
A SUBMISSION TO IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

A Survey on Label-efficient Deep Image
Segmentation: Bridging the Gap between Weak

Supervision and Dense Prediction
Wei Shen, Zelin Peng, Xuehui Wang, Huayu Wang, Jiazhong Cen, Dongsheng Jiang, Lingxi Xie,

Xiaokang Yang, Fellow, IEEE, and Qi Tian, Fellow, IEEE

Abstract—The rapid development of deep learning has made a great progress in image segmentation, one of the fundamental tasks
of computer vision. However, the current segmentation algorithms mostly rely on the availability of pixel-level annotations, which are
often expensive, tedious, and laborious. To alleviate this burden, the past years have witnessed an increasing attention in building
label-efficient, deep-learning-based image segmentation algorithms. This paper offers a comprehensive review on label-efficient image
segmentation methods. To this end, we first develop a taxonomy to organize these methods according to the supervision provided by
different types of weak labels (including no supervision, inexact supervision, incomplete supervision and inaccurate supervision) and
supplemented by the types of segmentation problems (including semantic segmentation, instance segmentation and panoptic
segmentation). Next, we summarize the existing label-efficient image segmentation methods from a unified perspective that discusses
an important question: how to bridge the gap between weak supervision and dense prediction – the current methods are mostly based
on heuristic priors, such as cross-pixel similarity, cross-label constraint, cross-view consistency, and cross-image relation. Finally, we
share our opinions about the future research directions for label-efficient deep image segmentation.

Index Terms—Semantic Segmentation, Instance Segmentation, Panoptic Segmentation, Unsupervised Representation Learning,
Weakly-supervised Learning, Semi-supervised Learning, Unsupervised Domain Adaptation.

F

1 INTRODUCTION

S EGMENTATION is one of the oldest and most widely
studied tasks in computer vision. Its goal is to produce

a dense prediction for a given image, i.e., assigning each
pixel a pre-defined class label (semantic segmentation) [1],
[2] or associating each pixel to an object instance (instance
segmentation) [3], or the combintation of both (panoptic
segmentation) [4], which enables grouping semantically-
similar pixels into high-level meaningful concepts, such as
objects (person, cat, ball, etc), and stuff (road, sky, water, etc).

The last decade has witnessed a tremendous success in
segmentation [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19] brought by deep convolutional
neural networks (CNNs), especially fully convolutional net-
works (FCNs) [20], thanks to their strong dense represen-
tation learning ability. However, these deep learning based
image segmentation methods thrives with dense labels, i.e.,
per-pixel annotations, which are expensive and laborious to
obtain.

Given widespread label scarcity in the real world, de-
veloping label-efficient deep image segmentation methods,
which are based on the supervision from weak labels (weak
supervision) to reduce the dependency on dense labels,
becomes a growing trend, attracting more and more re-

• W. Shen, Z. Peng, X. Wang, H. Wang, J. Cen and X. Yang are with
MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong
University, Shanghai, 200240, China.
E-mail: {wei.shen,xkyang}@sjtu.edu.cn.

• D. Jiang, L. Xie and Q. Tian are with Huawei Inc., China. (Corresponding
author: Q. Tian.)
E-mail: {jiangdongsheng1,xielingxi,tian.qi1}@huawei.com.

Manuscript received April 19, 2005; revised August 26, 2015.

searchers’ attention. As a result, there has been an explosive
growth in the number of label-efficient deep image segmen-
tation methods proposed in recent years, which makes it
difficult for researchers to keep pace with the new progress.
Therefore, a survey on these label-efficient deep image seg-
mentation methods is urgently necessary. However, to the
best of our knowledge, there are only a few related survey
papers [21], [22], which merely focus on one particular
segmentation task with the supervision from weak labels
of limited types.

This paper aims at providing a comprehensive overview
for recent label-efficient deep image segmentation methods.
These methods focus on diverse problems. Here, a problem is
defined as a particular segmentation problem, i.e., semantic
segmentation, instance segmentation and panoptic segmen-
tation, with a certain type of weak supervision. To organize
such methods for diverse problems, we need to address two
questions in this survey: 1) How to build a taxonomy for
these methods? 2) How to summarize the strategies used
in these methods from a unified perspective? We notice
that the types of weak labels are pivotal to determine the
strategies to design these label-efficient image segmentation
methods. Thus, we try to answer the above two questions
from the perspective of weak supervision. Towards this end,
we first provide the type categorization of weak supervi-
sion, which is hierarchical, as shown in Fig. 1. The types of
weak supervision include

1) No supervision: No annotations are provided for
any of training images (Fig. 2 (a));

2) Inexact supervision: Annotations are provided for
all training images, but the annotation for each
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Fig. 1. The taxonomy of label efficient deep image segmentation methods according to the type categorization of weak supervision (upper half)
and the type categorization of segmentation problems. The interactions with filled dots and hollow dots indicate the segmentation problems with the
certain types of weak supervision have been explored and have not been explored, respectively. For the former, some typical works are provided.
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Fig. 2. Examples for each type of weak supervision compared with the full dense supervision.

image is not as exact as desired, which does not fully
cover all pixels’ labels (Fig. 2 (b)). Inexact supervi-
sion can be categorized into (i) image-level supervi-
sion, (ii) box-level supervision and (iii) scribble-level
supervision;

3) Incomplete supervision: Full per-pixel annotations
are provided for only a subset of training images
(Fig. 2 (c)) . Incomplete supervision can be catego-
rized into (i) semi supervision, if the rest training
images are not fully annotated or not annotated and

(ii) domain-specific supervision, if the rest training
images are from a different domain;

4) Inaccurate supervision: Per-pixel annotations are
provided for all training images, but there are an-
notation errors, i.e., noisy annotations. (Fig. 2 (d)).

With this hierarchical type categorization of weak su-
pervision, we can build a taxonomy for label-efficient deep
image segmentation methods. As shown in Fig. 1, this
taxonomy is built mainly according to the types of weak
supervision supplemented by the types of segmentation
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TABLE 1
Representative works of label-efficient deep image segmentation.

Supervision Task Problem Method Strategy to bridge the supervision gap

No
Supervision

Semantic
segmentation

Unsupervised
semantic segmentation

SegSort [43] Prototype learning according to cross-pixel similarity
MaskContrast [23] Pixel-wise contrastive learning to keep cross-view consistency

IIC [44] Mutual information maximization to keep cross-view consistency through a Siamese structure
STEGO [24] Feature correspondence distillation among image collections to mine cross-image relation

Instance
segmentation

Unsupervised
instance segmentation FreeSOLO [25] Pseudo mask generation from learned dense features according to cross-pixel similarity

Inexact
Supervision

Semantic
segmentation

Semantic segmentation
with image-level supervision

MDC [45] Seed area expanding by ensemble according to cross-label constraint
SeeNet [46] Seed area refinement guided by saliency maps according to cross-pixel similarity
SEAM [27] Seed area refinement by enforcing cross-view consistency under affine transformations
GWSM [47] Seed area refinement by capturing cross-image relation using a graph neural network

AffinityNet [26] Pseudo mask generation by semantic information propagation according to cross-pixel similarity
CIAN [48] Pseudo mask generation by feature learning adapted with cross-image relation

Semantic segmentation
with box-level supervision BAP [37] Background removal within boxes based on cross-pixel similarity with pixels outside boxes

Semantic segmentation
with scribble-level supervision ScribbleSup [36] Graph-based label propagation according to cross-pixel similarity

Instance
segmentation

Instance segmentation
with image-level supervision

PRM [34] Instance-level seed area generation according to cross-label constraint
IRNet [49] Self-training based instance-level pseudo mask generation by pairwise affinity according to cross-label constraint

Label-PEnet [35] End-to-end instance-level pseudo mask generation according to cross-label constraint
Instance segmentation

with box-level supervision
SDI [38] Self-training based pseudo mask generation from given boxes according to cross-label constraint

BBTP [39] End-to-end mask prediction by a projection loss according to cross-label constraint

Panoptic
segmentation

Panoptic segmentation
with image-level supervision JTSM [29] Unified feature representation learning under the multiple instance learning framework according to cross-label constraint.

Panoptic segmentation
with box-level supervision WPS [40] Seed area generation by cross-label constraint and pseudo instance mask locating by cross-pixel similarity

Incomplete
Supervision

Semantic
segmentation

Semi-supervised
semantic segmentation

AdvSemSeg [50] Pseudo mask quality control by adversarial learning implicitly according to cross-image relation
PseudoSeg [30] Pseudo mask regularization by enforcing cross-view consistency between weak and strong augmentations

CAC [31] Pseudo mask regularization by enforcing cross-view consistency under different contexts

Domain adaptive
semantic segmentation

BDL [41] Domain alignment by adversarial learning implicitly according to cross-image relation
DACS [51] Domain alignment by domain mixing according to cross-pixel similarity
ProDA [42] Pseudo mask regularization by enforcing cross-view consistency between prototype assignments

Instance
segmentation

Semi-supervised
instance segmentation

MaskX RCNN [32] Parameter transfer from detection to segmentation by cross-label constraint
Shapeprop [33] Class-agnostic shape activation map learning by sailency propagation according to cross-pixel similarity

ContraskMask [52] Foreground and background separation by pixel-wise contrastive learning according to cross-pixel similarity
ShapeMask [53] Common shape prior discovery by mask clustering according to cross-image relation

Inaccurate
Supervision

Semantic
segmentation

Semantic segmentation
with noisy supervision ADELE [28] Robustness boosting by enforcing multi-scale cross-view consistency

problems: The horizontal and vertical axes show different
types of weak supervision and segmentation tasks, respec-
tively; Each intersection indicates the problem of the corre-
sponding segmentation task with the corresponding weak
supervision, where the interactions with filled dots and
hollow dots indicate the problems have been explored and
have not been explored, respectively; For each intersection
with colored filled dots, i.e., a problem has been explored,
some representative works are given.

Since a common challenge of these diverse problems
lie in the big supervision gap between the weak labels
and dense prediction, we can summarize the strategies
for these problems from a unified perspective: how to
bridging this supervision gap? This requires some heuristic
priors, e.g., 1) cross-label constraint: there exists natural
constraints between weak labels and dense labels, such
as an image-level category label indicates at least one
pixel’s label should be the same as this image-level cat-
egory label; 2) cross-pixel similarity: pixels with highly-
similar cues, such as color, brightness and texture, prob-
ably belong to the same semantic region in an image; 3)
cross-view consistency: different views of the same image
show consistency in both dense representation and predic-
tions; and 4) cross-image relation: the pixels from objects
of the same category across different images have semantic
relations, to generate pseudo dense supervision from weak
labels. From this perspective, it is intriguing to see that
similar strategies to employ the above priors are used for
different segmentation problems, as summarized in Table 1.

The remainder of this paper is organized as follows.
We first give some foundations of label-efficient image seg-
mentation methods in Sec. 2, including mathematical def-
initions, methodology overview, functions of the heuristic
priors in the methodology, datasets and evaluation met-
rics for label-efficient image segmentation problems. Then
we review the existing label-efficient image segmentation
methods according to our taxonomy: segmentation with no

supervision in Section 3, segmentation with inexact supervi-
sion in Section 4, segmentation with incomplete supervision
in Section 5, and segmentation with inaccurate supervision
in Section 6. In the final section, we give our conclusion and
discuss several research directions and challenges.

2 FOUNDATIONS
2.1 Problem Definition
In this section, we give mathematical definitions for dif-
ferent label-efficient image segmentation problems from a
unified perspective. Given a pre-defined set of C semantic
classes encoded by C = {0, 1, . . . , C−1}, the task of segmen-
tation aims to predict a dense label map Y ∈ {C × N}H×W
for an image X ∈ {R3}H×W , where the entry of Y at spatial
location i ∈ I is a label tuple yi = (ci, ιi) ∈ C × N for the
pixel in X at the same spatial location. Here, H,W are the
height and width of the image, respectively, I is the set of
locations on a 2D lattice with size of H×W , N is the space
of nature numbers, ci represents the semantic class of the
pixel at spatial location i, and ιi represents its instance id
(for semantic segmentation, ιi ≡ 0).

This goal is usually achieved by training a segmen-
tation model on a training set T = {(X(n),Y(n))|n ∈
N = {0, 1, . . . , N − 1}} consisting of N images, where
Y(n) ∈ {C × N}H×W is the full dense label map for n-th
image, i.e., each pixel at spatial location i of image X(n)

is annotated by a label tuple y
(n)
i . However, as we stated

before, the full dense label Y(n) is expensive and difficult
to obtain. Alternatively, label-efficient segmentation models
are trained based on weak labels which cannot cover full
supervision signals but are much cheaper and easier to
obtain. The definitions of label-efficient image segmentation
problems are then determined by the types of the super-
vision from weak labels, which can be formulated from a
unified perspective regarding the format of the training set.

We first define some notations to help us give our formu-
lations: Let b be the vertex coordinates of a bounding box
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TABLE 2
The mathematical definitions for image segmentation with different types of supervision.

Supervision Training Set Remark

Full Dense
Supervision T = {(X(n),Y(n))|n ∈ N} N/A

No
Supervision T = {X(n)|n ∈ N} N/A

Inexact
Supervision

Image-
level T = {(X(n), C(n))|n ∈ N}, C(n) ⊆ C ∀c ∈ C(n), ∃i, c(n)i = c

Box-
level T = {(X(n),B(n))|n ∈ N}, B(n) = {(b(n,m),y(n,m))}M(n)

m=1 ∀m, ∃i ∈ I(n)
b(n,m) ,y

(n)
i = y(n,m)

Scribble-
level T = {(X(n), Ȳ(n))|n ∈ N} ȳ

(n)
i = y

(n)
i , iff i ∈ I(n)l ⊆ I(n)

Incomplete
Supervision

Semi T = {(X(n),Y(n))|n ∈ Nl ⊂ N}
⋃
{X(n)|n ∈ N\Nl} N/A

Domain-
specific T = {(X(n),Y(n))|n ∈ Ns ⊂ N}

⋃
{X(n)|n ∈ Nt * N} s: source; t: target

Inaccurate
Supervision T = {(X(n), Ỹ(n))|n ∈ N}, ∃i, j ∈ I(n), ỹ(n)

i = y
(n)
i , ỹ

(n)
j 6= y

(n)
j

on image X, then we denote the spatial location set of pixels
within bounding box b by Ib. Similarily, we use Il ⊆ I to
denote the spatial location set of pixels which are labeled.
In Table 2, we summarize the mathematical definitions for
segmentation with the supervision of different types. No-
tably, in the column of ”Remark“, we give some descriptions
about the formulations and show the relation between each
weak supervision and the full dense supervision.
2.2 Methodology Overview
Prior to discussing each specific label-efficient image seg-
mentation method, we first summarize a general methodol-
ogy to introduce some significant concepts involved in these
label-efficient image segmentation methods. Since the main
difficulty in label-efficient image segmentation is the lack
of dense labels, a naive solution is first generating (dense)
pseudo labels based on weak labels for each training image,
then training a segmentation model with the pseudo labels.
The above process is called self-training [26], [49], [54].
To improve the quality of the generated pseudo labels
during self-training, regularization is usually applied to
them. Formally, following the notations defined in Sec. 2.1,
let T = {(X(n),Y(n))|n ∈ N} be the given training set
for label-efficient image segmentation, where Y(n) denote
any type of supervision, e.g., it can be C(n) for image-level
supervision and it can be Y(n) if n ∈ N or ∅ if n ∈ N\Nl for
semi supervision. To achieve segmentation with weak su-
pervision, we first need a deep network fθ parameterized by
θ to produce a dense feature map Z(n) = fθ(X(n)) for each
training image X(n). Then, a function gω parameterized by
ω is applied to the dense feature map Z(n) to generate a
pseudo label map P(n) = gω(Z(n)). Such a pseudo label
generation process is supervised by Y(n), i.e., θ and ω are
optimized by minimizing a loss function `GEN(P(n),Y(n))
whose form is depended on how to design the mapping
between P(n) and Y(n). To further improve the quality
of P(n), a regularization loss `REG(P(n)) is also usually
used together with the generation loss `GEN. In sum, the
self-training process for label-efficient image segmentation
includes the following steps: 1) Learn a pseudo label map for
each training image X(n) by minimizing the pseudo label
generation loss `GEN(P(n),Y(n)) and optionally the pseudo
label generation loss `REG(P(n)):

(θ∗,ω∗) = arg min
θ,ω

`GEN(P(n),Y(n)) + `REG(P(n)).

The optimized pseudo label map is obtained by Ŷ(n) =
gω∗(fθ∗(X(n))). 2) Train a segmentation model based
on the training set with the optimized pseudo labels:
{(X(n), Ŷ(n))|n ∈ N}.

Another methodology to address label-efficient image
segmentation is end-to-end training [39], [55], [56], [57].
It directly optimizes loss functions of the same form as
that used in self-training, i.e., `GEN(P(n),Y(n)) + `REG(P(n)),
by gradient descent or alternating direction method [55], if
we treat the final segmentation of image X(n) as a special
case of pseudo labels P(n) as well. End-to-end training
can bypass the expensive iterative inference in self-training,
and even achieve superior results for some label-efficient
segmentation problems, e.g., semi-supervised semantic seg-
mentation [57].

2.3 Functions of the Heuristic Priors
As shown in Table 1, the label-efficient image segmentation
methods are designed based on the heuristic priors we
summarized in Sec. 1. In this section, we provide a system-
atic study on the functions of these priors in dealing with
weak supervision of different types as shown in Table 3,
to facilitate readers to understand each specific method.
First, we figure out which types of weak supervision a
specific prior is applicable to deal with. For example, cross-
label constraint describes the relation between fine-grained
labels and coarse-grained labels, thus mostly it is applicable
for inexact supervision; cross-pixel similarity indicates that
pixels with highly- similar cues, such as color, brightness
and texture, probably belong to the same semantic region
in an image. As this prior is derived from principles of
perceptual grouping, it is applicable for weak supervision of
all types; cross-view consistency and cross-image relation
are also very general, which can be applicable for weak
supervision of all types. Then, we summarize the functions
of the priors in the training process, which might be varying
for weak supervision of different types. For example, cross-
pixel similarity is usually used to generate pseudo labels
for no supervision, since it can guide pixel grouping in a
unsupervised manner. Its function becomes pseudo label
regularization for weak supervision of other types; cross-
image relation serves as the basis to generate pseudo labels
for incomplete supervision, and it is used to regularize
pseudo labels for weak supervision of other types. We also
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TABLE 3
Systematic study on the functions of the heuristic priors in dealing with weak supervision of different types. “-” means “has not been proposed yet”.

Prior Applicable
supervision Function in training Common loss function

Cross-label
constraint Inexact Pseudo label generation

`GEN = −
∑
n∈N

∑
c∈C(n) log p(c|gω(Z(n)))

`GEN = −
∑
n∈N

∑M(n)

m=1

∑
d∈{x,y} < maxd(L(n,m)), log(maxd(P(n,m))) >

Cross-pixel
similarity

No Pseudo label generation `GEN = −
∑
n∈N

∑
i,j < z

(n)
i , z

(n)
j >< p

(n)
i ,p

(n)
j >

Inexact Pseudo label regularization `REG = −
∑
n∈N

∑
i,j [p

(n)
i = p

(n)
j ] log(exp(−‖z(n)i − z

(n)
j ‖))

+[p
(n)
i 6= p

(n)
j ] log(1− exp(−‖z(n)i − z

(n)
j ‖))

Incomplete Pseudo label regularization `REG = −
∑
n∈N\Nl

∑
i,j log[p

(n)
i = p

(n)
j ] e

<z
(n)
i ,z

(n)
j >/τ

e
<z

(n)
i ,z

(n)
j >/τ

+
∑

z−
e
<z

(n)
i ,z−>/τ

Inaccurate Pseudo label regularization -

Cross-view
consistency

No Pseudo label regularization `REG = −
∑
n∈N

∑
i log e

<z
(n,a)
i ,z

(n,b)
i >/τ

e
<z

(n,a)
i ,z

(n,b)
i >/τ

+
∑

z−
e
<z

(n,a)
i ,z−>/τ

Inexact Pseudo label regularization `REG =
∑
n∈N

∑
i ‖gω(z

(n,a)
i )− gω(z

(n,b)
i )‖

Incomplete Pseudo label regularization `REG = −
∑
n∈N

∑
i log e

<z
(n,a)
i ,z

(n,b)
i >/τ

e
<z

(n,a)
i ,z

(n,b)
i >/τ

+
∑

z−
e
<z

(n,a)
i ,z−>/τ

Inaccurate Pseudo label regularization `REG =
∑
n∈N

∑
i gω(z

(n,a)
i ) log

gω(z
(n,a)
i )

gω(z
(n,b)
i )

Cross-image
relation

No Pseudo label generation `GEN = −
∑
m,n∈N

∑
i,j < z

(m)
i , z

(n)
j >< p

(m)
i ,p

(n)
j >

Inexact Pseudo label regularization `REG = −
∑
n,m∈N

∑
i,j [p

(n)
i = p

(m)
j ] log e

<z
(n)
i ,z

(m)
j >/τ

e
<z

(n)
i ,z

(m)
j >/τ

+
∑

z−
e
<z

(n)
i ,z−>/τ

Incomplete Pseudo label generation `GEN = −
∑
n∈Nl

∑
i log p(y

(n)
i |gω(Z(n)))−

∑
n∈N\Nl

∑
i log p(p

(n)
i |gω(Z(n)))

Inaccurate Pseudo label regularization -

list some common loss functions in Table 3 to show how
to mathematically apply these priors to deal with weak
supervision of different types. The notations of the loss
functions follow those defined in Sec. 2.1 and Sec. 2.2.
In addition, we define: p(·|·) is a conditional probability
measuring the mapping between the pseudo label P(n) and
the given label Y(n); [·] is a indicator; < ·, · > is the inner
product of two vectors; maxd(·) selects the maximal values
along the d-th channel of a tensor; The entry at pixel location
i on a map, e.g., Z, is zi; L(n,m) denotes the mask map for
a given box-level label b(n,m), i.e., l(n,m)

i = 1 if i ∈ I(n)

b(n,m)

and l
(n,m)
i = 0 otherwise; X(n,a) and X(n,b) are two views

of X(n) obtained by different image transforms, including
but not limited to geometric transforms and photometric
transforms. Accordingly, the dense feature representations
of X(n,a) and X(n,b) are Z(n,a) and Z(n,b), respectively; τ is
a temperature parameter.

2.4 Datasets and Evaluation Metrics
Label-efficient image segmentation generally follows the
evaluation metrics and datasets used for fully-supervised
image segmentation. For example, label-efficient semantic
segmentation methods are usually evaluated on PASCAL
VOC [58] as well as Cityscapes [59] with the metric of mean
Intersection-over-Union (mIoU) [20] or per-pixel accuracy
(Acc) [20] sometimes. A special case is domain adaptive
semantic segmentation, which requires two datasets from
different domains. Thus, its training is performed on a
synthetic dataset, such as GTA5 [60] and SYNTHIA [61] and
its evaluation is conducted on Cityscapes; Label-efficient
instance segmentation methods are generally evaluated on
PASCAL VOC [58] and COCO [62] with the metric of
average precision (AP) [62] or average recall (AR) some-
times; Label-efficient panoptic segmentation methods are

TABLE 4
Datasets and evaluation metrics used for label-efficient deep image

segmentation.

Problem Datasets Evaluation
metrics

Unsupervised
semantic segmentation

Cityscapes [59]
mIoU, AccPASCAL VOC [58]

COCO-Stuff [63]
Unsupervised

instance segmentation
PASCAL VOC [58] AP, ARCOCO [62]

Semantic segmentation
with image-level supervision PASCAL VOC [58] mIoU

Semantic segmentation
with box-level supervision PASCAL VOC [58] mIoU

Semantic segmentation
with scribble-level supervision PASCAL VOC [58] mIoU

Instance segmentation
with image-level supervision

PASCAL VOC [58] APCOCO [62]
Instance segmentation

with box-level supervision
PASCAL VOC [58] APCOCO [62]

Panoptic segmentation
with image-level supervision

PASCAL VOC [58] PQCOCO-Stuff [63]
Panoptic segmentation

with box-level supervision
PASCAL VOC [58] PQCOCO-Stuff [63]

Semi-supervised
semantic segmentation

PASCAL VOC [58] mIoUCityscapes [59]
Domain adaptive

semantic segmentation
GTA5 [60]→ Cityscapes [59] mIoUSYNTHIA [61]→ Cityscapes [59]

Semi-supervised
instance segmentation COCO [62] AP

Semantic segmentation
with noisy supervision PASCAL VOC [58] mIoU

evaluated on PASCAL VOC [58] and COCO-Stuff [63] with
the metric of panoptic quality (PQ) [4]. We summarize the
evaluation metrics and commonly used datasets for label-
efficient image segmentation in Table 4.

3 NO SUPERVISION
3.1 Unsupervised Semantic Segmentation
Semantic segmentation with no supervision, i.e., label-free
semantic segmentation, is also known as unsupervised se-
mantic segmentation in literature [23], [44], [64], [65]. In
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the early days, unsupervised semantic segmentation was
achieved by performing clustering algorithms, such as K-
means and Graph Cut [66], on hand-crafted image fea-
tures to partition images to multiple segments with high
self-similarities. Very recently, with the rapid development
of unsupervised feature representation learning, especially
popularized by MoCo [67], SimCLR [68], BYOL [69], etc,
unsupervised semantic segmentation is promoted by unsu-
pervised dense feature representation learning, which learns
a dense feature map Z = fθ(X) for an given image X
without any labels by a deep network fθ parameterized by
θ, where zi is the feature representation at spatial location i.
A well-learned dense feature map holds the property that
pixels from the same semantic region (object/stuff) have
similar feature representations and those from different
semantic regions have distinctive feature representations.
With the well-learned dense feature maps, segmentation can
be directly facilitated as training a good segmentation model
based on them becomes an easy task.

Since no supervision is provided, the key to addressing
unsupervised semantic segmentation is how to get supervi-
sion signals. Current methods attempted to generate dense
self-supervision signals according to some heuristic priors,
such as cross-pixel similarity, cross-view consistency and
cross-image relation, as summarized in Table 1. Next,
we review these methods according to the priors used to
generate self-supervision signals.
3.1.1 Cross-pixel Similarity as Dense Self-supervision
As Cross-pixel similarity is derived from principles of
perceptual grouping, almost all unsupervised semantic
segmentation methods utilized it to generate dense self-
supervision. In this section, we only review the method
solely relied on this prior.

Hwang et al. [43] claimed their SegSort as the first
unsupervised deep learning approach for semantic seg-
mentation. They first generated dense self-supervision, i.e.,
pseudo segments, by clustering with the help of a contour
detector [70], [71]. They then extracted prototypes for each
pseudo segment, which is the average of the pixel-wise
representations inside the segment. The training objective of
SegSort is to pull the feature representations of pixels within
a pseudo segment towards the prototype of this pseudo
segment and push them away from the prototypes of other
pseudo segments.
3.1.2 Cross-view Consistency as Dense Self-supervision
Cross-view consistency, referring to the same object show
consistency in different views, is another commonly-used
prior in unsupervised semantic segmentation. This prior is
widely used in contrastive learning based [67], [68] and
Siamese structure based [69], [72], [73] unsupervised rep-
resentation learning, which have achieved great successes,
and inspired unsupervised dense representation learning.
3.1.2.1 Contrastive learning for cross-view consistency
In contrastive learning, given an image X, two views of the
images are first generated, where one view is taken as a
query q, the other is a positive key k+ for the query. The
optimization goal of contrastive learning is minimizing the
contrastive loss:

`(X) = − log
exp(q · k+/τ)∑
k∈K exp(q · k/τ)

, (1)

Fig. 3. The illustration of VADeR (image from [74]). The left is the image-
level contrastive learning and the right is VADeR (pixel-wise contrastive
learning).

where K is a key set consisting of both the positive key
k+ and the negative keys from other images and τ is a
temperature parameter. Eq. (1) is also called InfoNCE loss. It
can be observed that two cruxes in contrastive learning are
1) how to generate different views and 2) how to determine
positive/negative pairs.

Pinheiro et al. [74] extended contrastive learning into
dense representation learning for the first time. They pro-
posed View-Agnostic Dense Representation (VADeR) [74],
a pixel-wise contrastive learning method. Fig. 3 shows the
comparison between VADeR and image-level contrastive
learning. Following MoCo [67], the authors of VADeR 1) em-
ployed data augmentation, include geometric transforms,
such as scaling, skewing, rotation and flipping, and pho-
tometric transforms, such as contrast changing and colour
saturation, to generate two views Xa,Xb of one image X,
where one view is used for queries and the other is used
for keys, 2) adopted two networks fθ, fθ̄ with the same
architecture to compute feature representations of queries
and keys, respectively, where the parameters θ of the first
network are trainable and the parameters θ̄ of the other are
obtained by the moving average of θ, and 3) maintained
a memory bank M to store negative keys. They defined
a positive pair as the feature representations at the same
pixel i from two different views, i.e., zai , z

b
i , and a negative

pair as the feature representations at pixels from different
images. Then, a pixel-wise contrastive loss was applied to
learn the feature representation at each pixel i, as shown in
Table 3. Follow-up pixel-wise contrastive learning methods
mainly attempted to improve the criterion to determine
positive/negative pairs [75], [76].

Following the spirit of VADeR [74], Gansbeke et al. [23]
proposed MaskContrast for unsupervised semantic segmen-
tation, which combines SegSort [43] and contrastive learn-
ing. They also generated two views (a query view and a key
view) for each image by data augmentation, but they in-
troduced prototypes into contrastive learning as keys. Each
prototype is the mean pixel representation inside an object
mask proposal (similar to the prototype in Segsort [43]),
generated by unsupervised saliency detection. They applied
pixel-wise contrastive learning to pulling each pixel repre-
sentation from the query view towards the prototype of its
corresponding mask proposal from the key view (positive
key) and pushing away it from the prototypes of other mask
proposals (negative keys). It is intriguing to see their objec-
tive is also similar to Segsort [43]. Ouali et al. [64] proposed
a pixel-wise contrastive learning method for unsupervised
semantic segmentation, which is also similar to VADeR [74].
But they adopted a different strategy to generate different
views of an image rather than geometric and photometric
transforms. They utilized different orderings over the input
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Consistency

Fig. 4. Siamese structure based unsupervised dense representation
learning.

images using various forms of masked convolutions to con-
struct different views of the image. Wang et al. [77] proposed
to copy and paste foreground image crops onto different
background images to generate positive pairs. This copy-
paste operation presents a more intuitive dense objective,
i.e., foreground-background segmentation, which enables
jointly training a backbone and a segmentation head in the
unsupervised manner.
3.1.2.2 Siamese structure for cross-view consistency
Siamese structure based unsupervised representation learn-
ing also generates two views of an image, but it maximizes
the consistency between the two views without negative
samples, as shown in Fig. 4. Generally, the representations
of one view are updated online, while the gradient flow on
the other is stopped [73]. In addition, cross-view consistency
is usually represented by cluster assignment relation across
the two views [72].

Ji et al. [44] explored Siamese structure based dense rep-
resentation learning for unsupervised segmentation. They
proposed Invariant Information Clustering (IIC), which
maximizes the mutual information between adjacent pixels
from different views to ensure cross-view consistency. The
mutual information was calculated based on clustering, i.e.,
a joint distribution of two adjacent pixels from the two
views, respectively, defined on their similarity distribution
over a series of cluster centroids. Cho et al. [65] proposed
another strategy to measure cluster assignment relation
in Siamese structure based dense representation learning.
Their method is called PiCIE (Pixel-level feature Clustering
using Invariance and Equivariance), which performs clus-
tering on two different views separately. Then the repre-
sentation of a pixel should be closest to its corresponding
cluster centroid from the same view as well as the corre-
sponding cluster centroid from the other view.

3.1.3 Cross-image Relation as Dense Self-supervision
Pixels from objects of the same category across images
have semantic relations. However, since no supervision is
available, how to mine semantically-similar pixels across
images is a bottleneck. To tackle this problem, current meth-
ods usually used the features learned from unsupervised
pretraining, such like MoCo [67] and BYOL [69], as the basis
to build the cross-image relation, then refined the features.

Zhang et al. [78] proposed a pixel-wise contrastive learn-
ing method by implicitly involving cross-image relation
for unsupervised semantic segmentation. They performed
clustering on features of all training images learned by
unsupervised pretraining, which is able to assign a pseudo
label to each pixel of all training images according to cluster
assignment. The pseudo labels were used for selection of
positive/negative pairs in contrastive learning.

Hamilton et al. [24] proposed STEGO, a dense repre-
sentation learning method by explicitly mining cross-image

relation according to feature correspondences for unsuper-
vised semantic segmentation. They trained a segmentation
model in a self-supervised manner by preserving the feature
correspondences outputted from the network backbone and
those outputted from the segmentation head, both within
the same image and across image collections.

3.2 Unsupervised Instance Segmentation
Unsupervised instance segmentation is a more challenging
problem, which has not been explored until very recently.
To our best knowledge, FreeSOLO [79] is the first work
to study this problem. FreeSOLO unified the segmentation
process in SOLO [18] and dense self-supervised learning in
DenseCL [75] as a “query-key” attention design. It made
use of the dense correspondences involved in the self-
supervised pretrained model (DenseCL) to generate some
class-agnostic coarse masks for each unlabeled image by
cross-pixel similarity. These coarse masks are then utilized
to train a SOLO segmentor with a weakly-supervised [80]
and self-training manner, leading to better segmentation
performance. Besides, FreeSOLO can be treated as a strong
self-supervised pretext task. By finetuning on limited fully
annotated images, it can achieve apparent improvements
against DenseCL.

3.3 Discussion
Unsupervised segmentation has become a promising direc-
tion recently, riding the wave of unsupervised dense repre-
sentation learning. The experimental results in [77] showed
that fine-tuning based on the dense representations learned
by unsupervised segmentation leads to superior perfor-
mance than fully-supervised segmentation model. E.g., the
fine-tuning result of DeepLabV3 [9] pre-trained by CP2 [77]
achieved 77.6% mean Intersection-over-Union (mIoU) on
the Pascal VOC 2012 dataset [58], which is better than the re-
sult of fully-supervised DeepLabV3 [9] (76.0% mIoU). This
encouraging result evidenced that the dense representations
learned in the unsupervised manner are well structurized
and can facilitate segmentation.

Nevertheless, the exploration of dense representation
learning for unsupervised segmentation is still in the prelim-
inary stage. Different to image-level representation learning,
dense representation learning requires some regional priors
to indicate the relation between pixels, i.e., whether they
belong to the same semantic region or not. This is essentially
the same goal of unsupervised segmentation. Consequently,
unsupervised segmentation suffers from a chicken and egg
situation. How to introduce more accurate regional priors
initially or how to refine them during learning is worth
exploring in future.

4 INEXACT SUPERVISION

As shown in Fig. 2 and Table 2, inexact supervision can
be image-level (only category labels are provided for each
training image), box-level (besides category labels, object
bounding boxes are also annotated for each training image)
or scribble-level (a subset of pixels in each training image are
annotated). Segmentation with inexact supervision is also
usually called weakly-supervised segmentation in literature.
Although in a broader sense, this term can also refer to
segmentation with other types of weak supervision, e.g.,
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Fig. 5. The mainstream pipeline for semantic segmentation with image-
level supervision.

incomplete supervision, we use it specifically to refer to seg-
mentation with inexact supervision following the precious
literature in this section.

4.1 Segmentation with Image-level Supervision
4.1.1 Semantic segmentation with image-level supervision
In this section, we review the methods to perform semantic
segmentation with image-level supervision. The difficulty
lies in this problem is the large supervision gap between
image-level supervision and pixel-level dense prediction.
The former is used for training image classification models,
while the latter is required to delineate object/stuff masks.

To bridge the supervision gap, as shown in Fig. 5,
researchers followed a two-stage pipeline, where pseudo
masks (dense labels) are generated for each training image
based on a classification model trained with image-level
supervision in the first stage, then a semantic segmenta-
tion model is trained based on the pseudo masks (An
illustration for pseudo mask generation from seed areas is
shown in Fig. 6). Since the pseudo masks are inevitably
noisy, training segmentation models from pseudo masks
is equivalently the problem of segmentation with noisy
supervision. Thus, we review the methods for the second
stage in Section 6 and we mainly review the methods for
the first stage in this section.

The goal of the first stage is to generate high-quality
pseudo masks, which consists of two subsequent steps: 1) In
the first step, some seed areas are obtained in each training
image based on the information derived from the classifica-
tion model. This step is usually achieved by computing class
activation maps (CAMs) [81], [82], [83] of the classification
model, so that the seed areas can cover discriminative
semantic regions in each image. 2) Then, in the second step,
pseudo masks (dense labels) are generated by propagating
the semantic information from the seed areas to the whole
image. This pseudo mask generation process is usually
iterative, involving self-training the segmentation model.
Existing methods made efforts in either refining seed areas
to make them more accurate and complete or generating
more reliable pseudo masks on the basis of seed areas, by
involving the common priors we summarized. Next, we
review the efforts have been made in seed area refinement
and pseudo mask generation based on different priors.
4.1.1.1 Seed area refinement by cross-label constraint
The class activation maps (CAMs) [81], [82], [83] serve as the
de facto tools to generate seed areas based on classification
models, which are adopted in all semantic segmentation
methods with image-level supervision. CAMs essentially
make use of the prior of cross-label constraint to locate
the seed areas in an image from the information provided
by a classification model. However, the seed areas captured

by CAMs suffer from two limitations: 1) Incompleteness: a
CAM usually fails to cover the entire semantic region of
the target class; 2) Redundancy: a CAM may overlap the
regions of other classes. To address these issues, researchers
designed several strategies to improve CAMs, producing
CAM-like maps for seed area refinement, including: 1)
expanding by ensemble [45], [84], [85], 2) re-finding by
erasing [86], [87], [88], 3) discovering by optimization [89],
[90], [91] and 4) reasoning by decoupling [92], [93]
Expanding by ensemble. Since a CAM usually cannot cover
the entire semantic region of the target class, an intuitive
strategy is to expand the seed area by an ensemble of
different CAMs. Wei et al. [45] proposed to enlarge the seed
area by an ensemble of CAMs computed using multiple
dilated convolutional (MDC) blocks of different dilation
rates. Different from [45] that formed a fixed combination of
different CAMs, Lee et al. [85] proposed to generate a variety
of CAMs by using random combinations of hidden units
in the classification model. This was realized by applying
spatial dropout [94] to the feature maps of the classification
model. Jiang et al. [84] pointed out an interesting observation
that a CAM is prone to shifting to different regions of the
target class during the training progress [84]. Motivated by
this concept, they proposed an online accumulation method,
which acquires the CAM-like map by accumulating the
CAMs at different training phases.
Re-finding by erasing. Another intuitive strategy is erasing
the current CAM, then enforcing the classification model to
re-find other regions to form a new CAM. The ensemble of
the new and old CAMs can expand the seed area to cover
a more complete semantic region of the target class. Wei
et al. [86] proposed a pioneer “erasing” framework, which
iteratively erases the current CAM then discovers another
one. Since the semantic regions covered by the current CAM
were erased, the classification network was encouraged to
discover other related semantic regions for maintaining the
classification prediction. Finally, the CAMs discovered at
all iterations were assembled to obtain the final CAM-like
map which is likely to cover entire object regions. Zhang et
al. [87] improved the “erasing” framework by introducing
Adversarial Complementary Learning (ACoL). They pro-
duced two parallel classifiers in a single network, which
were initialized differently, so that the CAMs produced by
each classifier can encourage the counterpart classifier to
discover complementary semantic regions. ACoL fused the
CAMs from both of the two classifiers as the final CAM-
like map. Rather than only aggregating the CAMs obtained
from different steps, Sun et al. [88] suggested that the inter-
action between CAMs may provide additional supervision
to learn more pixel-level information. On the basis of this
assumption, they proposed an Erased CAM Supervision Net
(ECS-Net) to sample reliable pixels from the erased CAM
for generating pixel-level pseudo labels to supervise the
generation of a new CAM.
Discovering by optimization. Instead of fusing different
CAMs, one can also discover seed areas by encouraging the
classification model to see larger regions during optimiza-
tion. Lee et al. [89] applied an anti-adversarial manner to
perturb images along pixel gradients which are regarding
to the classification of the target class. This manipulation
forces larger semantic regions to participate in classification
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Fig. 6. Pseudo mask generation from seed areas. (Image from [98].)

and produces a CAM-like map to identify a more complete
region of the target object. From the perspective of the
information bottleneck principle [95], [96], Wang et al. [90]
explained why a CAM is unable to cover the entire semantic
region of the target class. According to the information
bottleneck theory, information regarding the input image
is compressed through sequential network layers and only
the task-relevant information can pass the final layer of
the network. In the classification task, the most relevant
information often exists in the discriminative part of an
object or stuff, and thus, the trained classification model is
prone to ignoring the non-discriminative parts. Moreover,
Chang et al. [91] pointed out the core reason why a CAM
only covers a discriminative sub-region of the target class is
the objective function to train classification networks does
not require the networks to “see” the entire region of the
target class. In light of this opinion, they introduced an
additional self-supervised sub-category classification task
to enforce the networks to also pay attention to the non-
discriminative sub-regions of the target class.
Reasoning by decoupling. The reason why a CAM may
overlap the regions of non-target classes might be there are
so called co-occurrence classes, e.g., “horse” and “person”
often co-occur with each other. The co-occurrence classes
mislead the classification model. Zhang et al. [92] addressed
this issue by causal inference [97]. They analyzed and de-
coupled the causality between an image and the confounder
set, i.e., the set of co-occurrence classes, to prevent seed areas
from being expounded to redundant regions. Moreover,
in order to avoid background interference, Su et al. [93]
used copy-paste operation to decouple the relation among
the confounder set. They pasted a foreground image onto
different images, so that the classes from the foreground
image are free from a stereotypical contextual relationship
with the corresponding background, encouraging seed areas
to focus more on the foreground regions.
4.1.1.2 Seed area refinement by cross-pixel similarity
The “erasing” framework may mislead seed areas to grad-
ually expand to regions of incorrect semantics. To address
this issue, some recent methods made use of the prior of
cross-pixel similarity to guide seed area expanding. This
can be instantiated by involving saliency maps [99] to ensure
expanding to regions of similar semantics.

Hou et al. [46] proposed Self-Erasing Network (SeeNet),
which is the first attempt to use saliency maps [99] to

guide seed area refinement. Saliency maps were then widely
used in follow-up works. One example is [100], which
incorporated saliency maps as a soft guidance to control
seed area expanding. Xu et al. [101] proposed a cross-task
affinity learning framework to joint learn classification task,
saliency detection task and segmentation task. In particular,
the authors pointed out the saliency detection task and
the segmentation task possess similar structured semantics,
which motivated them to learn cross-task affinity maps from
the saliency and segmentation representations to refine seed
areas.
4.1.1.3 Seed area refinement by cross-view consistency
Some researchers proposed to use cross-view consistency
to improve the quality of seed areas, since cross-view con-
sistency can encourage the semantic consistency between
CAMs obtained from different spatial perturbations of the
same image [27], [102].

Wang et al. [27] designed a Siamese network for seed area
refinement. The Siamese network contains two branches
with different data augmentations, where one branch adds
additional affine transformations to each input image com-
pared with the counterpart. Based on the Siamese network,
the authors encouraged the CAMs computed from the two
branches to keep consistent. Following the spirit of [27],
Zhang et al. [102] considered the essence of seed area
expanding as an increase in information and they proved
that the information of the ensemble of CAMs generated
from a pair of images with complementary parts, named
CP pair, is always greater than or equal to one individual
CAM. Based on this thought, the authors proposed a CP
Network to reduce the gap between the ensemble of CAMs
generated by the CP pair and the initial CAM. The CP
Network delivers a CAM which is more informative and
can cover more complete semantic regions. More recently,
Jiang et al. [103] proposed a novel augmentation technique
to construct multiple views that enforces local-to-global
consistencies among CAMs computed from a bag of views
with different resolutions.
4.1.1.4 Seed area refinement by cross-image relation
Cross-image relation can be used to strengthen the ro-
bustness of seed area generation by encouraging pixel-
wise interactions among different images with semantic co-
occurrence.

Sun et al. [104] proposed two neural co-attentions to
complimentarily capture cross-image semantic similarities
and differences between each pair of images with semantic
co-occurrence. One is co-attention which aims to help CAMs
to cover complementary parts of objects belonging to the
same category, the other is contrastive co-attention which
was designed to help CAMs to discriminate semantics
of objects belonging to different categories. Li et al. [47]
proposed group-wise semantic mining (GWSM) to capture
cross-image relation among a group of images rather than a
pair of images via a graph neural network (GNN) [105]. The
authors plugged the GNN into the classification model to
propagate pixel-level semantic correspondences both within
the same image and across images, progressively driving
CAMs to cover more complete object regions. Very recently,
Zhou et al. [106] introduced a memory bank consisting
of dataset-level prototypical region feature embeddings to
modulate learned CAMs by cross-image relation.
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4.1.1.5 Pseudo mask generation by cross-pixel similarity
Pseudo masks are usually generated in an iterative manner,
i.e., starting from the seed areas, alternatively expounding
the current pseudo masks (initialized by seed areas) and
then using a segmentation model learned by self-training
to update the pseudo masks. The prior of cross-pixel sim-
ilarity is widely used in pseudo mask expounding, where
the key is how to measure the similarity (affinity) among
pixels, so that the expounding process can be regularized.
The affinity can be based on either low-level features (e.g.,
color and texture) [56], [107], [108], [109] or high-level
semantics [26], [98], [110].
Affinity learning with low-level cues. Kolesnikov et
al. [107] proposed three principles for training a segmen-
tation model to generate pseudo masks from seed areas:
1) Training only with the pseudo labels with high con-
fidences; 2) Updated pseudo labels should be consistent
with the given image-level labels; and 3) Constraining up-
dated pseudo masks to respect object boundaries. These
three principles were widely adopted in follow-up works.
Kolesnikov et al. achieved the third one by measuring the
pixel-level affinity in terms of low-level image cues, e.g.,
color and spatial location. Huang et al. [108] followed the
three principles. They adopted a seeded region growing
(SRG) strategy [111], which expounds pseudo masks to
neighborhood pixels with high confidence. Wang et al. [109]
utilized saliency map to guide pseudo mask expounding.
Zhang et al. [56] also followed the three principles and pro-
posed an end-to-end reliable region mining (RRM) frame-
work, jointly performing classification and segmentation.
They introduced a dense energy loss [112] to propagate
semantic information from seed areas to the remaining
unlabeled regions by leveraging low-level image cues.
Affinity learning with high-level learned features. The
affinity can be also measured by the similarity between
learned high-level features. Ahn et al. [26] proposed Affin-
ityNet to learn a pixel-level feature extractor that is super-
vised by semantic labels of seed areas. The trained Affin-
ityNet was used to build a pixel-to-pixel semantic affinity
matrix, which was further applied in random walk [113]
to generate pseudo masks. Ru et al. [114] directly made
use of the attentions learned from a Transformer to form
the pixel-to-pixel semantic affinity matrix. Wang et al. [98]
built an end-to-end iterative affinity learning framework
(IAL), which is similar to the previously introduced RRM
framework [56]. The difference is the pairwise affinity ma-
trix in [98] was built on learned high-level features rather
than low-level image cues. Fig. 6 shows one example of the
pseudo masks progressively generated from seed areas by
IAL. Zhang et al. [110] pointed out that treating all seed
areas equally may result in over-fitting to some erroneous
seeds. To address this issue, the authors introduced an
adaptive affinity loss, where adaptive weights were adopted
to measure the reliability of the pixel-wise affinities.
4.1.1.6 Pseudo mask generation by cross-image relation
Affinity learning can be also benefited from cross-image
relation. Fan et al. [48] built a cross-image affinity module
(CIAN) for pseudo mask generation from pairs of images
with semantic co-occurrence. In each pair of images, one
image was taken as a query image, and the other was
a reference image. The feature map of the query image
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Fig. 7. The mainstream pipeline for instance segmentation with image-
level supervision.

was adjusted by the feature map of the reference image
according to the pixel-wise affinities between the two of
them, which leaded to more complete and accurate pseudo
masks.

4.1.2 Instance segmentation with image-level supervision

In this section, we review instance segmentation methods
with image-level supervision. As shown in Fig. 7, similar to
the strategies used for semantic segmentation with image-
level supervision, the methods for instance segmentation
with image-level supervision also first generated pseudo
masks, then trained the segmentation model. But since
instance segmentation further requires locating each object,
pseudo masks should be instance-level rather than category-
level. Instance-level pseudo masks can be obtained by 1) ex-
pounding instance-level seed areas by self-training accord-
ing to cross-pixel similarity (the gray flow line in Fig. 7 ) or
2) end-to-end training according to cross-label constraint
(the blue flow line in Fig. 7 )).
4.1.2.1 Instance-level seed area generation
Intuitively, instance-level seed areas can be obtained from
category-level seed areas by peak locating [34]. PRM [34] is
the first work to solve this task through introducing peak
response maps. High-confidence responses (peaks) in seed
areas provided by the classification model for a specific class
imply the possible locations of instances belonging to the
class. The peaks of seed areas were gradually merged into
a few ones by a learned kernel, each of which was assumed
to correspond to one instance. As shown in Fig. 8, the peak
response map was obtained by back-propagating semantic
information from the peaks to the whole image. GrabCut [1]
was employed to locate the boundary for each instance on
the peak response map.
4.1.2.2 Instance-level pseudo mask generation
Expounding by self-training. Generating instance-level
pseudo masks from instance-level seed areas usually in-
volves a self-training process. WISE [115] and IAM [116]
are two self-training based works built on PRM [34]. WISE
selected the local maxima of the output of PRM as the
pseudo labels to train an instance segmentation model. The
authors of IAM [116] pointed out that PRM can only identify
the most discriminative part of an instance. In IAM, they
generated instance-level pseudo masks by expounding the
peak response maps through a differentiable filling module.
IRNet [49] generated instance-level pseudo masks by learn-
ing a class-agnostic instance map and pairwise semantic
affinities simultaneously from high-confidence seeds. The
latter was used to identify object boundaries which enabled
the propagation from the former to form accurate instance-
level pseudo masks.
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Generating by end-to-end training. Unlike the above self-
training based methods which are composed of multiple
offline stages, there are also end-to-end training based meth-
ods which directly transform image-level labels to instance-
level pseudo masks according to cross-label constraint. Ge
et al. [35] proposed Label-PEnet to explored to transfer
image-level labels to pixel-level labels in an online and
coarse-to-fine manner. They designed a cascaded pipeline
which was composed of four parallel modules, i.e., classifi-
cation, object detection, instance refinement, and instance
segmentation. These modules shared the same backbone
and were trained with a curriculum learning strategy, which
generalized labels from image-level supervision to pixel-
level pseudo masks gradually with increasing accuracy.
Hwang et al. [117] introduced a simple yet efficient commu-
nity learning framework, WSIS-CL, which formed a positive
feedback loop between object detection and instance mask
generation. It adopted the most popular method OICR [118]
in weakly supervised object detection to generate object
proposals and supervised the instance segmentation model
by the combination of multi-level CAMs from spatial pyra-
mid pooling [119] for high-confidence proposals. PDSL [120]
performed weakly supervised object detection and self-
supervised instance segmentation in parallel for the same
proposal obtained by selective search [121]. The results
of these two branches are constrained by conducting cor-
relation learning to keep consistent predictions. Zhou et
al. [122] presented a simple way to expand the vocabulary
of detectors and instance segmentors to tens of thousands of
concepts by training classifiers on image classification data.

4.1.3 Panoptic segmentation with image-level supervision
Panoptic segmentation with image-level supervision has not
been widely explored, probably because it is very chal-
lenging. As far as we know, Shen et al. [29] is the only
work to address this problem. They proposed a joint thing-
and-stuff mining (JTSM) framework, where mask-of-interest
pooling was designed to form fixed-size pixel-accurate fea-
ture representations for segments from arbitrary categories.
The unified feature representations for both things and stuff
enable connecting pixel-level pseudo labels to image-level
labels by multiple instance learning, according to cross-
label constraint. The pseudo masks were refined by Grab-
cut [1], according to cross-pixel similarity, and used for self-
training the panoptic segmentation model.

4.2 Segmentation with Box-level Supervision
4.2.1 Semantic segmentation with box-level supervision
In this section, we review the methods for semantic segmen-
tation with box-level supervision. The box-level supervision
serves as a more powerful alternative to the image-level su-
pervision, which naturally narrows down the search space
for locating objects. The core challenge in semantic seg-
mentation with box-level supervision shifts to distinguish
between foreground objects and background regions inside
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Fig. 10. The mainstream pipeline for instance segmentation with box-
level supervision.

the annotated bounding boxes. Since annotated bounding
boxes play a similar role as CAM-like maps, as shown in
Fig. 9, semantic segmentation with box-level supervision
also consists of two steps: 1) Mining pseudo masks from the
annotated bounding boxes according to cross-pixel similar-
ity; 2) Training a segmentation model based on the pseudo
masks.

The first attempt for this task was made by Dai et al. [54].
They presented a method to alternatively update pseudo
masks and the segmentation model. Specifically, the authors
first adopted MCG [123], an unsupervised region proposal
method, to generate around 2,000 candidate segments per
image. Then they repeatedly performed the following three
steps: 1) Use a segmentation model to predict the semantic
labels for each candidate segment; 2) For each annotated
bounding box, from the candidate segments which are pre-
dicted as the same semantic label as that of the bounding
box, select the one with the largest overlapping region as
the pseudo mask for the bounding box; 3) Update the
segmentation model by pseudo masks.

Since MCG [124] generates candidate segments with-
out considering box-level supervision, the reliability of the
pseudo masks generated by MCG is limited. Instead, most
recent methods [37], [125], [126] regarded the box-level
supervision as a noisy starting point to mine the pseudo
masks of foreground objects instead.

Song et al. [125] proposed to calculate the filling rate
of each class in annotated bounding boxes as a stable
guidance to guide segmentation model training. Similarly,
Kulharia et al. [126] computed the filling rate at each spatial
position inside each bounding box based on a CAM-like
map, which can reduce erroneous interests on background
regions. Instead of discovering foreground objects in bound-
ing boxes [125], [126], Oh et al. [37] tried to obtain pseudo
masks by removing background regions from annotated
bounding boxes. They hypothesized that small patches in
background regions from an image are perceptually consis-
tent, which gave a criterion to remove the the background
pixels inside each annotated bounding box.

4.2.2 Instance segmentation with box-level supervision

In this section, we review the instance segmentation meth-
ods with box-level supervision. Instance segmentation with
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box-level supervision is an easier problem than instance
segmentation with image-level supervision, since annotated
bounding boxes already provide instance locations for train-
ing. The remained difficulty in training is how to perform
foreground/background segmentation within a given an-
notated bounding box. As depicted in Fig. 10, this can be
addressed by 1) generating pseudo masks from the an-
notated bounding box according to cross-label constraint,
then performing self-training (the gray flow line in Fig. 10),
or 2) end-to-end training with a loss function which di-
rectly formulates cross-label constraint (the blue flow line
in Fig. 10).
4.2.2.1 Mask prediction by self-training
SDI [38] is the first deep learning based method to address
this problem. For each given annotated box, SDI used
the whole box region or the initial segment produced by
Grabcut [1] within the box as the pseudo mask, and then
performed self-training to iteratively refine the pseudo mask
and finally deliver mask prediction. Lee et al. proposed
BBAM [127] to employed high-level semantic information
from an object detector to produce pseudo masks. They
tried to find some learnable areas within a box from which
an object detector can predict almost the same detection
and classification results as those obtained from the whole
box region. Intuitively, these areas represent discriminative
parts of an object. The areas of different object proposals
corresponding to a given annotated box were combined
as its pseudo mask. BoxCaSeg [128] enhanced the ability
of foreground/background separation by introducing extra
knowledge from a saliency segmentation dataset, leading to
more precise pseudo masks.
4.2.2.2 Mask prediction by end-to-end training
BBTP [39] and BoxInst [80] are two end-to-end training
based instance segmentation methods with box-level su-
pervision. In these two methods, a projection loss was
deigned to directly formulate cross-label constraint, which
guarantees the consistency between a given annotated box
and the projection of a predicted mask along its four sides.
Nevertheless, this projection loss cannot impose any con-
straint to the shape of the predicted mask, which may lead
to trivial solutions, such as an all-one rectangle. To solve
this issue, extra pairwise loss functions were also provided
in BBTP and Boxinst, which defined cross-pixel similarity
based on spatial location and color, respectively.

4.2.3 Panoptic segmentation with box-level supervision
Panoptic segmentation from box-level supervision remains
a challenging problem. The only work that attempted to
address this problem is WPS [40]. In this work, background
stuff was annotated by image-level labels and foreground
instances were annotated by box-level labels. WPS [40] first
used Grad-CAM [82] to obtain the heatmap of foreground
and background categories, according to cross-label con-
straint, then utilized Grabcut [1] to locate the pseudo mask
of each foreground instance from the heat maps, according
to cross-pixel similarity.

4.3 Segmentation with Scribble-level Supervision
In this section, we review the methods for scribble-based
(semantic) segmentation, where annotations are provided
with only a small fraction of pixels, usually as the form
of hand-drawn scribbles. The hand-drawn scribbles can be
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Fig. 11. The mainstream pipeline for semantic segmentation with
srcibble-level supervision.

thought as a kind of seed areas. Fig. 11 shows the main-
stream pipeline of semantic segmentation with scribble-
level supervision. The crux to address this problem is how to
propagate semantic information from the sparse scribbles to
all other unlabeled pixels. Current methods achieved this by
making use of the internal prior of images, i.e., cross-pixel
similarity.

As the first attempt, Di et al. [36] propagated informa-
tion from scribbles to unlabeled pixels via a graph model.
The graph model was built on the superpixels [129] of an
image, where the nodes were superpixels and the edges
represented similarities between adjacent nodes, measured
by low-level appearance cues, such as color and texture.
They jointly optimized the graph model and a segmentation
model by an alternated scheme: Fix the segmentation model,
the multi-label graph cuts solver [130] was adopted to assign
semantic labels for each unlabeled node in the graph model
to form pseudo masks; Based on the pseudo masks, they
re-trained the segmentation model. In a similar vein, Xu et
al. [131] utilized multi-level semantic features rather than
low-level features in the graph model for inferring pseudo
masks. Paul et al. [132] generated pseudo masks from scrib-
ble via a label propagator. The label propagator is a differ-
entiable model based on random walk [113] for semantic
propagation, which enabled end-to-end joint training with
a segmentation model. It was further incorporated with a
learnable boundary predictor [133] to explicitly constrain
the spatial propagation to “walk” inside object regions.

The aforementioned methods all require an extra model
to get pseudo masks. There are also a few methods which di-
rectly optimize the segmentation model by designing a loss
function to connect scribbles and dense predictions. Tang
et al. [112] designed a new loss function, where scribbles
were used as partial per-pixel supervision and normalized
cut [66] was adopted to softly ensure the consistency of all
pixels. Tang et al. [55] further proposed an extended version
which also incorporated CRF into the loss function.

4.4 Discussion
Segmentation with inexact supervision reduces the require-
ment for the quality of training images with full dense
labels. As summarized in this section, the main pipeline
to address this problem is stage-wise: 1) Generate pseudo
masks from seed areas by either propagation or mining
(ref. Table 1); 2) Train the segmentation model based on
the pseudo masks (self-training). The state-of-the-art re-
sults of image segmentation with inexact supervision are
comparable to the result of segmentation with full dense
supervision, as shown in Table 5, Table 7 and Table 9 in
the Appendix. However, CAM based seed areas might be
significantly inaccurate for small objects and objects with
holes. For these challenging cases, another pipeline, i.e., the
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end-to-end pipeline to directly link dense predictions to
inexact labels (ref. Table 1), might be an solution and worth
further exploring.

5 INCOMPLETE SUPERVISION

As shown in Fig. 2 and Table 2, incomplete supervision can
be categorized into 1) semi supervision, 2) domain-specific
supervision and 3) partially supervision. Accordingly, seg-
mentation with these three types of weak supervision are
called semi-supervised segmentation, domain-adaptive seg-
mentation and partially-supervised segmentation, respec-
tively.

5.1 Semi-supervised Segmentation

5.1.1 Semi-supervised semantic segmentation
In this section, we review the methods for semi-supervised
semantic segmentation, where only a small fraction of
training images is provided pixel-level annotations and
the rest training images are not annotated. The objec-
tive of semi-supervised semantic segmentation is involv-
ing the large number of unlabeled training images into
training to improve segmentation performance. A common
adopted framework for semi-supervised semantic segmen-
tation is self-training shown in Fig. 12, which applies the
segmentation model trained on labeled training images
(teacher model) to unlabeled training images to generate
pseudo dense labels (masks), then retrains the segmentation
model with the pseudo dense labels (student model). The
pseudo dense labels are inevitably noisy, thus current semi-
supervised semantic segmentation methods either 1) refined
the pseudo dense labels to improve their reliability im-
plicitly according to cross-image relation or 2) regularized
them by introducing extra supervisions explicitly according
to cross-view consistency.
5.1.1.1 Pseudo label refinement for self-training
Intuitively, the reliability of pseudo dense labels can be de-
termined by their confidences provided by the segmentation
model. Existing methods improved the reliability of pseudo
dense labels by refining them with iterative self-training or
by neglecting those with less confidences.

Hung et al. [50] made use of a discriminator network to
generate reliable confidence maps for unlabeled images. The
discriminator network was trained with labeled images with
the ability to determine whether the input is from ground-
truth dense labels or predictions from the segmentation
model. Ke et al. [134] proposed a three-stage self-training
framework to refine pseudo labels in a stage-wise manner.
They modified the segmentation model by adding an auxil-
iary branch which was the duplicate of the last two blocks of
the original model. The last two blocks of the original branch
and the auxiliary branch were trained by the unlabeled data
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Fig. 13. Semi-supervised semantic segmentation by Siamese struc-
tures. (a) GCT [136], (b) CutMix-Seg [137], (c) PseudoSeg [30] and (d)
CPS [57]. ‘→’ means forward operation and ‘99K’ means loss supervi-
sion. ‘//’ on ‘→’ means stop-gradient.

with the pseudo labels and the labeled data, respectively.
Since the auxiliary branch was trained by only the labeled
data, it can generate more reliable pseudo labels for the next
stage. This stage-wise self-training framework iteratively
improved the reliability of pseudo labels, and thus leaded
to performance improvements.

He et al. [135] proposed a quality-control policy for self-
training, where a labeling ratio α was introduced to control
the quality of pseudo labels so that only α% of pixels in
an unlabeled image retain corresponding pseudo labels. As
the labeling ratio was determined by a category-specific
confidence threshold, He’s method can address the problem
of long-tailed data distribution in semi-supervised semantic
segmentation.
5.1.1.2 Pseudo label regularization by cross-view consistency
Pseudo label regularization can benefit from unsupervised
dense representation learning (Section 3), since they both
aim at training segmentation models on unlabeled images.
Thus, the Siamese structure and contrastive learning are also
used in semi-supervised semantic segmentation to ensure
cross-view consistency among pseudo dense labels of the
same image under different views.
Siamese structure based. Fig. 13 illustrates several typical
Siamese structures for pseudo label regularization in semi-
supervised semantic segmentation. GCT [136] utilized two
segmentation networks that shared the same architecture
but were initialized differently to compute two segmenta-
tion probability maps from two different views of an unla-
beled image, respectively. The pair of segmentation proba-
bility maps were kept consistent as the extra supervision for
training. CutMix-Seg [137] also utilized two segmentation
networks with the same architecture, but the parameters of
one network were the moving average of the other’s. The
two segmentation probability maps outputted from the two
networks were kept consistent for training. PseudoSeg [30]
used the pseudo dense labels generated from a view with
weak augmentation to supervise the pseudo dense labels
generated from a view with strong augmentation. CPS [57]
followed the strategy to utilize two differently-initialized
segmentation networks with the same architecture and en-
forced the consistency between pseudo dense labels out-
putted from them. Their experimental results showed that
their method can achieve better segmentation performance.
Contrastive learning based. Zhong et al. [138] applied pixel-
wise contrastive learning to facilitating the feature learning
of intermediate layers. For a query pixel, they investigated
several sampling strategies to select negative keys (pixels) in
pixel-wise contrastive learning, including 1) Uniform: pixels
at different locations in one image or from different images
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are negative keys; 2) Different image: pixels from different
images are negative keys; 3) Uniform + Pseudo Label: pixels
at different locations in one image or from different images
with low confident pseudo labels are negative keys; 4)
Different image + Pseudo Label: pixels from from different
images with low confident pseudo labels are negative keys.
Lai et al. [31] proposed a novel strategy to generate different
views of an unlabeled image by considering contextual
information. For an unlabeled image, two different patches
were randomly cropped with an overlapping region. The
feature maps of the two patches were computed by an en-
coder and a non-linear projector. Then contrastive learning
was applied to ensuring that the feature representations of
the overlapping region computed under different contexts
are consistent. The feature representations at the same pixel
were taken as a positive pair while the feature representa-
tions in the remaining regions formed the negative samples.

5.1.2 Semi-supervised Instance segmentation

The setting of semi-supervised instance segmentation is
slightly different to the standard one: In the literature, under
this setting, object categories are divided into two disjoint
splits: base and novel, where both of the two splits are pro-
vided by weak box-level annotations, but only the base cate-
gories are provided by per-pixel annotations. Thus, semi-
supervised instance segmentation is also called partially-
supervised instance segmentation. Formally, following the
definition in Table 2, the training set of partially-supervised
instance segmentation is

T ={(X(n),Y(n))|n ∈ Nl}
⋃
{(X(n),B(n))|n ∈ N\Nl},

s.t.∀n ∈ Nl,m ∈ N\Nl, C(n)
⋂
C(m) = ∅. (2)

Intuitively, the difficulty of this task lies in the supervision
gap between box-level annotations and pixel-level dense
predictions on the novel categories. As shown in Fig. 14, ex-
isting methods mainly follow a detection-then-segmentation
pipeline, e.g., Mask R-CNN [139], and explore how to extract
auxiliary information from a detection model by utilizing
the priors we have summarized to assist the learning of a
segmentation model on the novel categories.
5.1.2.1 Auxiliary information from cross-label constraint

From the box-level annotations, two types of auxiliary
information for segmentation model training can be ex-
tracted from the prior of cross-label constraint. One is the
connection between box category labels and segmentation
masks, as explored in CAMs [81], [82]; The other is the
connection between box location labels and segmentation
masks [140], since the segmentation mask for an object is
tightly enclosed by its bounding box.

MaskX RCNN [32], built upon Mask RCNN, is the first
partially-supervised instance segmentation method. MaskX

RCNN was motivated by the label connection between box-
level classification and per-pixel classification (segmenta-
tion) within the box. It learned a category-agnostic func-
tion to transfer parameters of the detection head to the
parameters of the segmentation head. Once this function
was learned on base categories, it can be used to generate
the parameters of the mask head for novel categories. In
OPMask [140], Biertimpel et al. produced a CAM-like map
within each box from a box-level annotation, where each
channel represented an object mask prior (OMP) for a
specified category. This CAM-like map was then applied to
enhance the features for training the segmentation head.
5.1.2.2 Auxiliary information from cross-pixel similarity
An important goal of the partially-supervised setting is
to explore class-agnostic commonalities between base and
novel categories, which can be utilized to improve the fea-
ture discrimination ability for novel categories. Exploiting
the prior of cross-pixel similarity from low-level (color,
texture) or high-level (semantic relationship, affinity) infor-
mation is a good strategy to approach this goal.

Zhou et al. proposed Shapeprop [33] to produce class-
agnostic shape activation maps, i.e., more structured and
finer CAMs, as the auxiliary commonality information. They
employed multiple instance learning to locate a salient
region within each given bounding box in a class-agnostic
manner for all categories. Then they designed a saliency
propagation module to expand the salient region to cover
the whole object within each given bounding box, forming
the shape activation map. In CPMask [141], Fan et al. ex-
plored class-agnostic shape cues, which were extracted by
boundary prediction and non-local attention based pixel-to-
pixel affinity learning.

Although the authors of Shapeprop [33] and CP-
Mask [141] claimed their auxiliary commonality information
is class-agnostic, they extracted the information only from
base categories, which leaded to a misalignment problem
of the features between base and novel categories. Wang
et al. presented ContraskMask [52] which was built upon
OPMask and addressed this issue by introducing an extra
unified pixel-level contrastive learning framework. In this
framework, all images were used to train an extra class-
agnostic encoder through a unified pixel-level contrastive
loss and an elaborated query-keys sampling strategy ac-
cording to cross-pixel similarity. The encoder provided
aligned and distinctive encoded features for all categories,
facilitating the segmentation on novel categories.
5.1.2.3 Auxiliary information from cross-image relation

Kuo et al. proposed ShapeMask [53] to address partially-
supervised instance segmentation by exploring common
shape priors from cross-image relations, since objects from
similar categories in different images should have similar
coarse shapes. The shape priors, obtained by performing
clustering on mask-level annotations of all training images
from base categories, can be linearly assembled and then
generalized to diverse categories to assist the segmentation
head to progressively refine predicted segmentation masks.
5.1.2.4 Auxiliary information from a larger segmentation model

In Deep-MAC [142], Birodkar et al. investigated partially-
supervised instance segmentation from a new perspective,
i.e., the capacity of the segmentation head. By finding
that a much stronger segmentation head can smooth over
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the gap caused by the missing supervision of novel cate-
gories, Deep-MAC replaced the original segmentation head
in [139] with a much stronger model, e.g., Hourglass-100,
leading to significant performance improvement.

5.2 Domain-adaptive Segmentation
5.2.1 Domain Adaptive Semantic Segmentation
Here, we focus on the scenario where only images on the
source domain have pixel-wise annotations and there exists
a domain gap between the source domain and the target do-
main. The goal is to train a segmentation model using source
domain data which can be generalized to the target domain.
Domain adaptive semantic segmentation is essentially sim-
ilar to semi-supervised semantic segmentation, where the
only difference is whether there is a domain gap between
the labeled images and unlabeled images. Thus, as shown
in Fig. 15, the mainstream pipeline of domain adaptive
semantic segmentation contains one extra step, compared
with the mainstream pipeline of semi-supervised semantic
segmentation (Fig. 12): Narrowing down the domain gap.
This extra step can be achieved by adversarial learning
to map both the source and target domains into the same
space [41], [143], [144], [145], augmentation based domain
mixing [51], [146] or pseudo mask quality improvement
on the target domain [42], [147], [148], [149], [150].
5.2.1.1 Adaptation by adversarial learning
Adversarial learning is used to align source domain images
and target domain images in either the image space or
the feature space, which is usually achieved by Generative
Adversarial Networks (GANs) [151].

Murez et al. [144] proposed an unpaired image-to-image
translation framework to find a joint latent embedding
space, where domain-agnostic feature representations can
be extracted. To preserve core information and eliminate
the structured noise in a specific domain, the authors recon-
structed each image by an identity loss and classify whether
the features in the latent space are generated from source
or target domain by an adversarial loss. Tsai et al. [143]
trained a discriminator to determine whether an output
of the segmentation model was from the source domain
or the target domain. By fooling the discriminator, the
gap between the two domains was shorten. Vu et al. [152]
reduced the domain gap by additionally encouraging the
alignment of entropy distributions between predictions on
source images and target images.

Li et al. [41] directly transferred the source images to
the target domain by GANs. They proposed a bidirectional
learning framework which consisted of an image-to-image
translation subnetwork and a segmentation adaptation sub-
network. In the forward direction, the translation subnet-
work was trained with an adversarial loss to translate source
domain images to the target domain, and the adaptive

segmentation subnetwork was trained on the translated
source domain images with corresponding ground-truth
dense labels as well as the target domain images with no
labels. The backward direction ensured cross-view (domain)
consistency by the GAN loss, reconstruction loss and per-
ceptual loss. Based on [41], Cheng et al. [145] proposed DPL,
which made use of two complementary and interactive bidi-
rectional learning frameworks to improve the translation
quality from the source domain to the target domain.
5.2.1.2 Adaptation by domain mixing
Another strategy to narrow down the domain gap is mix-
ing images from different domains by mix-up based copy-
paste [153], [154].

Tranheden et al. [51] mixed the source and target domain
images with corresponding ground-truth dense labels and
pseudo dense labels respectively by pasting pixels of certain
categories from a source domain image to a target domain
image. The segmentation model was then trained on these
mixed images with mixed ground-truth dense labels and
pseudo dense labels. Based on [51], Hoyer et al. [146] in-
troduced the transformer architecture into domain adaptive
semantic segmentation instead of the traditional Deeplab
architecture [9] and significantly improved the state-of-the-
art performance.
5.2.1.3 Adaptation by pseudo mask quality improvement
Due to the domain gap, the pseudo masks generated on
target domain images are usually very noisy. Their quality
should be improved before being used for training the
student segmentation model. This pseudo mask quality
improvement process usually involves some priors, such as
cross-pixel similarity and cross-view consistency.

Zou et al. [147] firstly brought the framework of self-
training to domain adaptive semantic segmentation. In
order to generate high-quality pseudo labels, pixels with
higher confidence scores were more likely to be selected to
train the student segmentation model. To get rid of negative
influence of large classes, the class-wise confidence was
normalized. Shin et al. [149] generated pseudo masks by
label propagation from pseudo labels with high confidences,
which was based on the assumption that nearby pixels tend
to be similar.

Zhang et al. [42] made use of representative prototypes,
i.e., the feature centroid of each class, to denoise the pseudo
masks. The prototypes were initialized according to the
generated pseudo labels for target domain images. Then
they were dynamically updated by the moving average
of corresponding cluster centroids in the current mini-
batch. Pseudo mask denoising was performed according
to prototype assignment, i.e., the probability of assigning
a pseudo class label to a pixel was adjusted according to
the similarity between the features of the pixel and the
prototype of the class. In order to guarantee the robustness
of prototype assignment, the prototype assignments for each
pixel under weak and strong augmentations were enforced
to be consistent.

5.3 Discussion
Segmentation with incomplete supervision reduces the re-
quirement for the quantity of training images with full
dense labels. As summarized in this section, the strategies
to address this problem include two main directions (ref.
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Table 1): 1) Transfer the segmentation model trained on
labeled data to unlabeled data; 2) Generate dense self-
supervision on unlabeled data, similar to the strategies
used for unsupervised segmentation. As shown in Table 10
in the Appendix, the result of the state-of-the-art semi-
supervised semantic segmentation method (75.9% mIoU) is
comparable to the result of fully-supervised semantic seg-
mentation model (76.0% mIoU). However, when there is a
large distribution shift between labeled data and unlabeled
data, e.g., the domain gap in domain-adaptive semantic
segmentation and the non-overlapping between based and
novel categories in partially-supervised instance segmen-
tation, segmentation with incomplete supervision suffers
from more severe performance degradation (ref. Table 12
and Table 11 in the Appendix). Consequently, how to design
more effective strategies to dead with the distribution shift
to enable fully making use of unlabeled data in training
needs further exploration.

6 INACCURATE SUPERVISION
6.1 Semantic segmentation from Noisy supervision
Label inaccuracy is commonly existed in segmentation
annotations. Given that pseudo masks inevitably involve
somewhat noises, training segmentation models from
pseudo masks is essentially a noisy semantic segmentation
problem, as pointed out in [28].

Liu et al. [28] observed a phenomenon that the seg-
mentation models tend to memorize the errors in annota-
tions as training proceeds. To prevent over-fitting to the
errors, they designed an adaptive early stop mechanism
and enforced multi-scale cross-view consistency to boost
robustness against annotation errors. Li et al. [155] proposed
to discover noisy labels via uncertainty estimation [156],
which was realized by calculating the pixel-wise variance
among prediction maps under different scales, according
to cross-view consistency. Larsson et al. [157] proposed to
boost segmentation performance with inaccurate labels by
cross-view consistency, which is realized by enforcing label
consistency among a series of 2D-2D point matches between
two views obtained under different seasons.

7 CONCLUSION AND DISCUSSION

Label-efficient image segmentation has become an active
topic in computer vision, as it paves the way to address-
ing real world applications, where per-pixel annotations
are notoriously difficult to obtain. As summarized in this
survey, a large number of label-efficient image segmenta-
tion methods have been proposed in recent years, which
addressed segmentation with weak supervision of different
types, i.e., no supervision, inexact supervision, incomplete
supervision and inaccurate supervision. As described in
this survey, these methods are highly related, not only
because the problems they were designed to address are
related, e.g., segmentation with inaccurate supervision can
be a sub-problem of segmentation with inexact supervision,
but also because they made use of similar strategies to
bridge the supervision gaps between dense prediction and
weak supervision. Experimental results showed that these
label-efficient image segmentation methods have achieved
considerable progress. However, there is large room for
improvement to approach the upper bound performance

under the fully-supervised setting, i.e., using full dense
labels for training. Next, we discuss the challenges need to
be resolved and share our opinions about future prospects.

7.1 Challenges

1) The supervision gap
As we argued in this paper, the main challenge of label-
efficient image segmentation is the supervision gap between
dense predictions and incomplete labels. Although a lot of
strategies have been proposed to tackle this challenge, as
summarized in this survey, how to bridge the supervision
gap is still an unresolved open issue. In addition, existing
label-efficient image segmentation models are limited in
their ability to scale to large numbers of object classes.
To address these challenge, more efforts need to be made,
including adopting more powerful network backbones and
introducing extra supervision from other modalities, such
as text supervision.
2) The openness issue
The label-efficient segmentation problem is closely related
to open-domain (or open-vocabulary) recognition, where
new concepts can be described by texts, few examples,
etc. In such scenarios, an important issue lies in dealing
with the openness of recognition, in particular, how to
design a pipeline for adding new concepts into an existing
recognition system? Simply relying on text guidance (e.g.,
leveraging text embeddings from a pre-trained model) may
be insufficient, yet searching and distilling knowledge from
web data is a promising solution.
3) Granularity vs. consistency
Label-efficient image segmentation aims to cover more vi-
sual concepts. However, as the number of concepts goes
up, there is a tradeoff between recognition granularity and
consistency. That said, when fine-grained classes and/or
object parts are added to the dictionary, it is possible that the
algorithm may not produce consistent recognition results,
e.g., when the object is small, the algorithm may choose to
predict coarse-grained labels and/or parts – it is good to
adjust the evaluation protocol for such scenarios.

7.2 Potential Directions

1) Zero-shot segmentation with text supervision
There are a large number of images with a wide variety
of text supervision available on the Internet, which en-
ables learning large-scale models, such as CLIP [158], to
bridge visual representations and text supervision. Such
pre-trained models shed light on a new way to perform
zero-shot image classification [159] as well as semantic
segmentation, i.e., learning segmentation models for unseen
categories [160], [161], [162], [163], [164], [165]. Generally,
these works generalized segmentation models to unseen
categories by aligning visual features to the text embedding
of the corresponding semantic class. This is a promising
direction worth exploring, as it has the potential of working
in an open domain and generalizing to the scenario with
an unlimited number of categories. However, existing ‘zero-
shot’ segmentation methods mostly relied on having seen
the queried or similar class(es) in the pre-training stage,
which is not really ‘zero-shot’. We look forward to new
evaluation metrics and/or benchmarks that focus on the
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open domain issue itself without caring too much about
whether the test is ‘zero-shot’.
2) Label-efficient segmentation by vision transformers
The existing label-efficient segmentation methods are
mainly based on convolutional neural networks. While re-
cent years have witnessed a revolution in computer vision
brought by the transformer module [166]. The emergence
of vision transformer (ViT) [167] and its variants [168],
[169], [170], [171] made breakthroughs in various vision
tasks, such as segmentation [172], [173], [174], [175]. In
addition, it has been observed that the self-attention maps
of vision transformers pre-trained by advanced unsuper-
vised representation learning methods, such as DINO [176],
BEiT [177], MAE [178] and iBoT [179], contain rich informa-
tion about the segmentation of an image, which provides
a potential way to generate reliable pseudo dense labels
without any supervision. We believe that exploring the
usage of the unsupervised self-attention maps of vision
transformers in pseudo dense label generation for label-
efficient segmentation is an interesting and open future
direction. Some recent studies have shown that the ability of
vision transformers in modeling long-range dependency can
benefit label-efficient segmentation, e.g., MCTformer [180]
replaced CNNs with ViTs to capture more complete seed
areas for higher accuracy in weakly-supervised semantic
segmentation, and CLIMS [181] inherited extra knowledge
from CLIP [158] to build a cross language-image mapping
that benefits weakly-supervised semantic segmentation. In
addition, STEGO [24]/DAformer [146] validated a simi-
lar story on unsupervised/transfer semantic segmentation,
respectively. We expect that, when the emerging proper-
ties from self-supervised pre-training are integrated, the
weakly-supervised learning algorithms can be enhanced.
3) Unexplored label-efficient segmentation problems
As shown in Fig. 1, there are some unexplored label-efficient
segmentation problems, such as instance segmentation from
noisy labels and panoptic segmentation from incomplete
labels. The reason why these problems are not explored yet
might be that there lack of proper datasets for evaluation or
sufficiently sophisticated models to achieve reasonable re-
sults. With the development of label-efficient segmentation
techniques, these research gaps will be filled in the future.
4) Mixing various annotations for lifelong learning
In real-world applications, we do not expect computer vi-
sion algorithms to work in a fixed domain or dataset, but
assume that new classes with various types of annotations
can appear at any time. This setting is known as lifelong
learning where multiple difficulties are combined, including
incremental learning, domain transfer, and imperfect labels.
We look forward to integrating the settings surveyed in this
paper into a unified framework in which various annota-
tions appear as different types of queries. A benchmark is
strongly required for this research direction.
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APPENDIX A
RESULT SUMMARY

We list the benchmark results of label-efficient image seg-
mentation methods in this section, including methods for
semantic segmentation with image-level supervision (Ta-
ble 5), instance segmentation with image-level supervision
(Table 6), semantic segmentation with box-level supervi-
sion (Table 7), instance segmentation with box-supervision
(Table 8), semantic segmentation with scribble-level super-
vision (Table 9), semi-supervised semantic segmentation
(Table 10), semi-supervised (partially-supervised) instance
segmentation (Table 11) and domain-adaptive semantic seg-
mentation (Table 12).

TABLE 5
Results (mIoU) of semantic segmentation methods with image-level

supervision on PASCAL VOC [58] val and test. †: using saliency maps.

Method Backbone Val Test

Wang et al. (CVPR18) [109]† ResNet101 60.3 61.2
SeeNet (NeurIPS18) [46]† ResNet38 63.1 62.8
Sun et al. (ECCV20) [104]† ResNet101 66.2 66.9
Li et al. (AAAI21) [47]† ResNet101 68.2 68.5
Yao et al. (CVPR21) [182]† ResNet101 68.3 68.5
Xu et al. (ICCV21) [101]† ResNet38 69.0 68.6
Kim et al. (AAAI21) [100]† ResNet101 70.4 70.7
Jiang et al. (CVPR22) [103]† ResNet101 72.1 71.7
Zhou et al. (CVPR22) [106]† ResNet101 72.2 72.8

Kolesnikov et al. (ECCV16) [107] VGG16 50.7 51.7
Wei et al. (CVPR17) [86] VGG16 55.0 55.7
Wei et al. (CVPR18) [45] VGG16 60.4 60.8
Huang et al. (CVPR18) [108] ResNet101 61.4 63.2
Ahn et al. (CVPR18) [26] ResNet38 61.7 63.7
RRM (AAAI20) [56] ResNet38 62.6 62.9
Araslanov et al. (CVPR20) [183] ResNet38 62.7 64.3
Fan et al. (CVPR2020) [184] ResNet101 64.1 64.3
Zhang et al. (ACMMM21) [110] ResNet38 63.9 64.8
CIAN (AAAI20) [48] ResNet101 64.3 65.3
Lee et al. (CVPR18) [85] ResNet101 64.9 65.3
Wang et al. (IJCV20) [98] ResNet38 64.3 65.4
OAA (ICCV2019) [84] ResNet38 63.9 65.6
SEAM (CVPR20) [27] ResNet38 64.5 65.7
Ru et al. (CVPR22) [114] MiT-B1 66.0 66.3
Chang et al. (CVPR20) [91] ResNet101 66.1 65.9
CONTA (NeurIPS20) [92] ResNet38 66.1 66.7
Su et al. (ICCV21) [93] ResNet38 66.1 66.8
ECS-Net (ICCV21) [88] ResNet38 66.6 67.6
Lee et al. (CVPR21) [89] ResNet101 68.1 68.0
Zhang et al. (ICCV21) [102] ResNet38 67.8 68.5
Wang et al. (NeurIPS21) [90] ResNet38 68.3 68.6
Xie et al. (CVPR22) [181] ResNet50 70.4 70.0
Xu et al. (CVPR22) [180] ResNet38 71.9 71.6

TABLE 6
Results of instance segmentation methods with image-level

supervision on PASCAL VOC [58].

Method Backbone mAP25 mAP50 mAP75

PRM (CVPR18) [34] ResNet50 44.3 26.8 9.0
IAM (CVPR19) [116] ResNet50 45.9 28.8 11.9
WISE (BMVC19) [115] ResNet50 49.2 41.7 23.7
IRNet (CVPR19) [49] ResNet50 - 46.7 -
Label-PEnet (ICCV19) [35] VGG16 49.1 30.2 12.9
WSIS-CL (WACV21) [117] ResNet50 57.0 35.7 5.8
PDSL (ICCV21) [120] ResNet50-WS 59.3 49.6 12.7

TABLE 7
Results of semantic segmentation methods with box-level supervision

in terms of mIoU on the PASCAL VOC 2012 [58] val and test sets.

Method Backbone Val Test

Dai et al. (ICCV15) [54] VGG16 62.0 64.6
Song et al. (CVPR19) [125] ResNet101 70.2 -
Kulharia et al. (ECCV20) [126] ResNet101 76.4 -
Oh et al. (CVPR21) [37] ResNet101 74.6 76.1

TABLE 8
Results of instance segmentation methods with box-level supervision

on COCO [62].

Method Backbone mAP AP50 AP75

COCO val:
BBTP (NeurIPS19) [39] ResNet101 21.1 45.5 17.2
BBAM (CVPR21) [127] ResNet101 26.0 50.0 23.9
Boxinst (CVPR21) [80] ResNet101 31.6 54.0 31.9

COCO test-dev:
BBAM (CVPR21) [127] ResNet101 25.7 50.0 23.3
Boxinst (CVPR21) [80] ResNet101 32.5 55.3 33.0
BoxCaSeg (CVPR21) [128] ResNet101 30.9 54.3 30.8

TABLE 9
Results (mIoU) of semantic segmentation methods with scribble-level

supervision on PASCAL VOC [58] val.

Method Backbone Val

Paul et al. (CVPR17) [132] ResNet101 61.4
Di et al. (CVPR16) [36] VGG16 63.1
Tang et al. (CVPR18) [55] ResNet101 72.8
Tang et al. (ECCV18) [112] ResNet101 73.0
Xu et al. (ICCV21) [131] ResNet101 74.9

TABLE 10
Results (mIoU) of semi-supervised semantic segmentation methods

using labeled training data of different proportions (1/2, 1/4, 1/8, 1/16)
on PASCAL VOC val.

Method 1/2 1/4 1/8 1/16

AdvSemSeg (BMVC18) [50] 65.3 60.0 47.6 39.7
MT (NeurIPS17) [185] 69.2 63.0 55.8 48.7
GCT (ECCV20) [136] 70.7 64.7 55.0 46.0
VAT (CoRR17) [186] 63.3 56.9 49.4 36.9
CutMix-Seg (BMVC20) [137] 69.8 68.4 63.2 55.6
PseudoSeg (ICLR21) [30] 72.4 69.1 65.5 57.6
CPS (CVPR21) [57] 75.9 71.7 67.4 64.0
PC2Seg (ICCV21) [138] 73.1 69.8 66.3 57.0



A SUBMISSION TO IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 22

TABLE 11
“nonvoc→voc” denotes that categories in nonvoc and voc are the base and novel categories, respectively, and vice versa. voc contains 20

classes existed in both COCO and VOC. nonvoc contains 60 classes existed only in COCO, not in VOC. 1× represents for 12 epochs and 130k is
a customized schedule only used in OPMask [140]. “Layers” indicates the number of Conv blocks adopted in the mask head to perform mask

prediction. Generally, a heavier mask head leads to better performance, which has been demonstrated in [142].

nonvoc→voc voc→nonvoc
Method Backbone Schedule Layers mAP AP50 AP75 APS APM APL mAP AP50 AP75 APS APM APL

MaskX R-CNN [32] ResNet50 1× 4 28.9 52.2 28.6 12.1 29.0 40.6 23.7 43.1 23.5 12.4 27.6 32.9
Mask GrabCut [1] ResNet50 1× - 19.5 46.2 14.2 4.7 15.9 32.0 19.5 39.2 17.0 6.5 20.9 34.3
CPMask [141] ResNet50 1× 4 - - - - - - 28.8 46.1 30.6 12.4 33.1 43.4
ShapeProp [33] ResNet50 1× 4 34.4 59.6 35.2 13.5 32.9 48.6 30.4 51.2 31.8 14.3 34.2 44.7
ContrastMask [52] ResNet50 1× 4 35.1 60.8 35.7 17.2 34.7 47.7 30.9 50.3 32.9 15.2 34.6 44.3
OPMask [140] ResNet50 130k 7 36.5 62.5 37.4 17.3 34.8 49.8 31.9 52.2 33.7 16.3 35.2 46.5
ContrastMask [52] ResNet50 3× 4 37.0 63.0 38.6 18.3 36.4 50.2 32.9 52.5 35.4 16.6 37.1 47.3
Mask GrabCut [1] ResNet101 1× - 19.6 46.1 14.3 5.1 16.0 32.4 19.7 39.7 17.0 6.4 21.2 35.8
MaskX R-CNN [32] ResNet101 1× 4 29.5 52.4 29.7 13.4 30.2 41.0 23.8 42.9 23.5 12.7 28.1 33.5
ShapeMask [53] ResNet101 1× 8 33.3 56.9 34.3 17.1 38.1 45.4 30.2 49.3 31.5 16.1 38.2 28.4
ShapeProp [33] ResNet101 1× 4 35.5 60.5 36.7 15.6 33.8 50.3 31.9 52.1 33.7 14.2 35.9 46.5
ContrastMask [52] ResNet101 1× 4 36.6 62.2 37.7 17.5 36.5 50.1 32.4 52.1 34.8 15.2 36.7 47.3
ShapeMask* [53] ResNet101 3× 8 35.7 60.3 36.6 18.3 40.5 47.3 33.2 53.1 35.0 18.3 40.2 43.3
CPMask [141] ResNet101 3× 4 36.8 60.5 38.6 17.6 37.1 51.5 34.0 53.7 36.5 18.5 38.9 47.4
OPMask [140] ResNet101 130k 7 37.1 62.5 38.4 16.9 36.0 50.5 33.2 53.5 35.2 17.2 37.1 46.9
ContrastMask [52] ResNet101 3× 4 38.4 64.5 39.8 18.4 38.1 52.6 34.3 54.7 36.6 17.5 38.4 50.0
deep-MAC [142] SpineNet143 3× 52 41.0 68.2 43.1 22.0 40.0 55.9 38.7 62.5 41.0 22.3 43.0 55.9

TABLE 12
Results of domain adaptive semantic segmentation methods in terms of mIoU on GTA5 [60] (source)→ Cityscapes [59] (target).

Road S.walk Build. Wall Fence Pole Tr.Light Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike mIoU

I2IAdapt (CVPR18) [144] 85.8 37.5 80.2 23.3 16.1 23.0 14.5 9.8 79.2 36.5 76.4 53.4 7.4 82.8 19.1 15.7 2.8 13.4 1.7 35.7
AdaptSeg (CVPR18) [143] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
CBST (ECCV18) [147] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9
BDL (CVPR19) [41] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
Kim et al. (CVPR20) [148] 92.9 55.0 85.3 34.2 31.1 34.9 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 42.9 0.3 36.4 46.1 50.2
TPLD (ECCV20) [149] 94.2 60.5 82.8 36.6 16.6 39.3 29.0 25.5 85.6 44.9 84.4 60.6 27.4 84.1 37.0 47.0 31.2 36.1 50.3 51.2
DACS (WACV21) [51] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
ProDA (CVPR21) [42] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
DPL (ICCV21) [145] 92.8 54.4 86.2 41.6 32.7 36.4 49.0 34.0 85.8 41.3 86.0 63.2 34.2 87.2 39.3 44.5 18.7 42.6 43.1 53.3
BAPA-Net (ICCV21) [150] 94.4 61.0 88.0 26.8 39.9 38.3 46.1 55.3 87.8 46.1 89.4 68.8 40.0 90.2 60.4 59.0 0.00 45.1 54.2 57.4
DAFormer (CVPR22) [146] 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3


	1 Introduction
	2 Foundations
	2.1 Problem Definition
	2.2 Methodology Overview
	2.3 Functions of the Heuristic Priors
	2.4 Datasets and Evaluation Metrics

	3 No Supervision
	3.1 Unsupervised Semantic Segmentation
	3.1.1 Cross-pixel Similarity as Dense Self-supervision
	3.1.2 Cross-view Consistency as Dense Self-supervision
	3.1.3 Cross-image Relation as Dense Self-supervision

	3.2 Unsupervised Instance Segmentation
	3.3 Discussion

	4 Inexact Supervision
	4.1 Segmentation with Image-level Supervision
	4.1.1 Semantic segmentation with image-level supervision
	4.1.2 Instance segmentation with image-level supervision
	4.1.3 Panoptic segmentation with image-level supervision

	4.2 Segmentation with Box-level Supervision
	4.2.1 Semantic segmentation with box-level supervision
	4.2.2 Instance segmentation with box-level supervision
	4.2.3 Panoptic segmentation with box-level supervision

	4.3 Segmentation with Scribble-level Supervision
	4.4 Discussion

	5 Incomplete Supervision
	5.1 Semi-supervised Segmentation
	5.1.1 Semi-supervised semantic segmentation
	5.1.2 Semi-supervised Instance segmentation

	5.2 Domain-adaptive Segmentation
	5.2.1 Domain Adaptive Semantic Segmentation

	5.3 Discussion

	6 Inaccurate Supervision
	6.1 Semantic segmentation from Noisy supervision

	7 Conclusion and Discussion
	7.1 Challenges
	7.2 Potential Directions

	References
	Appendix A: Result Summary

