. Ezuz, J. Solomon, V. G. Kim, and M. Ben-Chen, “Gwcnn: A
metric alignment layer for deep shape analysis,” Comput. Graph.
Forum, vol. 36, no. 5, pp. 49–57, 2017.

[47] M. Tatarchenko, J. Park, V. Koltun, and Q.-Y. Zhou, “Tangent
convolutions for dense prediction in 3d,” in Proc. CVPR, 2018, pp.
3887–3896.

[48] Y. Lin, Z. Yan, H. Huang, D. Du, L. Liu, S. Cui, and X. Han,
“Fpconv: Learning local flattening for point convolution,” in Proc.
CVPR, 2020, pp. 4293–4302.

[49] A. Komarichev, Z. Zhong, and J. Hua, “A-cnn: Annularly convolu-
tional neural networks on point clouds,” in Proc. CVPR, 2019, pp.
7421–7430.

[50] Z. Cao, Q. Huang, and R. Karthik, “3d object classification via
spherical projections,” in 3DV, 2017, pp. 566–574.

[51] C. Esteves, C. Allen-Blanchette, A. Makadia, and K. Daniilidis,
“Learning so (3) equivariant representations with spherical cnns,”
in Proc. ECCV, 2018, pp. 52–68.

[52] B. Coors, A. P. Condurache, and A. Geiger, “Spherenet: Learning
spherical representations for detection and classification in omni-
directional images,” in Proc. ECCV, 2018, pp. 518–533.

[53] T. S. Cohen, M. Geiger, J. Köhler, and M. Welling, “Spherical
CNNs,” in Proc. ICLR, 2018.

[54] R. Kondor, Z. Lin, and S. Trivedi, “Clebsch–gordan nets: a
fully fourier space spherical convolutional neural network,” Proc.
NeurIPS, vol. 31, 2018.

[55] C. M. Jiang, J. Huang, K. Kashinath, Prabhat, P. Marcus, and
M. Niessner, “Spherical CNNs on unstructured grids,” in Proc.
ICLR, 2019.

[56] T. Cohen, M. Weiler, B. Kicanaoglu, and M. Welling, “Gauge
equivariant convolutional networks and the icosahedral cnn,” in
Proc. ICML, 2019, pp. 1321–1330.

[57] Y. Rao, J. Lu, and J. Zhou, “Spherical fractal convolutional neural
networks for point cloud recognition,” in Proc. CVPR, 2019, pp.
452–460.

[58] Y. Yang, C. Feng, Y. Shen, and D. Tian, “Foldingnet: Point cloud
auto-encoder via deep grid deformation,” in Proc. CVPR, 2018, pp.
206–215.

[59] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry,
“A papier-mâché approach to learning 3d surface generation,” in
Proc. CVPR, 2018, pp. 216–224.

[60] S. Chen, C. Duan, Y. Yang, D. Li, C. Feng, and D. Tian, “Deep
unsupervised learning of 3d point clouds via graph topology
inference and filtering,” IEEE Trans. Image Process., vol. 29, pp.
3183–3198, 2019.

[61] T. Deprelle, T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and
M. Aubry, “Learning elementary structures for 3d shape genera-
tion and matching,” in Proc. NeurIPS, 2019, pp. 7433–7443.

[62] J. Pang, D. Li, and D. Tian, “Tearingnet: Point cloud autoencoder
to learn topology-friendly representations,” in Proc. CVPR, 2021,
pp. 7453–7462.

[63] L. Yi, V. G. Kim, D. Ceylan, I.-C. Shen, M. Yan, H. Su, C. Lu,
Q. Huang, A. Sheffer, and L. Guibas, “A scalable active framework

for region annotation in 3d shape collections,” ACM Trans. Graph.,
vol. 35, no. 6, pp. 1–12, 2016.

[64] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep
learning for 3d point clouds: A survey,” IEEE Trans. Pattern Anal.
Mach. Intell., 2020.

[65] J. Wu, C. Zhang, T. Xue, W. T. Freeman, and J. B. Tenenbaum,
“Learning a probabilistic latent space of object shapes via 3d
generative-adversarial modeling,” in Proc. NeurIPS, 2016, pp. 82–
90.

[66] J. Li, K. Xu, S. Chaudhuri, E. Yumer, H. Zhang, and L. Guibas,
“Grass: Generative recursive autoencoders for shape structures,”
ACM Trans. Graph., vol. 36, no. 4, pp. 1–14, 2017.

[67] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas, “Learning
representations and generative models for 3d point clouds,” in
Proc. ICML, 2018, pp. 40–49.

[68] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Love-
grove, “Deepsdf: Learning continuous signed distance functions
for shape representation,” in Proc. CVPR, 2019, pp. 165–174.

[69] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and
A. Geiger, “Occupancy networks: Learning 3d reconstruction in
function space,” in Proc. CVPR, 2019, pp. 4460–4470.

[70] Z. Chen and H. Zhang, “Learning implicit fields for generative
shape modeling,” in Proc. CVPR, 2019, pp. 5939–5948.

[71] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution
using deep convolutional networks,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 38, no. 2, pp. 295–307, 2015.

[72] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proc. CVPR, 2016, pp.
1646–1654.

[73] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “Pu-net: Point
cloud upsampling network,” in Proc. CVPR, 2018, pp. 2790–2799.

[74] R. Li, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “Pu-gan: a
point cloud upsampling adversarial network,” in Proc. ICCV, 2019,
pp. 7203–7212.

[75] Y. Qian, J. Hou, S. Kwong, and Y. He, “Pugeo-net: A geometry-
centric network for 3d point cloud upsampling,” in Proc. ECCV,
2020, pp. 752–769.

[76] D. P. Bertsekas, “The auction algorithm for assignment and other
network flow problems: A tutorial,” Interfaces, vol. 20, no. 4, pp.
133–149, 1990.

[77] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni,
and A. Markham, “Learning semantic segmentation of large-scale
point clouds with random sampling,” IEEE Trans. Pattern Anal.
Mach. Intell., 2021.

[78] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet:
An information-rich 3d model repository,” arXiv preprint
arXiv:1512.03012, 2015.

[79] M. A. Uy, Q.-H. Pham, B.-S. Hua, T. Nguyen, and S.-K. Yeung,
“Revisiting point cloud classification: A new benchmark dataset
and classification model on real-world data,” in Proc. ICCV, 2019,
pp. 1588–1597.

[80] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fis-
cher, and S. Savarese, “3d semantic parsing of large-scale indoor
spaces,” in Proc. CVPR, 2016, pp. 1534–1543.

[81] L. Landrieu and M. Simonovsky, “Large-scale point cloud seman-
tic segmentation with superpoint graphs,” in Proc. CVPR, 2018,
pp. 4558–4567.

[82] L. Jiang, H. Zhao, S. Liu, X. Shen, C.-W. Fu, and J. Jia, “Hierarchical
point-edge interaction network for point cloud semantic segmen-
tation,” in Proc. ICCV, 2019, pp. 10 433–10 441.

[83] Z. Wang, J. Chen, and S. C. Hoi, “Deep learning for image
super-resolution: A survey,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 43, no. 10, pp. 3365–3387, 2020.

[84] W. Yifan, S. Wu, H. Huang, D. Cohen-Or, and O. Sorkine-
Hornung, “Patch-based progressive 3d point set upsampling,” in
Proc. CVPR, 2019, pp. 5958–5967.

[85] D. Bommes, H. Zimmer, and L. Kobbelt, “Mixed-integer quadran-
gulation,” ACM Trans. Graph., vol. 28, no. 3, p. 77, 2009.

[86] L. Liu, L. Zhang, Y. Xu, C. Gotsman, and S. J. Gortler, “A lo-
cal/global approach to mesh parameterization,” Comput. Graph.
Forum, vol. 27, no. 5, pp. 1495–1504, 2008.

[87] B. Springborn, P. Schröder, and U. Pinkall, “Conformal equiva-
lence of triangle meshes,” ACM Trans. Graph., vol. 27, no. 3, p. 77,
2008.



17

[88] A. Sheffer, B. Lévy, M. Mogilnitsky, and A. Bogomyakov, “ABF++:
fast and robust angle based flattening,” ACM Trans. Graph., vol. 24,
no. 2, pp. 311–330, 2005.

[89] H. Zhao, K. Su, C. Li, B. Zhang, L. Yang, N. Lei, X. Wang, S. J.
Gortler, and X. Gu, “Mesh parametrization driven by unit normal
flow,” Comput. Graph. Forum, vol. 39, no. 1, pp. 34–49, 2020.

[90] M. Jin, J. Kim, F. Luo, and X. Gu, “Discrete surface ricci flow,” IEEE
Trans. Vis. Comput. Graph., vol. 14, no. 5, pp. 1030–1043, 2008.

[91] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A.
Chou, R. A. Cohen, M. Krivokuća, S. Lasserre, Z. Li et al., “Emerg-
ing mpeg standards for point cloud compression,” IEEE J. Emerg.
Sel. Topic Circuits Syst., vol. 9, no. 1, pp. 133–148, 2018.

[92] J. Hou, L.-P. Chau, M. Zhang, N. Magnenat-Thalmann, and Y. He,
“A highly efficient compression framework for time-varying 3-d
facial expressions,” IEEE Trans. Circuits Syst. Video Technol., vol. 24,
no. 9, pp. 1541–1553, 2014.

[93] J. Hou, L.-P. Chau, N. Magnenat-Thalmann, and Y. He, “Com-
pressing 3-d human motions via keyframe-based geometry
videos,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 1, pp.
51–62, 2015.


	1 Introduction
	2 Related Work
	2.1 Parameterization-based Models
	2.2 Surfaced-based Models
	2.3 Deformation-based Models
	2.4 Deep Learning-based Point Cloud Processing

	3 Flattening-Net for PGI Generation
	3.1 Overview
	3.2 Surface Flattening Module
	3.2.1 Grid-to-Surface Deformation (G2SD)
	3.2.2 Surface-to-Plane Flattening (S2PF)
	3.2.3 Hierarchical Hybrid Flattening

	3.3 Grid Resampling Module (GRM)

	4 Deep Feature Learning from PGIs
	4.1 CSConv for Regional Embedding
	4.2 Task Network Design

	5 Experiments
	5.1 Representation Quality
	5.2 Shape Classification
	5.3 Semantic Segmentation
	5.4 Point Cloud Reconstruction
	5.5 Point Cloud Upsampling

	6 Differences between PGIs and GIs
	7 Conclusion
	References

